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Abstract—We studied effective connectivity in rat cortical cultures with various degrees of spatial aggregation, ranging from

homogeneous networks to highly aggregated ones. We considered small cultures 3mm in diameter and that contained about

2;000 neurons. Spatial inhomogeneity favored an increase of metric correlations and connectivity among neighboring neurons.

Effective connectivity was determined from spontaneous activity recordings using calcium fluorescence imaging. We used generalized

transfer entropy as tool to infer the effective connectivity. We carried out numerical simulations to build networks that mimicked the

experimental ones and to test the reliability of the connectivity–inference algorithm. Effective connectivity traits were investigated

during the development of the cultures over two weeks, and along the gradual blockade of excitatory connections through CNQX.

We observed that the average effective connectivity rapidly increased during culture development. At day in vitro (DIV) 15 the average

excitatory in–degree was measured as �kinE ’ 50 for homogeneous and semi aggregated networks, and �kinE ’ 120 for aggregated ones,

and with 20 percent inhibition. Aggregated cultures exhibited assortative traits and a high resilience to chemical damage, while the

other cultures were dissassortative or neutral, and less resilient. Our work illustrates the role of metric correlations in spatially

embedded networks in shaping connectivity and activity traits in living neuronal networks.

Index Terms—Neuronal cultures, spatial networks, calcium fluorescence imaging, generalized transfer entropy, effective connectivity
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1 INTRODUCTION

ONE of the most exciting research goals in modern
neuroscience is the understanding of the relationship

between structural and effective connectivity [1], [2]. The
physical wiring among neurons together with their dynam-
ics give rise to a rich activity repertoire that requires com-
plex analyses and modeling to be understood. While the
structural connectivity is relatively hardwired, the effective
one may substantially vary depending on the number of
dynamic elements in action and the paths along which
information flows. Additionally, living neuronal networks
may show two distinct effective connectivity patterns, one
associated to the spontaneous activity of the network and
another one associated to evoked or task–related activity.

The assessment of key structural connectivity features
from activity data is a complex inverse problem that
requires the association of firing patterns among neurons
with specific structural connections. This difficulty has fos-
tered the continuous development of new methods, their
test through numerical simulations, and their implementa-
tion in experimental data [2], [3], [4].

In particular, the use of small living neuronal networks
as laboratories for connectivity studies has gained substan-
tial attention. Two technologies to monitor activity in these
living systems have become central, namely calcium fluores-
cence imaging [5], [6], [7], [8], [9] and multi–electrode arrays
(MEAs) [10], [11], [12], [13], [14], [15]. The interest of these
studies is not only to quantify the mechanisms shaping
neuron–to–neuron interactions, but also to understand up
to which extent the inferred effective connectivity captures
crucial aspects of the network’s structural blueprint.

Neuronal cultures, i.e., dissociated neurons grown in
vitro [7], [10], [16], are among the most attractive small liv-
ing systems for effective connectivity studies [3], [4], [13].
Their accessibility and ease manipulation allow for a variety
of preparations, from relatively simple homogeneous neu-
ronal assemblies to intricate bioengineered designs [17].
Neuronal cultures are also ideally suited to study the role of
spatial embedding and metric correlations in the formation,
structure and dynamics of neuronal circuits [18], [19], [20].
Indeed, the analysis of spatial networks [21] has provided
valuable insight in fields as diverse as transportation or
epidemics [21], [22], [23], but it has been relatively poorly
explored in the context of neuronal circuits. The problem of
spatial embedding in neuroscience is central since all living
neuronal systems are embedded in a physical space [24].
The embedding constrains the layout of network connectiv-
ity, either by guiding connections or by restraining them.

In this work we investigated effective connectivity by
exploring, both numerically and experimentally, spatial net-
works in which we adjusted the spatial arrangement of the
neurons by tuning their degree of aggregation. The simu-
lated networks were used to select the most appropriate
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connectivity–inference algorithm and to complement the
experimental observations. Experiments were then analyzed
with the selected tool, and network theorywas applied to the
data in order to identify hallmarks of effective connectivity
which can be ascribed to the imposed physical construction.

2 EXPERIMENTAL RESULTS: OVERVIEW

We considered small cultures of primary cortical neurons
grown on 3 mm diameter circular wells (mini cultures)
that contained N ’ 2;000 neurons (see Methods and Fig. 1).
The advantage of these mini cultures is that the number
of neurons is sufficiently high for the network to show rich

collective behavior—in the form of spontaneous activity—
and sufficiently small for the data to be numerically tractable.

These cultures were tuned to exhibit different spatial
arrangements of the neurons on the substrate, from homo-
geneous configurations to highly aggregated ones, with
the latter consisting of islands of highly packed neurons. This
spatial distribution of the cultured neurons was quantified
through the aggregation coefficient � (Fig. 1b). We used
calcium fluorescence imaging to monitor spontaneous activ-
ity. An experiment could involve several recordings, which
were acquired at 45 frames per second (fps) along 10–30min.
Firing neurons were identified as bright spots on the images,
and associated to regions of interest fromwhich fluorescence
times series were extracted (Figs. 1c, 1d, and 1e).

Two groups of experiments were performed, development
and connectivity weakening. For the former, we monitored
spontaneous activity as the cultures matured, typically from
day in vitro (DIV) 5 to 16. For the latter, we considered
mature cultures at around DIV 14 and monitored their
spontaneous activity as the connectivity strength among
excitatory neurons was gradually reduced with the AMPA–
receptor antagonist CNQX. In either case, neuronal network
activity was characterized by periodic episodes of high
coherence (network bursts) in which most of the neurons
fired together in a short time window [Fig. 1e] combined
with intervals of sporadic firing. Effective connectivity
was inferred from the activity data and diverse network
measures were evaluated.

3 NUMERICAL RESULTS

3.1 Simulation of Spatial Networks

To complement experimental observations, we simulated
directed spatial networks of 2;000 neurons placed in a circular
area 3 mm in diameter, and distributed either in a homoge-
neous or in an aggregated manner. As in the experiments,
aggregation resulted in the concentration of neurons in small
islands (Fig. 2). The metric construction of the network
favored distinct connectivity layouts. Neurons in the homo-
geneous case effectually connected to any other neuron in a
broad neighborhood, leading to networks that mimicked the
characteristics of geometric random graphs [18]. By contrast,
neurons in the aggregated case preferentially connected
within their island, leading to networks with high locality
and modular characteristics, as shown in the Supplemental
Material (SM), Fig. S1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TNSE.2018.2862919.

A comparison of the connectivity traits between the two
network constructions revealed further differences (Figs. 2e
and 2f). The distributions of clustering coefficients CC,
in-degrees kin and out–degrees kout for the homogeneous
network were more symmetric and narrower than for the
aggregated network. The islands of high neuronal density of
the latter favored much higher CC and connectivity values.
Interestingly, the distribution of CC values for the homoge-
neous network markedly differed from an Erd€os–R�eny (ER)
random graph, i.e., a space–free network (see SM, Fig. S2,
available online). Values of CC ’ 0 in the simulated
networks signaled the presence of sparsely connected neu-
rons. Thus, a heterogeneous connectivity emerged despite

Fig. 1. Preparation and analysis of neuronal cultures. (a) Sketch of the
preparation of 4 mini cultures for imaging. (b) Examples of neuronal
cultures with gradually higher degree of aggregation �. For small � single
neurons are visible (small dark features). For large � neurons form
dense aggregates. Cultures are classified as Homogeneous (H), Semi
aggregated (SA) or Aggregated (A) according to their � value. (c) Inte-
grated fluorescence image of spontaneous activity in a SA culture. Bright
objects are firing neurons. (d) Corresponding Regions of Interest (ROIs)
from which fluorescence time series are extracted. The grey grid is used
to compute the Lorenz curve and extract the value of � ’ 0:59 (inset).
(e) Examples of fluorescence time series. The traces are grouped
according to two different pharmacological conditions, and correspond
to the same neurons on each line. Yellow boxes highlight network bursts;
arrow heads mark firing events outside bursting episodes. The signal–
to–noise ratio of the traces is SNR ’ 5. %DFF indicates the relative
increase in fluorescence.
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homogeneity in the distribution of neurons, and illustrates
the impact of metric correlations in shaping connectivity.

Simulated spontaneous activity of these networks quali-
tatively reproduced the experimental observations. Quasi–
periodic, whole population network bursts were observed
in all spatial configurations, although the aggregated case
required higher connectivity strengths for coherent firing
(see SM, Fig. S3, available online). The similarity in the
dynamics was due to the small size of the cultures in
comparison to the axonal length and that favored a broad
network interconnectivity, both between neurons and
aggregates [19]. Only in the case of extreme aggregation
coherent collective dynamics was replaced by fragmented,
local activity [26].

By gradually reducing the excitatory connectivity stren-
gth gAMPA we could simulate the effect of CNQX (see SM,
Fig. S3, available online). We again observed similar results
as in the experiments, with a typical firing frequency of 3
bursts/min in the unperturbed case that progressively
decayed as gAMPA decreased. Coherent activity in homoge-
neous networks stopped abruptly for a critical connectivity
strength, while in aggregated networks activity gradually
split into independent groups of aggregates.

3.2 Selection of the Reconstruction Method

Given the appropriateness of our in silico networks to repro-
duce the dynamics of neuronal cultures, we used them to
test the validity of different connectivity inference algo-
rithms. For simplicity we considered 1;000 neurons in a
homogeneous configuration, and simulated their dynamics
for 10 min. Spike trains were then converted into noisy cal-
cium fluorescence time series that mimicked the experimen-
tal data (see Methods and Fig. 3).

We organized the analysis of the numerical results in two
groups. In the first one, the binary firing sequence of each
neuron was sampled with a fixed signal–to–noise (SNR)
ratio and two different frame rates (fps). In the second one,
data was sampled at 50 fps but with two contrasting SNRs.
In both groups, connectivity matrices were inferred using
partial–correlation (PC), cross–correlation (XC), mutual
information (MI), and generalized transfer entropy (GTE),
as decribed in the Methods section, and finally compared
with the ground–truth connectivity.

Fig. 4 shows the Receiver Operating Characteristic (ROC)
curves for the respective models for two different fps and
low noise (top panels); and for two different noise levels at
50 fps (bottom panels). Each curve represents the average
over 10 different network realizations of the simulation
with identical number of neurons and average connectivity.
The shaded area corresponds to the error given by their
respective standard deviation.

Considering the sensitivity to frame rate (Fig. 4, top), the
best reconstructions were obtained through GTE, although
the quality of reconstruction slightly decreased as the frame
rate increased. This is possibly due to our choice of
k ¼ l ¼ 2, which expects interactions to occur in neighbor-
ing time bins, a condition that is fulfilled at 20 fps but that is
less satisfied at 50 fps or larger. The results for XC were
worse, although the results improved as the frame rate
increased, possibly because the timing of the interactions
was better resolved. Intermediate results were obtained
with the MI and PC reconstructions.

This analysis shows that PC reconstruction achieved bet-
ter results than XC. Indeed, unlike bivariate methods such
as XC, PC is a multivariate method that provides simulta-
neous analysis of interdependences between three or more
processes. Hence, in this sense, XC–reconstruction was
unable to distinguish direct and indirect connections falling

Fig. 3. Dynamics of simulated networks. From top to bottom, simulated
activity of a single regular spiking neuron together with its calcium and
fluorescence signals, and for two SNRs of fluorescence.

Fig. 2. In silico networks. (a) Construction of the networks. Two color
patterns were used to direct neuronal growth: homogeneous (top) and
patterned substrate (bottom) for aggregated networks. Neurons grow
only in the white areas. (b) An aggregated network is built as juxtaposi-
tion of homogeneous networks. (c)–(d) Overview of homogeneous
(c) and aggregated (d) networks with their corresponding details.
N ¼ 2;000 neurons in both cases. Drawn using Gephi [25]. (e)–(f) Distri-
butions of major connectivity traits for the two configurations, namely
clustering coefficient (CC), in–degree kin and out–degree kout. Solid lines
show the average values. Dashed lines with arrow heads indicate the
corresponding average CC values for an equivalent ER random graph
with average connectivity �k ¼ hkin þ koutiN , N ¼ 2;300 neurons, and
computed as CCr ¼ �k=N. CCr

H ¼ 0:012, CCr
A ¼ 0:055.
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short in reconstructing the network’s topology. In contrast,
an overall good reconstruction was achieved by MI and
GTE techniques because they are sensitive to both linear
interactions and nonlinear correlations between any pair of
neurons. This is also reflected in the analysis of the sensitiv-
ity to SNR (Fig. 4, bottom panels), in which both GTE and
MI exhibited robustness even when firings were difficult to
distinguish from noise. Obviously, for the extreme case in
which firings were totally masked by noise, all methods
failed at procuring reliable connectivity measures.

We note that the bottom–left panel of Fig. 4 reflects
our experimental conditions in terms of fps and SNR. Thus,
and taking into account the above results, we chose GTE
to infer the effective connectivity in our neuronal cultures.

4 EXPERIMENTAL RESULTS: NETWORK ANALYSIS

Fig. 5 provides examples of GTE–inferred effective connec-
tivity in representative homogeneous, semi aggregated
and aggregated cultures. Data in all cases was obtained
from recordings in which both excitation and inhibition
were active ([E+I]–networks). For clarity, only 5 percent of
the inferred top–ranked links are represented. Overall,
homogeneous networks exhibited a structure in which any
neuron could connect to any other, with a rather homo-
geneous density of connections that extended across the
entire culture. Semi aggregated and aggregated cultures
also exhibited a long range connectivity, but the density of
connections was higher in neuronal aggregates, revealing
a relation between connectivity and neuronal proximity.
The average total connectivity per neuron in the network,

�k ¼ hkin þ koutiN , gradually increased with aggregation,
clearly indicating that, on average, neuronal spatial proxi-
mity indeed suffices to substantially enrich the effective
connectivitymap of neuronal cultures.

Fine details of networks’ connectivity are provided in
Fig. 6, where we compare the distributions of clustering
coefficients CC, in–degree kin and out–degree kout for
the same homogeneous, semi aggregated, and aggregated
cultures of Fig. 5. As a reference, the average CC values for
equivalent ER graphs, CCr, are also shown. A representa-
tion of the networks is provided to highlight the location of
neurons with the highest total degree k ¼ kin þ kout. High k
neurons were uniformly spread across the network for
the homogeneous case, and concentrated in dense areas
for the other cases. As in the simulations, the distributions
were broader, more asymmetric, and with higher average
values as aggregation increased, reflecting the role of aggre-
gation in shaping strong connectivity fluctuations. This was
particularly clear for the CC distribution of Fig. 6c, which
showed peaks at high values. A comparison between
Figs. 5c and 6c reveals that these peaks correspond to neu-
rons that form triangles both within their island and
between other islands, a feature that strengthens the cohe-
siveness of the network.

In the following, we analyze the relation between the
effective connectivity and the characteristics of the cultures,
including average connectivity, small–world features, assor-
tativity and the amount of inhibition, for the development
and CNQX–disintegration experiments.

4.1 Development Experiments

We explored the maturation of the neuronal cultures without
any pharmacological action on the connectivity, i.e., neurons
evolved with both excitation and inhibition active ([E+I]–
networks). In agreement with a variety of studies [7], [8], [27],
[28], the initial ensemble of independent neurons developed
rapidly both in connectivity and activity, displaying rich
spontaneous activations byDIV 5 [7].

Fig. 5. GTE effective connectivity of [E+I]–networks in vitro. (Top) Bright–
field images of neuronal cultures (N ’ 1; 800 neurons per culture) with
aggregation increasing from left to right. (Bottom) Corresponding recon-
structed networks, showing the top 5 percent of GTE–ranked links. �k is the
average total connectivity per neuron. (a) Homogeneous (DIV 14,
� ¼ 0:43); (b) semi aggregated (DIV 15, � ¼ 0:69); (c) aggregated network
(DIV 14, � ¼ 0:77). The thickness of links is proportional to their weight.
The directionality of links is omitted for clarity.

Fig. 4. Performance of reconstruction strategies on simulations.
Comparison of ROC curves for chosen similarity measures, and for
4 measurement conditions. (Top) Frame rates of 20 and 50 fps, with
fixed noise SNR ’ 10. (Bottom) Two noise levels at fixed frame rate
(50 fps). The red dot in the top–right panel illustrates the cut–off thresh-
old (15 percent FPR) chosen to quantify the goodness of the recons-
truction. The bottom–left panel is the closest to our experimental
conditions. All curves are averages using a set of 10 different ground
truth topologies in the homogeneous configuration.
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All spatial configurations exhibited spontaneous activity
characterized by episodes of high coherence (network bursts)
combined with quiescent intervals. However, aggregated
cultures (� high) tended to exhibit spontaneous activity ear-
lier, possibly favored by the aggregation itself that enhanced
the swift interconnectivity of groups of neurons.

Fig. 7a shows the frequency of coherent network activity
for the three spatial configurations during maturation. Col-
lective activity appeared by DIV 5 and increased quickly for
the three configurations, finally reaching a similar firing
rate of about 3 burst/min by the second week of develop-
ment. The growth of activity at early stages was remarkably

faster for semi aggregated and aggregated networks, indi-
cating a subtle interplay between activity and connectivity.

The corresponding developmental behavior in terms of
effective connectivity is provided in Fig. 7b. In general, the
total average degree per neuron �k increased as the cultures
matured, with aggregated networks showing a faster devel-
opment of connections. In all configurations, connectivity
stabilized by DIV 8 and later ramped up. This transient fea-
ture of stable connectivity can be ascribed to the GABA
switch, the moment at which inhibitory connections switch
from an initially excitatory action to the final inhibitory role.
As described later, the GABA switch may temporarily mask
the formation of connections, but allows a quantification of
the amount of inhibition in the network. Effective connectiv-
ity substantially increased after the GABA switch, especially
in the aggregated networks. In just 2weeks, the connectivity
of the networks increased by a factor 10, with a total average
degree for the different configurations at DIV 15 of �k ’ 56
(H), 66 (SA) and 96 (A).

The connectivity data for the different network configura-
tions was comparedwith ER–graphs to assert the existence of
small–world (SW) features. To simplify the analysis we
treated our networks as undirected and unweighted graphs,
so that the average connectivity is given by hki ¼ ð1=NÞPi ki.
For a network to be SW, it has to be highly clustered (much
more than a ER–graph) and exhibit small characteristic short-
est path lengths (similar to an ER–graph) [29], i.e., it has to
fulfill k ¼ CCR=CC� 1 and � ¼ LR=L ’ 1. Here CCR

and LR indicate the values for ER random graphs, which are
given by CCR ¼ kh iR=N and LR ¼ 1=2þ ½lnðNÞ � "�= kh i [30],
respectively, where " ’ 0:5772 is the Euler constant.

Comparing the analyzed networks with the ER–graphs,
we observed that the ratio of clustering coefficients was
k ’ 0 for H and SA networks, and k ’ 0:2 for A networks,
values that remain approximately constant during devel-
opment. On the other hand, the characteristic path length
ratio was � ’ 0:3 for the three network types, lower than 1.
Thus, none of the networks satisfied the criteria for small–
worldness, with only a weak tendency to SW for the aggre-
gated one.

Fig. 7. Average activity and connectivity during development.
(a) Frequency of network bursts as a function of developmental days
in vitro (DIV). (b) Total average degree per neuron �k as a function of
DIV. All measurements correspond to [E+I]–networks. Data points
are averages over 2 to 6 experiments. Yellow boxes depict the timing of
GABA switch.

Fig. 6. Network characterization of GTE–inferred effective connectivity in experiments. The plots show the distribution of CC, kin and kout values for
the same individual cultures as Fig. 5, recorded in [E+I] conditions at DIV 15. Solid lines mark the average values of the distributions. Dashed lines
with arrow heads indicate the corresponding average CC values for an equivalent ER random graphs, with CCr

H ¼ 0:012, CCr
SA ¼ 0:067,

CCr
A ¼ 0:069. The networks at the top show the location of neurons, with those exhibiting the highest �kmarked with a darker color. Arrows in the net-

work of panel (c) indicate the location of the neurons with the highest CCs.N indicates the number of neurons in each culture.
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4.2 CNQX–Disintegration Experiments

Progressive application of CNQX in a neuronal culture
gradually weakens the AMPA–excitatory connections up to
the total blockade of neuronal communication, altering the
dynamics of the network and, subsequently, its effective con-
nectivity. Connectivity weakening is quantified by the disinte-
gration coefficient g ¼ 1þ ½CNQX�=KD, with KD ¼ 300 nM.
In our analysis, effective connectivity was first inferred in the
[E+I] network data, and then in the [E]–only one for gradually
higher CNQX concentrations. In accordance with previous
studies [7], we observed that the frequency of spontaneous
activity gradually decreased as disintegration progressed
until it ceased. The coherence of neuronal activations during
disintegration was generally maintained across cultures with
different �, i.e., all of them showed network bursts.

The evolution of the GTE–inferred effective connectivity
upon application of CNQX for different DIV is reported in
Table 3 of the SM, which shows only kin results for clarity,
and is graphically illustrated in Fig. 8. The effective connec-
tivity maps show that disintegration is inhomogeneous
across the culture, with some neurons retaining a higher
number of connections, a feature that markedly increases
with aggregation (see also SM, Table 5, available online). In
young cultures below DIV 7, i.e., before the GABA switch,
the initial blockade of inhibition led to a decrease in kin since
a fraction of the excitatory network was effectually shut
down. In more mature cultures with functioning inhibition
kin increased since, on average, the silencing of inhibition
jumped up excitation. Subsequent application of CNQX
gradually affected the ability of excitatory connections to
operate, which were progressively silenced from weaker to
stronger. Since activity remained highly coherent alongmost
of the CNQX steps, the effective connectivity exposed the
strongest connections and the flow of activity propagation.

Examples of the changes in activity for H and A networks
upon CNQX action, for three representative developmental
stages, are provided in Fig. 9a. There are three aspects to be

noticed. The first one is that the younger the culture, the
lower the required concentration of CNQX to silence the
network, further corroborating the observation that the
number of connections and their strength increase during
development. The second one is that aggregated networks
are more resilient to CNQX, remaining active at concentra-
tions at which homogeneous networks have already become
silent. And the third one is that in mature stages (DIV 15)
both networks show sporadic episodes of increased activity
upon degradation, which hints at the activation of response
mechanisms to stop degradation.

The corresponding evolution of the normalized in–
degree kin, shown in Fig. 9b, manifests the overall trend that
aggregation favors higher connectivity, and that highly
aggregated cultures were able to retain more connections as
disintegration progressed. For instance, for g ’ 2:33, A and
H cultures retained 60 and 10 percent of the effective input
connections, respectively. We must note that connectivity
data was inferred from activity, and that a minimum

Fig. 8. GTE effective networks in CNQX disintegration experiments. The
graphs show a representative sequence of effective maps for each of
the three spatial configurations. (Top) Homogeneous culture at DIV 15
with � ¼ 0:43. (Center) Semi aggregated culture at DIV 14 with � ¼ 0:58.
(Bottom) Aggregated culture at DIV 14 with � ¼ 0:77. CNQX concentra-
tions are indicated above the maps. Only 10 percent of top–ranked links
are shown. The directionality of the links is omitted for clarity.

Fig. 9. Activity and effective connectivity during CNQX disintegration. (a)
Evolution of the average bursting rate as a function of the disintegration
coefficient g for three different DIV. Arrows indicate CNQX steps in
which activity increased, and asterisks those measurements with no
observed activity. The label ‘(H)’ over the asterisk indicates that only
homogeneous cultures were silent. (b) Values of normalized in–degree
as a function of g. kinE0

corresponds to the kin value for [E] networks at
½CNQX� ¼ 0. The data are obtained by averaging over the DIV 13 and
15 values provided in Table 3 of the SM. Inset: critical concentration
[CNQX]C that halts activity in [E] networks. Each bar is an average over
3 measurements, and corresponds to data at DIV 15 in which groups of
4 cultures with varying � were recorded simultaneously.
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activity (about 5 bursts along the recording) was required
to build the effective networks. The data shown in Fig. 9b
fulfills this condition. However, cultures could exhibit firing
events —either in the form of whole–network activations or
scattered firings— for higher CNQX concentrations. Indeed,
we measured the critical value [CNQX]C at which activity
ceased at DIV 15 in the different spatial configurations.
As shown in the inset of Fig. 9b, the capability of the network
tomaintain activity increasedwith the degree of aggregation.

4.3 Assortativity

Following Ref. [26], we evaluated the tendency of the
inferred effective networks to show assortative or dissassor-
tative traits using the Pearson coefficient ðrPW Þ and the
Spearman rank correlation ðrSW Þ. Both measure the in–out
degree correlations, and take into account the weights of the
links in the computation. We chose the in–out weighted
degree correlations since they reflect the flow of information
in the networks. As the results for rPW and rSW were consis-
tent within error, only the latter is shown here. The evolu-
tion of rSW with DIV is provided in Fig. 10a, and of rSW

with the disinegration coefficient g in Fig. 10b.
From DIV 4 to 16, aggregated networks displayed

positive values of assortativity ðrSW ’ 0:5Þ, indicating that
in–strength neurons attached to others with similar out–
strength. In semi aggregated networks the degree distribu-
tions were uncorrelated, i.e., with rSW ’ 0, a structure that
is known as neutral assortativity. For comparison, neutral
assortativity is characteristic of ER–graphs. Finally, the
homogeneous neuronal cultures showed disassortative
mixing ðrSW ’ �0:28Þ, indicating that high in–strength
nodes tended to attach to low out–strength nodes.

For the CNQX–disintegration experiments, at DIV 14
homogeneous cultures before disintegration were dissassor-
tative (rSW ’ �0:25), the semi aggregated ones were neutral
(’ �0:04), and the aggregated ones were assortative
(’ 0:36). These values gradually changed as disintegration
took action and, as shown in Fig. 10b, there was a tendency
of all networks to become neutral. For the aggregated config-
uration, we hypothesize that aggregates behave as an assem-
bly of interconnected islands, which break off at the end
when activity ceases. For the homogeneous and semi aggre-
gated networks, disintegration brings to light the nodes with
the highest number of connections, and the networks become
more assortative until activity is lost.

4.4 Inhibition

The amount of inhibition in the inferred effective connec-
tivity networks was calculated using the approach of
‘subtractive inhibition’ [31], [32]. In this approach, the aver-
age inhibitory connectivity is given by kI ¼ kE � kEI , where
kE and kEI are, respectively, the average connectivity values
inferred from [E]–only and [E+I] measurements on the
same culture. This relation assumes that excitatory and
inhibitory synapses have similar strengths and that the
average EPSC and IPSC amplitudes are practically equiva-
lent. In other words, this model assumes that the effect of
inhibitory connections is to reduce the excitatory ones by
the same amount.

The comparison of the data for [E+I] and [E] networks
allowed us to follow the emergence of inhibition during
development, as well as to estimate the fraction of inhibi-
tion. Fig. 11 shows the percentage of inhibitory connections
along DIV for the H, SA and A spatial arrangements. Inhibi-
tion emerged in all cases by DIV 9, when the GABA–switch
occurred, reaching then a percentage that remained around
20 percent for the next 5 days. Very high values were
obtained above DIV 14, when the cultures were more
mature. Comparison with simulations suggests that the lin-
ear approximation assumed above is not valid in this
regime and that a more complex nonlinear model should be
considered.

5 DISCUSSION

5.1 Activity and Effective Connectivity

Effective connectivity arises from a complex interplay
between the architecture of the network and the dynamics
of the neurons. It may therefore reflect the flow of informa-
tion and the spatio–temporal structure of activity propaga-
tion. In mouse slice preparations, for instance, it was shown
that 70 percent of the information passed through only 20
percent of the neurons in the network [15]. Hence, effective
connectivity may not necessarily coincide with the struc-
tural blueprint of the network. This difficulty reflects an
important debate in the neuroscience community, since
accessing structural information from dynamics, i.e., non–
invasively, is pivotal for the study of the brain and its mal-
function due to disease.

In this direction numerical simulations are very useful at
providing a framework to model neuronal networks and to
investigate under which conditions the effective connec-
tivity is a good proxy of the structural one. Stetter et al. [4]

Fig. 10. Analysis of degree correlations through the Spearman rank cor-
relation rSW . (a) Time evolution for [E+I] networks in cultures of each
configuration. The yellow box depicts the timing of GABA switch occur-
rence. (b) Evolution of rSW upon CNQX aplication at DIV 14 with the dis-
integration coefficient g. Initial [E+I] values are shown for comparison.
Data points are averages over 3 experiments.

Fig. 11. Percentage of inhibitory connections during development.
The plots show the time evolution of inhibitory connections during the
development of cultures in the three spatial configurations. Inhibitory con-
nections are described by amodel of ‘subtractive inhibition’. The horizontal
dashed red lines are a reference to indicate 20 percent inhibition in cortical
cultures. Data are average and standard deviation over 3 experiments
at eachDIV. Yellow boxes depict the timing of GABA switch occurrence.
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used numerical simulations to show that both the connec-
tivity inference algorithm and the dynamic state of the net-
work—e.g., network bursts or monosynaptic interactions—
must be chosen appropriately. Following his work, and based
on our simulations, we chose GTE as the algorithm to
infer the effective connectivity. Of importance in GTE is the
treatment of the fluorescence data by conditioning, which elim-
inates the repeated activations upon neuronal bursting. This
treatment provides a better balance between coherent activa-
tions andmonosynaptic, neuron–to–neuron interactions.

Despite conditioning, we must note that coherent activa-
tions in neuronal cultures dominate the dynamic reper-
toire, and that activity outside these episodes is scarce.
Hence, given the short duration of our recordings, it may
occur that the inferred effective connectivity reflects in
great measure the neuronal correlations during the propa-
gation of the bursting episodes. In the context of the noise
focusing phenomena [8] it was shown that coherent activity
preferentially initiates in specific areas of a neuronal
culture termed focusing points and that they emerge from
a complex trade–off between connectivity and noise–
amplified activity. An analysis of the foci of activity in our
cultures revealed that they concord with the regions
of high effective connectivity. We also observed that high
values of kout � kin often coincided with high neuronal
densities r (see SM, Fig. S4, available online), indicating
that neuronal aggregation favored the initiation of activity,
a trait also observed in other studies [33]. The weakening
of synapses by CNQX affects these foci of activity and the
flow of information, which is reflected by changes in the
effective connectivity maps.

Ito et al. [12] argued in the analysis of effective connectiv-
ity in organotypic cultures that monosynaptic interactions
are the ones that better portray the anatomical connectivity.
Their assertion agrees with our simulations and other stud-
ies [4], [34]. Thus, for the inferred effective connectivity to
be a good proxy of the structural one, one needs to substan-
tially increment the occurrence of these monosynaptic inter-
actions. We are therefore devising experiments in which
these interactions would be favored, either through phar-
macological action, a variation of the balance of ions in the
recording medium, or external stimulation.

5.2 Connectivity Values and Quorum Percolation

The effective connectivity analyses provided an estimation
of the connectivity of the networks, with �kinE ’ 50 for H and
SA networks, and �kinE ’ 120 for A ones (see Table 3, SM,
available online). These values can be contrasted with an
alternative approach, namely with the study of the disinte-
gration of the giant component g in quorum percolation [31],
[35]. In this approach, the giant component g of a network
was defined as the largest fraction of neurons that fired
together in response to an electrical stimulation, and its
size was investigated as the excitatory network connectivity
was reduced with CNQX. The giant component is consti-
tuted by those neurons that retain sufficient input connec-
tions at each CNQX step. The required number of inputs for
a neuron to remain in the giant component was expressed
asm ¼ m0g. Herem0 ’ 15 represents the minimum number
of connections a neuron requires to fire. In the absence of
inhibition, the critical value of m, termed mE , at which

g ’ 0 is related to the average input connectivity of the net-
work, �kinE ’ mE [31], [32], [35]. For homogeneous cultures
with a density similar to ours �kinE ’ 30 was obtained, which
is consistent with our results.

Let us emphasize that the giant component analysis
provides information on the average structural connectivity,
while in our study we determined the effective connectivity
at single neuron level. We remark again that is it difficult
to quantify how well the effective connectivity derived
from activity mirrors the structural one. One would need to
determine the experimental ground truth topology, which
would require approaches such as electrophysiological
measurements or staining of axons.

5.3 Aggregation and Connectivity

Although the nominal density upon plating was the same in
all cultures, aggregation caused strong variability at a local
scale. The size of the aggregates was about 0:25 mm2 and
they typically contained 100 neurons. While the density was
rH ’ 250 neurons/mm2 in homogeneous cultures, in aggre-
gated cultures it was rA ’ 500 inside the aggregates and
rO ’ 100 neurons/mm2 outside them. This difference is
remarkable. In the setting of quorum percolation outlined
above, Soriano et al. estimated that the number of excitatory
input connections increases with the density [31], from
�kinE ’ 30 for r ’ 100 to �kinE ’ 80 for r ’ 500 neurons/mm2.
Hence, one may expect a factor 3 more structural connec-
tions within aggregates than between aggregates or isolated
neurons.

A substantial increase in connectivity in dense areas of a
neuronal culture was also observed by Maccione et al. [11]
in MEAs. They used cross–correlation analysis combined
with spatio–temporal filtering and staining of connections
to determine the strongest effective links of the network,
and observed that neuronal aggregates contained about
55 percent more links than their sparser neighborhood.
On the other hand, a recent study by Lonardoni et al. [36]
showed that distance–based connectivity formation during
the development of neuronal circuits sufficed to create
nuclei of strong interconnectivity, which were central in ini-
tiating coherent network dynamics. This result suggests
that aggregation promotes both activity and connectivity,
and agrees with our observation that aggregated and semi
aggregated cultures exhibit a fast growth of these quantities
during early development (Fig. 7).

The increase of structural connectivity upon aggrega-
tion highlights that metric correlations may prove essen-
tial to understand the behavior of neuronal networks.
Hern�andez-Navarro et al. [19] recently showed that the
role of spatial embedding in the structure and dynamics
of networks can be quantified in terms of the degree of
aggregation � and the relative axonal length d ¼ a=L,
where a is the average axonal length and L the diameter
of the culture.

Within this framework we consider the following cases.
The situation of �! 0 and d!1 corresponds to a perfectly
homogeneous network with long–range neuronal inter-
connectivity, leading to a mean field scenario in which spatial
embedding is irrelevant. Our homogeneous cultures appro-
ach this condition, with effective connections homogeneously
distributed and extending over the entire culture.
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The evolution from d! 0 to d!1 corresponds to a
transition from a local connectivity to a mean field one, and
would be the equivalent of our development experiments.
However, a direct comparison is not possible since the same
culture could not be measured at different DIV. Addition-
ally, our cultures are relatively small, and therefore it
may occur that the first observation of coherent activity
(DIV ’ 5) corresponds to a situation of already large d.

Finally, the situation of � ’ 0:8 and 0:1 9 d 9 1, which
balances local and long–range connectivity, corresponds to
our aggregated configuration. The analysis of the cultures
through the effective connectivity reflects this physical
richness. Viewing the network as a whole, the average con-
nectivity �k consistently increased with aggregation; and
at a local scale aggregation favored strong binding within
islands of neurons that was combined with long–range
interconnectivity.

We emphasize that a balance between short- and long-
range connections is crucial to observe network wide coher-
ent activations. This is the case for all cultures explored in
this work regardless of their aggregation. However, we
observed, in the CNQX–disintegration experiments, that
for large � this balance facilitated activity to fragment into
sub–networks that maintained some sort of population
activity. These observations could not be analyzed in detail
since network activity for large [CNQX] was not sufficiently
rich for reliable connectivity inference. The extreme case of
highly aggregated networks corresponds to cultures cons-
tituted by interconnected neurospheres [26], [37], a configura-
tion that displays modular dynamics, with groups of
aggregates firing together in small communities rather than
in a coherent manner.

5.4 Assortativity

The fact that the assortativity traits are markedly distinct
for different aggregation levels indicate that neuronal prox-
imity fosters degree–degree correlations that persist along
development. Moreover, one has to take into account that
our extracted degree–degree correlations are effective,
i.e., extracted from dynamics, and that assortativity in this
effective perspective may also reflect the tendency of highly
co–active neurons to strengthen their connectivity.

Our results show that aggregated cultures are assortative
ðrSW ’ 0:50Þ, semi aggregated are neutral, and homo-
geneous are disassortative (rSW ’ �0:28Þ. Our numerical
simulations show that aggregated networks are also assorta-
tive, with rSW ’ 0:32, while homogeneous are neutral.
Other studies in neuronal cultures also reported strong
assortative mixing in aggregated networks [26], and neu-
tral [26] or dissassortative mixing [10] in homogeneous net-
works. Given the discrepancy on homogeneous cultures,
further experiments and analyses are needed to understand
its origin.

5.5 Inhibition

The use of the ‘subtraction’ rule kI ’ kE � kEI sufficed to
estimate the amount of inhibition in the network and to
time the occurrence of the GABA switch. However, this rule
is based on the quorum percolation model, which assumes
that an inhibitory connection just cancels out an equivalent
excitatory one [31], [32]. In reality, the excitatory and

inhibitory sub–networks have a complex interrelation that
requires accurate modeling. Orlandi et al. [34] investigated
in silico the ability to resolve the excitatory and inhibitory
sub–networks, using GTE and combining the data of [E+I]
and [E]-only effective networks inferred from spontaneous
activity. They concluded that spontaneous activity did not
convey sufficient information to uncover both networks,
and that only with stimulation reliable information could be
extracted.

6 CONCLUSION

Our study showed that metric correlations inherited from
spatial aggregation fostered the interconnectivity among
neighboring neurons. Spontaneous activity along different
degrees of aggregation and experimental conditions was
examined to infer the effective connectivity of the networks.
We observed that the average connectivity of the cultures
rapidly increased during development, and with average
excitatory connectivities of �kinE ’ 50 for homogeneous and
semi aggregated networks and �kinE ’ 120 for aggregated
ones, andwith 20 percent inhibitory connections. The former
networks exhibited dissassortative or neutral degree–degree
correlations, while the latter were assortative. Aggregated
networks also exhibited stronger resilience to the loss of con-
nections through chemical action. Overall, our study under-
lines the importance of neuronal spatial arrangement and
metric correlation in shaping connectivity and activity traits
in living neuronal networks.

7 METHODS

7.1 Neuronal Cultures and Experimental Procedure

Here we describe the preparation of the neuronal cultures,
their monitoring through calcium fluorescence imaging,
and the modification of neuronal connectivity through
pharmacological action.

7.1.1 Neuronal Cultures

We used rat cortical neurons from 19–day–old Sprague–
Dawley embryos. All the procedures were approved by
the Ethical Committee for Animal Experimentation of the
University of Barcelona, under order DMAH-5461.

Neuronal cultures were prepared as follows. Cortices
were isolated from embryonic brains and dissociated
through gentle pipetting. The resulting ensemble of neurons
and glia were plated on 13 mm diameter glass coverslips
(#1 Marienfeld–Superior) that incorporated a perforated
polydimethylsiloxane (PDMS) mask (Fig. 1a). The mask
was 1 mm thick and contained a set of 4 circular holes 3mm
in diameter. The combined PDMS–glass structure effec-
tively provided 4 mini cultures that could be simultaneously
monitored with the optical system.

Prior plating, glasses were cleaned with nitric acid and
double–distilled water (DDW), flamed in ethanol and auto-
claved in the presence of the PDMS mask, ensuring a firm
bond between the two materials. Mini cultures with con-
trasting neuronal spatial arrangements were prepared by
coating the glasses with preset concentrations of the adhe-
sive protein Poly–L–Lysine (PLL, Sigma). The higher the
concentration of PLL, the higher the homogeneity of the
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network (Fig. 1b). Standard Homogeneous (H) cultures were
prepared by treating the glasses overnight with 10 mg/ml
PLL in Borate Buffer. We note that some degree of aggrega-
tion was always observed despite the strong anchoring of
the neurons. A factor 10 dilution of this base concentration
provided semi aggregated (SA) cultures, while a factor 100
dilution (or directly total absence of PLL) provided aggre-
gated (A) cultures.

Neurons were seeded onto the combined glass–PDMS
structure in the presence of plating medium for the develop-
ment of both neurons and glia. Cultures were incubated at
37 �C, 95 percent humidity, and 5 percent CO2. At day in
vitro 4 the medium was switched to changing medium for 3
days to limit glia growth, and thereafter to final medium.
This medium was refreshed every 3 days by replacing half
of the culture well volume. Full details of materials prepara-
tion and culture media are provided in Refs. [7], [8].

Neurons were plated with a nominal density of 5;000
neurons/mm2, providing a final density (measured over
the recorded images) around 300 neurons/mm2, i.e., about
2;000 neurons per mini culture.

7.1.2 Calcium Fluorescence Imaging and

Data Acquisition

Prior to imaging, the PDMS mask was removed to ensure
total independence of the 4 mini cultures, which were then
incubated for 40min in External Medium (EM, consisting of
128 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 45 mM sucrose,
10 mM glucose, and 0.01 Hepes, adjusted to pH 7.4), in the
presence of the calcium sensitive dye Fluo–4-AM (Life),
with 4 mg Fluo–4 per ml of EM. The culture was washed
with fresh EM after incubation, placed in a bottom–glass
petri dish filled with 4 ml of EM, and attached to a thermal
bath platform at 25 �C. The platform was finally mounted
on a Zeiss Axiovert C25 inverted microscope equipped for
fluorescence imaging.

Spontaneous neuronal activity was monitored through
a Hamamatsu Orca Flash 2.8 camera. Neurons appeared
as bright objects upon firing. Activity was recorded at
45 frames per second, with a frame size of 960� 720 pixels
and a field of view of 8:2� 6:1 mm2 that contained 4 mini
cultures. Activity was recorded for 10� 30min.

At the end of the recording neurons were manually iden-
tified as Regions of Interest (ROIs) over the images, with
typically about 2;000 ROIs per mini culture. The recorded
data was then processed to extract for each identified neu-
ron its fluorescence trace fðtÞ, which was finally expressed
as %DFF � 100 	 ðf � f0Þ=f0, with f0 the average brightness
of the neuron at rest.

7.1.3 Degree of Aggregation �

It is computed through the normalized area under the
‘Lorenz curve’ (Fig. 1c) as follows. The identified neurons
were laid out on a surface that contained a grid of 100� 100
mm. The number of neurons in each grid element was then
counted. The Lorenz curve was then constructed by plotting
the cumulated number of neurons as a function of the cumu-
lated area fraction a, and normalizing both axes between
0 and 1. By denoting S as the area comprised between the
Lorenz curve and the bisector, �was then set as � ¼ 2S.

In our cultures � typically varied between 0:3 and 0:85.
Its value procured the classification of cultures stated above
as homogeneous (� 
 0:5), semi aggregated (0:5 < � 
 0:7),
and aggregated (� > 0:7).

7.1.4 Pharmacology and Experimental Protocols

Rat cortical neuronal cultures contain 80 percent excitatory
neurons and 20 percent inhibitory ones [31]. Excitatory
connections are mediated through AMPA–glutamate and
NMDA receptors. while inhibitory ones are mostly medi-
ated through GABAA receptors. By applying appropriate
doses of a receptor’s antagonists the connectivity of the net-
work can be varied, and the resulting spontaneous activity
explored.

Our study encompassed two groups of experiments,
namely development and connectivity weakening. The total
number of monitored cultures was 74 (H: 23, SA: 27, A: 24).

Development Experiments.Wemonitored neuronal activity
over the first three weeks of network development. A batch
of 24 identical wells was prepared. Starting at DIV 5, a
culture was selected and its spontaneous activity recorded
for 30 min. Another culture was then selected 24 h later and
measured. This procedure was then repeated for 3 weeks.
No connectivity blockers of any kind were used in these
experiments, i.e., both excitatory and inhibitory connections
were active ( [E+I]–network).

Connectivity Weakening Experiments. Connectivity disinte-
gration was achieved by gradually blocking the AMPA–
glutamate receptors in excitatory neurons through the
antagonist CNQX. Experiments were carried out in groups
of cultures prepared in 24 wells, but studied at different
developmental time points in the range 8� 16 DIV. In each
experiment, activity was first recorded for 15 min with no
blockers of any kind ([E+I]–network). Next, NMDA excit-
atory receptors and GABAA inhibitory receptors were
completely blocked with 20 mMAPV and 40 mMbicuculline,
their respective antagonists. After 10 min waiting time for
the drugs to take effect, spontaneous activity was measured
for 15 min in excitatory (AMPA–glutamate only) conditions
([E]–only network). Then, a sequence of gradual application
of CNQX was started, with concentrations of 50, 100, 200,
400, 800, and 2;000 nM. Each application was followed by a
5 min waiting time for the drug to act and a spontaneous
activity recording of 15min. The total duration of the experi-
ment was about 2 h. Results are reported in terms of
g ¼ 1þ ½CNQX�=Kd, where Kd ¼ 300 nM is the dissociation
constant of CNQX, i.e., the concentration at which 50 percent
of the AMPA receptors are blocked [31]. Conceptually,
m ¼ m0g is the number of inputs that are required onto a
neuron for it to fire, with m0 ’ 15 the minimum number of
simultaneous inputs (quorum) [31], [32], [35]. We verified
that the duration of the experiment did not compromise the
health of the culture, by repeating the first measurement
after washing off the drug antagonists [7], [31].

7.2 Numerical Simulations

We used algorithms to generate sets of neuronal networks
of a given spatial structure, and simulated their spon-
taneous dynamics. First, the best simulation parameters
were chosen from 400 simulations, selecting those that
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reproduced the experimental behavior (SM, Fig. 3, available
online). Second, H, SA, A configurations were explored
in additional 100 simulations. Third, the dynamics of 10 net-
works were calculated to unveil the best effective connec-
tivity inference method.

7.2.1 Construction of Spatial Networks

To mimic the spatial distribution of neuronal cultures, homo-
geneous and aggregated networks were grown on substrates
partitioned into two–color subdomains (Figs. 2a and 2b).

Homogeneous Networks (Fig. 2c). A set of N neurons
was randomly placed on a circular area 3 mm in diameter.
Each neuron was modeled as a circular cell body (soma)
with fixed diameter fs ¼ 15 mm. Occupation density was
set in the range r ’ ½100� 350� neurons/mm2. Neurons
were labeled as either excitatory with probability pE ¼ 0:8
or inhibitory with pI ¼ 0:2.

The growth processes of axons and dendrites were gen-
erated using the spatial metric construction described in [8].
Briefly, axonal growth was simulated as a random process
with final axonal length given by a Rayleigh distribution.
Dendritic trees were modeled as disks whose diameter fd

was drawn from a Gaussian distribution. When the axon
of a neuron i intersected the dendrite tree of a neuron j
connection i! j was recorded with probability a. For each
set of networks a values of a was chosen in the range
of ½0:3� 1�. The parameters used for the generation of the
networks are provided in Ref. [8].

Aggregated Networks (Fig. 2d). They were created by divid-
ing theN neurons into two subsets. The first one was distrib-
uted homogeneously over the 3mm diameter substrate with
a total number of neuronsNH ; the second one comprisedNA

neurons that were split into 15 islands of approximately 0:2
mm in diameter and randomly distributed over the sub-
strate. Connectivity within each subset was then established
following the above rules. The subsets were then merged by
eliminating those neurons of the homogeneous subset that
fell within an island and their connections were assigned to
the closest neurons in the island. This construction ensured
that both subsets were interconnected within and between
them. Different neuronal densities were explored in the sim-
ulations but maintaining the ratio NA=N ’ 0:2. The creation
of an aggregated network through this overlap procedure is
sketched in Fig. 2b.

Boundary conditions were set as follows. The edge of the
circular substrate was treated as a reflective wall where the
reflected axonal section had the same angle to the normal
of the wall in the direction opposite to the incident section.

7.2.2 Dynamic Model

The soma dynamics and the generation of action potentials
was described using a quadratic integrate–and–fire model
with adaptation [38], [39], [40]. In the reduced form its equa-
tions are

tc _v ¼ kðv� vrÞðv� vtÞ � uþ I þ h; (1)

ta _u ¼ bðv� vrÞ � u; (2)

if v � vp then v vc; u uþ d: (3)

Here v is the fast soma membrane potential, u the slow
inhibitory current, tc and ta time constants, I the synaptic
inputs, and h a noise term that reflects the spontaneous
emission of spikes. The rest of variables are parameters to
set the neuronal firing properties.

These equations adequately describe neuronal activity.
Below the threshold potential vt, the inputs are not sufficient
to trigger instability and the membrane potential relaxes
towards its resting value vr. Above vt, inputs trigger fast
increase in potential, up to a preset peak value vp leading to
the generation of a spike, after which v is reset to vc.

Each synapse between two neurons has its own dynamics,
whichmay affect network function. This model assumes that,
upon generation of a spike or action potential (AP), all presyn-
aptic terminals of that neuron release neurotransmitters
simultaneously. Axonal propagation delays are neglected
given that the propagation velocity of APs (’ 1m/s) is much
faster than the velocity of neurotransmitters’ release and sub-
sequent stimulation (’ 0:15m/s).

The rate of synaptic depressionD describes the depletion
process of glutamate presynaptic vesicles [41]. Depression
is modeled as [38]

d

dt
D ¼ 1

tD
ð1�DÞ � ð1� bÞDdðt� tmÞ; (4)

where tD is the characteristic recovery time of synaptic
vesicles [42]. It controls the inter–burst interval and takes
values in the range of 0:5� 20 s for our cultures. In Eq. (4),
D is initially set as 1 (no depression) and decreases by
D! bD (0 < b < 1) after each current injection.

We note that, the depression mechanism leads to an
increase in the sensitivity of a neuron to subtle changes
in the firing patterns of its afferents [43]. Thus, like other
forms of short–term plasticity, synaptic depression causes
the response of a neuron to depend on the previous history
of afferent firings.

The parameters used in the simulations are provided in
Ref. [8]. Using these parameters the neurons exhibit regular
spiking behavior (RS type) combined with bursts (short neu-
ronal spike trains), as shown in Fig. 3. At a network level,
neurons display coherent activations or network bursts, as in
the experiments. The dynamic model is completed with the
incorporation of the calcium dynamics and Gaussian noise,
so that fluorescence data mimics the experimental one.

To compare simulations with different noise levels we
define the signal–to–noise ratio as [6]

SNR ¼ Aspike

SDnoise
; (5)

where Aspike is the amplitude of a single spike event and
SDnoise the standard deviation of the noise, with both quanti-
ties expressed in %DFF units. In experiments SNR ’ 5, and
in simulations it was varied in the range ½3� 10� (Fig. 3).

7.3 Connectivity Inference Tools

7.3.1 Neuronal Activity Sequences

The recorded or simulated fluorescence time series were
converted into binary activity sequences, i.e., trains of either
detected activity (1), corresponding to a sharp rise in the
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signal, or silent intervals (0), as described in [4]. The binary
sequence of a neuron i was computed from its fluorescence
signal FiðtÞ (in %DFF units) through two transformations.
First, the discrete difference operator (dFi;n ¼ Fi;nþ1 � Fi;n)
was applied to reduce the probability that random fluores-
cence oscillations would trigger the detection of a spike.
Here n 2 ½1; N�, with N the number of data points in the
time series. Second, conditioningwas applied to the resulting
time series. This filter accepts a spike if the average of dFi;n

over the full population of neurons is below the condition-
ing level ~c at time step i, chosen so that spikes recorded dur-
ing high global activity are discarded.

7.3.2 Similarity Measures

The connectivity traits of the network are assessed based on
the following similarity measures of the activity of pairs of
neurons. Effective networks were obtained with inference
methods which detect causal relations between nodes and
yield directed graphs.

Cross–correlation assigns the largest cross–correlogram
peak over a range of delay times d,

XCj!i ¼ max
0
d
tmaxcn < ~c

rij
� �

; (6)

rij ¼
PT

n¼1ðxin � miÞðxjn � mjÞ
ðT � 1Þ si sj

; (7)

where tmax ¼ 200 ms and ~c is the conditioning level. The
binary signal of activity of neuron k is fxkg, its average is mi

and standard deviation is si. The obtained connectivity
matrix is weighted and undirected because of the symmet-
ric roles of i and j in the equation.

Partial correlation computes the correlation between neu-
rons i and j after removal of the dependence on neuron
k [44]. It is a multivariate linear symmetric measure that is
calculated using

PCj!i ¼ max
0
d
tmaxcn < ~c

rkij

n o
; (8)

rkij ¼
rij � rik rjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2ikÞð1� r2jkÞ

q : (9)

Mutual information is a nonlinear and symmetricmeasure of
the statistically shared information between two random vari-
ables [45], [46]. The delay dwas chosen tomaximizeMI scores

MIY!X ¼ max
d2½0;tmax�

�
X

p xn; yn�djcn < ~cð Þ
�

� log
p xn; yn�djcn < ~cð Þ

p xnjcn < ~cð Þp yn�djcn < ~cð Þ
�
;

(10)

where pðxn; yn�dÞ denotes the joint probability of X and Y at
temporal delay d, and pðxnÞ and pðynÞ are the marginal prob-
abilities of X and Y, respectively. The sum goes over all pos-
sible values of xn and yn�d.

Transfer Entropy (TE) measures the amount of information
transferred from Y to X [45]. This measure is nonlinear
and non–symmetric in X and Y . We used the extended
Generalized Transfer Entropy that accounts for the conditioning

of the fluorescence signal through ~c [4], [47],

GTEY!X ¼�
X

p xnþ1; xðkÞn ; yðkÞn

��cnþ1 < ~c
� 	

� log 2

pðxnþ1jxðkÞn ; yðlÞn ; cnþ1 < ~cÞ
pðxnþ1jxðkÞn ; cnþ1 < ~cÞ

:
(11)

Here k is the Markov order of the model and the length of
the vectors fxðkÞn g. The sum goes over all possible values of
xnþ1, xðkÞn , yðkÞn , and yðlÞn . Since the synaptic time constants
(’ 1 ms) are much smaller than the acquisition times of the
recordings (’ 20 ms), we chose k � 2with l ¼ k.

7.4 Validation of Inference Methods

The similarity measures provide an adjacency matrix A
whose elements wij are the connectivity weights among
firing neurons. Spurious connections were removed using
a confidence threshold. Weak and non–significant links
were filtered out using surrogates to generate null models
of the connectivity matrices. The quality of reconstruction
was assessed on simulated networks, which allowed us to
compare the inferred connectivity matrices and the
ground–truth structural matrix.

This analysis allowed us to choose the most appropriate
reconstruction method and to select the optimal threshold
to define top–ranked links.

7.4.1 Surrogates

Surrogates were generated from the neuron activation sig-
nals to preserve the structure of the data while destroying
temporal correlations between neurons.

In order to preserve the firing statistics of neurons, the jit-
ter method was chosen to generate surrogates. The timing
of each spike is perturbed by an amount drawn from a
Gaussian distribution of mean zero and standard deviation
s ¼ 20 ms that matches the upper time delay between neu-
rons [48]. Because the perturbation has zero mean, the
inter–spike–interval distribution is preserved along with
the modulations in population activity. Moreover, the num-
ber of spikes per neuron remains invariant but the (intrinsic)
time correlations between neurons are destroyed.

7.4.2 Significant Links

We chose to generate 100 surrogates per experiment to cor-
rectly estimate their distribution without an excessive
computational cost. By denoting AS ¼ wS

ij

D E
the average

value of the surrogates’ weights and sS the standard devia-
tion of their distribution, only those scores of the original
GTE data fulfilling w

ORI>Aþ2:33 sS
ij were considered signifi-

cant and retained. This selection provided a confidence
level of 98 percent. These final links were the ones used to
compute the network measures.

To obtain unweighted graphs the weights are binarized
by assigning the weight 1 to all significant links, the remain-
ing weights are set to zero.

7.5 Network Measures

For directed networks, the total degree ki is the sum of
the numbers of ingoing (kini ) and outgoing (kouti ) links at
node i. The average total degree per neuron is then given by
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�k ¼ ð1=NÞPiðkini þ kouti Þ. For weighted networks one also
considers the strength as si ¼

P
j wij.

The characteristic shortest path length L is the mean of
shortest paths dij for all the possible pairs of network nodes,

L ¼ 1

NðN � 1Þ
X
i 6¼j

dij; (12)

dij ¼
X

aij2gi!j

1

wij


 �
; (13)

with gi!j the directed shortest weighted path from i to j.
The clustering coefficient CC measures the cohesiveness

of the network at a local scale. It is computed as the ratio
between the number of triangles with i as one vertex and
the number of all possible triangles that i could form [49]

CC ¼ AþAT
� 
3

ii

2Ti

* +
i

; (14)

where AT is the transpose of the adjacency matrix A, hii
denotes average over index i, and Ti ¼ ki ki � 1ð Þ � 2k$i ,
with k$i is the number of bidirectional links at node i.

The degree correlation quantifies the likelihood that nodes
attach to other nodes of similar ( assortative) or dissimilar (dis-
assortative) degree [50]. For weighted and directed networks,
it is computed using the ‘Pearson Weighted’ (PW) or the
‘Spearman Weighted’ correlation coefficients of the degree
as described in Ref. [26]. The estimation of the error in the
assortativity value is computed through the bootstrap algo-
rithm [51] considering 1,000 random samples of the data.
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