Abstract:
Spatial crowdsourcing (SC) enables task owners (TOs) to outsource spatial-related tasks to a SC-server who engages mobile users in collecting sensing data at some specifi...Show MoreMetadata
Abstract:
Spatial crowdsourcing (SC) enables task owners (TOs) to outsource spatial-related tasks to a SC-server who engages mobile users in collecting sensing data at some specified locations with their mobile devices. Data aggregation, as a specific SC task, has drawn much attention in mining the potential value of the massive spatial crowdsensing data. However, the release of SC tasks and the execution of data aggregation may pose considerable threats to the privacy of TOs and mobile users, respectively. Besides, it is nontrivial for the SC-server to allocate numerous tasks efficiently and accurately to qualified mobile users, as the SC-server has no knowledge about the entire geographical user distribution. To tackle these issues, in this paper, we introduce a fog-assisted SC architecture, in which many fog nodes deployed in different regions can assist the SC-server to distribute tasks and aggregate data in a privacy-aware manner. Specifically, a privacy-aware task allocation and data aggregation scheme (PTAA) is proposed leveraging bilinear pairing and homomorphic encryption. PTAA supports representative aggregate statistics (e.g., sum, mean, variance, and minimum) with efficient data update while providing strong privacy protection. Security analysis shows that PTAA can achieve the desirable security goals. Extensive experiments also demonstrate its feasibility and efficiency.
Published in: IEEE Transactions on Network Science and Engineering ( Volume: 7, Issue: 1, 01 Jan.-March 2020)