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Abstract—Observability of complex systems/networks is the focus of this paper, which is shown to be closely related to the concept of
contraction. Indeed, for observable network tracking it is necessary/sufficient to have one node in each contraction measured.
Therefore, nodes in a contraction are equivalent to recover for loss of observability, implying that contraction size is a key factor for
observability recovery. Here, using a polynomial order contraction detection algorithm, we analyze the distribution of contractions,
studying its relation with key network properties. Our results show that contraction size is related to network clustering coefficient and
degree heterogeneity. Particularly, in networks with power-law degree distribution, if the clustering coefficient is high there are less
contractions with smaller size on average. The implication is that estimation/tracking of such systems requires less number of
measurements, while their observational recovery is more restrictive in case of sensor failure. Further, in Small-World networks higher
degree heterogeneity implies that there are more contractions with smaller size on average. Therefore, the estimation of representing
system requires more measurements, and also the recovery of measurement failure is more limited. These results imply that one can
tune the properties of synthetic networks to alleviate their estimation/observability recovery.

Index Terms—Observability, System Estimation, Contraction, Complex network, Clustering Coefficient, Degree Heterogeneity
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1 INTRODUCTION

COMPLEX networks have recently gained considerable
attentions in control and estimation theory [1]–[7]. This

interest stems from the challenge to understand and infer
the fundamental aspects of system behavior. Such complex
networks exist in nature for example in chemical reaction
networks and biological networks [1] as in proteomics and
gene networks. Other than these natural complex networks,
synthetic large-scale networks are recently considered due
to emergence of the so-called Internet-of-Things (IoT) and
Cyber-Physical-Systems (CPS) [4], [5]. Interestingly the de-
sign of such man-made networks are significantly tied by
control and estimation principles as they are genuinely
constructed based on these principles [3]. Examples range
from consensus networks [8] and social networks [7] to more
technological networks including electric power grids, com-
puter networks, the Internet, etc. Indeed, many networks are
a formalism to describe phenomena and systems in real life1.
In these and other similar applications the research focus
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1. In this paper a network describes the underlying dynamic system

or phenomena. Therefore, throughout the paper the network and
system are used interchangeably.

is to uncover the tie between the internal system/network
dynamics and the controllability and estimation properties.

It is known that, the internal states of complex systems
are to a great extent dependent on each other, which is
due to interaction of different components on each other
and therefore these complex systems are represented as net-
works [1]. This inter-dependence is such that by measuring
and tracking certain variables of complex system one can
infer sufficient information about the rest of the system for
filtering and tracking purposes. This implies that measuring
well-selected variables give an observable inference of com-
plex system. The term observability is a measure defining
whether the internal states of a system can be determined
by knowledge of its measurements. The system is said to
be observable if one can reconstruct the complete state of the
complex system from the set of measured states also known
as system outputs [9].

There are different methods to check for observability
of dynamic systems, namely: (i) algebraic method based
on Gramian test [9]; (ii) the symbolic method also known
as Popov-Belevitch-Hautus (PBH) test [10]; and, (iii) the
structural observability method introduced by pioneering
work of Lin [11]. The first two methods are based on
numerical values of system parameters while the third
method is irrespective of the parameters and only relies on
the structure of the underlying system. Therefore, the third
method has certain benefits over the two other methods as it
is computationally efficient and only requires the structural
information and sparsity pattern of the system instead of
exact numerical values [12]. In other words, the structural
method only relies on the knowledge of complex system as
a graph/network and therefore is extensively studied in the
literature [1]–[3], [5], [6], [11], [12].

The system graph representation, referred to as system
graph, is an abstract way of modeling complex systems
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and has recently applied widely in the literature to reduce
the complexity of such systems [1], [5], [6]. In the system
graph, every graph node represents a state (a variable or a
parameter) and every link (or edge) between a pair of nodes
represents derivative functional connection relating the state
variables [1], [6], [12]. In general, graph representation ap-
proach is more conventional in networked systems [13], [14]
where the network structure is embedded into the system
structure. The structural observability of networks, or any
system graph as a network, is also referred to as network
observability [1], [6] and is the adopted methodology in this
paper.2

The network observability, as an abstract observability
model of the system is closely related to system graph
properties.3 The main theorem on this topic is originally
stated in [11] and further developed recently in [1], [6], [14],
[16]–[19]4. Existence of disjoint cycles and output connected
paths in the graph is closely tied with its observability. In
this direction, recently the concept of matching and dilations
in graph [6], and Strongly Connected Components (SCC)
[16] are introduced to be related to network observabil-
ity/controllability. Among these, the concept of contraction
is the focus of this paper. An introductory description of
contraction in the network is the set of nodes contracting
(linking) to fewer number of nodes.

In system estimation perspective, nodes in the same
contraction are observationally equivalent, i.e. in case of
losing observability of one (unmatched) node/state in the
network/system another node in the same contraction can
be measured to recover for the loss of observability. This
is applicable in estimation of large scale systems such as
power grid [5] and internet based autonomous systems.
For example when a sensor fails to measure a state –due
to excessive noise, disturbance, or even external attacks–
some necessary information of the system is lost and sys-
tem/network cannot be tracked globally. To recover for
this loss of information another sensor can be applied to
measure equivalent state/node of the system/network. This
is why the contractions play an important role in estimation.
Indeed, one can apply a new sensor to measure an equiva-
lent state in the same contraction and recover for the observ-
ability loss. In this regard, the size of contraction determines
the possible number of equivalent options for observability
recovery. Larger contractions imply more options among
which one can choose the most efficient state measurement
in terms of cost [20], reliability, etc. This is the main motiva-
tion to analyze the size and distribution of contractions as
they play a major role in system observability recovery.

Related Literature: Structural observability of full-rank
systems (having no contraction in system graph) is consid-
ered in [1], [16]. In these works, structural observability is
shown to be closely related to network SCC classification.
In [6] using cavity method the authors find considerable
relation between average network degree and number of

2. See [1], [6], [15] for extension to nonlinear case.
3. It should be noted that structural observability and graph theoretic

method applied as a tool to solve network observability problem. See
reference [1], [6] for more information.

4. Note that many of stated references deal with dual problem of
network controllability. The graph properties and notions can be simply
redefined for network observability.

unmatched nodes. As one of their main results, they find
that denser networks have less number of unmatched nodes
and therefore it is less challenging to control and direct
the network to the desired state. In [18] the authors con-
sider distributed estimation and formulate necessary and
sufficient conditions for distributed structural observability.
This work finds the connection between the structure of
complex system and the structure of monitoring sensor
network. In [17], [19], the authors classify sensors based
on their essentiality for observability using combinatorial
algorithms with application to sensor failure and diagnosis.
Among these and other literature, what missing is on the
concept of contraction and the relation between distribution
of contractions and properties of the network (or system
graph).

Contribution: In this paper, we study the properties of
contractions in undirected networks/system-graphs as a
key factor in estimation and observability. Adopting the
structural/network observability method, the related ques-
tion addressed here is that: how to find the equivalent state
nodes in the network/system-graph to infer observationally
equivalent information of the associated system? and we
show that by finding contractions in the system-graph (or
network), one can find the system states (or network nodes)
equivalent in terms of observability and estimation. In this
regard, the size of a contraction determines the potential
number of equivalent sensing locations in networks as model
of complex systems, which is discussed in Section 2. Further,
a polynomial order algorithm is applied to find the contrac-
tions in the system graph. This algorithm is a modification
of the algorithm for unmatched node detection given in
[21]. Contractions are of particular interest in recovering
sensor failure and loss of observability in tracking/filtering
noise-corrupted global state of the system/network. De-
tailed discussion on application of contractions in system
estimation and observability including example of observ-
ability recovery in Kalman filtering is provided in Section 3.
Introducing the contraction set, the follow-up question is:
how do the properties of these contraction sets change based
on different characteristics of the underlying network? We
investigate the effect of two factors on the size and distribu-
tion of contraction components: degree heterogeneity and
clustering coefficient. First result of this paper is that the
clustering coefficient as a network characteristic is related to
average size and number of contractions. In particular, our
results show that for Scale-Free networks, with power-law
degree distribution, increase in clustering coefficient results
in a decrease in average contraction size in the network.
Further, we observe decrease in the number of contractions
in high clustering coefficient Scale-Free networks. As the
next contribution, we check the effect of degree hetero-
geneity in Small-World networks on contraction properties.
Specifically, our results show that increase in randomness of
link connectivity (tuning the p factor) results in decrease in
the average contraction size but increase in the number of
contractions in the network. These results are addressed in
Section 4.1. Further in Section 4.2, as a practical contribution,
the contraction properties including the size distribution
and prevalence are discussed for two real world networks: a
Power-grid network and a Route-view network. Noting that
the degree distribution of many real-world networks show
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power-law degree distribution, including the two example
here, the results for these two practical examples corre-
sponds with contraction properties of scale-free networks.
More detailed discussion on these results and concluding
remarks are stated in Section 5. It should be noted that in
this paper the results are particularly stated for undirected
networks/system graphs.

2 NOTIONS ON GRAPH THEORY AND DEFINITION
OF CONTRACTION

In this section we define the contraction sets in graphs by
first introducing the relevant graph theoretic notions. Define
a graph as G = (V, E), where V is the node set containing
n graph nodes, and E = {(vi, vj)} is the set of edges
connecting the nodes. Define a path as a sequence of distinct
nodes with every consecutive nodes as an edge in E . Further,
define a cycle as a path starting and ending at the same
node. Define N (i) as the degree of node i. The adjacency
matrix of the graph AG = {aij} is defined as aij = 1, if
(vj , vi) ∈ E , otherwise aij = 0. We further introduce the
following graph-theoretic concepts to define contractions:

• Bipartite graphs: Define a bipartite graph, Γ =
(V+,V−, EΓ), such that its nodes are partitioned into
two disjoint sets: V+ and V−, and all of its edges EΓ
start in V+ and end in V−. We construct a bipartite
graph, Γ, from G with the edge set EΓ, defined as the
collection of (v−j , v

+
i ), if (vj , vi) ∈ E .5

• Matching: A matching, M, on the system graph, G, is
defined as a subset of the edge set, E , with no common
end-nodes. In the bipartite graph, Γ, it is defined as
a subset of edges where no two of them are incident
on the same vertex in V+, i.e. all the edges in M are
all disjoint. The number of edges, |M|, is the size of
the matching. A matching, M, with maximum size is
called maximum matching, denoted by M, which is
non-unique in general.

• Matched/Unmatched nodes: LetM be a maximum match-
ing defined on the bipartite graph, Γ. Let ∂M+

and ∂M− denote the nodes incident to M in V+

and V− respectively. Denote by δM the set of un-
matched nodes in V+ as δM = V+\∂M+. Note that
maximum matchingM is not unique in general.

• Auxiliary graph, denoted by ΓM, is a graph associated
to a maximum matching, M. It is constructed by re-
versing all the edges of maximum matching, M, and
keeping the direction of all other edges EΓ\M, in the
bipartite graph, Γ. This graph is defined to localize the
contractions in the system graph.

• M-alternating path: In the auxiliary graph, define anM-
alternating path as a sequence of edges starting from
an unmatched node in δM and every second edge
in M, and denote it by QM. The name comes from
the alternating edges between unmatched part, E\M,
and matched part,M, of the auxiliary graph.

5. Note that, in general, edges in a bipartite graph have no direction.
However in this paper, following the definition in [21], it is assumed
that the edges have direction from V+ to V−. This kind of representa-
tion is later used in the definition of Auxiliary graph.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. This figure shows a network contraction in the left, where the
three contraction nodes are shown in red color. Figures in the right
show three different maximum matching in bipartite representations of
the same contraction. The red edges represent maximum matching and
the red node represents the unmatched node.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. This figure illustrates the procedure of finding contractions ex-
plained in the paper. Graph in the left shows one possible matching and
the unmatched node in the bipartite representation of the graph in Fig 1.
The middle graph shows the auxiliary representation, where all matching
edges are reversed. In the right graph anM-alternating path is shown
in black. Starting from the unmatched node, this path is used to find the
contraction nodes (shown by dashed squares). Later in this paper we
name these contraction nodes as observationally equivalent nodes.

• M-augmenting path: In the auxiliary graph, define
an M-augmenting path, denoted by PM, as an M-
alternating path with begin node and end node in δM.

Having defined these preliminary notions on graph theory,
the notion of a contraction set is defined as follows:
Definition 1. In the auxiliary graph representation of a net-

work, ΓMA , define a contraction set for every unmatched
node vj ∈ δM, as the set of nodes containing all states
in V+ reachable byM-alternating paths starting from vj .
Denote this set by Ci and further define C as the set of all
contractions, i.e. C = {C1, ..., Cm}. Intuitively, in graph
G, a contraction set defines nodes that are connected
(contracted) to less number of nodes.6

For better illustration of the above definitions a contraction
of 3 nodes into 2 nodes is shown in Fig. 1. The bipartite
representation, the maximum matching, and the unmatched
node are illustrated in the figure. We further illustrate the
definition of auxiliary graph and M-alternating path in
Fig. 2. The algorithm to find the contraction sets in network
is given in Algorithm 1.

6. It should be mentioned that the concept of contraction is dual of
dilation defined in the network controllability problem [6]. In a dilation
set, less number of nodes are dilated into more number of nodes. So
that we don’t need to continually refer to the dual graph, we define a
contraction that is the natural dual of dilation.



IEEE TRANSACTION ON NETWORK SCIENCE AND ENGINEERING 4

Given: System graph GA
Result: Contractions {C1, ..., Cm}
Construct the bipartite graph Γ = (V+,V−, EΓ);
Find a matchingM as the set of edges with no

common end nodes ;
Construct the auxiliary graph Γ

M
A by reversing the

edges in matchingM;
Define ∂M+ as the nodes in V+ incident toM ;
Define the set of unmatched nodes δM as
δM = V+\∂M+;

Define theM-alternating path, QM, as a sequence of
edges starting from an unmatched node in δM and
every second edge inM;

Define anM-augmenting path, PM, as an
M-alternating path with begin node and end node in
δM;

while augmenting path PM exist do
for nodes in δM do

Find PM ;
M =M⊕PM ;

end
end
Construct the auxiliary graph ΓMA for the maximum

matchingM;
Define ∂M+ for the maximum matchingM and
define δM = V+\∂M+;

Define theM-alternating path, QM, for the maximum
matchingM;

for nodes in δM do
Find alternating paths QM in ΓMA ;
Put all nodes in V+ reachable by QM in Ci;

end
Return Ci, i = {1, ...,m};

Algorithm 1: Contraction Detection Algorithm: the first
loop in the algorithm gives the maximum matching, M,
and unmatched nodes; the second loop in the algorithm
gives the contraction set for each unmatched node.

In Algorithm 1, ⊕ is the XOR operator in set theory. As
a result of this operator, each augmenting path increases the
size of the matching till it reaches the maximum matching.
The computational complexity of this algorithm is on the
order ofO(

√
n|E|) orO(n

5
2 ) in worst case. In general, given

the system graph GA there are other efficient algorithms to
compute the maximum matching, M, e.g., the maximum
flow algorithm [22]. The notions Γ,M can be obtained by
the Dulmage-Mendelsohn (DM) decomposition [23]. Other
than DM decomposition, maximum matchings can be effi-
ciently computed in O(

√
n|EA|) using the approach in [24].

In the following, we state two main lemmas relating the
maximum matchings and contractions.

Lemma 1. Any choice of maximum matching, M, includes
one and only one unmatched node in every contraction
Ci, i ∈ {1, ...,m}.

The detailed proof is provided in [21], [25].

Lemma 2. For two sets of maximum matching,M1 6= M2,
any unmatched node vi ∈ δM1 can be reached along an
alternating path from a node vj ∈ δM2. This further

implies that the set C is the same for any choice of
maximum matching.

The proof is given in [21].

3 APPLICATION IN OBSERVABILITY AND SYSTEM
ESTIMATION

In this section, we first discuss the concept of structural
observability in networks and then its application to sys-
tem estimation. To further illustrate the results a network
estimation example is provided.

3.1 Network Observability
Observability of networks quantifies whether given mea-
surements contain sufficient information to comprehen-
sively reconstruct the states of all nodes in the network. For
a network, or a system graph representing a complex sys-
tem, the necessary and sufficient conditions for (structural)
observability is given in the following theorem.
Theorem 1. A network (or system graph) is structurally

observable if and only if: (i) every node can reach to
an output/measurement via a path of state nodes, and
(ii) there exist a family of disjoint cycles and output-
connected paths covering all nodes.

The proof is given in [11] and in [26] for the dual case
of structural controllability. In Theorem 1, condition (i) is
known as accessibility and condition (ii) as the S-rank condi-
tion. Note that for connected undirected networks the acces-
sibility is already satisfied. This is because, in a connected
undirected network every node is reachable by every other
node and therefore output connectivity of one node implies
the reachability of all other nodes to that output.
Theorem 2. In a connected undirected network with the set

of unmatched nodes, δM, observation/measurement of
every unmatched node is necessary and sufficient for
network observability.

The proof is given in [6] for the dual case of network
controllability.

Following the definition of contraction and results in
previous section here we state the theorem on the concept
of observational equivalence in contractions.
Theorem 3. In a connected undirected network with

the set of contractions C = {C1, ..., Cm}, a measure-
ment/observation of one state node in every contraction
Ci, i ∈ {1, ...,m} is necessary and sufficient for network
observability.

From Theorem 2 observation of every unmatched node
is necessary and sufficient for network observability. Note
that based on Lemma 1 for every contraction Ci, every
node vj is an unmatched node for a choice of maximum
matchingM. This implies that observing at least one node
in every contraction is necessary for observability. Further,
by measuring node vj in Ci from Lemma 2 all other nodes
in Ci\vj are matched for the choice of maximum matching
M and therefore only one node is sufficient for network
observability.
Lemma 3. Number of contractions in a network G equals the

(structural) rank deficiency of its associated adjacency
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matrix, AG. Indeed the rank deficiency of the adjacency
matrix, AG, equals the number of unmatched nodes in
the network G.

Indeed from Lemma 1 the number of contractions equals
the number of unmatched nodes in the network. Note that,
by definition, unmatched nodes appear on acyclic part of
network while the cyclic part is completely matched. It
is known that the rank of the network adjacency matrix
is structurally defined by the number of nodes included
in a set of disjoint cycles [27]. This implies that the rank
deficiency can be structurally defined by the number of
unmatched nodes, which are contained in the acyclic part
of the network.

The concept of contraction is closely related to the con-
cept of observational equivalence. Let Ci denote the mea-
surement matrix of node/state xi. Let O(A,Ci) represent
the observability Grammian of the pair A and Ci. The
observational equivalence relation among two states/nodes
xi and xj , denoted by xi ∼ xj , is defined as:

rank O(A,Ci) = rank O(A,Cj) = rank O
(
A,

[
Ci
Cj

])
(1)

Note that this follows the three properties of the equivalence
relation, i.e. transitivity, reflexivity, and symmetry.7

Lemma 4. The algebraic implication of observational equiva-
lence relation among states in each contraction is defined
as follows. For any two (or more) measurements of states
xi and xj in the same contraction, the structural-rank
recovery of system matrix A is equal to 1, i.e.,

S-rank
([

A
Ci

])
= S-rank

([
A
Cj

])

= S-rank

 A
Ci
Cj


= S-rank(A) + 1. (2)

where S-rank implies the structural-rank8 of the matrix.

The proof directly follows the three properties of obser-
vational equivalence relation. One can easily check that
the reflexivity, symmetry, and transitivity of equation (2)
directly follows.
Corollary 1. Theorem 3 along with Lemma 1, 2, and 4 imply

that all nodes in a contraction are equivalent in terms of
observability. In other words, measurement of any node
in each contraction, assuming that all other contractions
have one observation, provides network observability.
As a result of the equivalent observability relation, nodes
in the same contraction recover loss of observability.

In other words, in the case of observation failure of a
node, say node vi, some information of the system is lost. In
this case, observation of another node, say node vj , sharing
a contraction with node vi recovers the observability loss. In

7. Transitivity implies that if xi ∼ xj and xj ∼ xk , then xi ∼ xk .
Reflexivity implies that every state/node is equivalent to itself, and
symmetry implies that xi ∼ xj , then xj ∼ xi.

8. Note that, the structural rank (or S-rank) is defined as the max-
imum rank of the system matrix, A, by changing its free parametric
entries. In the system graph, G, S-rank is the size of the maximum
matching,M, see [28], [29] for details.

this regard, the size of contraction defines the possible num-
ber of equivalent sensing nodes for recovering observability
loss.The implication of equivalent relation is further dis-
cussed in next subsection; we show how dynamic systems
can be represented structurally as networks, where we can
apply the above Theorems and Lemmas to find equivalent
states in terms of system observability and estimation.

3.2 System Estimation
Consider the system model to be a discrete-time linear
dynamic system9:

xk+1 = Axk + vk, (3)

with xk ∈ Rn

xk =

 x1
k
...
xnk


as the state vector, A = {aij} ∈ Rn×n as the system matrix,
and vk ∼ N (0, V ) as the system noise. Assume the dynam-
ical system to be monitored by measurement/observation
model:

yk = Cxk + rk, (4)

where

yk =

 y1
k
...
ymk

 , C =

 C1

...
Cm

 , rk =

 r1
k
...
rmk

 ,
Here, rk ∼ N (0, R) is the observation noise with R =
blockdiag[R1, . . . , RN ], and C is the measurement matrix.

In structured systems theory, the LTI system in Eqs. (3)-
(4), can be modeled as a system graph. In this scenario,
every node is a system state and every edge represents the
interaction of two states based on the system matrix, A.
Denote the set of system states by X , {x1, . . . , xn}
and denote the set of system observations/measurements
by Y , {y1, . . . , ym}. Then the system graph is defined
by GA = (X , EA) where the edge set, EA, is defined
as EA = {(xi, xj) | aji 6= 0}, to be interpreted as xi → xj .
One should note that, in this graph representation of system
the structure of system graph only relies on free parametric
entries of matrix A. In other words, the graph structure
depends on each entry aij being a free parameter and
not on the exact numerical value of aij . Therefore, any
Linear Structure Invariant (LSI) system with fixed structure
and time-varying parameters can be modeled as a system
graph.10 The motivation of applying graph representation
of system is that one can check its characteristics by using
equivalent graphical properties. The system characteristic
of interest here is system observability, which plays a crucial
role in system estimation and filtering. To illustrate more we
consider the role of system graph observability in Kalman
estimation as discussed next.

9. The results carry forward are also applicable to continuous-time
systems.

10. This is not a straighforward procedure as the edge weights vary
over time while the structure is time-invariant. Note that here we only
convey the idea behind LSI dynamics with fixed sparsity pattern on the
adjacency matrix.
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Let x̂k|k be the Kalman estimator tracking system state
xk at time k given all the measurements, yk, up to time k.
The dynamics of this estimator is defined as follows [30]:

x̂k|k−1 = Ax̂k−1|k−1 (5)

x̂k|k = x̂k|k−1 +KkC
T (yk − Cx̂k|k−1) (6)

where the Kk is the Kalman gain computed in a recursive
procedure as proposed by Kalman [30]. It can be shown that
the error, êk|k = xk − x̂k|k, in this estimator is given by,

êk|k = (A−KkC
TCA)êk−1|k−1 + ηk, (7)

where the vector ηk collects the remaining terms (noise
terms) that are independent of êk−1|k−1 and êk|k. It is
known that the dynamics of Kalman error, êk|k is stable if
the measurements defined by matrix C give an observable
inference of system defined by A [30]. In other words, the
Mean Squared Estimation Error (MSEE) reaches bounded
stability over time if the pair (A,C) is observable. Following
the results of the graph-theoretic method in Section 3.1, we
consider two applications in the following.

(i) As the first application one can check the observability
constraint using results of Theorem 3. For a system to
be observable, according to Theorem 3, one state node
in each contraction set in the system graph has to be
measured.

(ii) The other, and more important, application is in case
of observability loss. Assume that one (or more) of
the sensor measurements fail and therefore the sys-
tem is not observable anymore. To recover for this
loss of observability, one can assign measurements of
equivalent states as stated in Corollary 1. The set of
equivalent states for observability and estimation can
be determined by finding contractions in the system di-
graph representation using Algorithm 1. For example,
loosing the measurement of state xi one can measure
another state xj sharing a contraction with xi in GA to
recover for system observability.

These graph-theoretic applications are explained more in the
following example.

Illustrative example: Consider a system with n = 11 states
represented as a system graph in Fig. 3-Top. Assume this
graph represents a dynamic system, where each node is sys-
tem state and each link represents the dynamic interaction
of two states (for more details on such representation of
systems as networks see [6]). The associated system matrix
elements in AG (i.e. the link weights) are chosen randomly.
For sake of illustration and avoiding trivial solutions the
elements inAG are such that the spectral radius of adjacency
matrix is greater than 1, ρ(AG) > 1, i.e. the system is
unstable. To determine the necessary states for observabil-
ity we find the set of contractions in the system graph
using Algorithm 1 as C1 = {x1, x3, x5}, C2 = {x6, x8},
and C3 = {x9, x11}.11 The system is tracked by m = 3
measurement of three states each in one contraction set of
the system graph. This satisfies the condition in Theorem 3
for observability and thus leads to stable estimation. These
measurements along with system parameters are used in

11. Note that contraction C1 is similar to the contraction described in
Fig. 1 and 2.
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Fig. 3. (Top) This figure shows the example system graph with 3 mea-
surements of states x1, x8, x9. The same-colored state nodes in red,
green, and orange each represent states in the same contraction com-
ponent and the blue states are not part of any contraction. (Bottom) The
time evolution of the MSEE using the estimator in Eqs. (5)-(6) applied
on the same system. The three measurements give an observable
inference and therefore the MSEE is bounded steady-state stable.

estimator Eqs. (5)-(6) to estimate and track the global state x
of the system over time iterations k. The Mean Squared Es-
timation Error (MSEE) over time is shown in Fig. 3-Bottom,
which is bounded. Note that if we loose the measurement
of a state in a contraction, according to Theorem 3 we loose
the system observability. Without observability, we loose
the stability of the MSEE and the estimation error goes
unbounded. To recover for loss of observability, one can take
a measurement of an equivalent state in the same contrac-
tion, as shown in Fig. 4-Top. Indeed, measuring any state
in the same contraction set is sufficient for observability
and yields stable estimation as shown in Fig. 4-Bottom. The
key point is that number of possible state to recover for
observability directly relates to the size of contraction sets.
In this example, there are two options to recover for loss of
observation of x1, while there is only one replacement for
observation of x8 and replacement for observation of x9.

4 SYNTHETIC AND REAL CASE STUDIES

In this section, we analyze the number and size of contrac-
tion sets in both real and random complex networks. Recall
that the contraction size is of interest because it determines
the number of equivalent nodes for observability recovery,
and number of contractions determine the number of node
measurements necessary and sufficient for observability.
First, random networks as models of complex systems are
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Fig. 4. (Top) This figure shows the same example system graph in Fig. 3
with 3 new measurements of states x3, x6, x11 sharing a contraction
with the states measured in Fig. 3. (Bottom) The time evolution of the
MSEE of system estimation using the estimator in Eqs. (5)-(6). As it
can be seen, the equivalent measurements also provide an observable
estimation with bounded steady-state MSEE.

reviewed and relation between features of these networks
and size/number of contractions are discussed. Next, the
distribution of contraction sets in some examples of real-
world networks are analyzed. Here, we proceed by first
reviewing the definitions of relevant network properties.
Definition 2. The local clustering coefficient of a node in a

graph is defined as the fraction of pair of node neigh-
bors that are linked together. On the other hand, the
global clustering coefficient is defined as the fraction
of the closed triplets (triangles) to the total number of
the triplet paths in the graph [31]. Mathematically the
clustering coefficient is defined as:

CC(i) =
2.tr(i)

N (i)(N (i)− 1)
(8)

where tr(i) is the number of triangles that node i forms
with two of its neighbors. The global clustering coeffi-
cient of the network is defined as,

CC =
3.tr

trp
(9)

where the tr is the number of triangles and trp is the
number of connected triplets in the network. It is known
that the clustering coefficient is a good measure of
well-connectivity of the network and presence of strong
community-structure in the network [31], [32].

Definition 3. Degree heterogeneity is an intuitive concept
related to the degree distribution of networks. Degree

heterogeneity, as opposed to degree homogeneity, deter-
mines if the nodes in the network have various degrees
(heterogeneous), or have similar degrees (homogeneous)
to one another. Various measures of degree heterogeneity
resembling the global differences in the node degrees are
discussed in [33], [34]. The most well-known formula for
degree heterogeneity is given by the variance of node
degrees as follows [34]:

V AR =
1

n

n∑
i=1

(N (i)− N̄ )2 (10)

where N̄ is the average node degree,

N̄ =
1

n

n∑
i=1

N (i) (11)

More details on these definitions can be found in [31], [34].

4.1 Contraction sets in Random Networks
Random graphs are widely used to model complex systems
facilitating analysis of different processes over networks,
e.g., spreading processes or cascading failures [31], [35]–[40].
The graphs are called random since the nodes in the graph
are randomly connected with each other. We investigate two
well-known models for random graphs. We particularly an-
alyze the relation between number and size of contractions
with clustering coefficient in Scale Free networks and with
degree heterogeneity in Small-World Networks as discussed
next.

Scale-Free networks: Many complex networks are mod-
eled by this type of random network. It is known that
degree distribution of such networks follows a power-law
distribution [35], i.e. the portion of nodes having degree d,
represented by f(d), follows the following formula:

f(d) = d−σ, 2 < σ < 3 (12)

In log-log scale, the distribution represents a linear function,
hence it is named Scale-Free (SF) network. This implies that
these graphs have a large number of low-degree nodes and
few hubs with high connectivity. A well-known approach
to build such networks is proposed by Barabasi and Albert
[36]. The Barabasi and Albert (BA) approach considers an
initial graph of few number of nodes, called initial seed
where recursively a new node with m new links is added
to the network. The probability that the new node makes
a link to old nodes is proportional to the degree of old
nodes, implying that the new node preferably links to high
degree nodes, and is known as preferential attachment. In this
method hubs with high degree are more likely to connect
to the newly added nodes while the low degree nodes
are unlikely to gain new links. These types of Scale-Free
networks, e.g. BA model, are known to have low cluster-
ing coefficient. Therefore recently new random models of
networks are proposed in the literature to account for high
clustering of real networks [37], [38]. These works propose
to modify preferential attachment method such that the
resulting networks, beside having power-law distribution,
have high clustering. The network growth procedure is
similar to the preferential attachment of BA model with
some modification. Similar to BA model, they consider an
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initial seed. Then, recursively a new node connects to mr

nodes in the network based on preferential attachment. But
further, in each step the new node also makes ms links to
randomly chosen neighbors of preferentially attached nodes
in the network. This additional step is called triad formation.
This increases the prevalence of triads (triangle cliques) in
the network, and therefore results in high clustering coef-
ficient. These random networks are called Clustered Scale
Free (CSF) networks.

For these networks we analyze the size and number
of contractions. It should be noted that for simulation we
consider m = mr + ms, i.e. number of links each new
node makes in SF network equals number of links each
new node makes in CSF network. This implies that the
number of edges in both SF and CSF network are the same.
This also implies that the average degree of the network is
equal for both SF and CSF networks. This is important as all
properties of both SF and CSF networks are similar except
their clustering coefficient [37], [38], [41]. Simulations are
performed over 1000 different realizations of 1000 node SF
and CSF networks and the results are shown in Fig. 5. As it
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Fig. 5. This figure shows the distribution of contraction size on SF and
CSF networks with similar number of preferentially attached nodes. The
simulation is performed over 1000 realizations of 1000-nodes networks.

can be seen contractions are more prevalent in SF networks
as compared to CSF networks and there are more contrac-
tions (and unmatched nodes) in SF networks as compared
to CSF networks. Further, the contraction sets are in average
larger in SF as compared to CSF networks. The results for
1000 network realizations are summarized in Table 1. This

TABLE 1
Average size and number of contractions in 1000 realizations of SF and

CSF networks.

Type of network SF CSF
Average Contraction size 18.89 6.72
Average number of Contractions 156 109

implies that by increasing the clustering coefficient as in CSF
networks the number and size of contractions decreases.

Small-World networks: The idea behind this model is to
imitate the graphical properties of real-world networks.
One of the main structural feature of the real graphs is
that they show high level of community structure while

keeping small average distance (shortest path), which is
known as the small-world phenomena. Such features are
not present in typical random models, for example in Erdos-
Renyi graphs. Therefore, Watts and Strogatz [39] proposed
a new semi-random graph, named Small-World model. The
Watts and Strogatz (WS) model starts with a k-regular
network in which every node is connected to its k nearest
neighbors (in both sides). Randomly pick links in the k-
regular network with uniform probability p independent
of each other. Then, choose the end node of this link and
randomly rewire it to another node. The rewiring must be
such that the new link is not a self-link or a link that already
exist in the network. By increasing the rewiring probability p
one can generate random networks which are more random
in terms of their degree heterogeneity and as p → 1 the
model reaches an Erdos-Renyi (ER) graph with Poisson
degree distribution [40]. On the other hand, small p implies
that network conserves its regularity and degrees of most
nodes lie around the average degree 2k. Such networks have
adjustable degree heterogeneity by tuning p. Indeed, regular
networks are the most degree homogeneous and next are
small world networks with tunable degree heterogeneity by
factor p. By increasing the factor p the degree heterogeneity
increases up to the point where p = 100% and the graph
models the ER network.

To relate the contraction size with degree heterogeneity,
1000 different realizations of 1000 node SW networks with 9
different p factors are considered and the simulation results
are shown in Fig. 6. Note that for this simulation only
rewiring probability p is changing, therefore graph prop-
erties such as number of edges and average node-degree
remains unchanged and the only property that changes is
degree-heterogeneity [42]. The average size and number of
contractions in 1000 network realizations are also summa-
rized in Table 2. As it can be seen from the results by
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Fig. 6. This figure shows the distribution of contraction size on different
Small-World networks tuning the p factor. The simulation is performed
over 1000 realizations of 1000-nodes networks.

increasing the p factor and degree heterogeneity, in average
contractions are decreased in size but increased in number.

4.2 Contraction sets in Real Networks
Power grid network: As the first example, we consider the
power grid network that represents the grid of the Western
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TABLE 2
Average size and number of contractions in 1000 realizations of SW

networks with 10 different p factors.

p factor of SW network 10% 20% 30% 40% 50%
avg Contraction size 13.71 7.62 5.62 4.68 4.14
number of Contractions 25 47 68 86 101

p factor of SW network 60% 70% 80% 90% 100%
avg Contraction size 3.83 3.61 3.50 3.44 3.42
number of Contractions 113 123 130 132 133

States of the United States of America. In this network a
link is a power supply line and a node represents either
a generator, a transformator or a substation. The network
is originally addressed in [39] but the data is taken from
[43] where the description of state nodes can be found.
It is known that such networks resemble the sparsity of
system dynamic matrix where the states represent power
flow, voltage, or phase angles [5], [44], and therefore the
network can model a dynamic system type of Eq. (3), for
more details see [44]–[46]. This network contains 6594 inter-
action links connecting 4941 state nodes. Applying the DM
decomposition finds one possible set of unmatched nodes
in the network. The network structure is shown in Fig. 7,
including 575 unmatched nodes represented in red color.
Recall that From Theorem 2, for observable estimation all
the unmatched nodes must be observed by a sensor. These
set of observable measurements gives one possible stable
estimation of system state nodes over time.

Fig. 7. This figure shows the structure of Western-State Power grid
network with 4941 state nodes and 6594 links; red nodes in the network
represent unmatched nodes monitored by a sensor.

The distribution of all 575 contractions in this network
are shown in Fig. 8. It should be noted that the clustering
coefficient of this network is 10.3% and the average con-
traction size is 4.98. Applying the Contraction Detection
Algorithm 1 finds all the contraction sets in the network,
where two examples are shown in Fig. 9. These examples
include contraction sets of size 3 (green colored contraction)
and 52 (blue colored contraction). Recall that from Corol-
lary 1 each contraction set associated with an unmatched
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Fig. 8. This figure shows the frequency of size of different contractions
in power grid network.

node represents all possible options to recover for loss
of measurement/observation. In this scenario, losing the
observation of any node in the 3-nodes green contraction
implies that there are measurements of only 2 other nodes to
recover for possible loss of observability, while for the blue
colored contraction there are 51 possible options to recover
for the loss of observability.

Fig. 9. This figure includes two subnetworks of Power-grid network of
Fig. 7. Each subnetwork shows an example of nodes making a contrac-
tion, represented as blue and green colored nodes. These colored state
nodes are equivalent in terms of network observability.

Route-view network: This network represents the network
of connected autonomous systems of Internet. Every node
is an autonomous system and every link represents com-
munication between two systems. The data is taken from
[47], but the original description of the network is given
in [48]. As stated in [48] every node is indeed a subgraph
of Internet-connected routers that exchanges traffic flow
with its peer neighbors. The network contains 6474 nodes
connected with 13895 links, and is represented in Fig. 10.
In this figure regular nodes are represented in black while
3568 unmatched nodes are shown in red color.

Applying the Contraction Detection Algorithm 1 all 3568
contractions in the network are found. The distribution of
contraction sets is as shown in Fig. 11. The average size
of contractions in this network is 7.65 and the clustering
coefficient of the network is 0.959%.

Two examples of contraction sets in the Route-view net-
work are shown in Fig. 12; one includes set of 2 contraction
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Fig. 10. This figure shows the Route-views network representing
internet-connected autonomous systems. The network contains 6474
nodes connected with 13895 links. Nodes in red color are unmatched
nodes each monitored by a sensor.
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Fig. 11. This figure shows the frequency of size of different contractions
in Route-view network.

nodes (in green color) and the other one includes set of 7
contraction nodes (in orange color). As mentioned before,
each contraction set represents the state nodes giving equiv-
alent information for network observability and estimation.

The results for these two networks are summarized in
Table 3.

TABLE 3
Characteristics of two examples of real networks including average

contraction size, ratio of number of contractions to number of nodes,
and clustering coefficient.

Name of network Power grid Route-view
avg Contraction size 4.98 7.65
Contractions/nodes 575/4941 3568/6474
Clustering Coefficient 10.3% 0.959%

5 DISCUSSION AND CONCLUSIONS

Comparing the SF and CSF network, we observe a signif-
icant raise in average size of contractions in SF network.

Fig. 12. This figure shows two subnetworks of Route-view network of
Fig. 10. In each subnetwork colored nodes in orange and green repre-
sent example of nodes making a contraction. In network observability,
these colored nodes represent equivalent states.

Noting that SF and CSF networks apply the same prefer-
ential attachment model and are similar in terms of most
graph statistics including power-law degree distribution
and logarithmically increasing average shortest-path length
[37], [38], [41], therefore, the only difference is low clustering
coefficient as the key factor affecting the jump in average
size of contractions in SF network. Similar statement holds
for the average number of contractions in the network.
Note that this number is decreased for clustered version of
Scale-Free network while other network characteristics are
unchanged. This implies that by increase in the clustering
coefficient in average more contractions with larger size
appear. This is also the case in real-world network examples
stated in Section 4.212. For Power grid network with high
clustering coefficient the ratio of number of contractions to
the total number of nodes is lower than the Route-view
network with low clustering coefficient. Similar statement
holds for the average contraction size as the size of con-
tractions are in average smaller in Power grid network. For
observability and estimation of networks with power-law
degree distribution (SF and CSF networks) these results im-
ply that: (i) estimation/tracking of such networks with high
clustering coefficient requires (in average) lower number
of observations/measurements as there are less number of
contractions, but (ii) in case of measurement/sensor failure
there are less number of possible equivalent states for ob-
servability recovery as the average size of contractions are
low. One application of these results is that one can tune the
clustering coefficient of (synthetic) networks [49] to reduce
the challenge for observability recovery and estimation.

The other result of this paper is that in Small World
networks the average size of contractions is to a great extent
related to the degree homogeneity. Increasing the hetero-
geneity in Small World networks, by increasing the rewiring
probability p [39], is one key factor on the decrease of
average contraction size as mentioned in Table 2. Note that
by only changing the rewiring probability in SW networks

12. Note that it is known that most real-world networks including
the two examples given in this paper follow a power-law degree
distribution [36].



IEEE TRANSACTION ON NETWORK SCIENCE AND ENGINEERING 11

the number of links, average node degree, and the size of
graphs are unchanged. On the other hand, by increasing the
degree heterogeneity, while the other graph characteristics
of in SW networks are unchanged, the average number
of contractions is increased. In terms of observability and
estimation of SW networks these results imply that: (i) esti-
mation of networks with high level of degree heterogene-
ity requires more number of measurements/observations
which is due to prevalence of contractions, and (ii) in case of
sensor/observation failure there are less number of possible
options to recover for the loss of observability as the con-
traction sets in average are smaller in degree heterogeneous
SW networks. As an application of these results one may
decrease the degree heterogeneity by tuning the p factor
in synthetic networks to reduce the number of necessary
measurements for observability and further increase the
contraction size providing more possible countermeasures
for observability recovery.

Note that the above mentioned results are applicable
for specific networks. In other words, we claim the re-
sults regarding the size/distribution of contractions and the
clustering coefficient only for power-law degree distribu-
tion networks (SF-CSF networks). Further, the results on
the relation of degree-heterogeneity and size/distribution
of contractions are only stated for networks with Small-
World property. For other kind of networks, for example
Erdos-Renyi graphs, such results may not apply in gen-
eral. Note that to make a justified claim about effect of
clustering-coefficient/degree-heterogeneity we need to keep
other graph properties (e.g. degree distribution, average
degree, number of edges) unchanged so we can claim that
the only effective property is clustering-coefficient/degree-
heterogeneity. We cannot claim this for general graphs as
they may differ in terms of, for example, degree distribution.

It should be noted that the algorithms to check the
matching properties of the network, namely Hopcroft-Karp
algorithm [22] or the Dulmage-Mendelsohn decomposition
[23] are of O(n2.5) complexity. Particularly, the complexity
of Algorithm 1 is in polynomial order O(n2.5). Note that,
polynomial time algorithms are suitable for large-scale sys-
tem analysis as their running time is upper-bounded by a
polynomial expression in system size. The polynomial order
complexity of the algorithms motivates application in ob-
servability analysis of large-scale networks/systems similar
to the real examples given in the previous section. It is worth
mentioning that, the results in this paper can be extended to
the dual case of large-scale network controllability.

As the final comment, it should be noted that this
paper considers undirected networks and system graphs.
The reason is that for directed networks root SCCs play
important role in observability [1], [14]. Therefore, along
with contractions, root SCCs are effective in observability
recovery. In order to solely consider the role of contractions
in observability recovery in this paper we focus on undi-
rected networks. As the direction of future research, we plan
to seek whether other graph properties such as network
community structure and degree-degree correlation [50]
are effective on the contraction analysis and observability
properties.
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