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Provision of Public Goods on Networks: On
Existence, Uniqueness, and Centralities

Parinaz Naghizadeh and Mingyan Liu

Abstract

We consider the provision of public goods on networks of strategic agents. We study different effort outcomes
of these network games, namely, the Nash equilibria, Pareto efficient effort profiles, and semi-cooperative equilibria
(effort profiles resulting from interactions among coalitions of agents). We identify necessary and sufficient condi-
tions on the structure of the network for the uniqueness of the Nash equilibrium. We show that our finding unifies
(and strengthens) existing results in the literature. We also identify conditions for the existence of Nash equilibria
for the subclasses of games at the two extremes of our model, namely games of strategic complements and games of
strategic substitutes. We provide a graph-theoretical interpretation of agents’ efforts at the Nash equilibrium, as well
as the Pareto efficient outcomes and semi-cooperative equilibria, by linking an agent’s decision to her centrality in
the interaction network. Using this connection, we separate the effects of incoming and outgoing edges on agents’
efforts and uncover an alternating effect over walks of different length in the network.

Index Terms

Public goods; Network games; Nash equilibrium; Uniqueness; Existence; Alpha-centrality; Linear complemen-
tarity problem

I. Introduction

WE study strategic interactions in a network of agents who exert effort towards the provision of a
public good. In these settings, the effort exerted by an agent affects not only herself, but also other

agents interacting with her. This problem appears in many social and economic applications. We present
some applications.

First, consider the spread of information and innovation in networks. New technologies developed by
one entity/agent in the network may later be adopted by other agents in the network. The interactions
determining these innovation spillovers can in general depend on factors such as geographic location [2]
and the interacting agents’ access to resources [3]. Given this network, the possibility of spillovers can
affect the decision of agents for investing in innovation or experimenting with new methods, leading to
possible free-riding behavior. Specifically, a neighbor’s effort can be either a substitute or a complement
to an agent’s own effort. Strategic substitutes (complements) are defined by the property that an increase
of effort by an agent decreases (increases) her neighbors’ marginal utilities, leading them to decrease
(increase) their effort levels in response. For instance, if farmers in a village have the option of experi-
menting with a new variety of seeds, then those whose neighbors are experimenting are less likely to do so
themselves [3]. In this example, neighbors’ efforts are a substitute to an agent’s own effort. It may also be
the case that an agent needs to increase her levels of experimentation in response to that of her neighbors,
in order to remain competitive in her industry. In that case, the neighbors’ efforts are a complement to
the agent’s own effort.

Another setting of interest is investments in security by interdependent entities. Security has been
commonly viewed as a public good; examples include the model of airline security in [4], as well as the
study of cyber-security in [5], [6], [7], [8], [9]. Investment in security by a neighbor can act as either a
substitute or a complement to an agent’s own effort. For example, in weakest target games [8], neighbors’
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efforts are complementary since the agent with the lowest security will be selected as the target by an
attacker. For total effort games [5], [8], on the other hand, neighbors’ efforts act as substitutes, as an agent’s
overall security is assumed to be determined by the sum of her own investment and her neighbors’ efforts.

In addition to the above applications, creation of new community parks or libraries in cities [10],
investment in pollution reduction measures by neighboring towns [11], and even the states of happiness
of individuals on a social network [12], can be studied using this framework.

The public good provision game studied in this paper belongs to the growing literature on games on
networks; see [13], [14] for recent surveys. Specifically, we consider games in which, given the network
structure, an agent’s payoff depends on her own effort, as well as a weighted sum of her neighbor’s efforts.
Our model allows for both complements and substitutes, different strengths of interactions (weighted
graphs), and unidirectional interactions (directed graphs). We are interested in the study of Nash equilibria,
Pareto efficient effort profiles, and semi-cooperative equilibria (we define these as the effort profiles
emerging when coalitions of agents interact with one another). Our results provide an understanding
of how the aforementioned outcomes (i.e., the results of agents’ strategic interactions) are affected by the
properties of the network.

Our first result identifies necessary and sufficient conditions on the structure of the network (in terms
of the dependence matrix) that guarantee that a Nash equilibrium exists and is unique. We will show
that previous results on the uniqueness of the Nash equilibrium [1], [7], [10], [15] can be recovered as
corollaries of our first theorem.

In addition to studying uniqueness, we identify (weaker) necessary and sufficient conditions for the
existence of Nash equilibria in two classes of games at the extremes of our model, namely games with
strategic complements and games with strategic substitutes. The identified conditions (for both existence
and uniqueness) are solely based on the structure of the network.

We then establish a connection between the agents’ centrality in their dependence network, and the
effort they exert at different interior Nash equilibria, Pareto efficient outcomes, and semi-cooperative
equilibria. We separate the effects of dependencies (outgoing edges of the interaction network) and
influences (incoming edges of the interaction network) on agents’ effort decisions. We further discuss
how the formation of coalitions is reflected in the centrality-effort characterization. We then uncover
an alternating effect along walks of different length in the network. We show that in a network with
strategic substitutes, this alternating effect implies that changes along each walk of odd (even) length will
negatively (positively) affect the agent’s final decision. We provide additional intuition and examples for
general networks in Section IV-C.

Related literature
Public good provision games, and network games in general, have recently received increasing attention.

We refer the interested reader to [13], [14] for surveys on this general area. Here, we present the work
most related to the current paper.

Most of the existing work has studied the Nash equilibrium of network games. Previous work on
identifying conditions for existence and uniqueness of Nash equilibria in public good provision games
include [1], [7], [10], [15]. Both [7], [1] identify a similar sufficient condition for the existence of the Nash
equilibria for public good provision games. The authors of [15] present a different sufficient condition for
the uniqueness of the Nash equilibrium. Their result illustrates the role of the lowest eigenvalue of the
network in determining the outcome of strategic interactions. Finally, [10] provides necessary and sufficient
conditions for the uniqueness of the Nash equilibrium in a class of games with hidden complementarities.
In addition to identifying the necessary condition for uniqueness of Nash equilibria in general networks, we
show that the sufficiency results of [1], [7], [10], [15] can be recovered as corollaries of our main theorem.
This comparison will further illustrate the key role of the lowest eigenvalue in (asymmetric) games with
complementarities (in addition to the symmetric networks and particular classes of asymmetric networks
studied in [15]).
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Our work is also closely related to [11], [16], which provide graph-theoretical interpretations of agents’
efforts in terms of their centralities in a suitably defined network. The work of Elliott and Golub in [11]
focuses mainly on the implementation of Pareto efficient outcomes. The current work and [11] differ in the
network used as the basis of analysis: rather than working directly on the dependence matrix, [11] focuses
on a benefits matrix that is derived from the network graph; an entry Bi j of the matrix is the marginal
rate at which i’s effort can be substituted by the externality of j’s action. The authors show that Lindahl
outcomes can be interpreted as node centralities in this benefits matrix. Ballester et al. [16], on the other
hand, study the Nash equilibrium of a linear quadratic interdependence model, and relate the equilibrium
effort levels to the nodes’ Bonacich centralities in a suitably defined matrix of local complementarities.
Despite the difference in the base models, both games have the same linear best-reply functions. As a
result, the characterization of Nash equilibria based on Bonacich centralities (used in [16]) and alpha-
centralities (used in this paper) are equivalent (see footnote 6). We will see that using (the more general
measure of) alpha-centrality allows us to provide graph-theoretical interpretations of Pareto efficient efforts
and semi-cooperative equilibria as well.

Main contributions
The main contributions of this work are summarized as follows:
• We identify the necessary and sufficient condition for uniqueness of Nash equilibria in public good

provision games. We show that our result unifies (and strengthens) previous results in the literature.
•We identify the necessary and sufficient condition for the existence of Nash equilibria in two subclasses

of our model, namely games with strategic substitutes and games with strategic complements.
• We present a graph theoretical characterization of agents’ actions at different effort outcomes,

namely the Nash equilibria, Pareto efficient outcomes, and semi-cooperative equilibria (in terms of node
centralities). Our characterization separates the effects of agents’ dependencies and influences. It also
uncovers an interesting alternating effect over walks of different length.

The remainder of the paper is organized as follows. We present the model for public good provision
games in Section II, followed by conditions for the existence and uniqueness of Nash equilibria in Section
III. Section IV discusses the graph theoretical characterization of different effort outcomes. In Section V,
we generalize the graph-theoretical characterization to games in which agents belong to different coalitions.
Section VI concludes the paper.

II. Model and Preliminaries
A. Public good provision games

We study the strategic interactions of N agents constituting the vertices of a directed network G = (N ,E);
where N and E denote the set of agents and links, respectively. Each agent i ∈ N chooses to exert effort
xi ∈ R≥0 towards the provision of a public good.1 Agent i’s payoff depends on her own effort, as well
as the effort exerted by other agents in her local neighborhood Ni := { j|{i → j} ∈ E}. An edge {i → j}
indicates that agent i depends on agent j. The strength and type of this dependence are determined by
the weight gi j ∈ R of the edge {i → j}. In particular, gi j > 0 (< 0) indicates that j’s effort is a substitute
(complement) to i’s effort. Let G = (gi j) denote the dependence matrix of the graph.

Let x = {x1, x2, . . . , xN} denote the profile of efforts exerted by all agents. The utility of agent i at this
effort profile is given by:

ui(x; G) = bi(xi +
∑
j∈Ni

gi jx j) − cixi . (1)

1We follow Mas-Collel, Whinston, and Green [17], and define public goods as those that are non-rivalrous; i.e., goods for which consumption
by an agent does not reduce its availability to others. We therefore allow for both complements and substitutes, as well as both excludable
and non-excludable public goods. We only explicitly make the distinction based on excludability in Section V, when studying effort profiles
that emerge under coalitions.
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Here, ci > 0 is the marginal cost of effort for agent i, and bi(·) is a twice-differentiable, strictly increasing,
and strictly concave function, determining the benefit to agent i from the aggregate effort she experiences.

This model has been used to study the local provision of public goods in [1], [15], [18]. In the context
of security (when viewed as a public good), it is a generalization of the total effort model used in the
seminal work of Varian [5], and is similar to the effective investment model of [6] and the linear influence
network game of [7].

B. Characterizing effort outcomes
We now consider the problem of finding the efforts at two outcomes of public good provision games:

the Nash equilibria and Pareto efficient effort profiles. A Nash equilibrium is an effort profile at which
no agent has an incentive to unilaterally deviate from her strategy given other agents’ efforts. This is an
effort profile that emerges at the status quo as a result of strategic agents’ interactions. A Pareto efficient
outcome is an effort profile at which it is not possible to increase any agent’s utility without making at
least one other agent worse off as a result. It is therefore an indication of the profile’s efficiency relative
to other possible outcomes. These profiles can be attained through negotiation among agents, or following
the introduction of appropriate incentives such as monetary taxes/rewards.

1) Nash equilibria: we start with the Nash equilibria of the public good provision games.2 A Nash
equilibrium is a fixed point of the best-reply map. Formally, let fi(x−i; G) be the best reply of agent i; i.e.,
the effort that maximizes i’s payoff given other agents’ profile of efforts x−i and the dependence matrix
G. For agents with utility (1), this best reply is given by:

fi(x−i; G) = max{0, q̄i −
∑
j∈Ni

gi jx j} , (2)

where q̄i is the effort level at which b′i(q̄i) = ci. In other words, q̄i is the aggregate effort at which i’s
marginal utility equals her marginal cost.3

For each effort level xi, define a corresponding complementary variable wi. Then, finding a fixed point
of the mapping (2) is equivalent to finding a solution to the following problem:

w − (I + G)x = −q̄ ,

w � 0 , x � 0 ,

wT x = 0 . (3)

where q̄ := {q̄1, . . . , q̄N}, and I is the N×N identity matrix. The optimization problem in (3) is an instance
of linear complementarity problems (LCPs).

The Linear Complementarity Problem (LCP) refers to a family of problems which arise in solving linear
programming and quadratic programming problems, as well as in finding Nash equilibria of bimatrix (two-
player non-zero sum) games [20]. For example, the necessary first order optimality (KKT) conditions of
a quadratic programming problem constitute an LCP. In addition to these direct connections, LCPs have
found applications in the study of market equilibrium, computing Brouwer and Kakutani fixed points, and
developing efficient algorithms for solving nonlinear programming problems [21].

2We consider pure Nash equilibria of the game. Given the strict concavity of the payoffs in (1), playing the average of a set of effort
levels leads to a higher payoff than a mixed strategy over that set. As a result, there is no mixed strategy Nash equilibrium for our games.

3It is worth mentioning that the best-response mapping of games with linear quadratic payoffs is also of the form (2). Formally, in a game
with linear quadratic payoffs, the utility of agent i is given by [16]:

ui(x; G) = q̄i xi −
1
2

x2
i −

∑
j,i

gi j xi x j ,

where q̄i is a given constant. The delinquency games of [19] and a Cournot competition with heterogeneous goods and network collaboration
(in which gi j determines the degree of substitutability of i’s good with j’s output) are special cases of games with linear-quadratic payoffs;
see [15], [10] for examples. All our results regarding Nash equilibria apply to these (as well as other games with linear best-replies of the
form (2)) as well.
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Formally, an LCP (M,q) is the problem of finding vectors x ∈ Rn and w ∈ Rn satisfying:

w −Mx = q ,

w � 0 , x � 0 ,

wT x = 0 . (4)

An LCP is therefore fully determined by an n × n square matrix M and a constant right-hand vector
q ∈ Rn.

Comparing (4) with (3), we observe that finding the Nash equilibria for the public good provision
game is equivalent to solving the LCPs ((I + G),−q̄). In Section III, we will identify conditions on the
dependence matrix G such that solutions to (3) exist and are unique, for all right-hand vectors q. In other
words, we are interested in the structural properties of the interaction network that guarantee the existence
and uniqueness of Nash equilibria, for any payoffs of the form (1), irrespective of the realization of benefit
functions or marginal costs of effort.

Remark (on the sign of q): We note that the right-hand vector entries qi in (4) can be either positive,
negative, or zero. In particular, for q � 0 in (4), the LCP always has the solution w = q and x = 0.
In the case of Nash equilibria with LCP (I + G,−q̄), q̄ ≺ 0 implies that the zero effort profile x = 0 is
always a possible Nash equilibrium. This observation can be intuitively explained as follows. Recall that
qi indicates the effort level at which agent i’s marginal utility equals her marginal cost. A negative qi

therefore indicates that exerting effort is not cost-efficient for agent i. Hence, a zero effort equilibrium is
indeed to be expected.

2) Pareto efficient effort profiles: we also consider Pareto efficient effort profiles of the public good
provision game. Formally, we consider the solutions to the following problem:

max
x�0

∑
i

λiui(x)

where λ := {λ1, · · · , λN} is a vector of non-negative weights. By [17, Proposition 16.E.2], for the strictly
concave utility functions ui(·) given by (1), the set of solutions to this linear welfare maximization problem,
as λ ranges over the set of all strictly positive weight vector, leads to the Pareto optimal effort profiles. It
is worth noting that solving for the Pareto efficient profile with unit vector of weights λ = 1 in (5) will
lead to the socially optimal profile of efforts x∗ = arg maxx�0

∑
i ui(x).

We now proceed to characterizing these profiles. Consider the Pareto efficient effort profile xλ corre-
sponding to the strictly positive weight vector λ. That is,

xλ = arg max
x�0

∑
k

λkuk(x) . (5)

The first order condition on (5) with respect to xi implies that at the Pareto efficient solution, the following
should hold:

b′i(xλi +
∑
j∈Ni

gi jxλj ) +
∑

k, s.t. i∈Nk

λk

λi
gkib′k(xλk +

∑
j∈Nk

gk jxλj ) = ci − zi, ∀i . (6)

Here, zi is a complementary variable corresponding to the effort level xλi .
Consider an interior Pareto efficient outcome in which all agents exert non-zero effort; i.e., z = 0. We

will study graph-theoretical characterizations of these outcomes, as well as interior Nash equilibria, in
Section IV. Define qλ as the effort levels satisfying:

b′i(q
λ
i ) +

∑
k, s.t. i∈Nk

λk

λi
gkib′k(q

λ
k) = ci ,∀i. (7)
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Intuitively, qλ is the vector of efforts at which the marginal social benefits equal the marginal (social)
costs of effort. When I+G is invertible, we can find the following alternative expression for qλi by solving
the system of equations in (7):

b′i(q
λ
i ) =

(
(I + Λ−1GTΛ)−1c

)
i
.

Here, qλi can be interpreted as the aggregate effort level at which agent i’s marginal benefit equals her
modified marginal cost. The modification depends on the graph structure, as well as the weights λ. We
will elaborate further in Section IV-C.

Finding such interior Pareto efficient effort profile xλ is equivalent to finding a solution with w = 0 to
the following problem:

w − (I + G)x = −qλ ,
w � 0 , x � 0 ,

wT x = 0 . (8)

In other words, finding interior Pareto efficient outcomes is equivalent to finding solutions to the LCP
((I + G),−qλ) with w = 0. We study conditions under which such solutions exist in Section IV-A.

III. Existence and Uniqueness of Nash Equilibria
In this section, we study conditions under which Nash equilibria of public good provision games exist,

and in particular, conditions under which these profiles are unique. We contrast our result with those
in the existing literature, and show how existing conditions can be recovered as corollaries of our main
theorem.

A. Existence and uniqueness
Using the LCP formulation of the problem of finding the Nash equilibria in (3), we identify conditions

for the existence and uniqueness of this equilibrium. We begin with the following definition.
Definition 1: A square matrix M is a P-matrix if the determinants of all its principal minors (i.e.,

the square submatrix obtained from M by removing a set of rows and their corresponding columns) are
strictly positive.

The following theorem provides a necessary and sufficient condition under which the Nash equilibrium
exists and is unique.

Theorem 1 (Uniqueness): The public good provision game has a unique Nash equilibrium if and only
if I + G is a P-matrix.

The proof follows from results on the uniqueness of solutions of LCPs; see e.g., [22, Theorem 4.2].
We illustrate Theorem 1 through an example.

Example 1: Consider a network of two nodes. We study the Nash equilibria of a public good provision
game with payoffs:

ui(x; G) = 1 − exp(−xi − gi jx j) −
1
e

xi, for i ∈ {1, 2}, j , i .

Note that I + G is a P-matrix if and only if g12g21 < 1.
(i) First, let g12 = g21 = 1

2 . Then, by Theorem 1, this game should have a unique Nash equilibrium.
Indeed, this unique equilibrium is given by x1 = x2 = 2

3 .
(ii) Next, consider g12 = g21 = 2. Then I + G is not a P-matrix, and the game need not have a

unique Nash equilibrium. For the given payoffs, there are three possible Nash equilibria: (x1, x2) = (0, 1),
(x1, x2) = (1, 0), and (x1, x2) = (1

3 ,
1
3 ).



PROVISION OF PUBLIC GOODS ON NETWORKS 7

(iii) Finally, let g12 = g21 = −2. Again, I + G is not a P-matrix, and hence by Theorem 1, the
corresponding game need not have a unique equilibrium. In fact, under the assumed payoff functions,
the game will have no Nash equilibrium.

We now turn to the more general question of existence of Nash equilibria. We are interested in weaker
conditions than those of Theorem 1 that guarantee at least one Nash equilibrium exists. Unlike uniqueness,
there is no simple characterization of matrices M for which an LCP (M,q) has a solution. Nevertheless, we
can identify existence results on two particular subclasses of games, namely games of strategic substitutes
and games of strategic complements. Recall that for a game of strategic substitutes (complements), gi j ≥

0 (gi j ≤ 0),∀i, j , i.

Theorem 2 (Existence in games with strategic substitutes): A public good provision game with strategic
substitutes always has at least one Nash equilibrium.

Proof: By [22, Theorem 5.2], for a given non-negative matrix M, the corresponding LCP (M,q) has
a solution for all q if and only if mii > 0. For a game with substitutes, I + G is a non-negative matrix,
and the diagonal entries are all 1. Therefore, for LCP (3), a solution (Nash equilibrium) always exists.

We next consider the existence of Nash equilibria in games where agents’ efforts are complements
to their neighbors’. Let ρ(G) := max{|λ| s.t. Gv = λv} denote the spectral radius of G. Also, define the
following classes of matrices.

Definition 2 (Z-matrix, L-matrix, S-matrix):
• A square matrix M is a Z-matrix if mi j ≤ 0,∀i, j , i.
• A square matrix M is an L-matrix if it is Z-matrix and mii > 0,∀i.
• A matrix M is an S-matrix if there exists x � 0 such that Mx � 0.

Theorem 3 (Existence in games with strategic complements): For a public good provision game with
strategic complements, if a Nash equilibrium exists for all q̄, i.e., for all payoff realizations, then it is
unique. Specifically, the game has a Nash equilibrium if and only if ρ(G) < 1.

Proof: First, note that for this game, I + G is an L-matrix. For an LCP (M,q), if M is an L-matrix,
the LCP has at least one solution for all q if and only if M is an S-matrix; see [21, p. 282]. Therefore,
the LCP (3) has a solution if and only if I + G is an S-matrix. A Z-matrix is an S-matrix if and only if
it is a P-matrix [23]. Therefore, the condition for existence and uniqueness in games with complements
are the same. In other words, if a Nash equilibrium is guaranteed to exist, it is also unique.

Also, for a Z-matrix G, I + G is an S-matrix if and only ρ(G) < 1 [24]. Therefore, a solution exists
and is unique if and only if ρ(G) < 1.4

It is worth noting the difference between Theorems 2 and 3 and a previous result on the existence
of Nash equilibria in concave n-person games. Rosen [26] shows that for an n-person game, if agents’
payoffs are concave in their own effort, and agents’ strategies are limited to a convex, closed, and bounded
set, then the corresponding n-person game always has a Nash equilibrium [26, Theorem 1]. The latter
assumption does not hold in the current model, as we allow an unbounded effort space xi ∈ R≥0.

However, similar to [26], Theorem 2 concludes that for games of strategic substitutes, a Nash equilibrium
always exists. In this case, each agent’s strategy space can be effectively bounded by qi, where b′i(qi) = ci,
i.e., agent i may exert effort lower than qi (due to positive externalities from her neighbors), but will never
exert an effort higher than qi, as her marginal cost to do so will be higher than her marginal benefit. Thus
in this case the existence result given by Theorem 2 is equivalent to that given in [26], though arrived at
using a different methodology.

4The statement of Theorem 3 is similar to Theorem 1 in [25], which also uses an LCP formulation in the study of Nash equilibria on
unweighted and undirected networks where agents have linear quadratic payoffs. This can be explained by observing that both games have
best replies of the form (2), and hence have similar conclusions; c.f. footnote 3.
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For games of strategic complements on the other hand, a similar upper bound on agents’ strategies does
not exist. Specifically, when an agent i’s neighbors increase their efforts, she will experience a negative
externality, and will therefore increase her own level of effort to compensate for the lost benefit. As a
result, agents’ efforts can grow unbounded, and an equilibrium may not exist; the sufficient and necessary
condition given in Theorem 3 thus goes beyond that considered in [26]. If the strategy spaces were
bounded in this scenario, then agents would exert the upper bound effort, leading to the existence result
of [26].

B. Comparison with existing results
We now show how existing results in [15], [10], [1], [7] on the uniqueness of the Nash equilibrium

of public good provision games can be recovered as corollaries of Theorem 1. These comparisons
also illustrate that some well-known matrices, namely, symmetric positive definite, strongly diagonally
dominant, and (a subclass of) Z-matrices, belong to the family of P-matrices.

We begin with the uniqueness result of [15] on networks of symmetric relations. We note that [15]
only states the sufficient condition; we also show the necessary condition in the following corollary using
Theorem 1.

Corollary 1 (Uniqueness on symmetric networks [15]): Consider a network with a symmetric depen-
dence matrix G. Then, if and only if |λmin(G)| < 1, the Nash equilibrium is unique.

Proof: By [22, Theorem 1.9] a square symmetric matrix is a P-matrix if and only if it is positive
definite. Therefore, by Theorem 1, the Nash equilibrium is unique if and only if I + G is positive definite,
which occurs if and only if |λmin(G)| < 1.

The results of [15] are the first to show the importance of the lowest eigenvalue in determining outcomes
of strategic interactions on networks, leading to several interesting insights on equilibria stability and
network structure; we refer the interested reader to [15] for details.

It is also worth noting that Theorem 1 generalizes [15] on both symmetric and asymmetric matrices:
(i) Symmetric matrices: [15] uses the theory of potential games to show that a positive definite I + G

is a sufficient condition for uniqueness of the Nash equilibrium. Our result shows that this condition is
necessary as well.

(ii) Asymmetric matrices: For directed, asymmetric graphs, the results of [15] apply if |λmin(G+GT

2 )| < 1;
i.e., if I + G+GT

2 is positive definite. This is equivalent to I + G being positive definite [22, Result 1.9]. In
contrast, Theorem 1 only requires that I + G be a P-matrix, providing a more general (weaker) sufficient
condition (as well as a necessary condition). This is because there exist (asymmetric) P-matrices that
are not positive definite [22, Theorem 1.10]. Hence, positive definite matrices are in general a subset of
P-matrices.

We next show that the result of [10] can also be recovered as a corollary of Theorem 1.

Corollary 2 (Uniqueness on networks with hidden complementarities [10]): Let T be a Z-matrix such
that T(I+G) is both a Z-matrix and an S-matrix. Then, the Nash equilibrium is unique if and only if I+G
is an S-matrix. In particular, if G is a Z-matrix (i.e., a game with complementarities), the equilibrium is
unique if and only if ρ(G) < 1.

Proof: By Theorem 1, we know that the Nash equilibrium is unique if and only if I+G is a P-matrix.
On the other hand, a matrix I + G satisfying the conditions of the corollary is a hidden Z-matrix [23]. By
[23, Theorem 1], a hidden Z-matrix is a P-matrix if and only if it is an S-matrix. Therefore, the Nash
equilibrium is unique if and only if I + G is an S-matrix. Finally, when G is a Z-matrix, I + G is an
S-matrix if and only ρ(G) < 1 [24].

We also prove an alternative expression for Corollary 2.
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Corollary 3: If G is a Z-matrix, a unique Nash equilibrium exists if and only if |λmin(G)| < 1.
Proof: For a Z-matrix G, −G is a non-negative matrix. Then, by the Perron-Frobenius theorem, −G

has a positive eigenvalue equal to its spectral radius, λmax(−G) = ρ(−G). Noting that ρ(−G) = ρ(G) and
λmax(−G) = −λmin(G), we conclude that for Z-matrices, ρ(G) < 1 if and only if |λmin(G)| < 1.

Comparing the above with Corollary 1, we conclude that the lowest eigenvalue of the dependence
matrix has the key role in determining sufficient (and necessary) conditions for the uniqueness of Nash
equilibria in (asymmetric) networks with complementarities (in addition to the symmetric networks and
some subclasses of directed networks shown in [15]).

Finally, we show that the result of [1], [7] can also be recovered as a corollary of Theorem 1.

Corollary 4 (Uniqueness on strictly diagonally dominant networks [1], [7]): If I+G is strictly diagonally
dominant; i.e.,

∑
i |gi j| < 1,∀i, there is a unique Nash equilibrium.

Proof: We prove the theorem by showing that if I + G is strictly diagonally dominant, then it is
a P-matrix. This is because by the Gershgorin circle theorem, for a strictly diagonally dominant matrix
with positive diagonal elements, all real eigenvalues are positive. Following a similar argument, all real
eigenvalues of all sub-matrices of I + G are also positive. Since the determinant of a matrix is the product
of its eigenvalues, and as for real matrices, the complex eigenvalues appear in pairs with their conjugate
eigenvalues, it follows that I + G, as well as all its square sub-matrices, have positive determinants.
Therefore, I + G is a P-matrix. The uniqueness then follows from Theorem 1.

IV. Efforts as Node Centralities
In this section, we focus on interior effort profiles of the public good provision game; that is, outcomes

in which all agents exert strictly positive efforts. We establish a connection between agents’ actions
at interior Nash equilibria, as well as interior Pareto efficient outcomes, and agents’ centralities in the
dependence network. Using this connection, we can identify the effects of dependencies (outgoing edges
in G) and influences (incoming edges in G), as well as walks of different length, on the efforts exerted
by agents.

A. Existence of interior effort profiles
We first identify conditions under which a game with payoffs (1) has interior Nash equilibria and Pareto

efficient effort profiles. We begin with a definition.
Definition 3 (Positive cone): The positive cone (or positive linear span) of a set of vectors v =

{v1, v2, . . . , vn} is given by pos(v) := {
∑

i αivi| αi ≥ 0,∀i}.
For a Nash equilibrium (or a Pareto efficient effort profile) to be interior, the corresponding LCP (3)

(or (8)) should have a solution with x � 0,w = 0.5

Theorem 4 (Existence of interior effort profiles): A public good provision game with payoffs (1) has
an interior Nash equilibrium (or Pareto efficient effort profile) if and only if the corresponding q̄ (or qλ)
is in the positive cone generated by the columns of I + G.

Proof: Solving the LCP (3) for interior solutions is equivalent to finding a solution to:

(I + G)x = q̄, x � 0 .

The theorem then follows from Definition 3. The same argument applies to finding interior Pareto efficient
profiles using (8). It is also worth mentioning that given G, non-interior solutions will necessarily exist
for some q ∈ Rn, as we need at least n + 1 vectors to positively span Rn [27, Theorem 3.8]. In other
words, as expected, there is no network structure for which solutions are guaranteed to be interior.

5With a slight abuse of terminology, we consider solutions with xi = 0,wi = 0 to be interior as well.
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We now proceed to establishing a connection between interior effort profiles (when they exist) and
agents’ centralities in their interaction network, starting with an overview of centrality measures.

B. Alpha-centrality: an overview
Centrality measures have been used extensively in the graph theory and network analysis literatures

as indicators of importance of nodes in their interaction network. Some of these measures (e.g., degree
centrality) take into account the number of connections of a node in determining her centrality. In contrast,
another class of measures (e.g. eigenvalue centrality) account for the importance of the connections as
well, such that a node’s centrality is (recursively) related to those of her neighbors. Alpha-centrality,
considered herein, belongs to the latter family. This measure was introduced by Bonacich and Lloyd in
[28], mainly as an extension of eigenvalue centrality that is applicable to networks of asymmetric relations.

Formally, denote the centrality of node i by xi. Let G be the adjacency matrix of a network, where
gi j determines the dependence of node i on node j. Then, the eigenvalue centrality of nodes will be
proportional to Gx. Alpha-centrality generalizes this measure by allowing the nodes to additionally
experience an exogenous source of centrality e, such that:

x = αGx + e .

Here, α is a constant that determines a tradeoff between the endogenous (eigenvalue) and exogenous
centrality factors. The nodes’ alpha-centralities are therefore given by:

calpha(G, α, e) = (I − αG)−1e . (9)

On the interpretation of α: as mentioned above, α determines the tradeoff between the endogenous
and exogenous sources of centrality. We will now illustrate that powers of α also appear as weights of
walks of different length in determining nodes’ centralities.

We do so by noting the connection between alpha-centrality and the measure proposed by Katz [29].
Katz centrality defines a weighted sum of powers of the adjacency matrix G as an indicator of nodes’
importance; intuitively, longer walks are weighed differently (and often less favorably) in determining
nodes’ centralities. Formally, Katz’ measure is given by:

ckatz(G, α) = (
∞∑

i=1

αiGi)1 ,

where α is an attenuation factor. In particular, if α < 1
|λmax(G)| , the infinite sum converges, so that:

(
∞∑

i=1

αiGi)e = (−I + (I − αG)−1)e . (10)

Comparing (9) and (10), we conclude that the parameter α of alpha-centrality can be similarly interpreted
as a weight assigned to the walks of different length in determining the effect of endogenous centralities
on the overall centrality of a node. 6

6Alpha centrality is also similar to the measure introduced earlier by Bonacich in his seminal work [30]. Formally, Bonacich’s centrality
is defined as cbonacich(R, β, α) = β(I − αR)−1R1. Here, R is a symmetric matrix of relationships, with main diagonal elements equal to zero.
The parameter β only affects the length of the final measures, and has no network interpretation. The parameter α on the other hand can be
positive or negative, and determines the extent and direction of influences. On symmetric matrices, Katz’ measure is essentially equivalent
to Bonacich centrality; in fact, ckatz(R, α) =

∑∞
i=1 α

iRi1 = αcbonacich(R, α, 1). To summarize, taking the three measures on a symmetric matrix
A, and setting e = 1 for the alpha-centralities, we have:

calpha(A, α, 1) = 1 + αcbonacich(A, α, 1) = 1 + ckatz(A, α) .

Therefore, in essence, alpha-centrality generalizes Bonacich and Katz centralities, allowing for vectors of exogenous status e. Using the above
equivalence, we can show that our characterization of Nash equilibrium based on alpha-centralities in Theorem 5, and the Nash-Bonacich
linkage established in [16] are equivalent (see also footnote 3).
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C. A centrality-effort connection
We now establish the connection between agents’ efforts at interior profiles, and their alpha-centralities

in the interaction network.

Theorem 5 (Centrality-effort connection):
(i) Consider an interior Nash equilibrium x∗. Then,

x∗ = calpha (G,−1, q̄) ,

where q̄ is such that b′i(q̄i) = ci.
(ii) Consider an interior Pareto efficient effort profile xλ. Then,

xλ = calpha

(
G,−1,qλ

)
,

where qλ is such that b′i(q
λ
i ) = calpha,i(Λ−1GTΛ,−1, c).

Proof: (i) An interior Nash equilibrium is a solution to LCP (3) with w = 0; i.e.,

(I + G)x = q̄, x � 0 .

Therefore, when such solution exists, x∗ = (I + G)−1q̄. Comparing this expression with (9) establishes the
connection.

(ii) An interior Pareto efficient profile with weights λ is a solution to LCP (8) with w = 0; i.e.,

(I + G)x = qλ, x � 0 .

Therefore, when such solution exists, xλ = (I + G)−1qλ. Also, by definition, we know that qλ satisfies
b′i(q

λ
i ) =

(
(I + Λ−1GTΛ)−1c

)
i
. Comparing these expressions with (9) establishes the connection.

The connection established in Theorem 5 leads to several interesting insights. Recall that an entry
gi j , 0 in G indicates that agent i’s payoff depends on agent j’s action; we therefore refer to G as the
dependence matrix. On the other hand, an entry g ji , 0 in the GT indicates that agent j’s effort influences
agent i’s payoff. We will therefore refer to GT as the influence matrix.

Perceived costs at different effort profiles: comparing parts (i) and (ii) of Theorem 5, we observe
that the only difference when determining nodes’ efforts is in the corresponding vectors of exogenous
centralities. These vectors are determined by efforts at which agents’ marginal benefits equal their (per-
ceived) marginal costs. At the Nash equilibrium, each agent acts independently and perceives only her own
cost of effort, leading to b′i(q̄i) = ci. On the other hand, for Pareto efficient solutions to emerge, the cost
perceptions are modified according to agents’ positions in the network, as well as the importance placed
on each agent’s welfare, as determined by λi. Consequently, both G and λ play a role in determining
agents’ perceived marginal costs, leading to b′i(q

λ
i ) = calpha,i(Λ−1GTΛ,−1, c).

Effects of dependencies: consider agents’ dependencies (outgoing edges in the network). We observe
that by the definition of alpha-centrality (9), the matrix of dependencies G shapes the endogenous
component of the centrality measure, determining a node’s centrality as a function of her neighbors’
centrality. Similarly, G in Theorem 5 indicates that the dependence of an agent on her neighbors (and the
efforts they have exerted) will shape her final effort. Note also that this is the case for both Nash equilibria
(part (i)) and Pareto efficient efforts (part (ii)): an agent benefits of any neighbor’s effort regardless of the
solution concept, mechanism, or negotiations through which the effort profile is implemented.

Effects of influences: we further observe the effects of agents’ influences (incoming edges in the
network) on the outcomes of their strategic interactions. The matrix of influences GT appears when
determining the perceived costs of agents in Pareto efficient solutions. Intuitively, an agent with higher
influence on others (as determined by her alpha-centrality in the network of influences) will have a
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lower perceived marginal cost, hence a higher exogenous centrality (due to concavity of bi(·)), which in
turn increases a node’s alpha-centrality (i.e, her level of effort/contribution). Note also that the matrix of
influences GT does not appear in the characterization of the Nash equilibria in Theorem 5. This is because
at a Nash equilibrium, an agent only accounts for her own marginal costs when selecting an effort level.

Alternating effect – the role of α: most interestingly, we note that the alpha parameter of all the alpha-
centralities in Theorem 5 is α = −1. Recall that, as shown in Section IV-B, αk is a weight associated with
a walk of length k in determining an agent’s centrality.7 Let i0, i1, . . . , ik be the agents along this walk.
Then, for walks of odd length, α = −1 induces a sign reversal on the weight gi0i1gi1i2 . . . gik−1ik of the walk.
For walks of even length on the other hand, α = −1 leaves the sign on the weight associated with the
walk unchanged.

To better highlight the intuition behind this observation, consider a network of substitutes; i.e., gi j ≥

0,∀i, j. Consider a walk of length one by choosing a neighbor j of i. If agent j increases her effort, agent
i benefits from the positive externality of j’s increased effort, and can in turn reduce her effort. Thus,
changes along this walk of odd length negatively affect agent i’s effort decision; this is consistent with
(−1)1gi j < 0. Now, consider a neighbor k of j. Therefore, there is a walk of length 2 from i to k. By the
same argument as above, if k increases her effort, j will decrease her effort in response. To compensate
for the lost externality, agent i will now have to increase her own effort. Thus, a change along this walk
of even length positively affects agent i’s effort decision, which is again consistent with (−1)2gi jg jk > 0.
The same argument extends to walks of longer lengths.

Alternatively, consider a network of complementarities; i.e., gi j ≤ 0,∀i, j , i. Again, consider a walk
of length one from i to j. If agent j increases her effort, agent i’s benefit is reduced, and so she will
increase her level of effort in response. Thus, a change along this walk of odd length positively affects
agent i’s effort decision, which is consistent with (−1)1gi j > 0. Now, consider a walk of length 2 from i
to k ( j’s neighbor). By the same argument as above, if k increases her effort, j will increase her effort
in response, and so agent i will have to increase her effort as well. Thus, the change along this walk of
even length also positively affects agent i’s effort decision; this is again consistent with (−1)2gi jg jk > 0.
The same argument extends to walks of longer lengths.

D. Numerical examples
We illustrate the centrality-effort connection through some examples.
Example 2 (Alternating effect of α): Consider the three node network of Fig. 1, and a public good

provision game of strategic substitutes (i.e., g12, g13, g21 > 0) played on this network. Set g12 = g21 = 0.2.
Let agents’ payoffs be given by:

ui(x; G) = 1 − exp(−xi −
∑
j,i

gi jx j) −
1
e

xi .

Consider the edge between agents 1 and 3. Assume we increase the weight g13, and want to know how
this change affects the efforts of the agents at the Nash equilibrium. The results are given in the bottom
two networks of Fig. 1, and can be explained as follows.
• Agent 1: the edge 1 → 3 is on all the outgoing walks of odd length from node 1. Increasing

g13 increases the weights of these walks. However, given α = −1, each walk weight is multiplied by
(−1)2k+1 = −1 (this is the alternating effect induced by α). Therefore, the increase in g13 should negatively
affect agent 1’s effort decision, leading her to decrease her effort levels in response.
• Agent 2: the edge 1→ 3 is on (some of) the outgoing walks of even length from node 1. Increasing

g13 increases the weights of these walks. Given α = −1, each walk weight is multiplied by (−1)2k = 1.

7Given α = −1, the condition α < 1
|λmax(G)| holds for all adjacency matrices G. Therefore, the alpha-centralities can be interpreted as the

limit of a weighted sum of powers of the adjacency matrix, and the interpretation of α as a weight on walks of different length in applicable.
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1 23

g12

g13
g21

0.62 0.871.00 g13
0.42 0.921.00

g′13

Fig. 1. Alternating effect of α is illustrated by increasing g13 = 0.2 to g′13 = 0.4 (bottom left to bottom right) in this network (Example 2).
Numbers inside nodes at the bottom networks indicate efforts at the Nash equilibrium.

1

2

34

go
go

go

gi

gi

gi

1.28

0.83

0.830.83

gi

gi

gi 3.04

0.11

0.110.11

g′i

g′i

g′i

Fig. 2. Effect of incoming edges on perceived costs is illustrated by changing gi = 0.2 to g′i = 0.3 (bottom left to bottom right) in this
network (Example 3). Numbers inside nodes indicate efforts exerted at the socially optimal outcome.

Therefore, the increase in g13 should positively affect agent 2’s effort decision, leading her to increase her
effort levels in response.
• Agent 3: we are changing the weight of an incoming edge to agent 3. By Theorem 5, only outgoing

edges and walks affect the agent’s effort decisions at the Nash equilibrium. Therefore, we expect agent
3’s effort to remain unchanged.

Example 3 (Effects of incoming edges and perceived costs): Consider the 4 agent network of Fig. 2.
Agents’ payoffs are given by:

u1(x; G) = 1 − exp(−x1 − go

∑
j,i

x j) − 1
e x1 ,

uk(x; G) = 1 − exp(−xk − gix1) − 1
e xk , k , 1 .

We consider the socially optimal effort profile in this network; i.e., x∗ := arg maxx≥0
∑

i ui(x). This
corresponds to a Pareto efficient solution of (5) with weights λ = 1. Thus, according to Theorem 2,
the vector of perceived costs of agents at this outcome is given by (I + GT )−1c.

Fix go = 0.2. To illustrate the effect of incoming edges on agents’ perceived costs, and consequently
their efforts, we increase gi from 0.2 to 0.3. The vector of perceived costs of agents will change from
[0.17, 0.33, 0.33, 0.33] to [0.04, 0.36, 0.36, 0.36]. Therefore, the perceived cost of agent 1 (the center)
decreases considerably when her influence on others increases, leading her to exert higher effort as a result.
Furthermore, as the center invests more, the leaves now have an incentive to decrease their investment
(alternating effect of α). These effects combined lead the center (leaves) to exert higher (lower) effort
when the weight of incoming edges, gi, increases.
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V. Extension to Coalitions
In this section, we extend the results of Section IV to effort profiles that emerge when agents belong

to different coalitions. For this analysis, we distinguish between excludable and non-excludable public
goods. With excludable goods, each coalition may choose to exclude other coalitions from experiencing
the externalities of its produced good. If this is the case, each coalition can be studied in isolation, and
therefore the results of the previous sections will be directly applicable. For non-excludable goods on the
other hand, such separation is not possible; each coalition needs to further account for the externalities
from and on other coalitions. Throughout this section, we are interested in the provision of such non-
excludable goods. We do not explicitly model coalition formation or stability; we assume each coalition
has emerged through either collaboration or appropriate incentive mechanisms. We present a centrality-
effort connection, and the corresponding intuition, for the effort profiles emerging as the result of strategic
interactions of such coalitions.

A. Semi-cooperative equilibrium
Let agents form K coalitions, denoted by the collection of disjoint sets C := {C1, . . . ,CK}, such that

C1∪ . . .∪CK = N . We refer to C as the coalition partition. Individual agents are allowed to form their own
one-member coalition. The effort profile emerging from the interactions of these coalitions is affected by
both intragroup and intergroup decisions.

Intragroup decisions refer to those adopted within each coalition. Specifically, we assume that the
members within a coalition Ci agree (either cooperatively or through the implementation of an incentive
mechanism) on a vector of welfare weights λi := {λi

k, for k ∈ Ci}, and implement the corresponding Pareto
efficient solution in (5); i.e.,

x̄λ
i

Ci
= arg max

xCi≥0

∑
k∈Ci

λi
kuk(xCi , xN\Ci) , (11)

where xN\Ci denotes the efforts of agents outside the coalition. The profile x̄λi

Ci
is therefore a Pareto efficient

effort profile with weights λi for the agents in Ci.
At the intergroup level, each coalition is viewed as a super-agent, playing a non-cooperative game

with other coalitions/super-agents, and best-responding to their decisions. The resulting equilibrium effort
profile x̄λ

C
:=

(
x̄λ1

C1
, . . . , x̄λK

CK

)
is the Nash equilibrium among these super-agents; i.e., a solution to the system

of equations determined by (11). We refer to x̄λ
C

as a semi-cooperative equilibrium for coalition partition
C with weights λ.8

Similar to the characterization of interior Pareto efficient outcomes in Section II-B, the problem of
characterizing interior semi-cooperative equilibria can be formulated as an LCP. Assume agents are indexed
in an order consistent with the index of their coalition memberships. Also, to simplify notation, denote the
semi-cooperative equilibrium by x̄; dependence on the coalition partition C and the weights λ is implied.
Then, the first order condition on (11) with respect to xi, i ∈ Ci, implies that at the interior Pareto efficient
solution, the following should hold:

λib′i(x̄i +
∑
j∈Ni

gi j x̄ j) +
∑

k∈Ci, s.t. i∈Nk

λkgkib′k(x̄k +
∑
j∈Nk

gk j x̄ j) = λici, ∀i .

Define qC,λi as the effort levels at which:

b′i(q
C,λ
i ) =

(
(I + Λ−1GT

CΛ)−1c
)

i
.

8A semi-cooperative equilibrium is an “equilibrium” in the sense that, assuming binding coalition memberships, the effort profile resulting
from intergroup interactions is the fixed-point of a best-response mapping. It has the limitation that it does not preclude the possibility of
agents moving to other coalitions if the memberships are not binding or appropriately incentivized.
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Note that the only difference of these efforts with the qλi defined for Pareto efficient outcomes is in the
coalition-modified dependence matrix GC, which is defined as follows: for each row k corresponding to
an agent in coalition Ci, set the entries gkl,∀l < Ci to zero. This matrix is therefore equivalent to the
dependence matrix of a network obtained by removing all edges between coalitions.

Then, finding an interior semi-cooperative equilibrium x̄ is equivalent to finding a solution with w = 0
to the following LCP:

w − (I + G)x = −qC,λ ,
w � 0 , x � 0 ,

wT x = 0 . (12)

Using a similar procedure as Section IV-A, such profile exists under the following condition.

Theorem 6 (Existence of interior semi-cooperative equilibria): The public good provision game has
an interior semi-cooperative equilibrium x̄λ

C
if and only if the corresponding qC,λ is in the positive cone

generated by the columns of I + G.

B. A centrality-effort connection
We now present a centrality-effort characterization of interior semi-cooperative equilibria.

Theorem 7 (Centrality-effort connection for semi-cooperative equilibria): Consider an interior semi-
cooperative equilibrium x̄λ

C
. Then,

x̄λC = calpha

(
G,−1,qC,λ

)
,

where qC,λ is such that b′i(q
C,λ
i ) = calpha,i(Λ−1GT

C
Λ,−1, c).

Proof: An interior semi-cooperative equilibrium for coalition partition C and weights λ is a solution
to LCP (12) with w = 0; i.e.,

(I + G)x = qC,λ, x � 0 .

Therefore, when such solution exists, x̄λ
C

= (I + G)−1qC,λ. Also, by definition, we know that qC,λ satisfies
b′i(q

C,λ
i ) =

(
(I + Λ−1GT

C
Λ)−1c

)
i
. Comparing these expressions with (9) establishes the connection.

The implications of the centrality-effort connection on effects of incoming and outgoing edges and the
alternating effect induced by α = −1 are applicable to the characterization of Theorem 7 as well. The
main difference resulting from the formation of coalitions can be explained as follows.

The effect of coalitions – benefiting from dependencies and ignoring influences: with non-excludable
goods, an agent can benefit from the externalities of the effort exerted by her neighbor, whether or not
that neighbor is a member of the agent’s coalition. Consequently, the alpha-centralities (i.e, efforts) of
agents are calculated on the full network of dependencies G.

However, recall that the perceived costs of each agent are affected by the influence of the agent on those
with who she is cooperating to implement a Pareto efficient effort profile. The agents in a coalition account
for their influences on others in their group, but disregard their influence on all other agents. Therefore,
agents’ perceived costs calpha,i(Λ−1GT

C
Λ,−1, c), while again evaluated on the network of influences (i.e.,

the transpose of the dependence matrix), are now evaluated on a coalition-modified matrix of influences
GT
C
. In other words, when determining their perceived costs, agents act as if the dependence network is

one in which all edges between coalitions are removed.
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VI. Conclusion
We studied the provision of public goods on a network of strategic agents. We identified a necessary

and sufficient condition on the dependence matrix of the network that guarantees the uniqueness of the
Nash equilibrium in these games. Our condition unifies (and strengthens) existing results in the literature.
We also identified necessary and sufficient conditions for existence of Nash equilibria in subclasses of
games that lie at the two extremes of our model; namely games of strategic complements and games of
strategic substitutes. An interesting direction of future work is to identify similar conditions for a general
model of games on networks, and in particular, games with non-linear best replies.

We further presented a graph theoretical characterization of different interior effort outcomes, namely
Nash equilibria, Pareto efficient outcomes, and semi-cooperative equilibria, in terms of agents’ alpha-
centralities in their dependence network. Using this characterization, we were able to identify the effects
of incoming edges, outgoing edges, and coalitions, as well as an alternating effect over walks of different
length in the network. As part of our future work, we are interested in using this connection for conducting
comparative statics (e.g., the effects of adding/removing links), as well as for the design of targeted
tax/subsidy policies that can incentivize the improved provision of the public good.

Acknowledgment
The authors would like to thank Hamidreza Tavafoghi for useful discussions and comments on earlier

drafts of this work. This work is supported by the Department of Homeland Security (DHS) Science
and Technology Directorate, Homeland Security Advanced Research Projects Agency (HSARPA), Cyber
Security Division (DHS S&T/HSARPA/CSD), BAA 11-02 via contract number HSHQDC-13-C-B0015.

References
[1] P. Naghizadeh and M. Liu, “Provision of non-excludable public goods on networks: from equilibrium to centrality measures,” in The

53rd Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2015.
[2] D. B. Audretsch and M. P. Feldman, “Knowledge spillovers and the geography of innovation,” Handbook of regional and urban

economics, vol. 4, pp. 2713–2739, 2004.
[3] A. D. Foster and M. R. Rosenzweig, “Microeconomics of technology adoption,” Annual review of Economics, vol. 2, 2010.
[4] H. Kunreuther and G. Heal, “Interdependent security,” Journal of Risk and Uncertainty, vol. 26, no. 2-3, pp. 231–249, 2003.
[5] H. Varian, “System reliability and free riding,” Economics of information security, pp. 1–15, 2004.
[6] L. Jiang, V. Anantharam, and J. Walrand, “How bad are selfish investments in network security?” IEEE/ACM Transactions on Networking,

2011.
[7] R. Miura-Ko, B. Yolken, J. Mitchell, and N. Bambos, “Security decision-making among interdependent organizations,” in The 21st

Computer Security Foundations Symposium (CSF’08). IEEE, 2008, pp. 66–80.
[8] J. Grossklags, N. Christin, and J. Chuang, “Secure or insure?: a game-theoretic analysis of information security games,” in Proceedings

of the 17th international conference on World Wide Web. ACM, 2008, pp. 209–218.
[9] P. Naghizadeh and M. Liu, “Exit equilibrium: Towards understanding voluntary participation in security games,” in IEEE International

Conference on Computer Communications (INFOCOM), 2016.
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