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Location Order Recovery in Trails with Low
Temporal Resolution

Binxuan Huang and Kathleen M. Carley, Fellow, IEEE,

Abstract—Researchers who study object movement problems
related to topics like traffic flow analysis, patient monitoring,
and software operation, need to know the correct order in which
objects move. Here, we use the term trail to refer to a series of
movements by an object. This paper introduces a new missing
data problem that occurs when analyzing trails where there
is inadequate temporal resolution on the events. The temporal
resolution is inadequate when an object, which can only be in
one place at one time, appears in the data to be in two or
more locations at once. We refer to this lack of resolution as a
broken point. Broken points prevent us from knowing the correct
order of movement. We propose a three-phase framework for
recovering the location order. Based on the Markov transition
network, we are able to find the route with the highest probability.
Our results show that this framework can efficiently find the
correct location order in trails with low temporal resolution.
We also demonstrate that by correcting the location order, the
criticality of locations can change significantly.

Index Terms—Trail, Transition Network, Algorithm

I. INTRODUCTION

People are interested in how objects move between loca-
tions. There are many research questions related to object
movement, such as human mobility, traffic flow, animal migra-
tion, and so on. There are two main types of objects people are
interested in: unsplittable and splittable objects. Unsplittable
objects like humans[1], animals[2], and vehicles[3] can only
move to one location at one time, while splittable objects like
disease[4], information[5], and ideas[6] can appear at different
locations at the same time.

In this work, we focus on the location order recovery
problem for unsplittable objects. Knowing the correct location
order of unsplittable objects is crucial for many research
questions. For example, a medical system may record all the
health services one patient has visited previously. From such
health records, we can learn health conditions of one patient
in the past. One doctor may analyze the influence of the
previous treatments on the patient. In such a situation, the
health treatment order is important for a doctor’s analysis.
Another example is city planning. When planning city routes,
people first analyze the traffic flows in the city. From previous
vehicles movement history, researchers learned what’s the
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popular route between important locations[7]. Discovering the
correct movement order is the first step for solving these
problems.

However, research studying unsplittable object movement is
built on the assumption that a location sensor can accurately
record when an object visits a location with high temporal
resolution. Here a location sensor is just a location recording
system that records when an object visits where. A sensor with
high temporal resolution can record the current time in seconds
or even microseconds, while with low temporal resolution it
may only record the current time in hours or days. Because of
low temporal resolution, a series of movements would appear
in the same time slot, which implies that an unsplittable object
visits several different locations simultaneously. The correct
order of movements is missing, which can be viewed as a
missing data issue.

To demonstrate this problem, we show an example of a trail
in high resolution versus a trail in low resolution. Table I below
is one trail recorded from Apr. 9 to Apr. 12. The temporal
resolution in the left is at the minute level. We can clearly
know that the location sequence this object visited is A →
B → B → C → C → D → E. To the right is the same trail
but with temporal resolution at the day level. We know that this
object visited location A on April 9 and then moved to B from
A on April 10. However, we can only learn that this object
visited location B and C on April 11, but do not know the
movement order in the time period between April 10 and April
13. Figure 1 is a network representation of the trail in the right
table. Each node in the graph is a location record. The dashed
directed edges represent undetermined potential movements
during April 10 and April 13. We approach this problem by
finding the most probable route in the dashed network shown
in Figure 1.

TABLE I
EXAMPLES OF TRAILS WITHOUT/WITH TEMPORAL RESOLUTION ISSUE.
LEFT IS THE ONE WITH HIGHER RESOLUTION. RIGHT IS THE ONE WITH

DIFFERENT LOCATIONS IN ONE TIME SLOT.

Time Location Time Location
2016/4/9 10:00 A 2016/4/9 A
2016/4/10 11:00 B 2016/4/10 B
2016/4/11 9:30 B 2016/4/11 B
2016/4/11 13:00 C 2016/4/11 C
2016/4/12 10:00 C 2016/4/12 C
2016/4/12 11:30 D 2016/4/12 D
2016/4/13 14:00 E 2016/4/13 E

Even though high resolution data is often available today,
there are still many cases where we cannot obtain high resolu-
tion data. A typical example is disease contamination. Patients
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Fig. 1. An example of trail with low temporal resolution. One rectangle plate
is a time slot in the data. Nodes are the locations an object visited in the past.
A solid directed edge represents a known movement from one location to the
next location. A dashed directed edge represents an undetermined potential
movement.

usually don’t know the exact time they got infected by some
disease. As a result, it is hard to determine the transportation
path for the disease without knowing the accurate infection
time. Low temporal resolution is common in survey research.
Respondents in a survey often cannot recall the exact time
when an event happened. As a result, it is hard for a respondent
to remember the correct order for a series of events that
occurred even a week previously. Data storage and privacy
concerns can also result in data collected at high resolution
being collapsed to a lower resolution level.

In this paper, we study the problem of recovering the correct
location order using the Markov transition network between
locations. By considering the movement histories, our goal is
to find the location order with the highest probability. Based
on Markov property, we show this problem is similar to asym-
metric traveling salesman problem (ATSP) in the probabilistic
space. Our problem is distinct from ATSP. First, objects enter
and leave the network of locations at many spots. Hence, we
need to incorporate the entering and exiting information in
our framework, which can help the location order recovery.
Second, an object may exit the location recording system
and re-enter again after a long period. In such a situation,
a trail should be considered as two separate cases. Third,
even though we need to find the correct order among several
locations, some locations may always precedes other locations
because of time constraints. In our previous example, location
B always precedes location D and E. These features require a
methodology that is distinct from ATSP.

To the best of our knowledge, our research is the first
attempt to solve this location order recovery problem. We
propose an efficient framework to recover the order of move-
ments that consists of three distinct processing phases. We
demonstrate that adding additional nodes to trails can effec-
tively capture the starting and ending information. We prove
that partitioning is a good strategy to overcome re-entry issues.
Using the modified and partitioned data, we show that an exact
algorithm can solve broken point problem when the number
of locations in the same time slot is small. However, this
method does not scale well as the number of ”simultaneous
locations” increases. We then propose utilizing an ant colony
system algorithm. We provide experimental results that prove
the efficiency of this framework under various temporal res-
olutions and with broken points that vary in the number of

locations per time slot.
The rest of this paper is organized as follows. In Section II,

we summarize related works in studying object movements. A
detailed description of our framework is given in Section III.
We present the description of our dataset in Section IV. We
describe our experimental setup and the corresponding results
in Section V. Finally, the conclusions and the implications for
future work are presented in Section VI.

II. BACKGROUND

There are various ways of representing trails. One straight-
forward way is to treat a trail as a location sequence. Many
algorithms have been proposed to find frequent subsequences
in a set of trails, such as PrefixSpan[8], GSP[9], FreeSpan[10].
These algorithms work well in sequential pattern mining, but
they are limited in that they do not take time intervals into
account. Another way to represent trail is to transform trails
into hierarchical tree structures. Hung proposed using the
probabilistic suffix tree (PST) to represent a trail for each
user[11]. Representing a trail as a PST makes it possible
to measure the similarity between two trails using editing
distance. As such, similar communities based on their trails
can be found.

The representation we choose is to build a transition net-
work in which nodes represent locations and edges represent
objects moving between locations. Transition networks have
been used for similar but different problems[7]. For example,
in [7], Chen et al. tried to find the popular routes given
a destination d. They used a maximum probability product
algorithm to discover the popular route, which is similar
with Dijkstra algorithm[12]. Similarly, Luo et al. designed an
algorithm to find the most frequent path in a transition network
by defining a more− frequent− than relation[13].

The research previously described is based on trails col-
lected with high temporal resolution. In reality, there are
datasets with at various levels of temporal resolution. In some
of these, the resolution is not precise enough to determine
the accurate order of movements. Insurance claim data for
medical procedures often has this limitation. Such low tempo-
ral resolution result in a type of missing data problem. When
researchers try to assess the movements of an object of interest,
obstructions such as limited storage volume, data collapse to
preserve privacy, and the cost of higher resolution sensors
will result in data that appears as though it is from a low
resolution sensor. Missing data of some form is hard to avoid.
Researchers in numerous fields have developed techniques for
handling missing data[14], [15]. Examples include image noise
reduction[16], user attributes inference[17], [18], network
traffic recovery by tensor factorizations[19] and compressive
sensing signal reconstruction[20]. However, the specific issue
of recovery of the original sequence given missing temporal
resolution has not been addressed.

The missing data here is the location order resulted from
low temporal resolution. Even though there are many papers
trying to recover missing data in general[19], [21], [22], most
of them assume that what is missing is the data value, not
the order. Hence previous methods cannot be applied directly
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in our problem. The closest study was done by Merrill et al.
who found this low temporal resolution issue when analyzing
health record data[23]. They used transition networks to model
patients’ health records. They resolved the broken point issue
by determining a patient’s movement opportunistically by the
number of the record. This presumes that record number is a
proxy for true order. Such a solution is not the optimal way
to find the correct location order, and will not work across
contexts. In contrast, our approach is more general.

In the next section, we will show that recovering location or-
der under low temporal resolution is similar but not equivalent
to an asymmetric traveling salesmen problem(ATSP) in the
probabilistic space. The goal of ATSP is to find a Hamiltonian
circuit of a graph and the path length is a minimum[24].
Various algorithms have been proposed to deal with ATSP.
In this paper, we use the ant colony system(ACS) to deal with
long location sequence with missing order. It is a distributed
algorithm that uses a set of cooperating ants to find good
solutions of ATSP. There are important distinctions between
our location order recovery problem and ATSP. First, implicitly
several locations are more likely to be visited at first or at last.
We need to incorporate such entering and exiting information
in our framework. Second, an object may exit the location
recording system and re-enter again after a long period. In
such a situation, a trail should be considered as two separate
cases. Third, even though we need to find the correct order
among several locations, some locations may always precedes
other locations because of time constraints.

III. METHOD

Problem definition: Formally, a trail is a location se-
quence represented as {(l0, t0), (l1, t1), ..., (ln, tn)} where
li is location and ti is timestamp, t0 ≤ t1 ≤ ... ≤ tn.
If there exists a subsequence {(li, ti), (li+1, ti+1).., (lj , tj)}
where ti = ti+1 = ... = tj and li, li+1, ..., lj are not the same
location, then we cannot know the location order between
li, li+1, ..., lj . We call this trail broken. If there are more
than 2 different locations appearing at one time slot, we call
this time slot a broken point. It is also possible that there
are multiple broken points in one trail and they can appear
continuously. The goal of this paper is to recover the true
order of movements in all the broken points.

In this paper, we consider an object movement as a Markov
process in which the probability for an object moving to
the next location is dependent on the current location. Based
on this assumption, we build a Markov transition network
where an edge from A to B represents P (B|A), which is the
probability of an object moving to location B given current
location A.

Our framework can be roughly divided into three steps. The
first step is adding BEGIN/END nodes as well as partitioning
trails into sub-trails.

Because here we also know the time intervals between
consecutive location records, we would like to incorporate
such information in our recovery framework. In a location
record system, an abnormally large time interval between two
consecutive location records may imply that this object once

left this location system and entered it again after a long time
period. For each consecutive location record pair (li, ti) and
(li+1, ti+1), if ti+1− ti is larger than a threshold, then we call
it a gap point. We first partition these trails at each gap point.
As a result, we get several separate trails from one original
trail.

In order to capture the starting and ending information in a
location sequence, we add a ” BEGIN ” node and a ” END ”
node at the beginning and end of each trail. As a result, the
joint probability for a location sequence l1, l2, ..., ln would
change from

P (l1)P (l2|l1)× · · · × P (ln|ln−1) (1)

to

P (′ BEGIN ′)P (l1|′ BEGIN ′)× · · ·
×P (ln|ln−1)P (′ END ′|ln) (2)

where P (′ BEGIN ′) = 1.
The second step is extracting the transition probability from

unbroken subsequences in the trails we got after the first
step. From those unbroken subsequences, we can learn the
probability edge between each location pair as

P (B|A) = N(A→ B)

N(A)
(3)

where N(A) is the total number of location A in the unbroken
subsequence and N(A→ B) is the number of objects moving
from A to B. Based on the Markov transition probability, we
can build a transition network among locations in the broken
points.

After the second step, the problem is transformed into
finding the location order in a broken point {(li, ti), .., (lj , tj)}
with the highest probability product P (li−1 → ...,→ lj+1) =
p(li−1)p(li|li−1)...p(lj |lj−1)P (lj+1|lj), where li−1 and lj+1

are locations preceding and following the broken point re-
spectively. Basically, this is similar to an asymmetric traveling
salesman problem(ATSP) which is an NP-hard problem[25].
Because

logP (li−1 → ...,→ lj+1) = logp(li−1) +

j∑
k=i−1

logp(lk+1|lk),

(4)

finding a route which passes all the locations in a single broken
point with the highest probability is equivalent to an asym-
metric traveling salesman problem. In our problem setting,
the distance from location A to B is −logP (B|A). When
there are consecutive broken points, the problem becomes
more complex. In Figure 2, there are two examples of broken
trails. One has only one broken point and the other has three
continuous broken points. Ti is the timestamp for the location
records in the corresponding layer. In the first example, an
object only needs to pass all the locations in layer T2, which
is similar to ATSP. However, in the second example, an object
first needs to pass all the locations in layer T2 then T3 and
T4, which differs from ATSP. For simplicity, we did not draw
all the possible edges between layers. The location order in T4
is dependent on movement history in T2 and T3. In this case,
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some distances between certain location pairs are infinity, eg.
an object cannot move directly from layer T2 to T4 without
passing T3 and it also cannot move in the wrong directions
like from T3 to T2.

Fig. 2. The first one is a trail with only one broken points. Second is a trail
with three continuous broken points. One object first needs to pass all the
locations in layer T2, then T3 and T4.

We compared three different algorithms to find such a route
with the highest transition probability. The first one is a brute
force algorithm, which simply enumerates all the possible
routes. Such exact algorithm can achieve the most accurate
estimation of the joint transition probability. However, the time
complexity is O((N !)T ) where N is the maximum number of
locations in a broken point and T is the number of continuous
broken points.

The second algorithm we use is called ant colony
system(ACS)[26], which is developed to deal with tradi-
tional asymmetric traveling salesman problem. As we dis-
cussed above, the distance from location A to location B is
−logP (B|A). Except for those determined or dashed potential
edges, all the other edge distances are infinity. We use ACS
algorithm to find the minimum distance in broken points.
The time complexity of ACS is O(mN2L) where m is
the number of ants chosen manually and L is the number
of iterations. We used 10 ants and 300 iterations in our
algorithm. Following [26], we set the parameter in ACS as
τ0 = 0.5, β = 2, q0 = 0.9, α = 0.1, ρ = 0.1. Please refer to
[26] for the meaning of these parameters. One thing to note

is that even though we already know the true starting location
and ending location in our problem, we still need to randomize
the starting locations for these ants because in our experiments
limiting the starting location to the source node will decrease
the exploration ability of this algorithm and thus make the
performance worse.

The last algorithm is a greedy algorithm, which can be
viewed as a baseline for comparison. It simply starts from
the source location and finds the next location with highest
transition probability until arriving at the target location. The
time complexity of this algorithm is O(TN2).

We also used a random strategy as a simple baseline. It
randomly guess the order of locations that appears in each
broken points.

The overall workflow of our framework is shown in Figure
III. To sum up, the framework consists of the following three
phases:

1) Preparation phase: each trail is partitioned at gap points.
We treat each partition as an independent trail and add
BEGIN/END nodes for each partition.

2) Probability extraction phase: We extract transition prob-
abilities from the unbroken subsequences in trail parti-
tions we got in phase 1. Then we build Markov transition
networks among locations in broken points.

3) Recover phase: find the location order with maximum
transition probability.

Fig. 3. The overall workflow of our framework.

IV. DATASET

There are two datasets we used in this paper. One is data
supplied by Columbia University Medical Center. It contains
de-identified administrative data for patients who visited in-
patient and/or out-patient service sites between July 1 2011
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and June 30 2012. There are 94885 records in this data. Each
record is a single visit by one patient on one specific day.
The basic statistics of this dataset are shown in the Table II.
The temporal resolution for the health data is at the day level.
Thus we cannot know the true location order when one patient
visits several different health services on the same day. Among
5055 patients’ health trails, overall, there are 4241 patients
with broken health trails. Because we do not know the true
location order for these broken health trails, we only used the
unbroken ones to test our framework.

The other dataset is retrieved from program function call
records. It is retrieved from a Java program called FindBugs1.
There are 61 classes involved in this part of the program
records. Each class in the program can be viewed as a location
visited by the computer processor. In the original dataset, each
row is a function call record in the following format:
call;source class; target class; method called; timestamp in
nanoseconds
call-end; source class; target class; method called; timestamp
in nanoseconds

This record represents the movement of the computer pro-
cessor from source class to target class or return from target
class. The temporal resolution is at the nanosecond level for
this data, so the function trail for this program is unbroken.

TABLE II
BASIC STATISTICS OF OUR DATASETS.

# of records # of agents # of locations # of
unbroken trails

Health 94885 5055 115 814
Program 69461 1 61 1

There are three factors that will affect the efficiency of our
algorithms: the number of locations in a broken point, the
number of broken points in continuity, and the total number
of location records in continuous broken points. We examined
these three factors in our health record data. As shown in
Figure 4, most of the broken points only contain two locations
and few of them appear in continuity. The average length of
broken points is 2.506 and the standard deviation is 0.921.
The average length of continuous broken points is 3.534 and
the standard deviation is 2.802. The average number of broken
points in continuity is 1.410 and the standard deviation is 0.92.
Therefore, an exact algorithm is feasible for most of the broken
points whose lengths are less than 6. However, there are still
few continuous broken points with length greater than 10.2

When the length of continuous broken points gets larger, an
approximation algorithm like ACS is a better option regarding
the running time.

As shown in Figure 5, the time interval distribution in health
record data roughly follows a power law distribution. However,
there are also weekly periodic patterns in the distribution.
Patients tend to pay the next visit at the same weekday. Only
in very rare cases is the time interval between two consecutive

1http://findbugs.sourceforge.net/
2Consider a single broken point with length 10, the time complexity is

10! = 3628800 which is 1814400 times higher than length 2. Given a big
dataset, using an exact algorithm on these long instances would consume a
lot of machine time.

Fig. 4. Distributions of three factors that can affect our algorithms in the health
data. They are broken point’s length, number of broken points in continuity,
and continuous broken points’ total length.

health services larger than one month. That is why we decided
to partition health trails if the time interval between two
consecutive locations was larger than 28 days.
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Fig. 5. Time interval distribution of health data, i.e. (0,11750) represents
there are 11750 transitions happened within one day

V. EXPERIMENTS

A. Experiments setup

TABLE III
EXAMPLE OF CHANGING TEMPORAL RESOLUTION. ON THE LEFT IS AN

ORIGINAL UNBROKEN TRAIL. ON THE RIGHT IS THE TRAIL WITH
TEMPORAL RESOLUTION OF TWO DAYS.

Original unbroken health trail Broken health trail after change
7/11/2011 Emergency 7/11/2011 Emergency
7/12/2011 Adult Medicine 7/11/2011 Adult Medicine
7/15/2011 Adult Medicine 7/15/2011 Adult Medicine
7/16/2011 Geriatrics 7/15/2011 Geriatrics
7/17/2011 Adult Medicine 7/17/2011 Adult Medicine

In order to validate the efficiency of our location order recov-
ery algorithms, we used the unbroken trails in our two datasets
as the ground truth. We used two different strategies to create
trails with artificial broken points. The first one is manually
changing the temporal resolution for the unbroken trails. This
can be easily achieved by timestamp′ = b timestamp

resolution c ×
resolution. We applied this method to health dataset. An
example is shown in Table III. In this example, we broke an
health trail by changing its temporal resolution from one day
to two days.

The original temporal resolution of the health data is one
day. In our experiment, we changed the temporal resolution for
all unbroken trails and used them as our test data. We broke the
health trails by creating eight different low temporal resolution
conditions ranging from 2 days to 9 days. Then we extracted
the transition probabilities among locations from the resolution
changed health trails. Table IV shows the statistics of these
artificial broken points under different temporal resolution.

The second test data creation strategy is called order muta-
tion. We first determined the number of locations in a broken
point as a fixed number v. Then we randomly selected a
location visiting record (li, ti). After that we modified all
the timestamps of the following location records between

(li, ti) and (li+v−1, ti+v−1) as ti and mutated the order of
these records. In this way, we can create broken points with
the desired sizes. To ensure we have a consistent quality
of transition probability, we only randomly mutated 20% of
location records in the program function call data. In Table
V is an example of trail with a broken point created by order
mutation. We selected the length of broken points ranging from
2 to 15 and mutated 20% location records in the program data.
Table VI shows the number of broken points for each size.

We used two metrics to measure the performance of the
location order recovery framework. The first one is the overall
recovery accuracy which is the percentage of broken points
that are recovered with the correct location order. The sec-
ond one is the average hamming distance between recovered
location sequences in broken points and the correct ones. It
measures the minimum number of substitutions required to
change one location sequence into another. We applied it to
the order mutation experiment to examine the effectiveness of
our framework over broken points with the same size.

B. Experiment results

We first examined the effectiveness of adding BEGIN/END
locations as well as trail partitioning on the health record
data. The accuracies are evaluated at each broken points, i.e.
80% accuracy means 80 recovered broken points are correct
out of 100 total broken points. In Figure 6, we can see
that when we add BEGIN/END locations to the trails, we
get better recovery accuracy compared to when we do not
add. This implies that adding BEGIN/END locations provides
additional information for the exact algorithm when temporal
resolution keeps decreasing. We also did similar experiment to
evaluate the effect of including time interval factor. As shown
in Figure 6, trail partitioning would dramatically improve the
location order recovery accuracy consistently. These two cases
prove that simply taking the location order recovery problem
as an ATSP is not an optimal solution. Adding nodes and
trail partitioning would dramatically increase the performance
compared with taking it as an ATSP and using an exact
algorithm without these two methods.

We further compared the location order recovery perfor-
mance of different algorithms. In Figure 7 are the location
order recovery accuracies we got on the health trail data with
BEGIN/END nodes and partitioning. Of the three algorithms,
the exact and ACS algorithms work better and their perfor-
mance is almost the same. The greedy search algorithm’s
accuracy is similar to the exact algorithm when the temporal
resolution is at a high level. Interestingly, when we compared
the accuracy for readmission patients with normal patients,
we found that the recovery accuracy for readmission patients’
health trails at 2-day resolution is 77.5% while the accuracy for
normal patients without readmission is 86.8%. This suggests
that normal patients have more predictable movement, which
is consistent with them being either healthy and/or having
accurately diagnosed and well managed conditions.

To examine the effectiveness of our framework on broken
points of different fixed sizes, we calculated the recovery
accuracy and the average hamming distance for broken points
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TABLE IV
STATISTICS ABOUT THE BROKEN HEALTH TRAILS WE GOT AFTER WE CHANGING TEMPORAL RESOLUTION OF 814 UNBROKEN HEALTH TRAILS.

Temporal resolution(day) 2 3 4 5 6 7 8 9
# of broken trails 164 213 250 263 268 278 294 297
# of broken points 178 251 296 319 340 353 374 389
Avg. length of broken points 2.073 2.223 2.284 2.426 2.482 2.586 2.591 2.627
Avg. length of cont. broken points 2.121 2.364 2.449 2.651 2.749 2.917 2.910 3.042
Max. length of broken points 4 5 6 5 6 6 6 7

TABLE V
EXAMPLE OF ORDER MUTATION FOR FUNCTION CALL DATA. ON THE LEFT

IS AN ORIGINAL UNBROKEN TRAIL. ON THE RIGHT IS THE TRAIL WITH
ONE BROKEN POINT OF SIZE THREE.

Original unbroken program trail Broken program trail after change
Timestamp Java class Timestamp Java class
553987065457672 Class 1 553987065457672 Class 1
553987065574331 Class 2 553987065574331 Class 3
553987065768508 Class 3 553987065574331 Class 4
553987065819048 Class 4 553987065574331 Class 2
553987100679470 Class 1 553987100679470 Class 1
553987100679860 Class 2 553987100679860 Class 2

TABLE VI
NUMBER OF BROKEN POINTS WE GOT AFTER ORDER MUTATION FOR THE

PROGRAM DATA.

broken point size 2 5 7 10 12 15
number of broken points 6810 2772 1980 1387 1155 925

Fig. 6. Location order recovery accuracy for an exact algorithm with three
different options: without BEGIN/END and partitioning, adding BEGIN/END,
adding BEGIN/END and partitioning.

of different sizes for the simulated trails. We only used the
simulated trails in this experiment because it requires long
trails, and the lengths of health trails in the test data are too
short. As Table VII shows, the accuracies of an exact algorithm
and the ACS algorithm are almost the same. Sometimes ACS
is better when the size of broken points is less than 12. The
exact algorithm does not scale, and the time to completion
prevents us from including its results for cases where the size
of the broken points is large. We find that for larger size broken

Fig. 7. Location order recovery accuracies for three algorithms and random
guess on health data.

points, the accuracies of the ACS and greedy algorithms get
closer. However, on examination of the average Hamming
distance we found, as is shown in Figure 8, that there is
a big performance difference between the ACS and greedy
algorithms.

C. Case study

In this section, a case study using health record data is
described. Knowing the sequence with which services are used
in a health system is critical to improving health services,
reducing costs, and improving health outcomes. One of the
key question is what services are critical wayports. In this case
study we examine whether improved estimation of sequence,
by resolving broken points, alters our understanding of what
are the critical wayports. We first build a directed location
network, where the edge weight represents the number of
patients moving from one location to another. We use inverted
betweenness to measure the importance of a location. Nodes
high in inverted betweenness are wayports. Inverted between-
ness is similar with standard betweenness centrality except the
edge weights are inverted prior to calculation. The higher of
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TABLE VII
THE LOCATION ORDER RECOVERY ACCURACIES WE GOT FOR THE PROGRAM TRAIL WITH ORDER MUTATION. IN THE BRACKETS ARE THE STANDARD

DEVIATION FOR 10 TIMES EXPERIMENTS.

broken point size 2.000 5.000 7.000 10.000 12.000 15.000
Exact 0.975 0.730 0.573 0.433 N/A N/A
ACS 0.983(0.001) 0.738(0.004) 0.593(0.008) 0.478(0.005) 0.397(0.002) 0.345(0.004)

Greedy 0.936 0.626 0.525 0.424 0.390 0.345

Fig. 8. The average hamming distance between recovered location sequences and the true sequences for program trail.

the inverted betweenness the more important that location as
a wayport.

In Table VIII, we show the top ranked services, i.e., which
services are the best wayports, under three conditions. Con-
dition 1 uses only those trails in the health record dataset
that are unbroken. It can be viewed as the true rank. For
condition 2, we changed the temporal resolution to 9 days,
which resulted in 297 broken trails. We ignored the broken
points and got the second inverted betweenness rank without
recovery. Finally, condition 3, we applied our framework to
these broken trails and got the third rank after order recovery.
As shown in this table, the true rank is very similar with the
rank after location order recovery. The Spearman rank-order
correlation coefficient[27] between these two ranks is 0.976
which is much larger than the correlation between the truth
rank and the rank without recovery(0.491).

VI. CONCLUSION AND DISCUSSION

In this paper, we studied location order recovery for trails
with low temporal resolution. It is a missing data issue that
prevents us knowing the correct moving order. After defining
the concept of broken point, we examined the wide existence
of broken points in a real health record dataset.

In our experiments, we designed two strategies to create
artificial broken points on two datasets. Hence we can know
the ground truth for these broken points. Experiments on these
two datasets have shown the effectiveness of our framework.
We showed that adding BEGIN/END nodes in the original

trails can effectively capture the beginning and ending infor-
mation. Trail partitioning can dramatically increase the loca-
tion order recovery accuracy by overcoming the re-entering
issue. After this two procedures, we find the transition route
with the highest probability. Through the distribution of the
length of continuous broken points, we showed that an exact
algorithm is feasible for a large portion of them. However,
there are still a few broken points with extra large sizes which
cannot be handled efficiently by an exact algorithm. Hence
we proposed utilizing an ant colony algorithm to recover the
true location orders in those super long broken points. In our
case study, we showed that the location recovery framework
can effectively capture the important locations and the result
is highly correlated with the rank got from trails under high
temporal resolution.

As with any research there are limitations. One such limita-
tion is that there are some error patterns frequently occurring in
our experiment which cannot be dealt with efficiently using our
framework. For example,our approach cannot distinguish lo-
cation sequences ABAACA and ACAABA because the joint
probability products are the same for these two sequences. A
second limitation is that our framework is based on the first-
order Markov transition probability between locations. Using
higher order Markov transition probability may prove effective
at improving the recovery accuracy[28]. The third limitation
is the Markov assumption. Future work might consider how
to model trails without the Markov assumption.

This paper presented a framework for sequence recover
when there portions of a sequence are missing or collapsed
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TABLE VIII
THE LOCATION RANKS UNDER DIFFERENT SETTINGS. THE FIRST RANK IS CALCULATED FROM THESE UNBROKEN TRAILS BEFORE TEMPORAL

RESOLUTION CHANGE. THE SECOND RANK IS CALCULATED FROM RECOVERED TRAILS AFTER RESOLUTION CHANGE WHILE THE LAST IS CALCULATED
WITHOUT RECOVERY.

Rank Truth With recovery Without recovery
1 Echocardiography Echocardiography General Cardiology
2 Internal Medicine General Cardiology Electrophysiology
3 General Cardiology Internal Medicine Echocardiography
4 Adult Medical-Surgical Emergency Circulatory physiology
5 Emergency Adult Medical-Surgical Neurology
6 Electrophysiology Electrophysiology Ambulatory Surgery
7 Circulatory physiology Circulatory physiology Adult Medical-Surgical
8 Neurology Neurology Pediatric Cardiology
9 Unknown Unknown Emergency
10 Pediatric Cardiology Pediatric Cardiology Unknown

due to lack of temporal resolution. Such a framework has
applicability to many scenarios involving object movements
like human mobility research and traffic flow study. Despite
limitations, this framework provides a powerful approach for
accurately inferring order despite missing data. Future work
should explore the application of this method to diverse
data sets. An advantage of the proposed framework is that
researchers can plug a variety of algorithms designed for the
asymmetric traveling salesman problem into it. This makes
it both more generalizable and gives it the potential for
further performance improvements. We anticipate that such
improvements, in conjunction with this framework, will reduce
the fragility of machine learning techniques that are predicated
on knowing sequences and so pave the way for improved
prediction.
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