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Spread of Information with Confirmation Bias in
Cyber-Social Networks
Yanbing Mao, Sadegh Bolouki, and Emrah Akyol

Abstract—This paper provides a model to investigate information spreading over cyber-social network of agents communicating with
each other. The cyber-social network considered here comprises of individuals and news agencies. Each individual holds a belief
represented by a scalar. Individuals receive information from news agencies that are closer to their belief, confirmation bias is explicitly
incorporated into the model. The proposed dynamics of cyber-social networks is adopted from DeGroot-Friedkin model, where the
individual’s opinion update mechanism is a convex combination of his innate opinion, his neighbors’ opinions at the previous time step
(obtained from the social network), and the opinions passed along by news agencies from cyber layer which he follows. The
characteristics of the interdependent social and cyber networks are radically different here: the social network relies on trust and hence
static while the news agencies are highly dynamic since they are weighted as a function of the distance between an individual state
and the state of news agency to account for confirmation bias. The conditions for convergence of the aforementioned dynamics to a
unique equilibrium are characterized. The estimation and exact computation of the steady-state values under non-linear and linear
state-dependent weight functions are provided. Finally, the impact of polarization in the opinions of news agencies on the public opinion
evolution is numerically analyzed in the context of the well-known Krackhardt’s advice network.

Index Terms—Information spreading dynamics, confirmation bias, learning, political polarization, cyber-social networks.
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1 INTRODUCTION

INDIVIDUALS form belief on various social, political and
economic issues based on three factors: innate opinion

that is based on inherent personal characteristics (e.g.,
socio-economic conditions in which the individual grew up
and/or live in); the information they receive from other in-
dividuals, including friends, coworkers; the information re-
ceived from the news sources and followed thought leaders,
see e.g., [1]–[4]. Typically, a social network (friends, neigh-
bors, coworkers) is informationally symmetric and static:
when people exchange information, they get influence, and
also get influenced by others; and the connectivity is based
on a static (information sense) network that does not de-
pend on the individual beliefs1. However, the interaction
between the public and news sources (or thought lead-
ers) is informationally asymmetric, in the sense that news
agencies will not update their beliefs by the information
they receive from public (information exchange is only one
directional: from news agencies to the public). Moreover, the
connectivity of the communication network between a news
source and an individual depends on the current state of the
aforementioned individual and the news agency. This well-
known fact, namely the confirmation bias [5] prevalent in
the current societies, makes this network highly dynamic:
the set of news agencies that an individual gets information
from depend on the distance between the values of states
of the individual and the news agency. This entire system is

• Y. Mao, S. Bolouki and E. Akyol are with the Department of Electri-
cal and Computer Engineering, Binghamton University–SUNY, Bing-
hamton, NY, 13902 USA. E-mail: {ymao3, eakyol}@binghamton.edu;
sadegh.bolouki@gmail.com. A slightly condensed version of this paper is
submitted to the 57th IEEE Conference on Decision and Control, 2018.

1. In this paper, we use ”belief”, ”opinion” and ”state” interchange-
ably.

an example of a cyber-social network comprised of two in-
teracting, interdependent networks with radically different
characteristics: an informationally symmetric, static social
network and an asymmetric, dynamic cyber network.

In this paper, we study the dynamics of information
spread on such cyber-social networks, with a particular
focus on confirmation bias. Confirmation bias refers to a
type of cognitive bias that involves favoring information
which confirms previously existing beliefs or biases. It is
well understood that machine learning algorithms that con-
trol the information on social media news feeds automat-
ically utilize and foster this bias without the individual’s
permission or even proper understanding, see e.g., [6] and
the recent news articles at popular media outlets [7], [8].

We note that there exist substantial amount of prior work
on network dynamics, we summarize a few popular models
in Table 1. For example, DeGroot model [1] is inspired by
the idea of relieving psychological discomfort from their
disagreement with others; DeGroot-Friedkin model [2] in-
cludes the evolution of self-confidence levels after discus-
sion on issues; Hegselmann-Krause model [3] consider a
complex situation where an agent will take into account the
opinions of others to a certain extent in forming his own
opinion.

The recent research focus has shifted to variations of
such classical models in order to capture the subtle charac-
teristics of actual social networks. For example, the studies
[9], [10] allow the individuals to have self-appraisal mecha-
nism through updating of individuals’ self-confidence level
after discussion of issues. Dhamal et al. [11] incorporate
opponent stubborn agents into DeGroot-Friedkin model to
study competitive information spreading in social networks.
DeGroot-Friedkin model has been used in several problems
in social networks, including de-biasing social wisdom in
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online social networks [12], the competitive propagation in
social networks [11], the optimal opinion conformation [13],
and many more. A variant of the DeGroot-Friedkin model
also appears as a game-theoretic best response dynamics for
a specific potential game [14]. There has been a renewed
interest also in modeling the manipulation behavior and
misinformation (or fake news) spread over the networks via
network and/or game theoretic tools, see e.g., [11], [15]–
[19]. We note that our model can also represent the fake
news spread, for the special case that an adversary controls
a subset of the news agencies. However, the information dy-
namics models in the prior work do not adequately capture
the characteristics of the current and emerging cyber-social
networks that typically involves multiple interdependent,
interacting networks with different properties. The follow-
ing features differentiates our model from the prior work:

1) we particularly focus on the steady-state (equilibrium)
where agents converge to different state values; while
most of the prior work study consensus, that is all
agents converge to the same state. We believe it might
be hard to achieve consensus in the presence of po-
larized opinions and confirmation bias; and hence our
model captures reality more accurately.

2) individual’s opinion update mechanism is a convex
combination of her innate opinion, the opinions of her
neighbors at the previous time step (social network),
and the opinions carried by news agencies that she
follows (influence from the cyber layer);

3) the weight of influence of individuals is fixed because
social influence among individuals is based on “trust”,
which tends to vary little over a long period of time,
while the weight of influence of news agencies over
individuals heavily depend on the current opinions
of individuals, i.e., it is state-dependent, in order to
capture the impact of “confirmation bias”.

The contribution of this paper is threefold, which can be
summarized as follows.

• Based on the well-known DeGroot-Friedkin model,
we propose a dynamics of cyber-social networks,
where the weight of influence of individuals is fixed,
which is inspired by the little varying “trust” in
friendship network, while the weight of influence
of news agencies is state-dependent (to capture con-
firmation bias), which is inspired by the idea of
Hegselmann-Krause model. The conditions for the
convergence to a unique equilibrium point are char-
acterized.

• The estimation and the exact computation (if possi-
ble) of equilibrium point of the proposed dynamics
under linear and nonlinear state-dependent weight
functions are provided.

• Using the proposed dynamics of cyber-social net-
works, the effects of the distribution of news agency’s
opinions and the distance between polarized opin-
ions of news agencies are studied in the context of the
well-known Krackhardt’s advice network [20]. The
numerical results demonstrate that 1) influencing
one critical individual by news agency can result in
largest sample deviation; 2) the order of influences of
individuals that follow news agency on sample de-

Table 1
Social Network Models

Ref. Dynamics Name
[1] x (t + 1) = Wx (t) DeGroot model
[2] x(t + 1) = Ax (t) + (1 − A) s DeGroot-Friedkin model

[3]





x(t + 1) = A (x (t)) x (t) ,

wij (x) =

{
> 0, |xi − xj | < ε
= 0, |xi − xj | ≥ ε

Hegselmann-Krause model

viation are preserved under different uniform distri-
butions; 3) bi-model uniform distribution of opinion
of new agency yields larger sample deviation than
a single-mode uniform distribution; 4) the longer
distance between the means of polar opinions results
in the bigger sample variance.

This paper is organized as follows. In Section 2, we
present the preliminaries and problem formulation. In Sec-
tions 3 and 4, we analyze the convergence of dynamics and
the equilibrium (steady-state) point respectively. We provide
numerical results in Section 5, and in Section 6 we present
conclusions and future research directions.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Notation and Terminology
We let Rn and Rm×n denote the set of n-dimensional real
vectors and the set of m × n-dimensional real matrices,
respectively. Given a vector x ∈ Rn and a matrix A ∈ Rn×m,
inequalities x ≥ 0 and A ≥ 0 denote element-wise in-
equalities. N represents the set of the natural numbers
and N0 = N ∪ {0}. We let 1 and 0 be the identity and
zero matrices with proper dimensions, respectively. We let
1n ∈ Rn and 0n ∈ Rn denote the vector of all ones and all
zeros, respectively. The superscript ‘⊤’ stands for the matrix
transposition. A square matrix with non-negative entries is
said to be sub-stochastic (or strictly sub-stochastic) if the
entries of each row of the matrix sum up to one or less (or
less than one).

The network considered in this paper is composed of n
individuals and m news agencies. The interaction among
the individuals is modeled by a digraph G = (V, E), where
V = {v1, · · · , vn} is the set of vertices representing the
individuals and E ⊂ V ×V is the set of edges of the digraph
G representing the influence structure. The communication
from news agencies to individuals is modeled by a bipartite
digraph H = (V ∪K,B), where K = {u1, · · · , um} is the set
of vertices representing the news agencies and B ⊂ V × K
is the set of edges of the digraph. The adjacency matrix
B = [bik] ∈ Rn×m of the digraph H is defined as bik = 1 if
new agency uk has influence on individual vi, and bik = 0
otherwise.

Some important notations are highlighted as follows:

V the set of individuals;
K the set of news agencies;
∥ · ∥ l1 norm of a vector, and the induced norm of

matrix A ∈ Rn×n, i.e., ∥A∥ = sup{∥Ax∥
∥x∥ : x ∈

Rn with x ̸= 0n};
[x]i the ith entry of vector x ∈ Rn(the opinion of the

ith agent);



3

W(d) the dth element in the given ordered setW ;
EU (·) the expectation operator over distribution U.

2.2 Auxiliary Lemma
The following well-known result will be used throughout
the paper to prove the convergence of dynamics to a unique
equilibrium.
Lemma 1 (Banach fixed-point theorem [21]). Let (X; d) be a

complete metric space and f : X → X be a map such
that d(f(x); f(x′)) ≤ cd(x; x′) for some 0 < c < 1 and
all x and x′ in X . Then f has a unique fixed point in X .
Moreover, for any x0 ∈ X the sequence of iterates x0;
f(x0); f(f(x0)); . . . converges to the fixed point of f .

2.3 Problem Formulation
For convenience, we refer to extremely stubborn agents that
do not change their opinion as “news agencies” (cyber-
layer). Other agents are simply referred to as “individuals”
and update their opinion based on their neighbors and news
agencies. We consider the following model which is adopted
from the DeGroot-Friedkin model [2]:

xi (t+1)=αi (xi(t)) si+
∑

j∈V
wijxj (t)+

∑

k∈K
ŵik (xi(t)) yk, (1)

where
I) xi(t) ∈ [0, 1] is individual vi’s opinion at time t, si is

his fixed innate opinion, while yk is the news agency
uk’s opinion;

II) αi(xi), is referred to as the “resistance parameter”
of individual vi is determined in such a way that it
satisfies

αi (xi(t))+
∑

j∈V
wij +

∑

k∈K
ŵik (xi(t))=1,∀i∈ V, ∀t. (2)

III) wij represents the weighted influence of individual vj

on individual vi,{
wij > 0 if (vi, vj) ∈ E
wij = 0 otherwise.

(3)

We note that wij does not depend on time index t.
IV) ŵik(xi(t)) is the weighted influence of news agency uk

on individual vi with

ŵik (xi(t)) =

{
gik (|xi (t)− yk|) , bik = 1
0, bik = 0

(4)

where gik (|xi (t)− yk|) : R → R, is a strictly decreas-
ing function with respect to |xi (t)− yk|, and it satisfies
1 > gik (|xi (t)− yk|) > 0 for ∀i ∈ V , ∀k ∈ K, ∀t ∈ N0.

We next make the following assumption on the weight
functions in (4).
Assumption 1. The weight function gik(·) : R → R in (4)

satisfies

|gik(z1)− gik(z2)| ≤ µi|z1 − z2|, (5)

for some fixed µi ∈ R.

Remark 1 (Motivation of Weight of Influence). We assume
that wij ’s are fixed because social influence among in-
dividuals is based on “trust”, which tends to vary little

over a long period of time. However, the influence of
news agencies over individuals depend heavily on the
current opinions of individuals, due to the confirmation
bias. For instance, Facebook and Twitter famously in-
corporate the confirmation bias in placing the news in
their individualized newsfeed. That is why the weight of
influence of news agency on individual, i.e., ŵik (xi(t))
defined as (4) is state-dependent.

Remark 2. The sum of coefficients equal to one, i.e, the
condition (2), is a standard practice in modeling opinion
evolution (see e.g., [11]), since the dynamics are invariant
under translation. Here, (2) shows the evolution of an
individual vi’s opinion at each time step is a convex com-
bination of his innate opinion si, his neighbors’ opinions
at the previous time step, and the opinions yk passed
along by news agencies which he follows. Noting that
the innate opinions, the initial opinions (xi(0), i ∈ V),
and the opinions of news agencies all belong to the
[0, 1], by iteration from (1) we have xi(t) ∈ [0, 1] for
∀t ∈ N0, ∀i ∈ V .

Remark 3. With the fact xi(t) ∈ [0, 1] for ∀t ∈ N0, ∀i ∈ V
stated in Remark 2, the condition (5) in Assumption 1 is
not a restrictive assumption condition on weight func-
tions. It allows the weight functions to be nonlinear. The
following two examples illustrate this point.

Example 1. Consider the function gik(·) : R→ R,

gik

(∣∣∣˜̂xi − yk

∣∣∣
)

= µi ln
(
2−

∣∣∣yk − ˜̂xi

∣∣∣
)

. (6)

Without loss of generality, let |yk − ˜̂xi| ≤ |yk − zi|. It
follows from the inequality z ≥ ln (1 + z) with z > 0,
the facts |yk − zi| ≤ 1 and |yk − ˜̂xi| ≤ 1 that

|gik(|˜̂xi − yk|)− gik(|zi − yk|)|

= µi log(1 +
|yk − zi| − |yk − ˜̂xi|

2− |yk − zi|
)

≤ µi
|yk − zi| − |yk − ˜̂xi|

2− |yk − zi|

≤ µi
|(yk − zi)− (yk + ˜̂xi)|

1 + 1− |yk − zi|
≤ µi|˜̂xi − zi|. (7)

Example 2. Consider the function gik(·) : R→ R,

gik

(∣∣∣˜̂xi − yk

∣∣∣
)

= βi − µi sin
(∣∣∣yk − ˜̂xi

∣∣∣
)

. (8)

Considering z ≥ sin (z) with z ≥ 0, and the well known
trigonometric identity sinϖ−sin τ = 2 cos ϖ+τ

2 sin ϖ−τ
2 ,

we have

|gik(|˜̂xi − yk|)− gik(|zi − yk|)|
= |µi(sin |yk − ˜̂xi| − sin |yk − zi|)|
= 2µi| cos

ϖ + τ

2
sin

ϖ − τ

2
|

≤ 2µi|sin
|yk − ˜̂xi| − |yk − zi|

2
|

≤ µi|(|yk − ˜̂xi|)− (|yk − zi|)| ≤ µi|˜̂xi − zi|, (9)

where ϖ = |yk − ˜̂xi| and τ = |yk − zi|.
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3 CONVERGENCE ANALYSIS

This section studies the equilibrium point and the con-
vergence of the social dynamics (1). Let us rewrite the
dynamics (1) in the following matrix form:

x (t + 1) = α (x(t)) s + Wx (t) + W̃ (x(t)) y, (10)

where we define the following variables:

s = [s1, s2, · · · , sn]
⊤ ∈ Rn, (11)

x (t) = [x1 (t) , x2 (t) , · · · , xn (t)]
⊤ ∈ Rn, (12)

y = [y1, · · · , ym]
⊤ ∈ Rm, (13)

α (x(t)) = diag {α1 (x1(t)) , · · · , αn (xn(t))} ∈ Rn×n,
(14)

W =




w11 · · · w1n

w21 · · · w2n

...
...

...
wn1 · · · wnn


 ∈ Rn×n, (15)

W̃ (x(t))=




ŵ11 (x1(t)) · · · ŵ1m (x1(t))
...

...
...

ŵn1 (xn(t)) · · · ŵnm (xn(t))


∈Rn×m, (16)

with ŵik (xi(t)) , i ∈ V, k ∈ K given in (4). In following
theorem, we present the conditions for which the dynamics
converge to a unique steady-state equilibrium.

Theorem 1. Under Assumption 1, the dynamics converges
to a unique equilibrium point if

∥W∥+ 2γ < 1, (17)

where

γ = max
i=1,··· ,n

{µiΓi} , (18a)

Γi =
∑

k∈K
bik, (18b)

Proof: Let us consider the matrix form (10) of the
dynamics (1). Choose two vectors ˜̂x ∈ Rn and z ∈ Rn. Let
us first define

f (z) , α (z) s + Wz + W̃ (z) y.

Then, it follows from (10) that

f
(
˜̂x
)
− f (z)

=
(
α

(
˜̂x
)
−α (z)

)
s+W

(
˜̂x−z

)
+

(
W̃

(
˜̂x
)
−W̃ (z)

)
y. (19)

Recalling the definition of induced norm of a matrix W ∈
Rn×n in Section 2.1, we have

∥∥∥W
(
˜̂x− z

)∥∥∥ ≤ ∥W∥
∥∥∥˜̂x− z

∥∥∥. (20)

1

2

N

Figure 1. Communication Topology.

Under Assumption 1, and recalling that 1 ≥ yk ≥ 0, bik = 1
or 0, and µi ≥ 0, we obtain from (13), (16) and (4) that

∣∣∣
[
(W̃ (˜̂x)− W̃ (z))y

]
i

∣∣∣

=

∣∣∣∣∣
∑

k∈K
bik(gik(|˜̂xi − yk|)− gik(|zi − yk|))yk

∣∣∣∣∣

≤
∣∣∣∣∣
∑

k∈K
bik(gik(|˜̂xi − yk|)− gik (|zi − yk|))yk

∣∣∣∣∣

≤
∣∣∣˜̂xi − zi

∣∣∣ µi

∑

k∈K
bikyk

≤
∣∣∣˜̂xi − zi

∣∣∣ µi

∑

k∈K
bik

=
∣∣∣˜̂xi − zi

∣∣∣ µiΓi, i ∈ V

which implies
∥∥∥
(
W̃

(
˜̂x
)
− W̃ (z)

)
y
∥∥∥ ≤ γ

∥∥∥˜̂x− z
∥∥∥ , (21)

where γ and Γi are given in (18). We note that (2) and (4)
imply

αi

(
˜̂xi

)
− αi (zi) =

∑

k∈K
ŵik (zi)−

∑

k∈K
ŵik

(
˜̂xi

)
.

Under Assumption 1, it follows from (11), (14) and the fact
0 ≤ si ≤ 1 that

∣∣∣
[
(α(˜̂x)− α (z))s

]
i

∣∣∣

=

∣∣∣∣∣
∑

k∈K
sibik(gik(|˜̂xi − yk|)− gik(|zi − yk|))

∣∣∣∣∣

≤
∣∣∣˜̂xi − zi

∣∣∣ siµi

∑

k∈K
bik

≤
∣∣∣˜̂xi − zi

∣∣∣ µiΓi,∀i ∈ V

which implies
∥∥∥
(
α

(
˜̂x
)
− α (z)

)
s
∥∥∥ ≤ γ

∥∥∥˜̂x− z
∥∥∥ . (22)

Combining (19) with (20), (21) and (22), we have
∥∥∥f

(
˜̂x
)
− f (z)

∥∥∥ ≤ (∥W∥+ 2γ)
∥∥∥˜̂x− z

∥∥∥ .

If (17) holds, the condition in Lemma 1 would be satisfied,
hence by Lemma 1, the dynamics (10) converges to a unique
equilibrium point for any initial opinion x(0) ∈ Rn, which
completes the proof.
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Figure 2. Evolution of individuals’ opinions under 500 random initial
opinions.

We next note the following important observation from
Theorem 1: the asymptotic behavior of the system is inde-
pendent of initial opinion x(0) ∈ Rn, as illustrated by the
example below.
Example 3. Consider a network of two individuals and one

news agency, where its communication structure is give
in Figure 1 with N indicting the news agency. Its detailed
dynamics is described by

x1 (t + 1) = (1− 0.4− 0.3 (1− |x1 (t)− y1|)) s1 (23a)
+ 0.4x2 (t) + 0.3 (1− |x1 (t)− y1|) y1,

x2 (t + 1) = (1− 0.6− 0.4 (1− |x2 (t)− y1|)) s2 (23b)
+ 0.6x1 (t) + 0.4 (1− |x2 (t)− y1|) y1.

Set the individuals innate opinions as [s1, s2] = [0.1, 0.4].
The opinion forwarded by news agency is chosen to be
y1 = 0.5. The linear state-dependent weight functions
satisfy condition (5) in Assumption 1. Moreover, the
weight parameters of the social network satisfy (17). The
phase plot of the two individuals’ opinions under 500
random initial opinions is shown in Figure 2, which
shows that the opinions of individuals converge to a
unique equilibrium point, which is independent of initial
opinion.

4 EQUILIBRIUM POINT

This section studies the impact of news agencies on the
evolution of individuals’ opinions.

4.1 Equilibrium Point Expression
We use xue and xie to denote the uninfluential equilibrium
point, i.e., the equilibrium point of the system in the absence

of news agencies, and influential equilibrium point, i.e., the
equilibrium point of the system in the presence of news
agencies, respectively.

4.1.1 In the Absence of News Agencies
From (10), the dynamics of the system in the absence of
news agencies is expressed as

x̂ (t + 1) = α̂s + Wx̂ (t) , (24)

where W is given in (15) and

α̂ = diag{1−
∑

j∈V
w1j , · · · , 1−

∑

j∈V
wnj}. (25)

Corollary 1. The social dynamics (24) converges to a unique
equilibrium point

xue = (1−W )
−1

α̂s, (26)

where α̂ is defined in (25).

Remark 4. The authors in [12] obtains nearly the same solu-
tion as (26). However, the weight matrix W considered
therein is a strictly sub-stochastic matrix while W de-
fined in (15) is a sub-stochastic matrix, the dynamics (24)
still converges to a unique equilibrium point. Its brief
proof is sketched as follows.

Proof of Corollary 1: Note The dynamics (24) is a
special case of the dynamics (10) without influences from
news agencies, i.e, ŵik (xi(t)) = 0 for ∀i ∈ V , ∀k ∈ K,
∀t ∈ N0. By Theorem 1, the dynamics (10) converges to an
unique equilibrium point xue. Thus, at the steady state we
have xue = α̂s+Wxue, from which (26) follows immediately.

4.1.2 In the Presence of News Agencies
Corollary 2. Consider the social dynamics (1), under As-

sumption 1. If (17) holds, the unique equilibrium point
satisfies

xie = (1−W )
−1

(
α

(
xie) s + W̃

(
xie) y

)
, (27)

where W , α(xie), s, W̃ (xie) and y are given
by (15), (14), (11), (16) and (13), respectively.

Proof: It follows from (10) that at steady-state:

xie = α
(
xie) s + Wxie + W̃

(
xie) y. (28)

The definition of W in (15) with the condition (17) and (18)
show that W is a sub-stochastic matrix unless no individual
in social network (1) is influenced by his innate opinion or
any news agency. It is well-known that 1−W is invertible
if W is a sub-stochastic matrix, thus (27) is obtained imme-
diately from (28).

Expanding α
(
xie

)
s + W̃

(
xie

)
y by considering the defi-

nitions in (4), (14) and (16) yields

[α
(
xie) s + W̃

(
xie) y]i

= αi

(
xie

i

)
si +

∑

k∈K
ŵik

(
xie

i , yk

)
yk

= (1−
∑

j∈V
wij −

∑

k∈K
ŵik

(
xie

i , yk

)
)si +

∑

k∈K
ŵik

(
xie

i , yk

)
yk

= (1−
∑

j∈V
wij)si+

∑

k∈K
ŵik

(
xie

i , yk

)
(yk − si) . (29)
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From (25) and (11), we have

[α̂s]i = (1−
∑

j∈V
wij)si. (30)

It follows from (29) and (30) that

[α
(
xie) s + W̃

(
xie) y]i = [α̂s]i +

∑

k∈K
ŵik

(
xie

i , yk

)
(yk − si)

which is equivalent to

α
(
xie) s+W̃

(
xie) y = α̂s + W̃

(
xie) y−ŜW̃

(
xie)1m, (31)

where

Ŝ = diag {s1, · · · , sn} ∈ Rn×n. (32)

Note that (27) subtracting (26) results in

xie − xue = (1−W )
−1

(
α

(
xie) s + W̃

(
xie) y − α̂s

)
. (33)

Therefore, (31) and (33) imply

xie − xue = (1−W )
−1

(W̃
(
xie) y − ŜW̃

(
xie)1m). (34)

Given the uninfluential equilibrium point xue in (26), the
relation (34) is useful in the estimation and Computation
of the influential equilibrium point xie in the following
subsection.

4.2 Equilibrium Computation
Without knowledge of the state-dependent weight functions
gik (|xi (t)− yk|) in (4), the relation (34) implies a bound on
the estimation of the equivalent point xie, or equivalently
the bound on the deviation of influential equilibrium point
xie from uninfluential equilibrium point xue caused by the
presence of news agencies.

4.2.1 Nonlinear Weight Functions
As Remark 2 states that xi(t) ∈ [0, 1] for ∀t ∈ N0 and ∀i ∈
V , we conclude that each weight function ŵik (xi(t)) given
in (4) is bounded, therefore

ηl
i ≤ ŵik (xi(t)) ≤ ηu

i ,∀t ∈ N0, ∀i ∈ V, ∀k ∈ K. (35)

Theorem 2. Consider the social dynamics (1) under the
convergence condition (17). For any state-dependent
weight function that satisfies (5) in Assumption 1 and its
upper bound ηu

i and lower bound ηl
i in (35), the unique

equilibrium point (11) satisfies

Λl ≤ xie ≤ Λu, (36)

where

Λl = max
{
(1−W )

−1
(∆l + α̂s),0n

}
, (37)

Λu = min
{
(1−W )

−1
(∆u + α̂s) ,1n

}
, (38)

∆l = η̆By − Ŝη̂n̂, (39)

∆u = η̂By − Ŝη̆n̂, (40)

η̆ = diag
{
ηl
1, · · · , ηl

n

}
∈ Rn×n, (41)

η̂ = diag {ηu
1 , · · · , ηu

n} ∈ Rn×n, (42)

B =




b11 · · · b1m

...
...

...
bn1 · · · bnm


 ∈ Rn×m, (43)

n̂ = [Γ1, · · · , Γn]⊤ ∈ Rn, (44)

with Γi, Ŝ, α̂, s and W given in (18b), (32), (25), (11)
and (15), respectively.

Proof: Note that ŵik

(
xie

i

)
≥ 0, from (35) and (4) one

has ηl
i

∑
k∈K

bikyk ≤
∑

k∈K
ŵik

(
xie

i

)
yk ≤ ηu

i

∑
k∈K

bikyk for ∀i ∈
V , which is equivalent to

η̆By ≤ W̃
(
xie) y ≤ η̂By, (45)

where η̆, η̂, B, W̃ (xie) and y are given by (41), (42), (43), (16)
and (13), respectively.

Note the definition of Γi and ŵik

(
xie

i

)
in (18b) and (4),

respectively. From (35) one has −siη
u
i Γi = −siη

u
i

∑
k∈K

bik ≤
− si

∑
k∈K

wik

(
xie

i

)
≤ −siη

l
i

∑
k∈K

bik = −siη
l
iΓi for ∀i ∈ V ,

which is equivalent to

−Ŝη̂n̂ ≤ −ŜW̃
(
xie)1m ≤ −Ŝη̆n̂, (46)

where Ŝ, η̆, η̂, W̃ (xie) and n̂ are given by (32), (41), (42), (16)
and (44), respectively. Combining (45) with (46) yields

∆l ≤ W̃
(
xie) y − ŜW̃

(
xie)1m ≤ ∆u, (47)

where ∆l and ∆u are given by (39) and (40), respectively.
Then from (34) and (47) one has

(1−W )
−1

∆l ≤ xie − xue ≤ (1−W )
−1

∆u. (48)

Substituting the right-hand side of (26) into xue in (48)
results in

(1−W )
−1

(∆l + α̂s) ≤ xie ≤ (1−W )
−1

(∆u + α̂s) . (49)

It is known from Remark 2 that xi(t) ∈ [0, 1] for ∀t ∈ N0

and ∀i ∈ V , which implies that

0n ≤ xie ≤ 1n. (50)

Therefore, (36) follows from (49) and (50) immediately.
Remark 5. With the only knowledge of bounds on weight

functions (35), (36) can be viewed as the estimation of
equilibrium point. If some entries, say i, of the right-
hand side of (36) are equivalent to the corresponding
entries i of the left-hand side of (36), the estimation
of equilibrium point of individuals i is the precise xie

i ,
i.e,

[
Λl

]
i

= xie
i = [Λu]i. The numerical example in

Simulation section illustrates this point.

4.2.2 Linear Weight Functions
Remark 2 states that the evolving individual opinions xi(t)
at every time step t ∈ N0 belong to the small range set [0, 1].
Hence, the nonlinear weight functions under Assumption 1
can be modeled as linear weight functions with small ap-
proximation errors.

The general linear weight functions considered in this
subsection are described by:

ŵik

(
xie

i

)
=

{
βi − γi

∣∣xie
i − yk

∣∣ , bik = 1
0, bik = 0

with 0 < γi < βi < 1, which can be rewritten equivalently
as

ŵik

(
xie

i

)
=

(
βi − γi

(
xie

i − yk

)
sgn

(
xie

i − yk

))
bik (51a)

1 > βi > γi > 0 (51b)
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Figure 3. A social network: three individuals and two news agencies.

where sgn(·) is defined as

sgn (z) =





1, z > 0
0, z = 0
−1, z < 0.

(52)

Under the linear weight functions (51), it is straightfor-
ward to verify from the definition of W̃

(
xie

)
in (16) with

its entries defined in (51) that W̃
(
xie

)
can be rewritten

equivalently as

W̃
(
xie) =βB + γŴ Ŷ − γX̂Ŵ , (53)

where B is given in (43), and

β = diag {β1, · · · , βn} ∈ Rn×n, (54)

γ = diag {γ1, · · · , γn} ∈ Rn×n, (55)

X̂ = diag
{
xie

1 , · · · , xie
n

}
∈ Rn×n, (56)

Ŷ = diag {y1, · · · , ym} ∈ Rm×m, (57)

Ŵ =




ŵ11 · · · ŵ1m

...
...

...
ŵn1 · · · ŵnm


 ∈ Rn×m, (58)

ŵik = biksgn
(
xie

i − yk

)
, i ∈ V, k ∈ K. (59)

Noting the defined matrix Ŵ in (58) with its entries
given in (59), we conclude that finite number of individuals
and news agencies implies the finite number of possible
Ŵ . To understand the meaning of finite number of possible
Ŵ , consider the network of Figure 3 with three individuals
and two news agencies. We observe from (59) with (52) and
Figure 3 that

1) each ŵik has three possible values: ŵik = bik, ŵik = 0
and ŵik = −bik;

2) news agencies N1 and N2 have two followers: individ-
ual 2 and individual 3.

Based on the above observations, we know that the social
network in Figure 3 has 31+1 = 9 possible Ŵ :

Ŵ 1 =




0 0
1 0
0 1


 , Ŵ 2 =




0 0
1 0
0 0


 , Ŵ 3 =




0 0
1 0
0 −1


 ,

Ŵ 4 =




0 0
−1 0
0 1


 , Ŵ 5 =




0 0
−1 0
0 0


 , Ŵ 6 =




0 0
−1 0
0 −1


 ,

Ŵ 7 =




0 0
0 0
0 1


 , Ŵ 8 =




0 0
0 0
0 0


 , Ŵ 9 =




0 0
0 0
0 −1


 .

Generalizing the above example, the total number of

possible Ŵ is 3

∑
k∈K

Γf
k

where Γf
k is the number of followers

of new agency k, i.e., Γf
k =

∑
i∈V

bik. It is a huge number if

the social network has a lot of followers of news agencies.
Fortunately, the estimation of equilibrium point in (36) can
reduce the number of possible Ŵ significantly. Using the
estimation (36), from the definition of Ŵ in (58) with (59)
we define an ordered set of possible Ŵ as follows.

W =
{
Ŵ 1, · · · , Ŵ d, · · · , Ŵ p

}
, (60)

where p is the total number of the possible Ŵ ; the entries of
each Ŵ d are defined by

ŵd
ik =





−bik, [∆u]i < yk

bik,
[
∆l

]
i
> yk

−bik or 0, [∆u]i = yk

bik or 0,
[
∆l

]
i
= yk

−bik or bik or 0, otherwise.

(61)

where d = 1, 2, · · · , p, Λl and Λu are given by (37) and (38),
respectively.

Corollary 3. For the linear state-dependent weight func-
tions (51), the unique equilibrium point (27) can be
solved by Algorithm 1.

Proof: From X̂ in (56) and Ŝ in (32) one has X̂Ŝ =
ŜX̂ . Then it follows from (53) that

W̃
(
xie) y − ŜW̃

(
xie)1m (66)

= (βB + γŴ Ŷ − γX̂Ŵ )y − Ŝ(βB + γŴ Ŷ − γX̂Ŵ )1m

= X̂(γŜŴ1m−γŴy)+(βB+γŴ Ŷ )y−Ŝ(βB+γŴ Ŷ )1m.

Let Ŵ be the dth element in the setW given by (60), i.e.,
W(d) = Ŵ . Combining (34) with (66) yields

xie − xue = (1−W )
−1

(X̂Ga(d) + G(d)), (67)

where Ga(d) and G(d) are respectively given by (64)
and (65).

It follows from Θ(d) in (63) with (64), X̂ in (56)
and Ga(d) in (64) that X̂Ga(d) = Θ(d)xie. Then
noting xue given in (26), from (67) one has xie −
(1−W )

−1
Θ(d)xie = xie − (1−W )

−1
X̂Ga(d) = xue +
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Algorithm 1: Computation of Equilibrium Point

Input: SetW defined in (60) with the entries ŵd
ih of

each element satisfying (61), initial index d = 1,
the number of elements of the setW , i.e, p.

1 while d ≤ p do
2 Calculate:

xie = (1−W −Θ(d))
−1

(G(d) + α̂s) (62)

where

Θ(d) = diag {[Ga (d)]1, · · · , [Ga (d)]n} , (63)

Ga (d) = γŜW(d)1m − γW(d)y, (64)
G (d) (65)

= (βB + γW(d)Ŷ )y − Ŝ(βB + γW(d)Ŷ )1m,

with Ŝ, B and Ŷ being given by (32), (43) and (57),
respectively;

3 if biksgn
(
xie

i − yk

)
= ŵd

ik, for ∀i ∈ V , ∀k ∈ K then
4 Output equilibrium point: xie ← xie;
5 Break;
6 else
7 Update index: d← d + 1.
8 end
9 end

(1−W )
−1

G(d) = (1−W )
−1

(G(d) + α̂s), which is equiv-
alent to (1− (1−W )

−1
Θ(d))xie = (1−W )

−1
(G(d)+ α̂s).

Therefore, we have

xie = (1− (1−W )
−1

Θ(d))−1(1−W )
−1

(G(d) + α̂s)

= ((1−W ) (1− (1−W )
−1

Θ(d)))−1(G(d) + α̂s)

= (1−W −Θ(d))
−1

(G(d) + α̂s). (68)

Note the loop stopping condition, i.e., Line 3 in Al-
gorithm 1, is from the definition of entries of Ŵ in (61).
So (68) is, in fact, the Computation (62) in Algorithm 1.
Theorem 1 states the equilibrium point xie is unique. Com-
putation (62) together with (63), (64) and (65) implies that
once W(d) = Ŵ is searched, i.e., the condition of Line 3 in
Algorithm 1 is satisfied, the equilibrium point xie is solved,
which completes the proof.

Example 4. Consider the social network with two individ-
uals and one news agency. Its communication struc-
ture is given in Figure 1 and its dynamics is given
by (23). Set the individuals’ innate opinions as [s1, s2]
= [0.1, 0.7]. The opinion of the news agency y1 = 0.4.
The equilibrium point of the dynamics (23) calculated
by Algorithm 1 is xie = [0.2706, 0.3307]

⊤. The calculated
equilibrium point and the phase plot of the dynam-
ics (23) under five random initial opinions are shown in
Figure 4, which shows the equilibrium point calculated
by Algorithm 1 is correct.

We next focus on one particular special case for which
we can analytically compute the equilibrium point. This is
the setting where there is only once news agency and its
belief is extreme. We define extreme opinion more formally
in the following.

Figure 4. Computation of equilibrium point by Algorithm 1 and phase
plot of opinions under five random initial opinions.

Definition 1 (Extreme Opinion). The opinion ỹ passed along
by the only one news agency is said to be extreme with
respect to other individuals’ if

ỹ ≥ max
i∈V
{si} . (69)

Since the unique equilibrium point (27) is independent of
initial opinions, it is also the equilibrium point of dynamics:
x̃ (t + 1) = α (x̃(t)) s+Wx̃ (t)+W̃ (x̃(t)) ỹ with x̃(0) = 0n.
Under the extreme opinion condition (69), in the situation
that there is only one news agency it is straightforward to
verify that ỹ ≥ max

i∈V
{x̃i(k)}, ∀k ∈ N0, which implies that

ỹ ≥ max
i∈V

{
xie

i

}
.

Corollary 4. For the linear state-dependent weight func-
tions (51) under the extreme opinion condition (69). In
the situation that there is only one news agency who
passes along the extreme opinion ỹ, the unique equilib-
rium point (27) is solved as

xie = (1−W − Φ)−1(H + α̂s), (70)

where α̂ is given by (25), and

H = (βB̆ + γB̆ỹ)ỹ − Ŝ(βB̆ + γB̆ỹ), (71)

Φ = diag
{
γ(Ŝ − ỹ1)B̆

}
, (72)

B̆ = [b11, · · · , bn1]
⊤

, (73)

with Ŝ, β and γ being given by (32), (54) and (55),
respectively.

Proof: Note that under the extreme opinion condi-
tion (69) and the linear weight functions (51), from (16)
and (51) the matrix W̃

(
xie

)
can be rewritten equivalently as

W̃
(
xie

)
= βB̆+γB̆ỹ−γX̂B̆, where B̆, X̂ , β andγ are given

in (73), (56), (54) and (55), respectively. Since the extreme
opinion condition under linear weight functions is just a
special case of general linear weight functions studied in
the previous subsection, using the same analysis method to
derive (62) in the proof of Corollary 3, one has (70). Hence



9

1
2

3

4

5

6

7

8
9

10

11

12

N1

N2

Figure 5. Ring topology with twelve individuals and two news agencies
denoted by N1 and N2.

the remaining steps of proof follow from the those of the
proof of Corollary 3 verbatim.
Remark 6. It is straightforward to obtain from (70) and (26)

that

xie − xue = (1−W − Φ)−1(H + α̂s)− (1−W )−1α̂s

=
∞∑

t=0

(W + Φ)
t
(H + α̂s)−

∞∑

t=0

W tα̂s

≥
∞∑

t=0

W t(H + α̂s)−
∞∑

t=0

W tα̂s

=
∞∑

t=0

W tH = (1−W )−1H,

which implies if the weight matrix W given in (15) that
describe interaction among individuals is a irreducible
matrix, the news agency that forwards extreme opinion
can drive the opinion of every individual away from the
uninfluential equilibrium point.

5 SIMULATION

In this section, we first provide one numerical example to
study the theoretical estimation of opinion evolution in the
case of nonlinear weight functions. Then in the application
to real social network, we investigate on the effects of the
distribution of news agency’s opinions and the distance
between polar opinions of news agencies on opinion evo-
lution.

5.1 Numerical Example
Consider the ring graph in Figure 5 that has twelve
individuals and two news agencies. In the simula-
tion setting: the innate opinions are randomly gener-
ated as s = [0.9572, 0.4854, 0.8003, 0.1419, 0.4218, 0.9157,
0.7922, 0.9595, 0.6557, 0.0357, 0.8491, 0.9340]

⊤; the opin-
ions of news agencies N1 and N2 are y = [0.1, 0.8]

⊤; the

weight matrix that describes friendship network in Figure 5
are set as w12 = w23 = w34 = w45 = 1

2 , w56 = w67 =
w78 = w89 = 1

3 , w9(10) = w(10)(11) = w(11)(12) = w(12)1 = 1
4

and wij = 0 for other i, j ∈ V ; choose the state-dependent
weight functions of individuals 1 and 2 the are influenced
by new agencies N1 and N2 as

ŵ1(N1) (x1(t)) = 0.4 ln (2− |yN1 − x1(t)|) , (74)
ŵ(12)(N2) (x12(t)) = 0.4(1− sin |yN2 − x12(t)|), (75)

so the state-dependent weight W̆ (x(t)) defined in (16)
under this setting is

W̃ (x(t)) =




[
ŵ1(N1) (x1(t)) , 0

]

010×2[
0, ŵ(12)(N2) (x12(t))

]


 .

It follows from (7) and (9) that the nonlinear weight
function (74) and (75) satisfy condition (5) in Assumption 1
with µ1 = µ12 = 0.4; then it verifies that condition (17)
in Theorem 1 is satisfied, thus the social network con-
verges to a unique equilibrium point. Due to the nonlin-
earity of weight functions, it is difficult to calculate the
equilibrium point manually. Considering (74) and (75) we
have 0 ≤ ŵ1(N1) (x1(t)) ≤ 0.4 ln 2 and 0.4(1 − sin(1)) ≤
ŵ12(N2) (x12(t)) ≤ 0.4. Then by Theorem 2, the upper bound
and the lower bound of the estimation of equilibrium point
in (36) are obtained as

Λl = [0.4793, 0.5322, 0.5791, 0.3579, 0.5738, 0.8778 , (76)

0.8020, 0.8217, 0.5460 , 0.2171, 0.7612, 0.4975]
⊤

,

Λu = [0.7725, 0.5323, 0.5791, 0.3579, 0.5739, 0.8782 , (77)

0.8032, 0.8251, 0.5563, 0.2581, 0.9254, 1.0000]
⊤

.

The trajectories of opinion evolution of six individuals are
shown in Figure 6. The converged unique equilibrium point
together with the lower bound and upper bound of the
estimation of equilibrium point obtained in (76) and (77) are
shown in Figure 7. We observe from Figure 6 and Figure 7
that

• compared with the individuals who are close to news
agencies, the estimation errors of opinions of individ-
uals that are far from news agencies are smaller;

• the estimations of the individuals’ opinions at steady
state approximate to their actual equilibrium points
if the individuals are far way from the news agencies.

5.2 Real Network–Krackhardt’s Advice Network

Based on the dynamics of cyber-social networks (1) pro-
posed in this paper, we study the impact of the distribution
of news agency’s opinions and the distance between polar-
ized opinions of news agencies on opinion evolution in the
context of the well-known Krackhardt’s advice network [20].
The communication topology of the aforementioned net-
work is shown in Figure 8 with N1 indicting news agency.
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Figure 6. Trajectories of evolution of some individuals’ opinions under
100 random initial opinions.

Using the source data available in [22], the outdegree
distribution of the 21 individuals in Figure 8 are obtained as

N out = [ 6︸︷︷︸
1

, 3︸︷︷︸
2

, 15︸︷︷︸
3

, 12︸︷︷︸
4

, 15︸︷︷︸
5

, 1︸︷︷︸
6

, 8︸︷︷︸
7

, 8︸︷︷︸
8

,

13︸︷︷︸
9

, 14︸︷︷︸
10

, 3︸︷︷︸
11

, 2︸︷︷︸
12

, 6︸︷︷︸
13

, 4︸︷︷︸
14

, 20︸︷︷︸
15

, 4︸︷︷︸
16

,

5︸︷︷︸
17

, 17︸︷︷︸
18

, 11︸︷︷︸
19

, 12︸︷︷︸
20

, 11︸︷︷︸
21

]⊤, (78)

For the weight matrix W in (15), if individual i asks

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12*

Individual Index

0.2

0.4

0.6

0.8

1

Equilibrium Point xie Lower Bound l Upper Bound u

Figure 7. Equilibrium point and its estimation bounds calculated by
Theorem 2.
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Figure 8. Krackhardt’s advice network in the presence of new agency
N1.

for advice from his neighbor j, then wij = 1
1+Γin

i
for

all the individuals j that influences individual i, where
Γin

i =
∑

j∈V
sgn(wij). When an individual i is influenced by

the adversary news agency N1, his state-dependent weigh
function is ŵi1

(
xie

i

)
= 1

1+Γin
i
− 1

2(1+Γin
i )

∣∣xie
i − y1

∣∣.
In the following simulations, all of the 21 individuals’

innate opinions follow the uniform distribution over [0, 1],
i.e, si ∼ U(0, 1), ∀i ∈ V .

5.2.1 Distribution of News Agency’s Opinions

To better see the effect of the distribution of news agency’s
opinions on opinion evolution, let the network has only
one news agency, as denoted by N1 in Figure 8. Here,
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the distribution of news agency N1’s opinion means which sole
individual that news agency N1 intentionally influences.

The effect of the presence of news agency N1 on the
difference between influential equilibrium and uninfluential
equilibrium point are measured by the sample deviation,
which is defined as follows:

σ2 =
1

n

n∑

i=1

EU((xue
i − xie

i )
2
). (79)

For the opinion of news agency N1, we consider two
cases of uniform distributions:

U1 : f (y) =

{
1

0.8 , y ∈ [0.1, 0.9]
0, otherwise, (80)

U2 : f (y) =

{
1

0.4 , y ∈ [0, 0.2] ∪ [0.8, 1]
0, otherwise, (81)

where f(·) is the probability density function.
Note that the means of the two uniform distributions

in (80) and (81), and the distribution of innate opinion are as
the same as 0.5. With 10,000 random samples, the standard
sample deviations σ under the two different uniform distri-
butions are shown in Figure 9 (a), where individual index io

denotes news agency N1 influences individual i solely. Figure 9
(a) together with Figure 9 (b) or (78) show that

• for news agency, influencing critical individual, i.e,
the individual with highest outdegree, results in
biggest sample deviation;

• the order of influences of individuals that follow
news agency on sample deviation is preserved under
different uniform distributions;

• bi-model uniform distribution (U2 in (81)) results in
bigger sample deviation than single-model uniform
distribution (U1 in (80)).

5.2.2 Distance Between Polar Opinions

The Krackhardt’s advice network that is in the presence of
two news agencies that pass along polar opinions is shown
in Figure 10. As Figure 10 shows the news agencies N1 and
N2 pass along their opinions to all of the 21 individuals.
To study the effect of the distance between the two polar
opinions of news agencies N1 and N2 on the opinion
evolution, we use sample variance to measure the influences
of different polar opinions, which is defined as follows:

δ2 =
1

n

n∑

i=1

EU((xie
i − x̄)2), (82)

where x̄ is the average of group opinions, i.e., x̄ = 1
n

n∑
i=1

xie
i .

The two news agencies N1 and N2 consider six uniform
distributions, which are given in Figure 11. Note that the
means of polar opinions and the innate opinions are as
the same as 0.5. With 10,000 random samples, the standard
sample variances δ under six different uniform distributions
are shown in Figure 12. Figures 12 and 11 show that the
longer distance between the means of polar opinions results
in the larger sample variance.

1o 2o 3o 4o 5o 6o 7o 8o 9o 10o 11o 12o 13o 14o 15o 16o 17o 18o 19o 20o 21o

Individual Index

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

S
ta

nd
ar

d 
S

am
pl

e 
D

ev
ia

tio
n 

(a) Standard Deviation under Different Distributions

Distribution U
1

Distribution U
2

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 13* 14* 15* 16* 17* 18* 19* 20* 21*

Individual Index

0

2

4

6

8

10

12

14

16

18

20

O
ut

de
gr

ee

(b) Outdegree Distribution

Figure 9. Standard sample deviation under different uniform distribu-
tions, and outdegree distribution of 21 individuals.

6 CONCLUSION

This paper studies the dynamics of information spread on
cyber-social networks. The dynamics is adopted from the
well-known DeGroot-Friedkin model, where the evolution
of an individual’s opinion at each time step is modeled as
a convex combination of her innate opinion, her neighbors’
opinions at the previous time step, and the opinions for-
warded by the news agencies in the cyber layer which she
follows. The weights are determined by a weight function
that is dictated by the characteristics of the confirmation
bias. Using the well-known Banach fixed-point (contraction)
theorem, we characterize the conditions for convergence to
a unique equilibrium (steady-state) point, which is inde-
pendent of initial opinions. The steady-state points of the
proposed social dynamics under both linear and nonlinear
weight functions are studied. The estimation of equilib-
rium point is derived for nonlinear weight functions. An
algorithm that precisely computes the equilibrium point for
linear weight functions is provided. Theoretical results are
verified by numerical examples.

Based on our model, we numerically analyze the impact
of polarized news agencies. The simulation results show
that

1) the order of influences of individuals that follow news
agency on sample deviation is preserved under differ-
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Figure 10. Krackhardt’ advice network in the presence of two news
agencies N1 and N2.

ent distributions;
2) bi-modal uniform distribution results in larger sample

deviation than unimodal uniform distribution;
3) the larger distance between the means of polarized

opinions results in the larger sample variance.
The obtained equilibrium points show the innate opin-

ions play a critical role in the expressed opinions of in-
dividuals. Therefore, more transparent innate opinion im-
plies less individual privacy and more precise prediction
of public opinion. The equilibrium points together with
simulations on Krackhardt’s advice network provide the
following game-theoretic insights:

• how individuals should strategically express his
opinions to leak least information of innate opinions
to adversary news agencies, while how adversary
news agencies should strategically deploy observers
to learn most information about the innate opinions,

• how news agencies should strategically express
their opinions (polarized opinion distributions) to
influence most individuals, while how individuals
should strategically follow opinions of news agencies
(weights of influence of news agencies) to accept the
least extreme opinions.

Analyzing our model in the light of game theory, where
different subset of news agencies are controlled by different
players, contitutes a part of our future research.
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