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Breakup of Directed Multipartite Networks
Qing Cai, Mahardhika Pratama, Sameer Alam, Chunyao Ma, and Jiming Liu, Fellow, IEEE

Abstract—A complex network in reality often consists of profuse components each of which may suffer from unpredictable
perturbations. Because the components of a network could be interdependent, therefore the failures of some components may trigger
catastrophes to the whole network. It is thus pivotal to exploit the robustness of complex networks to perturbations. Existing studies on
network robustness mainly deal with interdependent or multilayer networks, little work is done to investigate the robustness of
multipartite networks which are an indispensable part of complex networks. Here we plumb the robustness of directed multipartite
networks. To be specific, we exploit the robustness of bi-directed and unidirectional multipartite networks in face of random node
failures. We respectively establish cascading and non-cascading models based on the largest connected component concept for
depicting the dynamical processes on bi-directed and unidirectional multipartite networks subject to random node attacks. Based on
our developed models, we respectively derive the corresponding percolation theories for mathematicaly computing the robustness of
directed multipartite networks to random node failures. We theoretically unravel the first-order and second-order phase transition
phenomena on the robustness of directed multipartite networks. The correctness of our developed theories coincide quite well with
simulations on computer-generated multipartite networks.

Index Terms—Complex networks, directed multipartite networks, network robustness, percolation, largest connected component

✦

1 INTRODUCTION

COMPLEX systems are ubiquitous in our daily life [1].
The form of a complex system ranges from the macro-

scopic level like the power grid systems [2], to the mi-
croscopic level like the metabolic systems [3]. A complex
system in real world is usually composed of countless
components, which makes it difficult to be controlled [4].
With the advent of network science, the situation of sys-
tem control has been significantly improved by modeling
a complex system as a network composed of vertices and
edges where the vertices represent the system components
while edges denote the relationships between components
[5, 6]. Network modeling has been proved to be an effective
instrument not only for system control [7–10] but also for
data science [11, 12].

Due to the fact that the components of a complex sys-
tem may suffer from internal and/or external perturbations
which may induce the breakdown of the whole system,
an effective method for predicting system stability so as to
avoid potential catastrophe is therefore imperative [13–16].
As a consequence, network robustness analysis has emerged
and is gaining momentum [17–20].

1.1 Previous Work

Network robustness analysis aims to investigate how ro-
bust a network is in face of perturbations. To this end,
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tremendous efforts have been made along this line. Because
the perturbations could occur to vertices and/or edges of
a network, existing studies thus can be categorized into
three groups, i.e., vertex level [17, 21–23] (Fig. 1(a)), edge
level [19, 24–26] (Fig. 1(b)), and mixed level [27–31] (Fig.
1(c)), with their main ideas literally self-explained. From
the perspective of perturbation manners, existing studies
can be roughly classified as: network robustness to random
failure [21] (every vertex is given the same probability to be
attacked) and network robustness to target attacks [22, 32–
34] (the probability for a vertex to be attacked depends
on the importance of the focal vertex, see Fig. 1(d)). If the
methods for analyzing network robustness are of concern,
existing studies therefore could be archived into two groups:
simulations based studies [17, 33, 35] (the curve in Fig. 1(e) is
obtained by simulations) and theoretical analysis [19, 23, 36]
(the curve in Fig. 1(e) is obtained by theoretical computing).
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Fig. 1. Graphical examples of existing studies for network robustness
analysis. (a) vertex level analysis. (b) edge level analysis. (c) mixed
level analysis. (d) robustness to target attacks. (e) simulation based or
theoretical analysis.

Due to the fact that a real-world network normally
consists of many sub-networks which are interdependent,
existing studies therefore can be divided into two branches,
i.e., robustness of a single network [18] and robustness of
interdependent networks [21, 23, 36, 37]. It has been discov-
ered that a single network could be robust to perturbations
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(the curve in Fig. 1(e) is smooth), while an interdependent
network or a network of networks could be extremely
vulnerable [38–40] (the curve in Fig. 1(e) exhibits an abrupt
jump from a finite value to zero).

Note that the above classification for existing studies on
network robustness can be continued, depending on the
angle from which the problem is viewed. For instance, in
reality it is necessary to repair or recover a damaged net-
work, thus existing studies can be categorized as: network
robustness under attacks and network robustness under
recoveries [33, 41, 42]. While many studies make efforts to
answer the question of how robust a network is in face of
perturbations, another research direction explores answers
towards questions like what are the optimal structures of
a network that are robust to perturbations and what kind
of measures can be taken to enhance the robustness of a
network [25, 34, 40, 43–45].

1.2 Motivation and Contribution

Multipartite networks are an essential part of complex net-
works [46–48]. The notion of multipartite network is the
counterpart of monopartite or unipartite network [1, 2].
Although the works in [17, 26, 27, 29] have explored the
robustness of multipartite networks, they are all empirical
studies. Putting it another way, they can only tell whether
a focal multipartite network is robust or not but cannot tell
to what extent a multipartite network can survive perturba-
tions.

To eliminate the deficiency of empirical studies on the
robustness of multipartite networks, theoretical analysis on
the robustness of bipartite networks which are a special case
of multipartite networks have been erected [49–51]. How-
ever, on the one hand, the dynamics of bipartite networks as
studied in [49–51] require domain-specific knowledge. On
the other hand, the corresponding theories are only devised
for bipartite networks and therefore are not applicable to
multipartite network scenarios.

Note that theoretical methods like those in [21, 23, 36, 37]
for analyzing the robustness of interdependent networks are
mature, they are monopartite networks oriented and cannot
be applied to handle multipartite networks. Though the
latest work in [37] puts forward a mathematical method
for analyzing the robustness of interdependent directed
networks (still monopartite networks oriented), the method
is not straightforward because it is developed in a manner
similar to the seminal work in [21] where the robustness
analysis involves recursive calculations of many transcen-
dental equations.

To circumvent the above mentioned shortcomings, in
this paper we present a precise yet direct theoretical method
for analyzing the robustness of directed multipartite net-
works. The main contributions of this paper are threefold:

1) Network models for depicting the dynamical pro-
cesses of bi-directed and unidirectional multipartite net-
works subject to vertex perturbations are respectively estab-
lished. The structural differences between multipartite and
monopartite networks render direct technology transfers
from monopartite networks infeasible. The dynamic model
used in [21] requires one-to-one interdependency, while the
interdependency of a multipartite network is in a one-to-
many mode.

2) Mathematical methods for calculating the proportions
of vertices that eventually survive the perturbations oc-
curred to multipartite networks with arbitrary degree dis-
tributions are accordingly developed. Although the theories
developed in [23, 37, 52] are capable of handling interde-
pendent networks with one-to-many interdependency, the
transcendental equations involved in the calculation pro-
cess require the variable Pi(k) which denotes the degree
distribution of the vertices in the i-th network. Note that for
an interdependent network, the vertices of the i-th network
are interconnected, i.e., Pi(k) ̸= 0, while for a multipartite
network there is no connections between vertices in the
same partite set, i.e., Pi(k) = 0. As a consequence, existing
models and methods are not amenable to the robustness
analysis of multipartite networks.

3) Our proposed theories unravel the first-order and
second-order phase transition phenomena on the robustness
of directed multipartite networks. Experimental simulations
on random multipartite networks with Poisson degree dis-
tributions are carried out to validate the correctness of our
proposed mathematical methods. The experiments coincide
quite well with our theoretical results.

1.3 Paper Organization

The remainder of this paper is structured as follows. Section
2 presents the preliminaries including basic network no-
tations, canonical network models for robustness analysis,
and robustness evaluation metrics. Section 3 delineates in
detail our proposed method for analyzing the robustness of
multipartite network subject to random vertex loss. Section
4 validates the correctness of our proposed method through
experiments on random multipartite networks with Poisson
degree distributions. Section 5 concludes the paper.

2 PRELIMINARIES

2.1 Network Notation

Given a network denoted by G = {V,E}, where V and
E respectively represent the sets of vertices and edges. We
use eij to represent the edge between vertices i and j. If
the vertex set V of a network G is composed of L different
types of vertices, i.e., V = {v1, v2, ..., vL}, G is said to be a
multipartite (or L-partite) network if the following condition
is satisfied:

{

vi ∩ vj = ∅, ∀i, j ∧ i ̸= j
∃eij , iff i = j − 1 ∨ i = j + 1

, (1)

where vi is called a partite set which contains ni = |vi|
vertices. The total number of vertices of G is thus N =

∑

ni.

Fig. 2. Graphical illustration of a bipartite network and its bipartite matrix.
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The left part of Fig. 2 exhibits an example of a multi-
partite network. Because L = 2 for the network shown in
Fig. 2, G is therefore commonly called a bipartite network
or a two-mode network [1]. The right part of Fig. 2 shows
the bipartite matrix B of network G. The entry bij of B

denotes the interaction between vertices i and j. Note that
B is generally asymmetric.

2.2 Network Robustness Analysis

Studies on network robustness aim to investigate the prob-
lem of to what extent a network can withstand perturba-
tions occuring to vertices and/or edges. In the literature,
two typical network models for depicting the dynamics of
networks subject to perturbations are commonly utilized to
analyze the robustness of networks. Fig. 3 takes the vertex
robustness analysis as an example to delineate the two
network models.
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Fig. 3. Schematic illustrations of network models for depicting the dy-
namics of networks subject to perturbations. Network model 1 is based
on the calculation of remaining vertices while network model 2 is based
on the calculation of the largest connected component.

In Fig. 3(a), vertex 2 is removed from the network
and the removal breaks the network into two clusters, i.e.,
c1 = {1, 4} and c2 = {3, 5, 6}. The network model based on
the calculation of remaining vertices is interested in vertices
in clusters c1 and c2. As shown in Fig. 3(b), the network
model based on the calculation of the largest connected
component (LCC) only concerns cluster c2 since it contains
the largest number of vertices, and as a result cluster c1 will
be disfunctional and removed.

2.3 Robustness Evaluation Metric

Fig. 3 exhibits two commonly used network models for
network robustness analysis. In the literature, three metrics
are accordingly proposed and widely adopted to quantita-
tively measure the robustness of a network. Other kinds of
measures can be found in [53].

1) Node Robustness Index: Let sq be the number of
remaining vertices after removing a fraction q of
vertices from a network G. The node robustness
index Rn is defined as Rn = 1

N

∑1
q=0 sq. The node

robustness index is first used in [22]. The larger the
value of Rn, the more robust the network is. Two
successors can be found in [25, 54] where ref. [25]
put forward a link robustness index Rl in a similar
manner to Rn and ref. [54] developed a community

robustness index Rc which is a combination of Rn

and Rl.
2) Area Based Robustness Index: For a focal network G,

if the value of q is known, then we can easily obtain
sq. We thus can draw q and sq in a 2-D space for
all q ∈ [0, 1] and a curve will be yielded. The area
based robustness index is then calculated as the
area covered by the X-Y axis and the yielded curve.
The larger the value of the area, the more robust
the network is. The area based index is commonly
used in the field of ecology, e.g., refs. [17] and [29]
respectively make use of this index to measure the
robustness of ecological networks to the loss of
species and species community.

3) LCC Based Index: Given that a fraction 1 − p of
vertices are removed from G. The LCC based in-
dex quantifies the robustness of a network as the
proportion P∞ of vertices contained in the LCC.
The robustness of a network in this context can be
formulated as P∞ = NLCC

N , where NLCC denotes
the number of vertices in the LCC after removing
a fraction 1 − p of vertices from G. This kind of
robustness evaluation index is widely used in the
fields of network science and physics [36, 37].

3 METHODOLOGY

For an L-partite network, we randomly remove a fraction
1− pi of vertices from vi for all i ∈ [1, L]. Our purpose is to
mathematically figure out the proportions of vertices P∞

i in
vi that are contained in the LCC after perturbations. To do
so, we first list all related notations in Table 1.

TABLE 1
Notations concerning the mathematical analysis of the robustness of

an L-partite network G.

Variable Definition
pi a fraction 1− pi of vertices in vi are randomly removed

P∞

i fraction of vertices in vi that are contained in the LCC
zij probability that a vertex in vi is not connected to the

LCC via a vertex in vj
Pi(k) degree distribution of vertices in vi
qi(k) excess degree distribution of Pi(k)

Pij(k) degree distribution of vertices in vi which are
connected to vertices in vj

k vertex degree
⟨ki⟩ ⟨ki⟩ =

∑
∞

k=0
kPi(k), mean degree of vertices in vi

⟨kij⟩ ⟨kij⟩ =
∑

∞

k=0
kPij(k), mean degree of vertices in vi

which are connected to vertices in vj

For an L-partite network, the vertex perturbation oc-
cured to one partite may affect vertices in other partite
sets and eventually cascading failures are likely to occur.
In the following, we present our establish dynamic models
and theoretical methods for analyzing the robustness of
bidirected and unidirectional L-partite networks subject to
random vertex losses.

To enhance the elegance of the theoretical calculations,
we make use of the mathematical tool of generating func-
tions [21]. Given a probability distribution function Pij(k),
its generating function can be defined as

Gij(x) =
∞
∑

k=0

xkPij(k). (2)
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Based on Eq. 2 we define another function which reads

Hij(x) =
G

′

ij(x)

G
′

ij(1)
=

∑∞
k=0kx

k−1Pij(k)
∑∞

k=0kx
k−1Pij(k)|x=1

=

∑∞
k=0(k+1)xkPij(k+1)

⟨kij⟩

. (3)

3.1 Dynamic Model for Unidirectional Multipartite Net-
works

Models exhibited in Fig. 3 are for single networks, while
networks in reality are often interdependent and could
be vulnerable to perturbations. Fig. 4 takes a toy interde-
pendent network as an example to introduce the widely
adopted network model for analyzing the robustness of
interdependent networks.
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Fig. 4. A schematic illustration of the widely used network model for
depicting the dynamics of an interdependent network subject to vertex
perturbations.

In Fig. 4, the toy interdependent network consists of two
networks (distinguished by different colors) which are one-
to-one corrected. Originally, vertex 2 from one network is
removed. In stage 1, the edges attached to vertex 2 are re-
moved. The same process occurs to vertex 6 since vertices 2
and 6 are interdependent. The removal of vertex 2 fragments
the network in the left side into two parts and it is assumed
that only the vertices in the LCC will be of interest. As a
result, in stage 2 vertices 1 and 5 are removed. The removal
of vertex 5 leads to the fragmentation of the network in the
right side. This process is continued until no further vertex
remove is possible. In the final stage, only vertices 4 and 8
are remained functioning.

As aforementioned, there is no connection between ver-
tices in the same partite set of a multipartite network.
Thus the model demonstrated in Fig. 4 is not applicable to
multipartite networks.

We establish the dynamic model shown in Fig. 5 to
depict the dynamic process of a unidirectional multipartite
network subject to vertex perturbations.

Fig. 5. The network model for depicting the robustness of a unidirectional
multipartite network subject to vertex loss.

As shown in Fig. 5, vertex 2 is removed from a unidirec-
tional tripartite network. This removal breaks the network
into two parts. Because the network is unidirectional, no
cascading failures will occur. Therefore, in the final stage we
only consider the vertices in the LCC which is shown in the
right panel of Fig. 5.

Note that, since we are considering a unidirectional mul-
tipartite network, we should focus on the LCC of the whole
network when analyzing its robustness. For example, let us
consider the network shown in Fig. 5 as a complex control
system where vertices 1, 2, and 3 represent the controllers.
In order to ensure the success of the control mission, it is
generally required that there exists a LCC which contains as
many components as possible.

3.2 Dynamic Model for Bi-directed Multipartite Net-
works

We establish the dynamic model shown in Fig. 6 to depict
the dynamic process of a bi-directed multipartite network
subject to vertex perturbations.

Fig. 6. The network model for depicting the robustness of a bi-directed
multipartite network subject to vertex loss.

As shown in Fig. 6, vertex 2 is removed from a bi-
directed tripartite network. The removal also fragments
the network into two parts. However, we cannot simply
compute the robustness of this network in the same manner
as shown in Fig. 5 since the focal network is bi-directed
and its dynamics are different from that of a unidirectional
multipartite network.

After removing vertex 2, the bipartite network (sur-
rounded by red circle in stage 1) breaks into three parts
and only vertices 1, 4, and 5 will still be functional. As a
consequence, in stage 1 vertices 3, 6, and 7 will be disfunc-
tional. The removal of vertices 3, 6, and 7 further divides
the second bipartite network (surrounded by red circle in
stage 2) into three groups and only vertices in the LCC of
the second bipartite network (because there are two LCCs,
we randomly choose the one that contains vertices 5 and 9)
will survive. In the final stage, only vertices 1, 5, and 9 are
remained in the final LCC.

3.3 Theoretical Method for Bipartite Networks

Existing theoretical methods for analyzing the robustness of
interdependent networks are largely based on the network
model displayed in Fig. 4. As discussed above, those theo-
ries are not amenable to multipartite networks and therefore
new theories are desired.
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Because the simplest form of a multipartite network is
the bipartite network, here we first investigate the robust-
ness of bipartite networks to random vertex perturbations.

In order to figure out P∞
1 and P∞

2 for a bipartite net-
work, we first define z12 as the probability that a vertex
i ∈ v1 is not connected to the LCC via a vertex j ∈ v2.
Anologously, we can define another probability z21. Sup-
pose the degree of vertex i is k, i.e., it has k neighbors in v2.
As a consequence, the average probability Pr(i /∈ LCC) that
vertex i does not belong to the LCC is

Pr(i /∈ LCC) =
∞
∑

k=0

P12(k)z
k
12 = G12(z12). (4)

Therefore, the average probability Pr(i ∈ LCC) that ver-
tex i belongs to the LCC is Pr(i ∈ LCC) = 1−Pr(i /∈ LCC).
Since we randomly remove a fraction 1 − p1 and a fraction
1− p2 of vertices from the bipartite network, the proportion
of vertices in v1 that belong to the LCC, i.e., P∞

1 , thus can
be written as

P∞
1 = p1Pr(i ∈ LCC) = p1 (1−G12(z12)) . (5)

Analogously, we can derive the expression of P∞
2 which

reads

P∞
2 = p2 (1−G21(z21)) . (6)

The key to Eqs. 5 and 6 is to figure out the expressions of
variables z12 and z21. Note that the event that a vertex i ∈ v1
is not connected to the LCC via a vertex j ∈ v2 happens
under two independent cases: 1) the vertex in v2 is removed,
which happens with a probability 1− p2; 2) the vertex in v2
is not removed (this happens with a probability p2) and it is
not connected to the LCC via its k extra neighbors in v1 (this
happens with a probability zk21).

Note that the probability q21(k) for vertex j to have k
extra neighbors in v1 is not P21(k+1). Because for a bipartite
network there are totally n2P21(k+ 1) vertices in v2 each of
which has degree k + 1, thus q21(k) can be calculated as
follows

q21(k) =
n2P21(k + 1)(k + 1)

n2 ⟨k2⟩
=

(k + 1)P21(k + 1)

⟨k2⟩
. (7)

Based on Eq. 7, we can get the expression of z12 as

z12 =
∞
∑

k=0

(

1− p2 + p2zk21
)

q21(k)

= 1− p2 + p2H21(z21)

. (8)

Analogously, we can get the expression of z21 as

z21 = 1− p1 + p1H12(z12). (9)

By substituting the expression of z21 into that of z12 we
can get the following self-consistent equation

z12 = 1− p2 + p2H21 (1− p1 + p1H12(z12)) . (10)

A possible non-trivial solution z12 may appear if
the two curves f1 = z12 and f2 = 1 − p2 +

p2H21 (1− p1 + p1H12(z12)) meet with each other tangen-
tially at z12 = 1. Putting it another way, a critical value pc
occurs when

df1
dz12

∣

∣

∣

∣

z12=1

=
df2
dz12

∣

∣

∣

∣

z12=1

. (11)

From Eq. 11 we further derive the following relations

pc = p1p2 =
⟨k1⟩ ⟨k2⟩

(⟨k21⟩ − ⟨k1⟩) (⟨k22⟩ − ⟨k2⟩)
. (12)

3.4 Theoretical Method for Unidirectional Multipartite
Networks

For generality and simplicity, hereafter we take a tripar-
tite network as an example to delineate our mathematical
derivations for the robustness analysis of multipartite net-
works. Analogous to the analysis of bipartite networks, we
therefore have four variables z12, z21, z23, and z32.

We can notice from Fig. 5 that the LCC may not encom-
pass vertices in v1 or v3. Consequently, it is easy to get the
expressions of P∞

1 and P∞
3 as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

P∞
1 = p1

(

1−
∞
∑

k=0

P12(k)zk12

)

= p1 (1−G12(z12))

P∞
3 = p3

(

1−
∞
∑

k=0

P32(k)zk32

)

= p3 (1−G32(z32))

.

(13)
For a vertex j ∈ v2, if it does not belong to the LCC, then

it should not be connected to the LCC via its neighbors in
v1 and v3. Thus, the average probability Pr(j /∈ LCC) that
vertex j does not belong to the LCC is

Pr(j /∈ LCC) =
∞
∑

k=0

P21(k)zk21 ·
∞
∑

k=0

P23(k)zk23

= G21(z21)G23(z23)

. (14)

As a consequence, we can get the expression of P∞
2 as

P∞
2 = p2 (1− Pr(j /∈ LCC))

= p2 (1−G21(z21)G23(z23))
. (15)

In the next step we are going to derive the relations
between the four variables z12, z21, z23, and z32.

Since the event that a vertex in v2 is not connected to the
LCC via a vertex in v1 happens under two cases which are
very similar to that of a bipartite network, we therefore can
formulate z21 and z23 as

{

z21 = 1− p1 + p1H12(z12)
z23 = 1− p3 + p3H32(z32)

. (16)

Now let us consider the event that a vertex i ∈ v1 is not
connected to the LCC via a vertex j ∈ v2, i.e., the probability
z12. This event happens under two cases: 1) j is removed; 2)
j is not removed. Case 1 happens with a probability 1− p2.
Now the key is to work out the probability for case 2.

Because a vertex j ∈ v2 could have neighbors in v1 and
v3, if j does not belong to the LCC, then it must not be
connected to the LCC via its neighbors in v1 and v3. Note
that the event for j to have k neighbors in v1 and the event
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for j to have k neighbors in v3 are independent. Therefore,
the probability Pr(j /∈ LCC) in this situation becomes

Pr(j /∈ LCC) =
∞
∑

k=0

q21(k)zk21 ·
∞
∑

k=0

q23(k)zk23

= H21(z21)H23(z23)

. (17)

As a result, the probability for case 2 to happen is
p2H21(z21)H23(z23). With all these, the expression for z12
becomes

z12 = 1− p2 + p2H21(z21)H23(z23). (18)

Note that the event that a vertex l ∈ v3 is not connected
to the LCC via a vertex j ∈ v2 happens in the same way as
that of vertex i does, we can easily derive the expression of
z32, which has the same form as Eq. 18.

3.5 Theoretical Method for Bi-directed Multipartite Net-
works

By comparing Figs. 5 and 6 we can notice that the main
difference between the two network models lies in the
calculation of the LCC. For a bi-directed tripartite network,
the derivation process of P∞

1 and P∞
3 is the same as that of

a unidirectional tripartite network. It is easy to prove that
P∞
1 and P∞

3 have the same form as Eq. 13, while z21 and
z23 have the same form as Eq. 16. The most difficult part lies
in the calculations of P∞

2 , z12, and z32.
In order to figure out P∞

2 , z12, and z32, we first figure
out the probability that a vertex j in v2 belongs to the LCC.
As mentioned above, vertex j may have neighbors in v1
and v3. If j ∈ LCC, then at least one neighbor vertex i in v1
should connect j to the LCC, and this event happens with a
probability 1 − zk21. Because the LCC contains vertices from
v1, v2, and v3, thus there should exist at least one neighbor
vertex l in v3 which also connects j to the LCC, and this
event happens with a probability 1− zk23. As a consequence,
the probability that a vertex j in v2 belongs to the LCC is
(1− zk21)(1 − zk23).

Bear in mind that probabilities for j to have k neighbors
in v1 and k neighbor in v3 are respectively P21(k) and
P23(k). Note that the probabilities are not q21(k) and q23(k)
since vertex j is randomly picked but not arrived from
vertex i. Therefore, we can formulate P∞

2 as

P∞
2 = p2

∞
∑

k=0

P21(k)(1 − zk21)
∞
∑

k=0

P23(k)(1− zk23)

= p2

(

1−
∞
∑

k=0

P21(k)zk21

)(

1−
∞
∑

k=0

P23(k)zk23

)

= p2 (1−G21(z21)) (1−G23(z23))

.

(19)
Analogously, we can figure out z12 and z32 as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

z12 = 1− p2

(

1−
∞
∑

k=0

q21(k)zk21

)(

1−
∞
∑

k=0

q23(k)zk23

)

= 1− p2 (1−H21(z21)) (1−H23(z23))
z32 = z12

.

(20)

In summary, the robustness analysis for a bi-directed
tripartite network with arbitrary degree distributions can
be written as

⎧

⎨

⎩

z12 = z32 = 1− p2 (1−H21(z21)) (1−H23(z23))
z21 = 1− p1 + p1H12(z12)
z23 = 1− p3 + p3H32(z32)

,

(21)

⎧

⎨

⎩

P∞
1 = p1 (1−G12(z12))

P∞
2 = p2 (1−G21(z21)) (1−G23(z23))

P∞
3 = p3 (1−G32(z32))

. (22)

4 RESULTS

4.1 Random Networks

In order to validate the correctness of our proposed method
for analyzing the robustness of directed multipartite net-
works subject to random vertex perturbations, here we
generate random multipartite networks.

Let us define a probability vector R = (r1, r2, ..., rL−1).
Given an empty L-partite network, we connect two arbi-
trary vertices with one comes from vi and the other one
comes from vi+1 with a probability ri. Then the degree
distribution Pij(k) becomes

Pij(k) =

(

nj

k

)

rkj (1 − rj)nj−k

≈ e−⟨kij⟩
⟨kij⟩

k

k!

, (23)

where j = i − 1 and ⟨kij⟩ = njrj . Analogously, we can get
the degree distribution Pil(k) which read

Pil(k) =

(

nl

k

)

rki (1− ri)nl−k

≈ e−⟨kil⟩
⟨kil⟩

k

k!

, (24)

where l = i+ 1 and ⟨kil⟩ = nlri.
Eqs. 23 and 24 indicate that the generated network

follows the Poisson degree distributions. The main reason
for only generating networks with Poisson distributions
is that a Poisson distribution Pij(k) has good mathemat-
ical properties. To be specific, for a Poisson distribution

Pij(k) = e−λ λk

k! , we have the following equations:

Gij(x) =
∞
∑

k=0

xkPij(k) =
∞
∑

k=0

xke−λ λ
k

k!

= eλ(x−1)

, (25)

Hij(x) =
G

′

ij(x)

G
′

ij(1)
= eλ(x−1) = Gij(x), (26)

〈

k2ij
〉

=
∞
∑

k=0

k2Pij(k) =
∞
∑

k=0

k2e−λλ
k

k!

= λe−λ

(

∞
∑

k=0

(k − 1)
λk−1

(k − 1)!
+

∞
∑

k=0

λk−1

(k − 1)!

)

= λe−λ
(

λeλ + eλ
)

= ⟨kij⟩
2 + ⟨kij⟩

,

(27)
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where
〈

k2ij
〉

is the second moment of Pij(k).
Note that the generated multipartite networks for testing

purpose are undirected. This is because that the directions
of the edges have already been taken into account when
developing the network models and mathematical methods
for the robustness analysis. While calculating the robustness
of a directed multipartite network, we only need to know
the degree distributions for vertices in each partite set.

4.2 Robustness of bipartite networks

For a bipartite network with Poisson degree distributions,
we can simplify the robustness analysis functions into the
following forms

{

z12 = 1− p2 + p2e⟨k2⟩(z21−1)

z21 = 1− p1 + p1e⟨k1⟩(z12−1) , (28)

{

P∞
1 = p1

(

1− e⟨k1⟩(z12−1)
)

P∞
2 = p2

(

1− e⟨k2⟩(z21−1)
) . (29)

We can notice that as long as parameters n1, n2, and r are
given, then we can directly solve Eqs. 28 and and 29 so as to
investigate the robustness of the focal bipartite network.

Now let us consider bipartite networks with the follow-
ing configurations: N = n1 + n2 = 8 × 104, n1 = αN , and
r = C/N , where α ∈ (0, 1) and C is a constant. We test the
robustness of two sets of bipartite networks:

1) α = 1
8 and C = {4, 5, 6, 7};

2) α = 2
8 and C = {4, 5, 6, 7}.

For simplicity we set p1 = p2 = p, i.e., for each network we
randomly remove a fraction 1−p of vertices from the whole
network.

Fig. 7 displays the robustness results on bipartite net-
works with Poisson degree distributions. The size for each
network is controlled by α and the degree is controlled by C.
The simulation results are averaged over 1000 independent
trials while numerical results are obtained by solving Eqs.
28 and 29 by substituting the corresponding values of ⟨k1⟩
and ⟨k2⟩. We can clearly see from Fig. 7 that our theoretical
results coincide quite well with the simulation results.

For a bipartite network with Poisson degree distribu-
tions, the critical value as given in Eq. 12 now becomes

p2c =
⟨k1⟩ ⟨k2⟩

(⟨k21⟩ − ⟨k1⟩) (⟨k22⟩ − ⟨k2⟩)

=
1

⟨k1⟩ ⟨k2⟩
=

1

α(1− α)C2

⇒ pc =
1

C
√

α(1 − α)

. (30)

Based on Eq. 30 we have

1) when α = 1
8 and C = {4, 5, 6, 7}, the critical values

are pc = {0.7559, 0.6047, 0.5040, 0.4320};
2) when α = 2

8 and C = {4, 5, 6, 7}, the critical values
are pc = {0.5773, 0.4619, 0.3850, 0.3299},

which are in accordance with the simulation results shown
in Fig. 7.

Fig. 8 exhibits the simulations on the robustness of two
bipartite networks in a more general way. We respectively
remove a fraction 1 − p1 and a fraction 1 − p2 of vertices

from v1 and v2 of each bipartite network. P∞
1 and P∞

2 are
respectively shown with respect to different settings of p1
and p2. We can clearly see from Fig. 8 that the robustness
curves are smooth and the turning points of p1 and p2 are
small in values, which indicates that bipartite networks are
extremely robustness to random vertex perturbations.

4.3 Robustness of Unidirectional multipartite networks

For a unidirectional tripartite network with Poisson degree
distributions, we can simplify Eqs. 16, 18, 13 and 15 into the
following forms

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z21 = 1− p1 + p1e⟨k12⟩(z12−1)

z23 = 1− p3 + p3e⟨k32⟩(z32−1)

z12 = 1− p2 + p2e⟨k23⟩(z23−1)e⟨k21⟩(z21−1)

z32 = z12

, (31)

⎧

⎨

⎩

P∞
1 = p1

(

1− e⟨k12⟩(z12−1)
)

P∞
2 = p2

(

1− e⟨k23⟩(z23−1)e⟨k21⟩(z21−1)
)

P∞
3 = p3

(

1− e⟨k32⟩(z32−1)
)

. (32)

For simplicity we set p1 = p2 = p3 = p. In the
experiments we generate three tripartite networks with their
parameter configurations respectively given as

1) (n1, n2, n3) = (3, 1, 2) × 104, R = ( C1

n1+n2
, C2

n3+n2
),

C1 = 8, C2 = 6;
2) (n1, n2, n3) = (1, 4, 1) × 104, R = ( C1

n1+n2
, C2

n3+n2
),

C1 = 12, C2 = 14;
3) (n1, n2, n3) = (2, 2, 2) × 104, R = ( C1

n1+n2
, C2

n3+n2
),

C1 = 4, C2 = 3.

Fig. 9 displays the robustness of three tripartite networks
with each network subject to random vertices remove from
every partite set. The theoretical results P∞ as shown in
the last subfigure of Fig. 9 are simply obtained by solving
P∞ =

∑

P∞
i . Fig. 9 clearly validates the correctness of our

proposed method.
By combining Eqs. 11 and 31 we can get

1 = p2
d

dz12

(

e⟨k23⟩(z23−1)e⟨k21⟩(z21−1)
)

∣

∣

∣

∣

z12=1
⇒ 1 = p2 (p3 ⟨k23⟩ ⟨k32⟩+ p1 ⟨k21⟩ ⟨k12⟩)

. (33)

Since we set p1 = p2 = p3 = p in our experiments, from
the above equation we can figure out the critical value of pc
which reads

pc =

√

1

⟨k23⟩ ⟨k32⟩+ ⟨k21⟩ ⟨k12⟩
. (34)

For the three tested tripartite networks, we have

1) ⟨k12⟩ = 2, ⟨k21⟩ = 6, ⟨k23⟩ = 4, ⟨k32⟩ = 2;
2) ⟨k12⟩ = 9.6, ⟨k21⟩ = 2.4, ⟨k23⟩ = 2.8, ⟨k32⟩ = 11.2;
3) ⟨k12⟩ = 2, ⟨k21⟩ = 2, ⟨k23⟩ = 1.5, ⟨k32⟩ = 1.5.

By substituting the mean degrees into Eq. 34 we respectively
get the critical values for the three networks which are pc =
0.224, pc = 0.136, and pc = 0.400. We can observe from Fig.
9 that our theoretical results are the same as the simulations.
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Fig. 7. Theoretical (denoted by lines) and simulation (denoted by symbols) results on the robustness of bipartite networks with Poisson degree
distributions. A fraction 1 − p of vertices are randomly removed from each network. We set α = 1/8 and α = 2/8 respectively for networks in the
first row and the second row.

4.4 Robustness of Bi-directed multipartite networks

For a bi-directed tripartite network with Poisson degree dis-
tributions, we can simplify Eqs. 19 and 20 into the following
forms

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z21 = 1− p1 + p1e⟨k12⟩(z12−1)

z23 = 1− p3 + p3e⟨k32⟩(z32−1)

z12 = 1−
(

p2 − p2e⟨k21⟩(z21−1)
) (

1− e⟨k23⟩(z23−1)
)

z32 = z12

.

(35)

⎧

⎨

⎩

P∞
1 = p1

(

1− e⟨k12⟩(z12−1)
)

P∞
2 = p2

(

1− e⟨k21⟩(z21−1)
) (

1− e⟨k23⟩(z23−1)
)

P∞
3 = p3

(

1− e⟨k32⟩(z32−1)
)

.

(36)
In our experiments, we set p1 = p2 = p3 = p. We

still carry out experiments and theoretical analysis on the
previously generated three tripartite networks. For the third
network, we slightly change the constant C2 to be C2 = 7.

Fig. 10 displays the robustness of bi-directed tripartite
networks with Poisson degree distributions. Each network is
subject to random removal of a fraction 1−p of vertices from
the whole network. Fig. 10 once again proves the correctness
of our proposed method for analyzing the robustness of
directed multipartite networks.

It can be seen from Fig. 10 that there exist abrupt jumps
for the robustness curves, i.e., at the critical point pc, P∞

i

suddenly falls from a finite value to zero. This phenomenon
indicates that bi-directed multipartite networks are less ro-
bust then unidirectional multipartite networks to random
vertex perturbations.

Note that the critical value pc cannot be obtained by
solving Eq. 11. The reason can be discovered from Fig. 11 in
which we draw the two curves f1(z12) = z12 and f2(z12).
The expression of f2(z12) is the right term of the expression
of z12 in Eq. 36 where z21 and z23 are functions of z12.

It can be seen from Fig. 11 that there always exists a
trivial solution of z12 = 1 to the function f2(z12) = z12.
When p increases from 0 to 1, there exist a critical value of
p which makes function f2(z12) = z12 have the first non-
trivial solution. Note that f2(z12) = z12 is a transcendental
function, we use numerical analysis to figure out critical
value of p.

5 CONCLUDING REMARKS

To explore the robustness of complex networks to perturba-
tions is of pivotal significance toward system control. While
existing studies are primarily developed for monopartite
networks, in this paper we proposed a theoretical method
to investigate the robustness of multipartite networks to
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Fig. 8. Simulation results on the robustness of two bipartite network with Poisson degree distributions. We respectively set α = 1/8, C = 8 and
α = 3/8, C = 8 for the two bipartite networks. A fraction 1−p1 and a fraction 1−p2 of vertices are randomly removed from v1 and v2, respectively.

random vertex perturbations. The correctness of our pro-
posed methods have been verified through experiments on
multipartite networks with Poisson degree distributions. Al-
though we only mathematically investigated the robustness
of bipartite and tripartite networks, it is easy to extend our
proposed method to L-partite networks with L > 3.

Existing studies on network robustness indicate that a
single network could be robust to random perturbations
(exhibit second order phase transition) while an interdepen-
dent network could be vulnerable to random perturbations
(exhibit first order phase transition). To some extent, a
multipartite network could be regarded as a special case
of an interdependent network. However, in this study we
discovered that the robustness of bi-directed multipartite
networks show first order phase transition while unidi-
rectional multipartite networks display second order phase
transition.

Note that it has long been reported that many real-
world networks exhibit fat-tail degree distributions [1, 55],
i.e., power law distributions. These networks are generally
called scale-free (SF) networks. However, in the experiments
multipartite networks with power law distributions are not
tested. For one thing, our proposed methods can theoreti-
cally analyze the robustness of multipartite networks with
arbitrary degree distributions. For another thing, SF net-

works in real-world are rare according to the lastest research
[56]. Meanwhile, although many efforts have been done to
generate single networks with arbitrary degree distributions
[2, 57–66], generating multipartite networks with power
law degree distributions is non-trivial and still demands
tremendous efforts. Below are some useful discussions for
generating multipartite SF networks.

For generality, let us consider generating a bipartite SF
network BPm×n with m and n respectively denote the
number of vertices in v1 and v2. The degree distributions
of the vertices in v1 and v2 can be respectively formulated
as

P1(d) = C1 · d−λ1

P2(k) = C2 · k−λ2
, (37)

where C1 and C2 are two constants and λ1 and λ2 are the
exponents of the power law distributions.

In order to generate a bipartite SF network, one needs to
do the inverse transform sampling, i.e., to sample the degree
sequences D = (d1, d2, ..., dm) and K = (k1, k2, ..., kn)
respectively from P1(d) and P2(k), where di ∈ [dmin, n]
and ki ∈ [kmin,m]. Once D and K are obtained, then one
can utilize the Configuration Model or its improved variants
to graphically realize D and K and the bipartite network is
thus generated.
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Fig. 9. Theoretical (denoted by lines) and simulation (denoted by symbols) results on the robustness of unidirectional tripartite networks with Poisson
degree distributions. A fraction 1− p of vertices are randomly removed from each network.

Note that for a bipartite network, D and K should
satisfy the following condition

m
∑

i=1

di ≡
n
∑

i=1

ki ≡ |E|. (38)

Eq. 38 has an equivalent form which reads

m · ⟨k1⟩ = n · ⟨k2⟩ . (39)

Recall the definition for the first moment ⟨k⟩, along with
Eq. 39 we can further derive

m ·
∞
∑

d=dmin

d · P1(d) = n ·
∞
∑

k=kmin

k · P2(k)

⇒ m · C1 ·

∫ ∞

dmin

d−λ1+1dd = n · C2 ·

∫ ∞

kmin

k−λ2+1dk

.

(40)
Assume that λ1 − 1 ≥ 1 and λ2 − 1 ≥ 1, the above

equation thus can be simplified as

mC1

λ1 − 2
d2−λ1

min =
nC2

λ2 − 2
k2−λ2

min . (41)

Note that we always have
∑

P1(d) =
∑

P2(k) = 1. To
be specific, in the limit of m, n → ∞, we have

∑

P1(d) = C1

n
∑

d=dmin

d−λ1 ≃ C1

∫ ∞

d=dmin

d−λ1dd

=
C1

λ1 − 1
d−(λ1−1)
min

, (42)

∑

P1(d) = C2

m
∑

k=kmin

k−λ2 ≃ C2

∫ ∞

k=kmin

k−λ2dk

=
C2

λ2 − 1
k−(λ2−1)
min

. (43)

From the above equation we can easily figure out the
constants as

C1 = (λ1 − 1)dλ1−1
min

C2 = (λ2 − 1)kλ2−1
min

. (44)

Putting the above equation back into Eq. 41 we get the
relationships between the exponents λ1 and λ2 as follows

m ·
λ1 − 1

λ1 − 2
· dmin = n ·

λ2 − 1

λ2 − 2
· kmin. (45)

Therefore, when generating a bipartite SF network, the
following deterrents should be taken into account:

1) Exponents λ1 and λ2 should obey the constraint
shown in Eq. 45. Note that it is easy to generating a
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Fig. 10. Theoretical (denoted by lines) and simulation (denoted by symbols) results on the robustness of bi-directed tripartite networks with Poisson
degree distributions. A fraction 1− p of vertices are randomly removed from each network.
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SF-SF interdependent network, since exponents λ1

and λ2 of a SF-SF interdependent network can be
set to arbitrary values.

2) Degree sequences D and K should satisfy the

condition shown in Eq. 38. On the one hand, it is
hard to sample two degree sequences D and K

which exactly follow the distributions P1(k) ∼ λk
1

and P2(k) ∼ λk
2 . On the other hand, even if D

and K strictly follow P1(k) and P2(k), there is no
guarantee that the condition shown in Eq. 38 will
be satisfied. As a consequence, modifications like
increasing or decreasing the values of some di ∈ D

and kj ∈ K have to be made, while which di and
kj should be chosen and modified is yet an open
question.

3) Graphicality condition checking. Even though D

and K simultaneously satisfy Eqs. 45 and 38, one
still has to check the graphicality condition as
shown in [63, 65] to see whether D and K can be
graphically realized or not.

4) Unbiased graph sampling. Note that the number of
networks that can graphically realize sequences D

and K could grow exponentially as N increases [62,
64]. How to efficiently sample a small amount of
networks which are less correlated with each other
is an open issue.
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