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Abstract—We build a model of information cascades
on feed-based networks, taking into account the finite
attention span of users, message generation rates and
message forwarding rates. Using this model, we study
through simulations, the effect of the extent of user
attention on the probability that the cascade becomes
viral. In analogy with a branching process, we estimate
the branching factor associated with the cascade process
for different attention spans and different forwarding
probabilities, and demonstrate that beyond a certain at-
tention span, critical forwarding probabilities exist that
constitute a threshold after which cascades can become
viral. The critical forwarding probabilities have an inver se
relationship with the attention span. Next, we develop
a semi-analytical approach for our model, that allows
us determine the branching factor for given values of
message generation rates, message forwarding rates and
attention spans. The branching factors obtained using
this analytical approach show good agreement with those
obtained through simulations. Finally, we analyze an event-
specific dataset obtained from Twitter, and show that
estimated branching factors correlate well with the cascade
size distributions associated with distinct hashtags.

Index Terms—social computing, information cascades,
limited attention

I. M ODELING THE EFFECT OF LIMITED ATTENTION

SPAN ON CASCADES IN FEED-BASED NETWORKS

With the pervasiveness of social networking platforms,
users are highly connected and have the ability to gen-
erate and forward information across networks. Feed-
based networks such as Facebook’s news feed, Twitter,
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and Instagram have become immensely popular, and
using them users can scroll through streams of the latest
information from sources that the user chooses to follow.
It has become increasingly apparent that the volume
of information being generated is far greater than the
amount of information that users of these social networks
can consume. Despite this preponderance of information,
certain messages are able to “go viral”, meaning that the
message is forwarded and seen by most (or at least an
asymptotically finite fraction) of the users in the social
network. Conversely, there are many messages that are
seen by few people and forwarded by no one.

Given the preponderance of feed-based social net-
works, users will only look through a limited number of
messages in their feed (before getting bored, fatigued,
or interested in another topic or feed). If a particular
message is deemed to be interesting, then the message
is forwarded to the user’s followers. As a consequence
of the variety in the number of feeds one can monitor,
individual messages end up competing for limited at-
tention span resulting in a fat-tailed distribution of the
popularity of individual messages [1], [2].

Our approach is to define a model of networked user
behavior within these feed-based networks to demon-
strate the impact of the limited attention of users. Our
model is based on three parameters that define the
behavior of individual users: the probability of a user
generating a new message, the probability that the user
forwards a given message in his feed, and the length of
the user feed. Simulations of our model support the idea
that the dynamics of an information cascade follow a
branching process [3], and how far the given branching
process is above or below criticality depends on the
depth of the feed to which a user typically devotes his
attention. At low values of forwarding probability, the
probability distribution of cascade sizes is a power-law
with an exponential cutoff indicative of a sub-critical
branching process while at large values of forwarding
probability global cascades become increasingly preva-
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lent. We analyze this model and the resulting branching
process in detail, and also investigate a real dataset of
tweets for signatures of the behavior suggested by our
model.

A brief overview of related work is found in Section II.
The model is introduced in Section III and the analysis
is described in Section V. In Section IV, we use a set
of tweets to demonstrate that signatures of critical, sub-
critical and supercritical behavior are also present in
empirical data on cascades and therefore qualitatively
support our model.

II. BACKGROUND AND RELATED WORK

In the past five years, the topic of information cas-
cades has gathered the attention of both social network
and network analysis researchers. In particular, recent
theoretical work by Weng [1] and Gleeson [2] have
shown how simple models of message forwarding can
give rise to a fat-tailed distribution for the degree of
spread (popularity) of a given message. In Section III,
we comment on how these models are similar to and
different from the one we consider in this work.

Using attributes of the underlying graph as explanatory
variables is a common approach to studying information
cascades on networks. Typically, these networks have
either directional links, through follower and followee
relationships or bi-directional links, through friendship
statuses. Higham et al. [4] consider a model to pre-
dict spikes of activity while considering various graph-
theoretic characteristics of these networks. In contrast,
our analysis is based on abstracting the cascade as a
branching process, and we apply this approach to data
generated from simulations on scale-free networks, and
to data collected from Twitter.

Another approach common in studying information
cascades in social networks is to consider community
structure. Weng et al. [5], [6] investigate the impact
of community structure on spreading of memes. The
dynamics of these cascades are studied with respect to
various complex contagion models. Others have used
epidemic models to investigate the dynamics of informa-
tion cascades. [7] considers these epidemic models with
four states in epidemics and attempts to fit empirical
data to parameterize these models. Analogs to states
in this type of model are the user issusceptiblewhen
open to viewing messages of a particular topic;exposed
while a message is in its queue;infected after the
message is forwarded,recoveredwhen it can return to
the susceptible state. Our approach does not allow for
such a recovered state.

We do not represent or study message content nor do
we conduct sentiment analysis on the data. Modeling

of these dynamics can provide more insight into the
behavior of the users and global dynamics [8]. Further,
for tweets containing hashtags of interest, the tweet may
represent negative or positive support of the topic, which
may also provide additional dimensions of study.

Finally, the model in this work does not consider
placement of messages in feeds as conditions for virality.
Hodas and Lerman [9], [10] study the impact of the
placement of the messages in the queue and its impact
on social contagion, where messages at the top of queues
are more likely to be viewed. One can also consider other
characteristics of the messages such as which other users
forwarded the messages as well as their relationship to
the current active user. In this work, our model is a FIFO
stream.

A work related to biases in data collection, [11]
compares the full Twitter feedFirehosewith the sampled
GardenhoseTwitter Streaming API to which the majority
of researchers have access.

III. M ODEL

We abstract the social network under consideration
as a graphG. For simplicity we assume the graph to
be undirected, but results found using directed edges
are qualitatively similar. We assume that the network
degree distribution is scale-free as indicated by previous
analyses of connectivity in social networks [12] The
parameters governing message propagation in our model
are as follows:

• pn: probability of new message generation
• pr: probability of message forwarding
• L: length of message buffer

The dynamics of message cascading results from the
following rules. In each time slott, one user (nodei)
is randomly selected to become active, and then will
choose to create a new message with probabilitypn. If a
new message is generated, then each of the followers
of node i will receive this message in their message
feed, and, if needed, their oldest message is removed
from their buffers. Then, nodei goes through its feed
of up to L messages one by one, starting from the
most recent message. With probabilitypr, each message
will be independently forwarded to its neighbors. We
assume that a node does not forward the same message
twice. When a user receives a message that has been
already forwarded, it will ignore this message although
the message still occupies a place on its feed. The
duration of a time slot is the time required for a node to
go through the above set ofL+ 1 actions.

Given this model, we study how the popularity of a
message - the number of users forwarding that message
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- is statistically distributed. Note that in the rest of the
paper, we interchangeable use the termsqueueandfeed.

Similar models have been studied in [1] and [2], but
with the crucial difference that when a node is selected
for an update, it either generates a new message or
forwards a randomly chosen message from its queue. The
former study has additional parameters in the model as
well, making it less analytically tractable. In contrast the
model in [2] as shown therein, is analytically tractable;
however the system approaches criticality only when the
message generation probability tends to zero. Further-
more, a regime of supercritical behavior is not attainable.
This is another point where our model contrasts with that
of [2] as we shall demonstrate in forthcoming sections.

IV. RESULTS

A. Simulations

In this section, we describe the set of simulations
conducted to test the model described in Section III and
to gain understanding of the conditions under which one
can expect global cascades,i.e. a significant fraction of
nodes forwarding the message.

We simulate the model on scale free networks consist-
ing of N = 10000 nodes with a power-law exponent of
γ = 2.5 . Ten independent simulations were run, each for
T = 40×N = 4× 105 timesteps. One timestep consists
of one user being activated, potentially generating a new
message, and going through its queue. To account for
transient behavior of the queues populating, we begin
collecting data on the number of users sharing specific
messages only for those messages created after after
t = 105 timesteps. Unless otherwise stated, we use
pn = 0.45. We refer to the number of users forwarding
a given message as thecascade sizeassociated with that
message.

Figs 1a-1c show simulation results for simulations of
various values of forwarding probabilitypr and depth of
the queueL. Observations are that for high forwarding
probabilities,pr = 0.98, global cascades are present for
all L shown. For low forwarding probabilitiespr = 0.02,
the cascade sizes are distributed exponentially. For the
intermediate forwarding probability shownpr = 0.4, the
cascade sizes transitions from power-law to exhibiting
super-criticial behavior of global cascades.

In Fig. 1a, for the lowest value of forwarding proba-
bility, cascade sizes are distributed exponentially, while
at the intermediate value ofpr = 0.4, the distribu-
tion has a robust linear behavior (on the log-log plot)
upto a specific cascade size, suggesting a power-law
behavior of the cascade size distribution, modulated
by an exponential cutoff. Finally, at the largest value

of forwarding probability, the mass of the distribution
appears to be increasingly shifting to the tail. The latter
behavior becomes more pronounced as the queue length
L is increased - see Figs 1b and 1c. In general, the
transitions in the form of the distribution are indicative of
a branching process like behavior which many systems
subject to cascades have been found to follow [13], [14].
Specifically, a branching process can be sub-critical,
critical or super-critical, with the respective tree-sizes
generated by the branching process being distributed
exponentially, as a power-law, and bimodally with more
and more of the distribution becoming concentrated at
the higher mode.

Next, we estimate the critical forwarding probability
pr at which the cascade distributions can be assumed
to attain their power-law behavior as follows. The goal
in general is to determine the “branching factor” of the
branching process i.e. the average number of copies that
a typical node produces for any received message. When
the branching factor is1, the branching process is said to
be critical. The branching factor is estimated as follows::

• For a given messagem, lets put all nodes that have
originated or received a copy of that message on
their queue in the setRm.

• For everyr in set Rm for a specific messagem,
count the number of copies of the message that
the node produces. If the node never forwards the
message, the number of copies isnm(r) = 0. For
a node that does share the message, the number of
copiesnm(r) is equal to the node degree, if the node
originates the message, or the node degree minus
one if the node received the message, since the
neighbor from whom the node received the message
will not forward it again.

• The branching factor is estimated asµ =∑
m

∑
r∈Rm

nm(r)/
∑

m

∑
r∈Rm

1.

The branching factor estimated in this manner is
shown for a range ofpr values for different queue
lengths in Fig. 2a. The dashed horizontal line indicates
the critical branching factor. As a general trend, asL
increases, thepr at which the cascades approach a critical
branching process decreases. Also of note is that for
L = 2, the dynamics of cascades will always operate
in the subcritical regime. AsL tends to∞, the system
will increasingly operate in the supercritical regime.
Fig. 2b shows the same analysis with simulation results
superimposed to show the relative matching between the
theory and simulation for three values ofL.

In the next section, we derive an analytical estimate
of the critical value of the forwarding probabilitypr at
which the cascade distributions can be assumed to attain
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Fig. 1: Distribution of cascade size for various values of
L

their power-law behavior thus making global cascades
rare but possible.

V. A NALYSIS

Here we describe our approach to analytically estimat-
ing the branching factor for the model given parameters
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Fig. 2: Branching factor analysis for various values of
L.

pn, pr and L. The basic idea is to estimate the mean
number of copies of a message that a user produces
given that it has received the message. For simplicity, and
due to the low density of loops in randomly generated
scale-free networks [15], we assume for purposes of
analysis, that the structure on which the cascades are
taking place is a tree with the same degree distribution
as the original scale-free network. Further assuming that
a node forwards messages only to its children on the
tree ensures that any message is received by a node only
once, and this vastly simplifies our analysis.

In order to estimate the mean number of copies of
a message produced by a node, we first estimate the
effective forwarding probability of a received message
by a node. A primary consideration here is the fact
that the node can have multiple attempts at forwarding
the message for as long as the message has not been
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pushed out of the queue by incoming messages. Thus the
message gets some number of chances before exiting the
user’s window of attention. Letρn be the probability that
the message survives on the node’s queue for exactlyn
rounds of the node’s activity. Since in each round the
message can be forwarded with a probabilitypr, the
effective forwarding probability for a given message can
be written as:

pf =
∑

ρn(1− (1− pr)
n) (1)

since the term in parentheses on the right hand side
represents the probability that the message is forwarded
at least once inn updates.

The probabilityρn can in turn be derived from the sur-
vival probability Pn which captures the probability that
the user receives less thanL messages inn updates thus
ensuring that the message under consideration remains
on the user’s queue for at leastn updates. The survival
probability itself can be written as:

Pn =
∑

j

qj,nu(mj < L) (2)

where qj,n denotes the probability thatj events are
forwarded to the user betweenn updates of the user
itself, andu(mj < L) is the probability that the number
of messages received by the user as a result of thesej
forwarding events is less than its queue length.

To obtain qj,n, we treat the update of a node as a
Poisson process with rate1. As a result, the process
describing an event among any of thek (incoming)
neighbors of a node is a Poisson process with ratek.
Utilizing these two independent Poisson process allows
us to derive an expression forqj,n.

We obtainu(mj < L) by estimating the probability
that a given number of messages are forwarded inj
neighborhood update events accounting for the fact that
the forwarded messages could be newly generated ones
(occurring with probabilitypn per update) or previously
existing messages. In order to account for the fact that
messages that have been forwarded once before are
not forwarded again, we assume that each message in
the queues of the neighborhood is eligible for forward-
ing with probability α. To complete the calculation of
u(mj < L) we need to estimateα in a self-consistent
manner. We do so by first deriving the probability that
a message on a queue has agew i.e. has survived forw
updates since it was received, and using it to compute
the average probability that a message on a queue has
not been forwarded yet. The former probability can be
expressed in terms ofα, and the latter should be identical
to α. To solve this fixed-point equation, we scan for the
value ofα at which the self-consistency is satisfied.

With qj,n andu(mj < L) evaluated, we can estimate
the survival probabilityPn, and from the latter derive
ρn = Pn − Pn+1. Finally, usingρn, we can estimate
the effective forwarding probability of a message. The
number of copies of a message produced by a node is
equal to the number of descendants that the node has
in a tree. Thus, given the degree distributionpk of the
network, we can derive the probability that the node
producesk copies of a message that was forwarded to
this node.

Following the arguments described above, we numer-
ically evaluate the branching factor for given values of
pn = 0.45, pr andL.

As a comparison of the simulation results and the
analysis, we show the critical branching factor as a
function of pr in Fig. 2b. There is close agreement
for low to intermediate values ofpr. At higher values
of pr and L, the true dynamics of cascades becomes
incompatible (for smallL there is no divergence) with
the consequences of the tree-like assumption in the
analysis.

VI. T WITTER ANALYSIS

As a complement to the analytical model and simula-
tion results, we performed an empirical study of tweets
from Twitter.

Approximately 3 million tweets were gathered,
streaming a specific set of hashtags for the 2014 Super-
bowl (25 Jan 2014 to 4 Feb 2014, with the game held
on 2 Feb 2014). The hashtags of interest were related
to the Superbowl as well as commercial hashtags, all
chosen before data collection. Per Twitter’s convention, a
forwarded message is called a retweet. Additionally, two
periods of tweets were extracted, pregame and postgame
tweets.

A. Data Streaming Limitations

There are some inherent “rate limits” imposed on the
collection of data from Twitter which make the data
lossy [11]. Also there are interruptions when there is
a high rate of requests, and there are “time-out” periods
to prohibit getting locked out. Fig. 3a shows the time
interval between successive tweets that we captured.
Also “time out” periods are clearly visible. The spike
in the middle of the data collection corresponds to
the middle of the game in which Twitter traffic was
significantly increased.

B. Followership network vs. Mention network

Another limitation of the data is that we do not have
network information (connectivity between users) as the
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gardenhose API does not have access to this information.
With our collected data, we infer the implicit “mention
network” between users, by assuming that if useri
mentioned userj in a tweet, theni is a follower ofj (i.e.
i points toj). The in-degree distribution of the inferred
network is shown in Fig. 3b. In our analysis, we focus
on only the (undirected) giant component.

C. Cascade size distributions

Of the31 hashtags that we tracked (see Appendix), we
selected four hashtags due to their relative abundance as
compared to the rest. For each of these four hashtags,
we gathered all tweets in our dataset that contained
the hashtag under consideration, and none of the other
hashtags that we were tracking. Within these tweets, we
analyzed cascade sizes corresponding to each distinct
tweet (each retweeted message has an identifier of the
original message of which it is a copy). The cascade size

distributions obtained through this analysis are shown in
Fig. 4a. A qualitative behavior similar to that seen in
our simulations can also be observed here, although care
must be taken in the comparison since we have shown
the complementary cumulative distribution of cascade
sizes here unlike in Figs 1a-1c. However, signatures
of subcritical, critical, and supercritical processes are
observable here as well, with the hashtagbestbudshav-
ing a far smaller tail than that of the rest, while the
hashtagGoHawkshas a much fatter tail resembling a
supercritical branching process.
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We further investigate the cascade size distributions
associated with the two hashtags with the most data,
#Superbowland# GoHawks. A power-law distribution,
as would be expected from a critical branching process,
yields a good fit to the cascade size distribution of the
former but results in a poor fit for the latter; see Fig. 4b.
Note that it is the complementary cumulative distribution
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function for the cascade sizes to which we have fit the
power-law. As we see later, the reason for the differences
in the quality of the fits is the difference in the branching
factors of the two hashtags. As mentioned earlier, for
large branching factors, as is the case for#GoHawks,
the process is supercritical, and therefore results in the
power-law fit being poor.

D. Branching Factor Analysis

Next, we estimate the branching factor for the cas-
cades. Due to the limitations of data, we use the follow-
ing approach:

For a given messagex:
1) Record all nodes that have retweeted a copy of that

message. Count the number of copies they generate
i.e. the number of their followers (on the mention
network).

2) We assume that the set of recorded nodes and their
combined neighborhood comprise the set of nodes
receivingx. Call this set the “touched” set.

3) Branching factor = total number of copies/ Size of
touched set.

The order of hashtags according to branching factor in
Table I is consistent with ordering based on the fatness
of the tails of their cascade size distributions in Figure
4b.

Hashtag Estimated Branching Factor
bestbuds 1.097

Superbowl 1.756
sb48 5.310

GoHawks 12.135

TABLE I: Branching factors for several hashtags

We studied tweets for #Superbowl and #GoHawks,
looking at the retweet distributions over time. This is
shown in Figures 5a and 5b, where the retweets are
shown as a subset of the new tweets over time. Addition-
ally, Tables II and III show an excellent match between
actual sources of tweet and the first tweeter of tweet.
These tables show the 10 most widely spread tweets with
#SuperBowl and #GoHawks. Of note are the boldfaced
rows, which indicate that the original tweet was captured
in the streamed dataset.

VII. D ISCUSSION

We have presented and analyzed here a parsimonious
model for cascades in feed-based social network envi-
ronments. Using this model. we show that the cascading
behavior can fall into three regimes, corresponding to
the analogous regimes of a branching process. The

0 50 100 150 200 250
0

200

400

600

800

1000

time (minutes elapsed after start of collection)

N
um

be
r 

of
 tw

ee
ts

 

 

all tweets
new tweets

#SuperBowl

(a) #SuperBowl

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

time (minutes elapsed since start of collection)

nu
m

be
r 

of
 tw

ee
ts

 

 

All tweets
new tweets#GoHawks

(b) #GoHawks

Fig. 5: Activity of new tweets and retweets for #Super-
Bowl and #GoHawks over time.

Rank Follower count (original) Follower count (dataset)
1 1113326 263
2 30303 457
3 4088 631
4 20096 6
5 557775 171
6 874 681
7 481634 46
8 251500 251500
9 24777739 200
10 159544 538

TABLE II: Top retweeted #SuperBowl tweets and com-
parison of original tweeters and tweeters in dataset.Bold
entries indicate that the original source was captured in
the streamed dataset.

particular regime that the cascading behavior falls into
depends on the combination of parameters in the model.
What differentiates our results from prior theoretical
results [2] is that supercritical behavior is possible in
our model. Furthermore, empirical data obtained from
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Rank Follower count (original) Follower count (dataset)
1 650504 650504
2 467808 20730
3 54370 5
4 898024 898204
5 108 108
6 453854 54
7 642489 232
8 244 244
9 6220 6220
10 440624 165

TABLE III: Top retweeted #GoHawks tweets and com-
parison of original tweeters and tweeters in dataset.Bold
entries indicate that the original source was captured in
the streamed dataset.

Twitter also qualitatively supports our hypothesis that
cascading behavior can fall into three regimes.

VIII. A PPENDIX

List of hashtags gathered from Twitter

GoodToBeBad UpForWhatever
CupTherapy NoRoomForBoring

FuelYourPleasure KissForPeace
itsgotime HowMatters
Halftime AmericaIsBeautiful

sorrycokeandpepsi StayUncompromised
VW Wings
sb48 Covered

Uncovered bestbuds
salute SuperBowl

12thman GoHawks
SeaHawks beastmode

tgibf youmadbro
teamsmallbiz unitedinorange
broncospride peyton

nfl

TABLE IV: List of hashtags collected from Twitter
stream
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