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We consider a sharing economy network where agents embedded in a graph share their resources. This is
a fundamental model that abstracts numerous emerging applications of collaborative consumption systems.
The agents generate a random amount of spare resource that they can exchange with their one-hop neighbors,
seeking to maximize the amount of desirable resource items they receive in the long run. We study this
system from three different perspectives: a) the central designer who seeks the resource allocation that
achieves the most fair endowments after the exchange; b) the game theoretic where the nodes seek to form
sharing coalitions within teams, attempting to maximize the benefit of their team only; c) the market where
the nodes are engaged in trade with their neighbors trying to improve their own benefit. It is shown that
there is a unique family of sharing allocations that are at the same time most fair, stable with respect to
continuous coalition formation among the nodes and achieving equilibrium in the market perspective. A
dynamic sharing policy is given then where each node observes the sharing rates of its neighbors and allocates
its resource accordingly. That policy is shown to achieve long term sharing ratios that are within the family
of equilibrium allocations of the static problem. The equilibrium allocations have interesting properties that
highlight the dependence of the sharing ratios of each node to the structure of the topology graph and the
effect of the isolation of a node on the benefit may extract from his neighbors.

1. Introduction
1.1. Motivation
Collaborative consumption (Felson and Spaeth 1978), or the sharing economy, is an emerging
economic trend that promotes novel models of sharing, bartering, or renting resources and services,
which is opposed to traditional ownership-based models (Botsman and Rogers 2010, Sundararajan
2016). These solutions are attracting increasing interest due to the global recession that has changed
the consumer behavior, the pressing environmental concerns, and the penetration of Internet that
facilitates such activities (New York Times 2013, Economist 2013, Guardian 2014). The success
of sharing economy is best manifested by the fact that it already encompasses a very diverse
set of models. In some cases the payments are implemented with legal tender currency while in
others the sharing activities are supported by bespoken credit systems; some applications have
geographically-restricted scope while others operate in a world-wide scale; in many models the
users’ collaboration is mediated by third parties, as in the transportation network Uber, while in
other cases the collaboration takes place directly among users who are co-located or have common
interests. All these consumption-as-a-service schemes offer sustainable and low-cost solutions to
daunting consumption problems, and can boost the economy at a local or larger scale (PwC 2016).

The fundamental goal in sharing economy is to leverage the potential of ubiquitous connectivity
and enable the exchange of resources among the users by exploiting the complementarity of their
resource availability and demands. In decentralized implementations, this can be achieved as fol-
lows: whenever a user has some idle resource, she offers it to other users who at that time have
excess needs, and benefits from the resources they offer to her in the future. Such solutions can
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also address problems where users have different preferences for the different resources, and need
to exchange them in order each one to acquire the most valuable for her needs (Sonmez and Unver
2011). The common denominator in these scenarios is that users are both resource consumers

and producers (or, prosumers), and they are free to decide how their resources will be allocated
to others. Moreover, their collaboration opportunities are constrained by various network graphs.
For example, ride sharing or food sharing is constrained by the geographic proximity of the partic-
ipants, renewable energy sharing relies on the grid network, commodity exchanges are conditioned
on the matching of the users’ needs or social ties, and so on. We will use hereafter the term sharing
economy networks to describe these models where users (or, agents) embedded in a network graph
exchange their resources over time, aiming to maximize their individual benefits.

Despite the proliferation and huge potential of these sharing economy networks, very important
questions about their salient features and performance remain unanswered. For example, to date it
is not understood if these sharing systems admit sharing equilibriums nor if there are meaningful
dynamic sharing policies that can lead to these equilibriums. Also, it is not known how efficient
these equilibriums are in terms of social welfare, and how robust to strategic behaviors of users who
act independently or within coordinated groups. Besides, we cannot assess today how the network
affects the overall performance of the sharing system or to what extent the network position of a
user shapes the resources she will receive from the network.

Motivated by these important questions, we consider a general model for sharing economy net-
works and follow a systematic approach to articulate and analyze the following issues:
• Definition and Properties of a Fair Sharing Policy. This is one of the most critical issues in

sharing economy networks. Ideally, from a system design point of view, each user should receive
resource commensurate to its contribution. This is necessary to establish the sense of fairness in the
participants. However, this is not always possible because of the underlying graph that prescribes,
for each user, the subset of users she can collaborate with. Additionally, there may be multiple
feasible sharing solutions that differ on the amount of resource each user receives. We would prefer
to select among them a fair outcome that balances the exchanges as much as possible. In the context
of sharing economy networks, such a fair allocation is also considered efficient as it minimizes the
wasted resources and maximizes the social welfare. The existence and the characterization of the
properties of centrally designed fair and efficient policies (e.g., their dependency on the underlying
network graph) is an important and currently open question.
• Existence and Fairness of Sharing Equilibriums. Most often these systems are not controlled

by a central entity that can exogenously impose such a fair solution. Instead, each user is free to
decide her strategy and therefore allocate her idle resource to the neighbors from which she receives
more service in return. Such interactions give rise to barter-style competitive sharing markets
where the users exchange their resources in a greedy fashion. The main question here is if these
myopic strategies lead to an equilibrium allocation where each user cannot unilaterally improve her
benefits, and whether these equilibriums are affected by the network constraints. In more advanced
settings, groups of users might be able to form coalitions and exclude non-members from sharing.
For example, in a Wi-Fi sharing community such as FON (FON 2017) a subset of users may decide
to serve only each other, expecting to increase their own benefits. Such strategies are very likely to
deteriorate the system’s performance, e.g., resulting in isolated users, and it is important to explore
if there are coalitional equilibriums that partition the network. Finally, a naturally arising question
is how efficient these competitive or coalition equilibriums are, i.e., whether they are related to the
above centrally designed fair sharing policy.
• Dynamics of Sharing Interactions. In such decentralized systems, the issue of how the users

can reach the sharing equilibriums is equally important to the existence of the latter. Therefore, it
is crucial to understand whether there are meaningful and simple-to-implement dynamic allocation
rules that can enable users to exchange their randomly created resources in a fashion that is fair
and efficient in the long-term. For the sharing market setting, such dynamic policies must also be
incentive-compatible, i.e., aligned with the users’ efforts to maximize their own benefits accrued
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from the sharing network. Besides, another desirable feature of these sharing policies is to rely
on the minimum possible information regarding the structure of the network and the resources or
decisions of the users. All these requirements sum up to the following key question: when the users
devise their dynamic (over time) sharing decisions in a self-interested and myopic fashion, having
information about the respective actions only of their one-hop neighbors, can the sharing network
reach an equilibrium that is also fair and robust to group strategic deviations?

The problem of efficient cooperation and resource sharing, even when network constraints are
involved, has been studied in several contexts. In communication and computing systems for exam-
ple, many architectures rely on pooling of resources that belong to different businesses (e.g., Internet
Service Providers) or even to different end-users. Examples of the latter cases include bandwidth
management in peer-to-peer file sharing systems (Aperjis et al. 2011, Wu and Zhang, 2010), Wi-Fi
Internet sharing communities (Iosifidis et al. 2014, Efstathiou et al. 2010), online content distri-
bution schemes (Misra et al. 2010), and so on. Similar ideas have been explored in other contexts,
e.g., for facilitating renewable energy sharing in smart grid networks (Gatzikis et al 2014), or for
enabling operating costs’ reduction in networks of service providers or manufacturers (Anily and
Haviv 2009, Manea 2016, Falkenhausen and Harks 2013). However, prior works in those areas do
not address the questions outlined above, namely the impact of the graph constraints and the anal-
ysis of the competitive interactions of the users over time. This latter element gives rise to a new
type of bartering markets which are related to the general equilibrium theory and the seminal work
of Arrow and Debreu (Arrow and Debreu 1954). Here we study a different setting which, not only
has graph constraints similarly to other networked economies (Kakade et al. 2004b,a), but also
does not presume the existence of a monetary instrument. Besides our focal point is the dynamics
of agents’ decisions, an aspect that remains under-investigated even in general competitive market
models who rely on full-information tatonnement processes (Mas-Colell et al. 1995).

Finally, the emergence of sharing economy has motivated early studies focusing on specific appli-
cations such as vehicle pooling (Santia et al 2014) or sharing of mobile data plans (Camilo et
al 2014). Nevertheless, these studies do not answer the above fundamental questions arising in
sharing economy. In the sequel we provide a comprehensive overview of the literature highlighting
the recent studies about sharing economy, as well as related resource sharing models that have
been proposed in pertinent areas.

1.2. Methodology and Contributions
In order to shed light on these questions, we employ a general model that captures many basic
instances of the emerging sharing economy networks. We consider a set of users, where each one
generates over time a random amount of idle resource that she does not need and therefore can
allocate to her neighbors. For instance a user may have excess bandwidth in her connection plan,
that may either being used to forward some neighbor’s traffic or get wasted. We assume that
each user has unsaturated demand for the resources of others. This model captures situations
where the users have complementary resource availability and demand generation, or different
types of resources and different preferences for them. Neighborhood relationships are described by
a bidirectional or directional connected graph which does not change. The sharing ratio (or, simply
ratio) of total received over allocated long term average resource characterizes the performance
of each user, as it quantifies the accrued benefits over her contributions. We consider that the
resources can be shared only among one-hop neighbors, and the shared resources are directly
consumed by their recipients and cannot be distributed further in the network. This assumption
captures practical distribution constraints that arise in many sharing systems.

From a system point of view, a central designer would prefer to have a vector of sharing ratios
where each coordinate that corresponds to a user (or, a node in the graph), has value equal to one.
Often this will not be possible due to the graph exchange constraints and asymmetries in nodes’
resource availability. For example, in a microgrid energy sharing network, some renewables might
create very large amounts of energy which cannot be matched by the neighboring devices. For these
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cases, the lexicographically maximum (lex-optimal), or max-min, sharing vector is a meaningful
performance criterion as it is Pareto optimal and balances the shared resources as much as possible
(Nace and Pioro 2008).

In the absence of a network controller however, we assume that each node makes greedy myopic
allocation decisions so as to maximize the aggregate resource it receives in return from the com-
munity. The interactions of the nodes give rise to a competitive market, which however differ from
previous similar models (Arrow and Debreu 1954, Wu and Zhang, 2010) due to the existence of
the graph and the absence of side-payments (money) among the nodes. We introduce the concept
of sharing equilibrium that is appropriate for this setting, characterize the equilibrium allocations,
and study its relation to the centrally designed max-min fair policy.

Accordingly, we assume that subset of nodes can coordinate and form coalitions exchanging
resources only with each other. A coalitional graph-constrained game with non-transferable util-
ity (NTU) is identified in the above set-up. We focus on the existence and properties of stable
equilibrium allocations. Given a certain global allocation, if there is a subset of nodes that when
they reallocate their own resources among themselves manage to improve the sharing ratio of at
least one node in the subset, then they have an incentive to deviate from the global allocation.
Therefore, when an allocation is in equilibrium, it should be strongly stable and no such subset
should exist.

We study the above frameworks, that differ on the assumptions about the system control and
the users behavior, and find a surprising connection among them. In particular:

(i) It is proved that there is a unique sharing equilibrium ratio vector that is a solution for the
competitive market, and lies in the core of the NTU graph-constrained coalitional game, being also
strongly stable. This is the max-min fair ratio vector. This result reveals that a centrally designed
meaningful fair solution is robust to nodes’ selfish strategies even if they are allowed to coordinate
and form strategic groups seeking to improve their payoff. This finding has many implications for
the applicability of such fair policies to sharing economy systems.

(ii) It is shown that the equilibrium exhibits rich structure and a number of interesting properties.
For example, in the equilibrium allocation there is exchange of resources only among the nodes with
the lowest sharing ratios and the nodes with the highest ratios, the nodes with the second lowest
ratios with the set of the second highest ratios, and so on. We also study how the sharing ratios
are affected by the graph properties, such as the node degree. This latter aspect is particularly
important from a network design point of view as it reveals, among others, the impact a link
removal or addition has on the equilibrium. Our findings hold for any graph, and therefore they
can help a controller to predict or even dictate the sharing equilibrium.

(iii) Finally, we propose a distributed stochastic algorithm that can be used by the nodes in
order to make sharing decisions over time. The algorithms is simple and with minimal information
requirements as it allocates the resource generated at each time instance at a node to its neighbor
having the highest exchange ratio at that point. This strategy is intuitive as well, since it maximizes
the current sharing benefits for the users. Interestingly, it is proved that this dynamic algorithm
leads to the above fair and robust sharing equilibrium points.

The rest of this paper is organized as follows. In Section 2 we present the model and the problem
statement ; in Section 3 we introduce a policy that solves the problem for all three frameworks;
Section 4 presents extensive numerical results and Section 5 surveys the related literature in differ-
ent areas. We conclude in Section 6 where we also discuss our model assumptions. All the proofs
can be found in the Appendix of the paper.

2. Model and Problem Statement
2.1. Notation and Model
We use capital letters to denote sequences of random variables, e.g., {Xi} , or {X (t)}. Time averages
of sequences are denoted with the same letter and a bar on top, e.g.,

X̄ (t) =

∑t

τ=1X (τ)

t
.
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Let G = (N ,E) denote a connected undirected graph with a set N of N = |N | nodes and a set
E ⊆ {(i, j) : i, j ∈N , i 6= j} of E = |E| links. We denote by Ni the set of neighbors of node i, that
is Ni = {j : (i, j)∈ E}. We consider a system that evolves over time and we assume a slotted time
operation, where slot t= 1,2, · · · , is the time interval [t, t+1). The “beginning” and “end” of slot t
are respectively the times t and t+ 1. The dynamics of the nodes interactions can be described as
follows. At the beginning of time slot t, node i generates resource Di(t), where Di (t) , t= 1,2, ...,
are i.i.d with mean E [Di (t)] =Di > 0; to avoid complications in the discussion we will assume that
Di (t) are bounded, i.e., there is a real number B such that Di (t) ≤ B, i ∈ N , t = 1,2, · · · . The
long-term average amount of produced resource by node i, Di, will be referred to as “endowment”
of node i. This resource is distributed to the neighbors of i according to a policy π which is formally
defined below.
Definition 1. A policy π is a set of rules according to which the distribution of resources

among the nodes in N is effected over time. More specifically, a policy π determines the amount
or resource node i gives to node j ∈Ni at time t, based on the generated and allocated resources
up to time t. We denote the class of all policies by Π.
Under a policy π, at time t node i gives to node j amount Dπ

ij (t)≥ 0 of the resource it generates
up to t, and since the node cannot give more than it generates, it holds for any t,

t∑
τ=1

∑
j∈Ni

Dπ
ij(τ)≤

t∑
τ=1

Di(τ). (1)

The average amount of resource node i gives to its neighbors by time tis

D̄i (t) =

∑t

τ=1

∑
j∈Ni

Dπ
ij(τ)

t

The amount of resource node i receives from its neighbors at time t is Rπ
i (t) =

∑
j∈N i

Dπ
ji(t) and

the average amount of resource received by time t is, R̄π
i (t) =

∑t

τ=1R
π
i (τ)/t. We denote the long

term average resource that user i receives under policy π as lim inft→∞ R̄
π
i (t), rπi . Note that in

general rπi is a random variable. However, as we will see in the next section, in order to obtain
policies that satisfy the objectives of interest in this work, it suffices to restrict attention to policies
for which limt→∞ R̄

π
i (t) exists and has a constant and finite value.

The set of feasible long term average received resource vectors that can be achieved by policies
in Π is denoted by R. That is,

R=
{
rπ = (rπi )i∈N : π ∈Π

}
. (2)

Node i is interested in maximizing its long-term average received resource rπi . Clearly, the objectives
of nodes are conflicting, as neighbors have to compete for the same resources and therefore the
key issue is to decide how to allocate the resources produced by the nodes. There are two basic
approaches to address this issue. Namely, one could formulate this problem as a centrally defined
fair-allocation problem and take into account the resource contribution of each node i ∈N to the
community in the long-term, so as to decide how much resource ri to return to it. In a different
context, each node is interested in maximizing it own received resource, and this gives rise to
competitive interactions and hence creates a sharing economy market. In that case, the amount
of resource each node receives in the long run depends on the attained equilibrium, if any exist.
Additionally, it is possible in some settings that users can coordinate with each other and form
sharing groups, or coalitions, aspiring to improve their benefits by excluding non-members. Our
goal is to analyze the long-term average performance of the nodes’ dynamic interactions in the
three frameworks described above. This is formalized in the next subsection.
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Figure 1 The model of a sharing economy network. The different system parameters and node decisions
are presented, for the long-term regime or a specific time slot t= 5.

2.2. Operating Frameworks
In this section, we consider three different problem formulations whose objectives are based on
long-term averages of the quantities of interest.

2.2.1. Fairness Framework In this setting, we consider a centralized policy designed to
allocate resources to nodes in proportion to their contribution to the community. Ideally, in such
a setting each nodes distributes in the long-run all its endowment and it would be desirable to
allocate to every node i ∈N resource equal to its contribution, i.e., ri =Di. However, due to the
resource sharing constraints imposed by the graph and the different resource endowments of the
nodes, such policies will not be feasible in general. Given this, the designer would prefer to ensure
the “most balanced” long-term allocation. A suitable method to achieve this goal is to employ
the lexicographic optimal (or, lex-optimal) criterion, which has been extensively used for resource
allocation and load balancing, for example, in communication networks (Georgiadis et al. 2002),
(Nace and Pioro 2008), (Radunovic and Le Boudec 2007). This multi-objective optimization
method first increases as much as possible the allocated resource to the node with the smaller
sharing ratio, ri/Di. Next, if there are many choices, it attempts to increase the resource allocated
to the node with the second smaller sharing ratio, and so on. The resulting long-term average
allocation is max-min fair, thus as balanced as possible. Next we provide the necessary definitions.
Definition 2. Lexicographical order. Let x and y be N -dimensional vectors, and φ(x) and

φ(y) the N -dimensional vectors that are created by sorting the components of x and y respectively,
in non-decreasing order. We say that x is lexicographically larger than y, denoted by x � y, if
the first non-zero component of the vector φ(x)−φ(y) is positive. The notation x� y means that
either x� y or, x= y.

Within this framework we are interested determining policies that induce lexicographically opti-
mal sharing ratio vector, i.e., defining ρπi ,

rπi
Di
, ρπ = (ρπi )i∈N , we are interested in determining a

policy π∗ such that ρπ
∗ � ρπ, for all π ∈Π. In the following, a vector r whose sharing ratio vector

is lexicographically optimal will also be called simply “lexicographically optimal” or “lex-optimal”.

2.2.2. Competitive Framework Assume now that each node i∈N is an independent deci-
sion maker, interested in maximizing the long-term average resource ri it receives. An approach in
this setup is to define exchange ratios for the node resources that have the following property: each
node receives resources from its neighbors in such a manner that the node maximizes its received
resource subject only to the constraint that the cost of received resource does not exceed its wealth
determined by the exchange ratio and the size of its endowment (the constraints regrading the
size of the endowments of the neighbors of the node are not taken into account in this optimiza-
tion). The solution concept for this setup is effectively the competitive (or, Walrasian) equilibrium
(Arrow and Debreu 1954), (Mas-Colell et al. 1995), which has been also applied in communica-
tion networks (Aperjis et al. 2011), and extended to graphical economies (which exhibit localities)
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(Kakade et al. 2004a,b). However, for the problem under consideration, we avoid explicit exchange
ratios, and introduce a closely related equilibrium concept:
Definition 3. Sharing Equilibrium. A sharing equilibrium is determined by a vector of

sharing ratios ρ∗ = (ρ∗i )i∈N with the following properties. a) If at time t node i gives resource Dij(t)
to node j ∈Ni, node i expects in return (either at time t or in the future) resource1 Dij(t)/ρ

∗
j , and

b) node i gives the resources it generates to its neighbors in such a manner that it maximizes its
received resource in the long run, ri, under the constraint that it does not exceed the amount it is
entitled by the specified exhange rate and its endowment, that is, ri ≤Diρ

∗
i . It is easy to see that

the resulting policy π∗ should be such that,
1. each node distributes all its endowment to its neighbors in the long run, i.e.,

lim
t→∞

D̄i (t) =Di, (3)

2. each node distributes its generated resource at all times to the neighbors that have the smallest
sharing ratio. Moreover, since each node attempts to maximize its received resource without taking
into account the avaibable endowments of its neighbors, the optimization should result in received
resource rate vector r∗ that satisfies: r∗i =Diρ

∗
i , i∈N .

In this context, we are interested in determining whether equilibrium sharing ratios and asso-
ciated policies exist. Moreover, we are interested in determining policies that operate without a
priori knowledge of the equilibrium rates (provided that they exist), but adjust sharing ratios over
time in such a manner that they eventually converge to the equilibrium ones; in addition, the
long-term received resources are those that are obtained by employing policies that know a priori
the equilibrium sharing ratios.

2.2.3. Coalitional Framework Before providing the details of this framework, let us intro-
duce some additional notation. We denote by GS = (S,ES) the subgraph of G induced by a
nonempty set of nodes S ⊆N , i.e., the graph with node set S, and link set ES = {(i, j) : i, j ∈ S}.
We denote by ΠS the set of policies that operate on graph GS and by RS the set of all long-term
received resource vectors that can be obtained by employing policies in ΠS ,

RS =
{
rπ = (rπi )i∈S : π ∈ΠS

}
.

Note that the Graph GS may not be connected. However, the definition of policy in Section 2.1
still holds an hence the set of policies ΠS is well defined. Also, all the stated results for connected
graphs hold for each of the connected components of GS .

In this setting we assume that subsets of nodes can coordinate to form coalitions and deviate
from the proposed fair solution if this will ensure higher resources for some of them. In game
theoretic terms, this behavior leads to a coalitional (or, cooperative) game (Myerson 1997) played
by the nodes. Specifically, we call any nonempty subset of nodes S ⊆ N a coalition when they
allocate their resources only among each other. That is, there is no resource exchange among nodes
in S and nodes in its complement set Sc =N −S. Hence, the feasible long-term resource vectors
that nodes in S get, are the |S|−dimensional vectors in RS . We refer to the set N as the grand
coalition. This coalitional game is one with non-transferable utilities, as resources cannot be split
arbitrary among the nodes, due to the exchange constraints imposed by the graph. Our goal is
to study the existence and the properties of self-enforcing long-term allocations. This property is
formally captured by the notion of stability for the grand coalition.
Definition 4. Coalitional Stability. A grand coalition N along with a policy π∗ ∈ Π that

induces long-term received resource vector r∗ is called strongly stable if for any nonempty node set
S ⊆N , there is no policy πS ∈ΠS that induces an (|S|−dimensional) vector r such that ri ≥ r∗i
for all i∈ S, and rj > r

∗
j for at least one node j ∈ S. The allocation is called weakly stable if for any

nonempty node set S ⊆N , there is no policy πS ∈ΠS that induces a vector rS such that rSi > r∗i
for all i∈ S.
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Note that strong stability implies weak stability but not the other way around. In particular, the
concept of weak stability for the grand coalition is directly related to the concept of the core. In
this coalitional framework, we ask the question: Is there a policy π ∈ Π that renders the grand
coalition stable?

3. A Unifying Policy For The Three Frameworks
In this section we describe a simple policy π∗ that achieves the objectives of all three frameworks
defined in Section 2.2. According to π∗ each node maintains a ratio ρi (t) = R̄i (t)/Di which may be
interpreted as resource sharing ratio (or simply “ratio”) at time t. At time t, every node gives its
generated resource to the node that has the smallest sharing ratio among its outgoing neighbors.
Specifically, the policy operates according to Algorithm 1. Note that the only a priori information
required for the operation of the policy is the set of endowments of the nodes. However, as will
be discussed in Section 6, the policy can also operate by replacing Di with the time average
D̄i (t) =

∑t

τ=1Di (τ)/t.

Algorithm 1: Algorithm according to which policy π∗ operates

1 At time t= 1 set ρi (t) = 0, i∈N
2 At the beginning of slot t,
3 Each user i∈N announces to its neighbors the sharing ratio ρi(t) = R̄i(t)/Di,
4 Each user i∈N distributes the resource it generates at time t to its neighbor(s) j ∈Ni that

have the smallest sharing ratio, ρj(t).

The next theorem is the main result of this work.

Theorem 1. The following hold.
• Policy π∗ is Lexicographically optimal.
• Under π∗the node sharing ratios and long-term received resources converge to the equilibrium

sharing ratios and equilibrium received resources.
• Policy π∗ is coalitionally stable.

Next we present an outline of the arguments that will be used to prove this theorem. In Section
3.1 we show that the region R is a subset of a polymatroid, and this allows us to restrict attention
to policies under which all nodes distribute their endowments to their neighbors in the long run.
In Section 3.3, using the structure of the lexicographically optimal vector in polymatroids, we
derive the structure for the lexicographically optimal point in our setup, and we use this structure
to show that a policy that achieves the lexicographically optimal received resource vector also
achieves the equilibrium sharing ratios in the long run. Also, we show that a policy that achieves
the equilibrium sharing ratios is stable. Finally, in the Appendix we show that policy π∗ achieves
the lexicographically optimal point and thus possesses all properties described in Theorem 1.

3.1. Achievable Received Resource Vectors
In this section we provide some important properties about the region R in (2) which consists of
the possible vectors of long-term average received resources rπ = (rπi )

N

i=1 that can be obtained by
any policy π ∈Π. For a set S ⊆N define by NS the set of nodes that are neighbors of nodes in S,
i.e., NS =∪i∈SNi, N∅ = ∅. Let

f(S) =
∑
i∈NS

Di

where for G = ∅ we define
∑

i∈G xi = 0. Since there are no isolated nodes, f (N ) =
∑

i∈N Di. The
following lemma is a consequence of the fact that nodes can receive resources only from their
neighbors.
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Lemma 1. Under any policy π ∈Π it holds for any S ⊆N ,

limsup
t→∞

∑
i∈S

R̄π
i (t)≤ f(S), (4)∑

i∈S

rπi ≤ f (S) . (5)

Let Π0 be the class of policies in Π for which
1. The long-term average of received resources exist, i.e, rπi = limt→∞

∑t

τ=1R
π
i (τ)/t, i∈N .

2. All endowments generated by the nodes are eventually consumed, i.e.,
∑

i∈N r
π
i = f (N ) .

Let R0 be the set of received resource vectors, r, that can be achieved by policies in Π0. From
Lemma 1 we conclude that

R⊆

{
r≥ 0 :

∑
i∈S

ri ≤ f(S), S ⊆N

}
,A, (6)

R0 ⊆

{
r≥ 0 :

∑
i∈S

ri ≤ f(S), S ⊂N ,
∑
i∈N

ri = f(N )

}
,A0. (7)

To proceed, we need the fact that f (S) possesses the important property of submodularity.

Lemma 2. f(S) is submodular i.e., it holds for every S, T ⊆N ,

f(S ∩T ) + f (S ∪T )≤ f(S) + f(T ). (8)

For submodular f (S), the sets A and A0 are referred to as “polymatroid polyhedron” and “base
of the polymatroid” respectively. Using the polymatroid property, the next lemma shows that the
achievable resource vectors under policies in Π0 is the base of the polymatroid.

Lemma 3. It holds: R0 =A0.

3.2. Review of Polymatroid Properties
In this section we present some properties of polymatroids that are needed in the sequel (Fujishige
2005, Bhattacharya et al 1993).

Lemma 4. If A is a polymatoid with base A0, then for any r ∈ A there exist an r0 ∈ A0 such
that r0 ≤ r. Hence the lexicographically optimal vector in A lies in A0.

Next we describe the structure of the lexicographically optimal vector in A. First we need some
notation. For a given r ∈A, the different values the coordinates of vector ρ= (ρi)i∈N = (ri/Di)i∈N
takes, will be denoted by vk (r) , i= 1, ...K(r)≤N , where v1 (r)< v2 (r)< ... < vK(r) (r). The index
of the value to which ρi equals is denoted by Ii (r), i.e., vIi(r) = ρi. We call Ii (r) the “level of node
i”. The set of nodes of level k is denoted by Lk (r) = {i∈N : Ii (r) = k}.

Theorem 2. Let A be a polymatroid. A vector r in A, is lexicographically optimal if and only
if the following hold. ∑

i∈L1

ri = f (L1) , (9)∑
i∈Lk

ri = f
(
∪kl=1Ll

)
− f

(
∪k−1l=1 Ll

)
, 2≤ k≤K, (10)

where, Lk =Lk (r) . K =K (r) . The lexicographically optimal vector exists and is unique.
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Figure 2 Example of Multiple Allocations leading to identical sharing ratios. Numbers show main allocation rates,

while in parentheses the alternative options are depicted. All nodes have the same average resource
generation rate. Both allocations lead to the same exchage ratio vector of (1,1,1,1).

3.3. Structure of Lexicographically Optimal Received Resource Vector
In this section we describe the structure of the lexicographically optimal vector for the problem
under consideration. We will make use of the following simple lemma.

Lemma 5. Let r ∈A0 then: a) If K = 1 then v1 = 1. b) If K > 1 , then v1 < 1 and lK > 1.

For the problem under consideration in this work it can be easily seen that given any vector r
in A0 there is an allocation set {dij ≥ 0, i∈N , j ∈Ni} , such that

∑
j∈Ni

dij = Di, i ∈ N and∑
j∈Ni

dji = ri, i ∈ N , we refer to this set as “allocation that generates r.” This allocation may
not be unique as can be seen in the example shown in Figure 2. Fixing any such allocation, we say
that (under this allocation) “node i gives resource to node j” if dij > 0. We also say that “node i
gives resource to a set S”, if node i gives resource to any node in S.

Consider now the general structure of the lexicographically optimal vector described in Theorem
2. For the problem under consideration in the current work, equality (9) implies that there is (at
least one) allocation set {dij ≥ 0, i∈N , j ∈Ni} , such that the endowments of all neighbors of set
L1 are given to the nodes in this set. Similarly, (10) for k = 2 implies that the endowments of all
nodes in NL2 −NL1are given to the nodes in set L2; in general, the endowments of all nodes in
NLk −N∪k−1

l=1
Ll

are given to nodes in set Lk. To proceed we need some additional notation. Given

vector r with K (r)≥ 2 define,

Qk (r) =N −∪k−1m=1 (Lm (r)∪LK−m+1 (r)) , 1≤ k≤ dK/2e, (11)

where ∪lm=kS = ∅ if l < k. For example, Q1(r) =N , and Q2 (r) consists of the nodes in N that
remain after removing those that belong to level sets L1 (r) and LK (r). In the sequel, a quantity X
referring to induced subgraph GQk(r) =

(
Qk (r) ,EQk (r)

)
is denoted XQk(r). Also when there is no

possibility for confusion, for simplicity we omit from the notation the dependence of the quantities
defined above on the vector r.

The next Theorem describes the structure of the lexicographically optimal vector.

Theorem 3. A vector r ∈ A, is lexicographically optimal if and only if the following hold. If
K = 1, then v1 = 1. If K ≥ 2 then

1. Lk is an independent set in graph GQk , for k= 1, ...., bK
2
c.

2. LK−k+1 =NQk (Lk), for k= 1, ...., bK
2
c.

3. vkvK−k+1 = 1, for k= 1, ...., bK/2c.
4.
∑

i∈Lk
ri =

∑
i∈LK−k+1

Di, for k= 1, ...., bK
2
c.

5. If K is odd, then vdK/2e = 1.

Let us now discuss the implications of the above theorems. Under a lexicographically optimal
allocation r∗, the nodes are divided in disjoint sets L∗1, · · · ,L∗K∗ , where nodes in each set have the
same sharing ratio; this division depends both on the resource endowments of the nodes and on the
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L*1 L*7

L*6L*2 L*5

L*3

L*4
Legend

Network Links

Exchanges

Groups

Figure 3 Structure of a graph with K∗ = 7 levels. Solid lines show the possible exchanges, or, the physical
connections, while dashed arrows the actual exchanges. Note that not all connections are employed,
as some groups of players do not interact (or, collaborate) with each other.

graph G. For the discussion below, please refer to Fig. 3, that presents an example of the structure
for K∗ = 7 levels. In this graph, we depict with solid lines the physical connections that may exist
among the different sets of nodes. Notice that the actual nodes and their detailed connections are
not shown.

Sharing ratios Structure. According to Theorem 3, the sharing ratios have a certain structure.
Specifically, the highest sharing ratio is inversely proportional to the lowest one (l∗7 = 1/l∗1), the
second highest sharing ratio is inversely proportional to the second lowest sharing ratio (l∗6 = 1/l∗2),
and so on. Additionally, as shown in Fig. 3 all the nodes in the set with the highest sharing ratio,
L∗7, exchange resources only with nodes belonging to the set with the lowest sharing ratio, L∗1.
Similarly, the nodes in set L∗6 exchange resources only with nodes in set L∗2 and so on. When K∗

is odd, there is one set of nodes, here the set L∗4, which exchange resource only with each other.
Topological Properties. Nodes in the set with the lowest exchange rate, L∗1 constitute an inde-

pendent set. Moreover, the set of their neighbors is the set with the highest sharing ratio, L∗K∗ .
Similarly, it holds that L∗6 = NQ2

(L∗2) nodes in L∗2 constitute an independent set in the graph
GQ2(r∗). Hence, the nodes in set L∗2 can have links only with nodes in set L∗6 and possibly with
nodes in L∗7 (since the latter do not belong in GQ2(r∗)). However, as discussed above, nodes in L∗2
exchange resource only with nodes in L∗6. With the same reasoning, it is easy to see that nodes in
set L∗3 can be physically connected with nodes in L∗7, L∗6 and L∗5, but they exchange resource only
with nodes in the latter set. Finally, nodes in set L∗4 exchange resources only with each other.

These properties reveal how the graph affects the lex-optimal fair solution. For example, by
adding a link between two nodes initially belonging to L∗1 (which is independent), the lex-optimal
solution changes and places these (now connected) nodes to another set. This dependency among
the graph structure and the lex-optimal sharing ratio vector will become more evident in the sequel.

The next theorem shows that the ratios of the lexicographically optimal point are the equilibrium
sharing ratios of the competitive framework.

Theorem 4. Let r∗ be a lexicographically optimal vector. The ratios {ρ∗i }i∈N = {r∗i /Di}i∈N are
equilibrium sharing ratios for the competitive framework.

The next theorem shows that a policy achieving the lexicographically optimal vector r∗ is stable.

Theorem 5. A policy π∗ that achieves the lexicographically optimal vector r∗is strongly stable.

The next section presents representative numerical examples that shed light on the above results.
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Figure 4 (a): A network with 6 nodes that create 2 groups, each one marked with the dotted-line rectangle.
There are 3 different levels of sharing ratios. The color of each node is analogous to its sharing ratio
value (increasing from white to black colour). The received resources are r∗1 = 20, r∗2 = 40, r∗3 = 10,
r∗4 = 10, r∗5 = 60, and r∗6 = 30. The sharing ratios for the nodes belonging to each set are u∗1 = 0.5,
u∗2 = 1, and u∗3 = 2 respectively; (b): A network with 13 nodes which create 3 groups. Received resources
are r∗1 = 26, r∗2 = 20, r∗3 = 39.74, r∗4 = 42.78, r∗5 = 93.49, r∗6 = 14.97, r∗7 = 30.38, r∗8 = 20.96, r∗9 = 30.38,
r∗10 = 4.28, r∗11 = 160, r∗12 = 6.25, and r∗13 = 33.75. (c): A ring graph of 6 nodes with 2 coalition and 4
level. (d): A complete graph of 6 nodes with 1 coalition and 2 levels.

4. Numerical Results and Discussion
For our numerical investigation, we consider two families of network graphs. First, we focus on
small graphs with typical structures, such as rings. Then, we present the equilibriums in well-known
network models such as Erdos-Renyi, Lattice, Scale-free and Small-world graphs.

4.1. Basic Graphs
Consider first the networks of Fig. 4. Solid lines represent the physical connections of each node,
i.e., the possible exchanges that this sharing economy network can support, and the dotted arrows
indicate the actual resource allocations that take place at the equilibrium point. Next to each node
we depict its resource endowment.

Let us first focus on the 6-node network of Fig. 4a. At the lex-optimal equilibrium point this
network has K∗ = 3 levels with 3 sets L∗1 = {1,6}, L∗2 = {3,4}, L∗3 = {2,5} which are marked with
different colors, where darker colors are used for nodes with higher sharing ratios. Let us now verify
the properties that the lex-optimal allocation should have according to Theorem 3. First, notice
that set L∗1 is independent in graph G. Moreover, the neighbors of nodes in set L∗1 are the nodes
in L∗3. Although nodes in L∗3 are physically connected, they only allocate resource to nodes in L∗1
and it holds

∑
i∈L∗3

Di =
∑

i∈l1 ri = 20 + 30. Moreover, the highest and the lowest levels satisfy the
condition u∗1u

∗
3 = 1. The nodes are partitioned into 2 disjoint groups M∗

1 =L∗1 ∪L∗3 and M∗
2 =L∗2,

each one containing nodes with at most two levels.
For the example of Fig. 4b we used a network with 13 nodes that yields K∗ = 6 levels, with

u∗1 = 0.25, u∗2 = 0.43, u∗3 = 0.77, u∗4 = 2.34, u∗5 = 1.3, and u∗6 = 4. The sets are L∗1 = {12, 13}, L∗2 =
{4, 6, 8, 10}, L∗3 = {2}, L∗4 = {1}, L∗5 = {3, 5, 7, 9}, and L∗6 = {11}. Sets L∗1, L∗2, and L∗3 are inde-
pendent in graphs GQ1

, GQ2
, GQ3

, and the set L∗1 ∪ L∗2 ∪ L∗3 is independent in G. Moreover, it
holds L∗6 =NQ1

(L∗1), L∗5 =NQ2
(L∗2) and L∗4 =NQ3

(L∗3), and holds u∗6u
∗
1 = u∗5u

∗
2 = u∗4u

∗
3 = 1. In this

example we have 3 disjoint groups M∗
1 = L∗1 ∪L∗6, M∗

2 = L∗2 ∪L∗5, and M∗
3 = L∗3 ∪L∗4. We see that

links (10,11), (5,11), (1,3), (1,5) and (2,7) are redundant and can be removed without affecting
the lex-optimal allocation.

Figure 4c depicts a complete graph with 6 nodes, where node i= 4 has level uI1(r∗) = 0.988 while
the other nodes have level uI2(r∗) = 1.012. In general for complete graphs, from Theorem 3 and
the fact that independent sets in such graphs contain only one node, it follows that lex-optimal
allocations may have at most two levels. Moreover a complete graph has two levels iff the resource
of node i0 with the maximum endowment is larger than the sum of the resources of the rest of the
nodes, and it is L1 = {i0}. On the other hand, for the respective 6-node ring graph, Fig. 4d, the
lex-optimal solution yields 4 levels.
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(a) (b) (c)

Figure 5 Lattice Graphs with N=30 nodes. (a): N = 30 equal-endowment nodes (D = 30), 1 sharing ratio level.
(b): 28 low-endoment nodes (D = 30), 2 high-endowment nodes (D = 300), 7 different sharing ratio
levels. (c): 25 low-endoment nodes (30), 5 high-endowment nodes (D = 300), 4 different sharing ratio
levels.

(a) (b) (c)

Figure 6 Equilibriums in Erdos-Renyi Graphs. (a): N = 30, link creation probability p = 0.1, 1 sharing ratio level.
(b): N = 30, p = 0.2, 1 sharing ratio level. (c): p = 0.2, 2 high-endowment nodes (D = 300), 4 sharing
ratio levels.

(a) (b) (c)

Figure 7 Scale-free Graphs. (a): low skewed with skew parameter 0.5, 5 sharing ratio levels. (b): moderately
skewed (linear model, skew parameter 1), 7 sharing ratio levels. (c): highly skewed (parameter 2), 5
sharing ratio levels.
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(a) (b)

Figure 8 Small-world Graph, N=30. (a):Small-world Graph with symmetric nodes; (b):Small-world Graph with
Asymmetric Endowments (4 nodes with D=300)

4.2. Typical Network Models
In this subsection we focus on larger graphs of typical models, namely the Lattice, Erdos-Renyi
(Erdos and Renyi 1960), Scale-free (Barabasi and Albert 1999), and Small-world (Watts and
Strogatz 1998) networks. We demonstrate that the reached equilibrium points can be affected by
the properties of these networks, e.g., their density, but also by the diversity in the nodes’ resource
endowments. In Figure 5 we present the equilibrium allocations for 3 lattice graphs with 30 nodes.
First, Figure 5a presents the homogeneous case where every node has an average generation rate of
Di = 30 resource units. The node color is modulated by the attained equilibrium sharing ratio, with
darker shades indicated higher sharing ratios. We observe first that in the homogeneous case, the
graph structure does not create any imbalance in the equilibrium, all nodes achieve an sharing ratio
equal to 1. This result changes significantly when the nodes have diverse resource endowments.
Namely, in Figure 5b we depict the equilibrium of the same lattice network where 2 out of the
30 nodes have now much higher resource, namely Di = 300. This creates 7 different sharing ratio
levels. Finally, Figure 5cdepicts a graph where 5 out of the 30 nodes have resource Di = 300, and
this creates 4 different sharing ratio levels, making the sharing economy network less imbalanced
in that respect.

Next we focus on Erdos-Renyi (E-R) graphs. Figure 6a depicts an E-R graph with N = 30 nodes
and link creation probability p= 0.1, where all nodes are homogeneous in terms of their resource
endowments, having Di = 30. We observe that all nodes reach the same unique equilibrium point
of equal exchanges. The same holds for Figure 6b which is denser (p= 0.2), yet the additional links
do not affect the allocation strategies of the nodes. However, when the nodes become resource-
diverse with 2 nodes having Di = 300, the equilibrium changes significantly. Namely, there are 5
sharing ratio levels with the minimum of them being as low as u1 = 0.33 and the maximum as
high as u5 = 3.33. In other words, similarly to the lattice graph we observe that a change in the
resource endowments is more likely to change the equilibrium than a change in the structure of
these networks.

This is not the case however for scale-free graphs. These networks which are formed through
preferential-attachment processes, do not show assortative mixing (Newman 2002), and specifically
many nodes with low degree are connected to nodes with much higher degree. This creates a
structural advantage which results in diverse equilibrium sharing ratios even for homogeneous
systems where nodes have identical resource endowments. Figure 7a presents the equilibrium in a
scale-free graph that has a power parameter k= 0.5. We observe that there are 5 different sharing
ratio levels, as some nodes have high degree while many others have degree 1. Figure 7b presents
a graph created by a linear preferential attachment process, i.e., k= 1, that attains an equilibrium
with 7 sharing ratio levels. Finally, for the graph of Figure 7c it is k = 2 and the equilibrium
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Figure 9 Convergence of Algorithm 1. (a):Convergence of sharing ratios in the Lattice Network of Fig. 5a; results
shown for 3 nodes with degrees 2, 3, and 4. Inset plot shows the first 100 iterations. (b): Convergence
of sharing ratios in the Erdos-Renyi Network of Fig. 6a; results shown for 4 nodes with degrees 1, 3,
5 and 8. Inset plot shows the first 100 iterations. (c): Convergence of sharing ratios in the Scale-free
Network of Fig. 7b; results shown for 3 nodes with 3 different sharing ratios. Inset plot shows the first
100 iterations.

again changes and has 5 sharing ratio levels. In summary, we see with this basic example that in
scale-free graphs the equilibrium is significantly affected by the structural properties of the network
graph and result in asymmetric points even when the nodes are identical in terms of their resource
endowments.

As a final example, we present in Figure 8 the equilibriums in 30-nodes graphs that has the small-
world property (Watts and Strogatz 1998). Figure 7b presents a homogeneous network where all
nodes have equal resource endowments (30 units) while Figure 7c depicts the same network where
4 nodes have 300 units of average resource. This creates 3 different sharing ratio levels, instead of
a single sharing ratio level for the former case.

4.3. Dynamic Interactions and Convergence
Finally, we present the convergence results for Algorithm 1. First, in Figure 9a we plot the value
over time of the sharing ratio (or, sharing ratio) ρi(t) = R̄i(t)/Di for three nodes in the lattice
network of Figure 5a. We observe that after the first 100 slots (see the inset) the ratios have
converged very closely to their final values. We have plotted the results for nodes with different
degrees, which however does affect in this example the convergence speed. Similarly, in Figure 9b
we present the convergence of 4 nodes with different degrees in the Erdos-Renyi network of Figure
6a. Again we observe a relatively fast convergence on the final sharing ratios which are all equal to
1. Finally, Figure 9c presents the convergence results for 3 nodes in the Scale-free graph of network
7b. In this case, the sharing ratios converge in different levels, and we show here the results for 3
nodes attaining 3 different sharing ratio values.

5. Literature Overview
The model and questions considered in this work are fundamental and therefore their relation to
prior studies in different fields is rather expected. For example, to some extent, similar questions
have been investigated in the context of network exchange theory in sociology, the general equilib-
rium theory in economics, various game theoretic works for networked markets or social networks,
and in the context of designing cooperation mechanisms in communication and computing systems.
Below we provide a brief overview of the more pertinent results in these areas and explain how our
work differs. In particular, one key novel aspect of our paper is that unlike past works where the
resources of producers to be distributed were known a priori, here we assume that the resource of
the producer is generated dynamically over time and the prosumer allocates the resource chunks
as become available. The dynamic policy we propose monitors time averages of offered resources
as they evolve to make the allocation decisions.
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5.1. General Equilibrium and Game Theory Models
Our work is directly related to the general equilibrium theory which focuses on the existence of
exchange ratio and allocation equilibriums in competitive markets. The first attempt to study
such models dates back to 1874 and the efforts of L. Walras (Walras 1954) who introduced the
tatonnement process that leads to an equilibrium, and the analysis of I. Fisher who considered
a simpler model (the Fisher market) in 1891 (Fisher 1891) and studied automated methods
for computing the equilibriums. A richer production - consumption macroeconomic model was
introduced in the seminal paper of K. Arrow and G. Debreu (Arrow and Debreu 1954) who
formally proved the existence of equilibriums (A-D model). Subsequent works refined these results
by devising the necessary and sufficient conditions for the existence of equilibriums when the
agents have linear utility functions (Gale 1976). More recently, researchers have focused on the
computation complexity of Arrow-Debreu or Fisher equilibriums, and have developed approximate
or even exact (pseudo)-polynomial algorithms for special cases of these markets (Devanur et al
2008, Orlin 2010, Duan and Mehlhorn 2015); we refer the reader to (Devanur et al 2016) for an
excellent discussion about these results and overview of the recent literature.

The sharing economy model in this paper differs from the above works in many ways. First,
we do not assume the existence of any monetary instrument; hence commodity prices cannot be
introduced nor we need to calculate them in order to find the economy’s equilibriums. In other
words, this is a pure exchange or bartering scheme. Similar models have been studied for house
exchange markets (Shapley and Scarf 1974) or labor (timeshare) exchanges (Wang and Krishna
2006), where the focus has been again to prove existence of equilibriums. Another distinct aspect
of our model is the underlying graph that constraints the possible trades. It is worthwhile to note
here that A-D and Fisher markets can capture to some extent the network constraints through the
commodity preferences (assuming that each agent possesses a different commodity). However, even
under this assumption, previous works did not study the impact of the preference constraints on
the equilibriums. Similar network models have been studied in the context of graphical economies
Kakade et al. (2004b,a) which extend the classical Walrasian equilibrium by imposing constraints
on the subsets of buyers and sellers who can trade. It is shown that this network structure can
create variation in the price of a certain commodity across different graph neighborhoods.

Compared to these latter results, our model does not presume any type of money transfers, there
is no budget constraints (as in typical exchange economies) and the nodes do not value money.
Besides, we fully characterize the equilibriums, relate them to the max-min fair solution, and study
how they are affected by the network. We also prove that these sharing equilibriums lie within
the core of the respective NTU game. Although this relation is known for market games and the
respective coalitional games, to the best of our knowledge this is the first result for NTU coalitional
graph-constrained games without money. This property is also related to strong Nash equilibriums
(see (Andelman et al., 2007) and references therein), for which however there are no general
existence results; besides, we focus on market clearing (or competitive) equilibriums which rely on
the assumption of price-taking behavior for the agents and hence are fundamentally different than
Nash equilibriums. Finally, (Herings et al. 2000) and (Jackson and Wolinsky 1996) studied also core
solutions of coalitional graph games where the nodes are allowed to create new or severe existing
connections. In our model the graph is exogenously given, e.g., based on the location of nodes.
Moreover, we go a further step and prove that these equilibriums are strongly stable in the sense
that there are no deviations even if they improve only one user’s sharing ratio. However, probably
the most important difference of our work compared to the above literature is that we explicitly
focus on dynamic policies that can lead to the market equilibrium in a decentralized fashion, with
lightweight computations and minimal network state information. Namely, the generated resources
are unknown in advance and each node is aware only of the existence and strategy of its one-hop
neighbors.
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5.2. Dynamic Sharing Algorithms
Indeed, the vast majority of literature in Arrow-Debreu or Fisher market (and in their variants)
focuses either on the existence of equilibriums or on centralized algorithms for their computation.
Albeit very significant, such solutions cannot be applied in practice, especially in the sharing
economy applications we focus in this work. Instead, it is of utmost importance to understand if
(and how) the agents in such economies can make allocation decisions that will gradually drive
the system to its equilibrium, without the need for a central coordinator or full knowledge of the
market’s state. In (Wu and Zhang, 2010) the authors studied exactly this problem and proposed
a new distributed algorithm, called the Proportional Response (PR) dynamics, as a protocol for
trading bandwidth on a peer-to-peer file sharing network. The PR dynamics involves a sequence
of bids by the buyers and exchange ratios by the sellers that respond to each other. The seller
exchange ratios are simply set to be the sum of all the bids they receive. The buyers set their bids
proportional to the utility they would obtain with the bids and the exchange ratios in the previous
round. Subsequently, (Zhang 2011) studied the application of these dynamics for trading in a
Fisher market, while (Birnbaum et al 2011) showed that the proportional bidding and allocation
algorithm introduced in (Wu and Zhang, 2010) is essentially a gradient descent algorithm that
can solve the Fisher market optimization program in a decentralized fashion.

This proportional allocation algorithm is very interesting and substantially different from the
Walrasian tatonnement process. In the latter the exchange ratio of each good is gradually adjusted
according to the excess of demand in the previous time step, and then the agents adjust their
requested amounts based on the updated exchange ratios. The proportional response dynamics on
the other hand do not explicitly involve a exchange ratio mechanism as the requests are based
on the user’s utility. Consequently, it does not presume a central controller to aggregate all the
demands and offers, and it does not require to solve an optimization problem at each step. However,
all the above approaches refer to a static model, where the amounts of commodities and budgets are
constant and known in advance. In this work we consider a more challenging (and realistic) system
where the resource availability varies randomly and we prove the convergence of a distributed
algorithm that fully allocates the generated commodities to the requester that offers the highest
sharing ratio. This decision rule is intuitive and in line with the expected market behavior of agents
who myopically seek to maximize their benefits in each step. Moreover, we explain that the propose
algorithm converges to the equilibrium even if each agent does not know in advance his average
expected rate of resource generation, and simply uses the running average in each step. Finally,
previous works focused on Fisher markets, where there are only buyers who compete for a set of
limited commodities, i.e., the exchange ratios reflect only the congestion and not the interests of
the sellers, a condition substantially different from the sharing economy market of prosumers that
we study here.

5.3. Cooperation Mechanisms in Communication Systems
The problem of cooperation in wireless networks is of paramount importance and has been con-
sidered in different contexts, such as for ad hoc networks (Buttyan and Hubaux, 2003) or WiFi
sharing models (Efstathiou et al. 2010). This is a problem that gains increasing interest in commu-
nication networks (Iosifidis et al. 2014), as there are many related market solutions offered either
as a product, e.g., routers that are tailored for cooperation (FON 2017), or mobile applications
that allow sharing of content among devices. Moreover, such mechanisms have been extensively
studied in file sharing peer-to-peer (P2P) overlay systems. In this case, each device that partici-
pates in the overlay is an economic agent in the sense that it provides some commodity (the files it
possesses) and requests some other goods (the files other devices share). While our model is similar
to previous works, e.g., see (Aperjis et al. 2011) and references therein, our analysis provides novel
insights for the structure and properties of the resulting equilibriums and focuses, for the first
time, in the dynamics of such interactions. Finally, in more grassroots efforts, such cooperative
infrastructures offer low-cost Internet access to under-served or low-income communities around
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the globe (Redhook 2017). Unlike previous works, our model does not presume any kind of logistics
infrastructure, e.g., for transaction or reputation systems. Instead, we proved that a simple and
intuitive best response algorithm, with no information about the graph and resource endowments,
converges to a fair and robust connectivity or content sharing equilibrium.

5.4. Sharing Economy
Sharing economy is a recent topic and hence there are only few related studies on the underlying
exchange mechanisms. A first important research thrust here consists of works which analyze the
users motives for participation through surveys. It is found that users join various sharing economy
platforms often due to sustainability concerns (Hamari et al 2015, Lampinen et al 2015) and their
decisions are facilitated when third-party mediators (as in Airbnb) (Kim et al 2015, Ikkala and
Lampinen 2014) resolve the various logistic and security issues that arise. In (Zervas et al 2016)
it is shown that sharing economy services have non-negligible impact on incumbent businesses,
motivating the study of mixed markets where both sharing economy and mainstream services
coexist (Cusumano 2015). In sharing systems, reciprocity mechanisms are crucial (Suhonen et al
2010, Lampinen et al 2013, Ye et al 2016) and they are affected by the graph structure, an

aspect that was first pointed in the context of network exchange theory (Markovsky et al 1988,
Beinenstock and Bonacich 1993, Walker et al 2000). However, these latter works focus only on
simple bargaining problems and their experimental behavioral analysis is orthogonal to our efforts.

6. Concluding Remarks
We introduced and analyzed a novel model of sharing economy networks where agents embedded
in a graph share their resources over time. This basic model captures an increasing number of
business cases where end-users exchange directly resources or services. Such solutions are fueled
today by the ideas about collaborative consumption, or sharing economy, and have the potential
to boost the global economy in many ways, transforming the way humans trade and collaborate.
Our findings suggest that there is a simple class of dynamic exchange policies that can lead to an
equilibrium point which is fair, in a max-min fashion, and stable with respect to selfish strategies
of single or groups of colluding agents. Moreover, the equilibrium allocations have an interesting
structure that underline the relation of the sharing equilibriums with the topology of the network
graph.

Our model can be substantially extended, covering this way an even larger set of scenarios. First,
the presented policy is distributed since each node needs to be informed only about the sharing
ratios of its outgoing neighbors. As it stands now however, each node needs to know its average
resource generation rate Di. Nevertheless, this requirement can also be removed by replacing Di(t)
with

¯D(t) =

∑t

τ=1Di (τ)

t
.

The arguments for proving this claim are mainly technical, albeit lengthy; hence we refer the
interested reader to Bhattacharya et al (1993) where a different system with similar dynamics
is analyzed. In practice, this means that the proposed algorithm can drive the sharing economy
network to the desirable operation point with minimum local interactions among the nodes, and
with no information about the actual resource availability (statistics of resource generation).

Another issue with Algorithm 1 is that if the statistics of node endowments change, then decisions
are based on time averages, the adaptation of the system to new parameters will be slow. This issue
can be avoided by replacing time averages with their discounted versions, e.g. by replacing ¯Di(t)
with D̂i(t) = (1− α)Di(t) + αD̂i(t− 1), t ≥ 2, D̂i(1) = Di(1), 0< α < 1. It can be shown that by
selecting α close to 1, the system performance is close to the optimal, while ensuring satisfactory
speed of adaptation to statical changes of parameters. We refer the reader to (Bhattacharya et al
1993) for more details on this. Finally, we have assumed that all the users have the same priority
and unsatiated demand; the model can be extended for users with different priorities.
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Appendix
6.1. Proof of Lemma 1
Lemma 1. Under any policy π ∈Π it holds for any S ⊆N ,

limsup
t→∞

∑
i∈S

R̄π
i (t)≤ f(S), (12)∑

i∈S

rπi ≤ f (S) . (13)

Proof. According to the definitions and eq. (1):∑
i∈S

R̄π
i (t) =

∑
i∈S
∑t

τ=1

∑
j∈Ni

Rji (τ)

t
=

∑
j∈NS

∑t

τ=1

∑
i∈Nj

Rji (τ)

t
≤
∑

j∈NS

∑t

τ=1Dj(τ)

t
.

Taking limits and using the fact that limt→∞

(∑t

τ=1Dj(τ)
)
/t=Di, (4) follows. Next,∑

i∈S

rπi =
∑
i∈S

lim inf
t→∞

R̄π
i (t)≤ lim inf

t→∞

∑
i∈S

R̄π
i (t)≤ f (S) from (4). �

6.2. Proof of Lemma 2
Lemma 2. f(S) is submodular i.e.,it holds for every S, T ⊆N ,

f(S ∩T ) + f (S ∪T )≤ f(S) + f(T ). (14)

Proof. By a theorem of Lovasz (Lovasz 1983), it suffices to show that for any k ∈ N , and
T ⊆ S ⊆N −{k} it holds,

f(S ∪{k})− f (S)≤ f(T ∪ {k})− f (T ) .

Indeed,

f(T ∪ {k})− f (T ) =
∑

i∈NT ∪{k}

Di−
∑
i∈NT

Di =
∑

i∈Nk−NT

Di ≥
∑

i∈Nk−NS

Di since T ⊆ S

= f(S ∪{k})− f (S) . �

6.3. Proof of Lemma 3
Lemma 3. It holds: R0 =A0.

Proof. Observe first that R0 is convex since given two policies π1, π2 in Π0, one can design a
policy π3 ∈Π0 with rπ3 = prπ1 + (1− p)rπ2 , where p∈ [0,1], as follows:

Dπ3
ij (t) = pDπ1

ij (t) + (1− p)Dπ2
ij (t) .

Since R0 is convex and R0 ⊆A0 to show that in fact R0 =A0, it suffices to show that all extreme
points of A0 belong to R0. Since A0 is a base of a polymatroid, its extreme points are defined as
follows. Let σ(i) be any permutation of node indices. Define also Sσ(i) = {σ(1), . . . , σ(i)}. Then an
extreme point of A0 is the following,

rσ(1) = f (Sσ(1)) , (15)

rσ(i) = f(Sσ(i))− f(Sσ(i− 1)), 2≤ i≤N, (16)

and in fact all extreme points of A0 are of the form (15), (16). Consider the policy πσ that operates
as follows:
• All nodes in Nσ(1) give always their generated resource to σ (1).
• All nodes in Nσ(k)−∪k−1l=1Nσ(l) give always their generated resource to σ (k) , 2≤ k≤N .

It can be easily seen from the definitions that under policy πσ the long-term resources allocated to
the nodes are given by (15), (16). �



Georgiadis, Iosifidis and Tassiulas: Sharing Economy Networks
20 Article submitted to ; manuscript no. (XXX)

6.4. Proof of Lemma 5
Lemma 5. Let r ∈A0 then: a) If K = 1 then v1 = 1. b) If K > 1 , then v1 < 1 and lK > 1.

Proof. Since r ∈A0, we have ∑
i∈N

ri = f (N ) =
∑
i∈N

Di. (17)

a) If K = 1, then ri = v1Di for all i∈N , hence v1 = 1.
b) Let now K > 1. If v1 ≥ 1, then since vk > v1 k≥ 2, we have

∑
i∈N

ri =
K∑
k=1

vk
∑
i∈Lk

Di >
∑
i∈N

Di, (18)

which contradicts (17). Similarly it is shown that vK > 1. �

6.5. Proof of Theorem 1
Theorem 1. The following hold.
• Policy π∗ is Lexicographically optimal.
• Under π∗the node sharing ratios and long-term received resources converge to the equilibrium

sharing ratios and equilibrium received resources.
• Policy π∗ is coalitionally stable.

Proof. In this subsection we show that the policy π∗ that operates according to Algorithm 1
is lexicographically optimal. The rest of the assertions of the theorem follow from the discussion
in Section 3.3. The proof is based on stochastic approximation techniques. In particular, we will
make use of the following stochastic approximation theorem due to Robbins and Siegmund and
follow the approach in (Bhattacharya et al 1993).

Theorem 6. On a probability space (Ω,F , P ) equipped with a sequence of σ-fields F0 ⊂ · · · ⊂
Ft ⊂F let zt, ξt, ζt be non-negative and Ft-measurable random variables such that

E [zt+1|Ft]≤ zt− ζt + ξt, t= 1, · · · ,

where ∞∑
t=1

ξt <∞ a.s. (19)

Then, limt→∞ zt exists, is finite and
∑∞

t=1 ζt <∞ a.s.

We will need the following lemma.

Lemma 6. Let Ji (r) =E
[
Ri (t+ 1) |R̄ (t) = r

]
, r≥ 0. It hodls∑

i∈∪n
k=1
Lk(r)

Ji (r) = f (∪nk=1Lk (r)) , n= 1, · · · ,K (r) . (20)

For all ε > 0 it holds,

inf
‖r−r∗‖≥ε

N∑
i=1

1

Di

(r∗i − ri) (Ji (r)− ri)> 0. (21)

Proof. According to Algorithm 1, the nodes in L1 (r) receive all the resources generated by their
neighbor nodes at time t+ 1. Similarly, the nodes in ∪nk=1Ln (r) receive all the resources generated
by their neighbors at time t+ 1, hence,∑

i∈∪kn=1Ln(r)

Ri (t+ 1) =
∑

i∈∪kn=1Ln(r)

Di (t+ 1) .
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Taking conditional expectations we obtain∑
i∈∪n

k=1
L1r

Ji (r) =
∑

i∈∪n
k=1
Ln(r)

Di = f (∪nk=1Lk (r)) .

To show (21), setting C = mini=1,...,N {1/Di} we have for ‖r− r∗‖ ≥ ε,

N∑
i=1

1

Di

(r∗i − ri) (Ji (r)− ri) =
N∑
i=1

1

Di

(r∗i − ri) (Ji (r)− r∗i ) +
N∑
i=1

1

Di

(r∗i − ri)
2

≥
N∑
i=1

1

Di

r∗i (Ji (r)− r∗i )−
N∑
i=1

1

Di

ri (Ji (r)− r∗i ) + ε2C.

Hence to prove (21) it suffices to show that

N∑
i=1

1

Di

ri (Ji (r)− r∗i )≤ 0, (22)

and
N∑
i=1

1

Di

r∗i (Ji (r)− r∗i )≥ 0. (23)

Next we describe the structure of the lexicographically optimal vector in A. To show (22) write ,

N∑
i=1

1

Di

ri (Ji (r)− r∗i ) =

K(r)∑
k=1

vk (r)
∑

i∈Lk(r)

(Ji (r)− r∗i ) (24)

=

K(r)−1∑
k=1

(
K(r)−1∑
n=k

(vn (r)− vn+1 (r)) + vK(r) (r)

) ∑
i∈Lk(r)

Ji (r)−
∑

i∈Lk(r)

r∗i


+ vK(r) (r)

 ∑
i∈LK(r)(r)

Ji (r)−
∑

i∈LK(r)(r)

r∗i


=

K(r)−1∑
k=1

(
K(r)−1∑
n=k

(vn (r)− vn+1 (r))

) ∑
i∈Lk(r)

Ji (r)−
∑

i∈Lk(r)

r∗i

+ vK(r) (r)

(∑
i∈N

Ji (r)−
∑
i∈N

r∗i

)

=

K(r)−1∑
n=1

(vn (r)− vn+1 (r))

 ∑
i∈∪n

k=1
Lk(r)

Ji (r)−
∑

i∈∪n
k=1
Lk(r)

r∗i

+ vK(r) (r)

(∑
i∈N

Ji (r)−
∑
i∈N

r∗i

)

=

K(r)−1∑
n=1

(vn (r)− vn+1 (r))

f (∪nk=1Lk (r))−
∑

i∈∪n
k=1
Lk(r)

r∗i

+ vK(r) (r)

(
f (N )−

∑
i∈N

r∗i

)
by (20)

≤ 0, since r∗ ∈R0 and vn (r)≤ vn+1 (r) , n= 1, · · · ,K (r)− 1.

To show (23) we repeat essential the same procedure but we sum over the indices lr
∗
k , k =

1, · · · ,Kr∗ . �
We now proceed to show that π∗ is lexicographically optimal, i.e.,

lim
t→∞

R̄i (t) = r∗.
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Write

R̄i (t+ 1) =

∑t+1

τ=1Ri (t)

t+ 1
=

t

t+ 1

∑t

τ=1Ri (t)

t
+
Ri (t+ 1)

t+ 1

=
t

t+ 1
R̄i (t) +

Ri (t+ 1)

t+ 1
= R̄i (t) +

1

t+ 1

(
Ri (t+ 1)− R̄i (t)

)
, (25)

and consider the Lyapunov function,

V (x) =
1

2

N∑
i=1

1

Di

(xi− r∗i )
2
.

From (25) we obtain,

V
(
R̄ (t+ 1)

)
=

1

2

∑
i∈N

1

Di

(
R̄i (t) +

1

t+ 1

(
Ri (t+ 1)− R̄i (t)

)
− r∗i

)2

= V
(
R̄ (t)

)
− 1

t+ 1

∑
i∈N

1

Di

(
Ri (t+ 1)− R̄i (t)

) (
r∗i − R̄i (t)

)
+

1

2(t+ 1)
2

∑
i∈N

1

Di

(
Ri (t+ 1)− R̄i (t)

)2
.

Apply now Theorem 6 with with zt = V
(
R̄ (t)

)
,

ζt =
1

t+ 1
E

[∑
i∈N

1

Di

(
Ri (t+ 1)− R̄i (t)

) (
r∗i − R̄i (t)

) ∣∣R̄i (t)]
=

1

t+ 1

∑
i∈N

1

Di

(
Ji
(
R̄ (t)

)
− R̄i (t)

) (
r∗i − R̄i (t)

)
,

and

ξt =
1

2(t+ 1)
2E

[∑
i∈N

1

Di

(
Ri (t+ 1)− R̄i (t)

)2 ∣∣R̄i (t)] .
Clearly, zt ≥ 0 and ξt ≥ 0. Also, according to (21), ζt ≥ 0. Hence the non-negativity of the variables
in the theorem holds. Notice that

R̄i (t) =

∑t

τ=1Ri (τ)

t
≤
∑
j∈N

∑t

τ=1Dj (τ)

t
≤NB,

hence,

ξt ≤
1

(t+ 1)
2E

[∑
i∈N

1

Di

(
R2
i (t+ 1) + R̄2

i (t)
) ∣∣R̄i (t)]

=
1

(t+ 1)
2E

[∑
i∈N

1

Di

R2
i (t+ 1)

∣∣R̄i (t)]+
1

(t+ 1)
2

∑
i∈N

1

Di

R̄2
i (t)

≤ B̂

(t+ 1)
2 ,

where

B̂ =N 2B2
∑
i∈N

1

Di

.
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It follows that limt→∞
∑∞

t=1 ξt <∞, i.e. (19) holds. Hence, according to Theorem 6 we have that
limt→∞ V

(
R̄ (t)

)
exists almost surely and that

∞∑
t=1

1

t+ 1

∑
i∈N

1

Di

(
Ji
(
R̄ (t)

)
− R̄i (t)

) (
r∗i − R̄i (t)

)
<∞ a.s. (26)

We will show next that limt→∞ V
(
R̄ (t)

)
= 0 which implies that limt→∞ R̄ (t) = r∗ i.e., the policy

π∗ is lexicographically optimal.
Assume that limt→∞ V

(
R̄ (t)

)
= α> 0. Since

∥∥R̄ (t)− r∗
∥∥≥ 2CV

(
R̄ (t)

)
, where C = mini∈N Di,

we conclude that
lim inf
t→∞

∥∥R̄ (t)− r∗
∥∥≥ 2Cα> 0,

which by (21) implies that

lim inf
t→∞

∑
i∈N

1

Di

(
Ji
(
R̄ (t)

)
− R̄i (t)

) (
r∗i − R̄i (t)

)
> 0

hence ∞∑
t=1

1

t+ 1

∑
i∈N

1

Di

(
Ji
(
R̄ (t)

)
− R̄i (t)

) (
r∗i − R̄i (t)

)
=∞

which contradicts (26). �

6.6. Proof of Theorem 3
Theorem 3. A vector r ∈A, is lexicographically optimal if and only if the following hold. If K = 1,
then v1 = 1. If K ≥ 2 then

1. Lk is an independent set in graph GQk , for k= 1, ...., bK
2
c.

2. LK−k+1 =NQk (Lk), for k= 1, ...., bK
2
c.

3. vkvK−k+1 = 1, for k= 1, ...., bK/2c.
4.
∑

i∈Lk
ri =

∑
i∈LK−k+1

Di, for k= 1, ...., bK
2
c.

5. If K is odd, then vdK/2e = 1.

Proof. Let K = 1. Let r be lexicographically optimal, hence r ∈A0. Then according to Lemma
5, v1 = ri/Di = 1, i∈N . If on the other hand v1 = 1 then∑

i∈N

ri =
∑
i∈N

Di = f (N ) ,

and according to Theorem 2 r is lexicographically optimal.
Next we consider the case K ≥ 2.

a) Assume that r is lexicographically optimal and hence∑
i∈L1

ri = f (L1) =
∑
i∈NL1

Di. (27)

We first show that L1 is an independent set. Assume that there are two nodes in L1 that are
connected and consider the maximal connected set L in L1 that contains these two nodes. Fix any
allocation set that generates r. Since L is maximal, no node in L is connected to a node in L1;
then, (27) implies that (under the allocation that generates r) all nodes in L give their endowment
to nodes in L and hence, ∑

i∈L

ri ≥
∑
i∈L

Di, ⇒ v1
∑
i∈L

Di ≥
∑
i∈L

Di
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or v1 ≥ 1, which contradicts Lemma 5.
Consider now the smallest level m such that nodes in L1 are connected to some nodes in Lm. Let

S1 be the set of nodes in L1 which are connected to some nodes in Lm. Let Sm be the set of nodes
in Lm that are connected to some nodes in S1. Then, since according to Theorem 2 the nodes in
S1 receive all the endowments of nodes in Sm, we have∑

i∈S1

ri ≥
∑
m∈Sm

Dm, or v1
∑
i∈S1

Di ≥
∑
m∈Sm

Dm . (28)

Also, since nodes in S1 are not connected, the nodes in Sm receive all the endowments of nodes in
S1, hence ∑

i∈Sm

ri ≥
∑
i∈S1

Di, or vm
∑
i∈Sm

Di ≥
∑
i∈S1

Di . (29)

From (28) and (29) and the fact that
∑

i∈SmDi > 0,
∑

i∈S1Di > 0, we conclude that

v1vK ≥ v1vm ≥ 1. (30)

Next consider the set LK . Notice first that if node i gives some of its endowment to nodes in
LK , then Ni ∈ LK . This is so, since if node i has a neighbor in a set Ln, n < K then according
to Theorem 2 node i would give all its endowment to nodes with lower levels. It follows that no
node in LK gives endowment to LK . To see this, let S 6= ∅ be the set of nodes in LK that give
their endowment to LK . Then the nodes in S receive endowments only from nodes in S. This is
so, because if node i gives endowment to j ∈ S then j ∈Ni, hence j ∈LK and then by definition of
the set S, i∈ S. Hence, it holds∑

i∈S

ri ≤
∑
i∈S

Di, or vk
∑
i∈S

Di ≤
∑
i∈S

Di . (31)

i.e., vi ≤ 1 which contradicts Lemma 5.
Let now n<K be the largest level such that Ln contains a node that gives endowment to LK .

Let Sn be the nodes in Ln that give endowment to some node in LK . Note that the nodes in Sn are
connected only to nodes in SK since otherwise they (the nodes in Sn) would give their endowment
to nodes at lower levels. Let SK be the nodes in NSn ∩LK that give endowment to nodes in Sn.
Then, since the nodes in Sn are connected only to nodes in SK , it holds∑

i∈Sn

ri ≤
∑
i∈SK

Di, or vn
∑
i∈Sn

Di ≤
∑
i∈SK

Di. (32)

Also, note that the nodes in SK are not connected to nodes at lower levels than n since otherwise
they would give their endowment to these nodes. Since we already showed that these nodes do not
get any endowment from nodes in LK , it follows that∑

i∈SK

ri ≤
∑
i∈Sn

Di, or vK
∑
i∈SK

Di ≤
∑
i∈Sn

Di. (33)

From (32), (33) we conclude
vKv1 ≤ vKvn ≤ 1. (34)

Inequalities (30), (34) imply that vKv1 = 1, m=K, and n= 1 and these in turn imply statements
of the theorem for k= 1.

Next consider the graph GQ2(r) = (Q2 (r) ,EQ2
(r)) and the vector r2 that has components those

of vector r that are in N − (L1 ∪LK). It can be easily seen that r2 is lexicographically optimal in
GQ2(r) and therefore we can repeat the process to complete the proof using induction.
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Assume now that conditions 1-5 of the theorem hold. Then it can be seen by induction on k
that conditions (9), (10) of Theorem 2 hold, and hence the vector r is lexicographically optimal.
To see this, we describe the case k= 1. Since by condition 1 L1 is an independent set, we conclude
from conditions 2 and 4 that the nodes in L1 receive all endowments of their neighbors, hence (9)
of Theorem 2 is satisfied. Also,∑

i∈LK

ri = vK
∑
i∈LK

Di =
1

v1

∑
i∈L1

ri =
∑
i∈L1

Di,

where the second equality holds due to conditions 3 and 4. The last equality implies that the nodes
in LK receive only the resources of the nodes in L1 who are not connected to nodes of lower level
than K, hence (10) is satisfied for k=K. �

6.7. Proof of Theorem 4
Theorem 4. Let r∗ be a lexicographically optimal vector. The ratios {ρ∗i }i∈N = {r∗i /Di}i∈N are
equilibrium sharing ratios for the competitive framework.

Proof. Notice that ρ∗i = v∗Ii . Since r∗ ∈ A0, there is an allocation set
{
d∗ij ≥ 0, i∈N , j ∈Ni

}
,

such that ∑
j∈Ni

d∗ij =Di, i∈N , (35)

∑
j∈Ni

d∗ji = ri, i∈N . (36)

Consider the following policy π∗ that operates as follows. At any time t, node i allocates to node

j ∈Ni resourceDij (t) =
d∗ij
Di

. This implies that under policy π∗ (3) is satisfied, i.e., limt→∞ D̄(t) =Di.
Moreover, it is easily shown that

lim
t→∞

R̄π∗
i (t) = r∗i =Diρ

∗
i .

Finally, from the structure of r∗ in Theorem 3 it can be seen by induction on k that every node
allocates the resources it generates to neighbors with the smallest sharing ratios. �

6.8. Proof of Theorem 5
Theorem 5. A policy π∗ that achieves the lexicographically optimal vector r∗is strongly stable.

Proof. Assume that there is a set S ⊂N such that the nodes in this set exchange resources only
between themselves and achieve rates r̂i ≥ r∗i , i ∈ S with r̂j > r∗j for at least one j ∈ S. Let π̂ be

the policy that achieves rate vector r̂ and let d̂ij, i, j ∈ S be an allocation vector that generates r̂,
hence, ∑

j∈S∩Ni

d̂ji = r̂i, i∈ S.

We then claim that
r∗i < r̂i⇒

√
ρ∗iDi <

∑
j∈S∩Ni

√
ρ∗j d̂ji, (37)

r∗i ≤ r̂i⇒
√
ρ∗iDi ≤

∑
j∈S∩Ni

√
ρ∗j d̂ji. (38)

To see (37), assume that
√
ρ∗iDi ≥

∑
j∈S∩Ni

√
ρ∗j d̂ji. Since Theorems 3 and 4 imply that

ρ∗j ≥
1

ρ∗i
, j ∈Ni,
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we have, √
ρ∗iDi ≥

∑
j∈S∩Ni

√
ρ∗j d̂ji ≥

1√
ρ∗i

∑
j∈S∩Ni

d̂ji =
1√
ρ∗i
r̂i. (39)

Therefore, r∗i = ρ∗iDi ≥ r̂i, a contradiction. In a similar fashion (38) can be shown. Summing now
(37), (38) over i∈ S we have∑

i∈S

√
ρ∗iDi <

∑
i∈S

∑
j∈S∩Ni

√
ρ∗j d̂ji =

∑
j∈S

√
ρ∗j

∑
i∈S∩Nj

d̂ji ≤
∑
j∈S

√
ρ∗jDj, (40)

a contradiction. �

Endnotes
1. This return resource may be obtained either from node j or from any other neighbor of node
i. This can be interpeted as follows. If node i provides resource Dij(t) to node j, it gets resource
credit Dij(t)/ρ

∗
j . Node i can receive this amount of resource from any of its neighbors either at

time t or at some time in the future.
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