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Abstract

The generalized version of modularity for multilayer networks, a.k.a.
multislice modularity, is characterized by two model parameters, namely
resolution factor and inter-layer coupling factor. The former corresponds
to a notion of layer-specific relevance, whereas the inter-layer coupling fac-
tor represents the strength of node connections across the network layers.
Despite the potential of this approach, the setting of both parameters can
be arbitrarily selected, without considering specific characteristics from
the topology of the multilayer network as well as from an available com-
munity structure. Also, the multislice modularity is not designed to ex-
plicitly model order relations over the layers, which is of prior importance
for dynamic networks.

This paper aims to overcome the main limitations of the multislice
modularity by introducing a new formulation of modularity for multi-
layer networks. We revise the role and semantics of both the resolu-
tion and inter-layer coupling factors based on information available from
the within-layer and inter-layer structures of the multilayer communities.
Also, our proposed multilayer modularity is general enough to consider
orderings of network layers and their constraints on layer coupling. Exper-
iments were carried out on synthetic and real-world multilayer networks
using state-of-the-art approaches for multilayer community detection. The
obtained results have shown the meaningfulness of the proposed modu-
larity, revealing the effects of different combinations of the resolution and
inter-layer coupling functions. This work also represents a starting point
for the development of new optimization methods for community detec-
tion in multilayer networks.
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1 Introduction

Complex network systems, such as social networks, biological networks, and
transportation networks, are inherently organized into communities, a.k.a. clus-
ters or modules, with dense internal links and sparse external links. Since mem-
bers of a community tend to generally share common properties, revealing the
community structure in a network can provide a better understanding of the
overall functioning of the network.

The well-known modularity [2, 3] function was originally conceived to evalu-
ate a community structure in a network graph in terms of difference between the
actual number of edges linking nodes inside each community and the expected
connectivity in the null model. Typically, the expected connectivity is expressed
through a configuration graph model, having a certain degree distribution and
randomized edges. Since this graph ignores any community structure, a large
difference between actual connectivity and expected connectivity would indicate
the presence of a community structure.

Modularity has been widely utilized as objective function in several optimiza-
tion methods designed for discovering communities in networks [4, 5], including
greedy agglomeration [3, 6], spectral division [7, 8], simulated annealing [9], or
extremal optimization [10].

Traditional approach to network analysis refers to the modeling of a real-
world system as a single network of interacting entities. While this approach has
been widely used to study a variety of applications, there are plenty of scenar-
ios for which this methodology appears strongly limiting [11]. In general, ties
among entities could be induced by one or several types of relations or interac-
tions, or even be dependent on side-information based on specific dimensions or
aspects of interest for the entities in the network. Within this view, multilayer
networks [12, 13] represent a powerful tool to model systems interconnected by
multiple types of relations. In the multilayer network model, each type of con-
nection is represented by a layer, and an entity may be present in different layers
based on the type of relations it is connected to its neighbor entities. Just to
mention one real example, nowadays online users usually have multiple accounts
across different online social networks, and several online/offline relationships
are likely to occur among the same group of individuals (e.g., following rela-
tions, like/comment interactions, working together, having lunch). It should be
emphasized that neglecting such a kind of complex organization by reducing the
whole system to a single network (e.g., through some kind of projection, or by
aggregation), has been shown to be much less informative than the multilayer
representation [14]. For the above mentioned reasons, multilayer networks are
experiencing an increasing interest from the scientific community, leading to an
explosion of scientific papers in many areas of science, thus becoming one of the
most used tools for interdisciplinary research [15], [16], [11], [13], [17], [18], [12],
[19], [20, 21], [22], [23].

Clearly, the problem of community detection in such multilayer networks
takes a central role to unveil meaningful patterns of node groupings into com-
munities, by leveraging the various interaction modes that involve all the entity



nodes in the network. To address these needs, modularity has been extended to
the general case of multilayer networks. In particular, Mucha et al. [15] extend
the modularity function to arbitrary multilayer networks (also called multislice
in that work), by introducing two additional parameters w.r.t. classic modular-
ity: a resolution parameter and an inter-layer coupling factor. The resolution
parameter acts on the expected connectivity terms, thus controlling the effect
on the size distribution of community due to the resolution limit known in mod-
ularity [24]. The inter-layer coupling factor focuses on the links across layers
and hence impacts on the strength of the inter-layer connections of entities in
the network. While being important to enhance the ability of modularity in
evaluating a community structure, the two parameters introduced in the mul-
tislice modularity are nonetheless subjected to arbitrary choices, which raise a
number of issues in the application of this modularity function. In particular,
the resolution parameter can be arbitrarily set for each layer, but it discards any
structure information at graph or community level. Moreover, the inter-layer
coupling terms do not differentiate among the selected layers, and all pairs of
layers can in principle be considered, which makes no sense in certain scenarios
such as modeling of time-evolving networks.

The above considerations prompted us to revisit the notion of modularity in
multilayer networks, and in particular to introduce novel aspects to take into
account in both the resolution and inter-layer coupling definitions. First, the
layer-specific resolution factor is also made dependent on each particular com-
munity. We notice that, since a high-quality multilayer community should em-
bed high information content among its nodes, the resolution of a specific layer
to control the expected connectivity of a given community in the modularity
function should be lower as the contribution of that layer to the information
content of the community is higher. By relating the information content of a
multilayer community to the amount and variety of types of links internal to the
community, we provide a new definition of resolution factor based on the concept
of redundancy of community. Second, to determine the strength of coupling of
nodes across layers, we again consider it at community level, such that for each
pair of layers, the inter-layer coupling factor for nodes in a community depends
on the relevance of the community projection on the two layers. Moreover, we
account for an available ordering of the layers, and relating constraints on their
coupling validity.

Our main contributions are summarized as follows:

• We propose a novel definition of multilayer modularity, in which we recon-
sider the role and semantics of its two key terms, that is, the resolution
factor and inter-layer coupling factor. We conceive parameter-free un-
supervised approaches for their computation, which leverage information
from the within-layer and across-layer structures of the communities in
the multilayer network. Moreover, our formulation of multilayer modu-
larity is general enough to account for an available ordering of the layers,
therefore is also well-suited to deal with temporal multilayer networks.

• We provide theoretical insights into properties of the proposed multilayer



modularity. More specifically, we investigate the effect of increasing the
number of communities in the behavior of the multilayer modularity, and
we analytically derive the lower and upper bounds in the values of the
multilayer modularity.

• We conduct an extensive experimental evaluation, primarily to understand
how the proposed multilayer modularity behaves w.r.t. different settings
regarding the resolution and the inter-layer coupling terms. Using 4 state-
of-the-art methods for multilayer community detection (GL, PMM, LART,
and M-EMCD∗), LFR synthetic multilayer networks and 10 real-world
multilayer networks, results have shown the significance of our formulation
and the different expressiveness against the previously existing multislice
modularity.

2 Related Work

Community detection is a key-enabling task in network analysis and mining,
with tons of methods developed in the last ten years — please refer to [25, 26,
16, 27] for surveys on this topic. In addition, different metrics for community
structure evaluation have been introduced. As discussed in Section 1, the most
popular and widely accepted measure is the so-called “modularity”, defined
by Newman [2]. Initially conceived for undirected networks, the modularity
function has been subsequently extended to cover different cases. In [28][29],
modularity has been generalized to directed networks incorporating information
contained in edge directions, while in [30] modularity is also adapted to capture
communities in weighted networks. To overcome the well-known modularity
resolution limit [24, 31, 32], in [33] and [34] modularity has been modified by
incorporating a resolution parameter that helps reveal communities at different
resolution scale. A further step towards a generalization of the modularity refers
to its extension to signed networks [35, 36]. Also, to deal with bipartite net-
works, modifications have been proposed in [37, 38, 39]. To uncover overlapping
communities, in [40] the authors propose an extension to the modularity func-
tion that includes the notion of belonging (or membership) coefficient, which
measures to which extent a node belongs to the various communities. This
approach is sometimes referred to as fuzzy community discovering. Finally, as
introduced in Section 1, modularity has been generalized by [15] to capture
communities in multislice networks. Such a version of the modularity function
is detailed in the next section.

3 Background

3.1 Modularity

Given an undirected graph G = (V, E), with n = |V| nodes and m = |E| edges,
let C be a community structure over G. For any v ∈ V, we use d(v) to denote the



degree of v, and for any community C ∈ C, symbol d(C) to denote the degree
of C, i.e., d(C) =

∑
v∈C d(v); also, the total degree of nodes over the entire

graph, d(V), is defined as d(V) =
∑

v∈V d(v) =
∑

C∈C d(C) = 2m. Moreover,
we denote with dint(C) the internal degree of C, i.e., the portion of d(C) that
corresponds to the number of edges linking nodes in C to other nodes in C.
Newman and Girvan’s modularity is defined as follows [2]:

QNG(C) =
∑
C∈C

dint(C)

d(V)
−
(
d(C)

d(V)

)2

(1)

In the above equation, the first term is maximized when many edges are
contained in clusters, whereas the second term is minimized by partitioning the
graph into many clusters with small total degrees. The value of QNG ranges
within -0.5 and 1.0 [4]; it is minimum for any bipartite network with canonic
clustering, and maximum when the network is composed by disjoint cliques.

3.2 Multilayer network model

Let GL = (VL, EL,V,L) be a multilayer network graph, where V is a set of
entities and L = {L1, . . . , L`} is a set of layers. Each layer represents a specific
type of relation between entity nodes. Let VL ⊆ V × L be the set containing
the entity-layer combinations, i.e., the occurrences of each entity in the layers.
EL ⊆ VL×VL is the set of undirected links connecting the entity-layer elements.
For every Li ∈ L, we define Vi = {v ∈ V | (v, Li) ∈ VL} ⊆ V as the set of nodes
in the graph of Li, and Ei ⊆ Vi× Vi as the set of edges in Li. Each entity must
be present in at least one layer, i.e.,

⋃
i=1..` Vi = V, but each layer is not required

to contain all elements of V. We assume that the inter-layer links only connect
the same entity in different layers, however each entity in one layer could be
linked to the same entity in a few or all other layers.

3.3 Multislice Modularity

Given a community structure C identified over a multilayer network GL, the
multislice modularity [15] of C is defined as:

Qms(C) =
1

d(VL)

∑
u,v,
Li,Lj

[(
AuvLi − γi

dLi
(u)dLi

(v)

2|Ei|

)
×

× δLi,Lj
+ δu,vCv,Li,Lj

]
δ(gu,Li

, gv,Lj
) (2)

where d(VL) is the total degree of the multilayer network graph, dLi
(u) denotes

the degree of node u in layer Li, AuvLi
denotes a link between u and v in Li,

2|Ei| is the total degree of the graph of layer Li, γi is the resolution parameter for
layer Li, Cv,Li,Lj quantifies the links of node v across layers Li, Lj . Moreover,
the Dirichlet terms have the following meanings: δLi,Lj

is equal to 1 if Li = Lj

and 0 otherwise, δu,v is equal to 1 if u = v and 0 otherwise (i.e., the inter-
layer coupling is allowed only for nodes corresponding to the same entity), and



δ(gu,Li , gv,Lj ) is equal to 1 if the community assignments of node u in Li and
node v in Lj are the same and 0 otherwise.

Limitations of Qms. As previously mentioned, a different resolution parame-
ter γi can be associated with each layer to express its relevance weight; however,
in [15], there is no specification of any principled way to set a layer-weighting
scheme, possibly including information from the available multilayer community
structure. Moreover, neither the inter-layer coupling term (i.e., Cv,Li,Lj

) or any
constraint on the layer comparability are clearly defined; actually, all nonzero
inter-layer edges are set to a constant value ω, for all unordered pairs of layers.
In general, both γi and ω parameters can assume any non-negative value, which
further increases a clarity issue in the properties of Qms.

4 Proposed Multilayer Modularity

In this section, we propose a new definition of modularity for multilayer networks
that aims to overcome all of the issues of Qms previously discussed. We pursue
this goal by focusing on the role and semantics of the two key elements in
multilayer modularity: the layer-specific resolution and the inter-layer coupling.

Our definitions of the two terms are independent on a-priori assumptions on
the network and/or user-specified settings; by contrast, we conceive parameter-
free unsupervised approaches for their computation, by leveraging information
from the within-layer and inter-layer structures of the communities. Our pro-
posed resolution factor is computed for pairs of layer and community, rather
than for each layer globally. Analogously, to define the inter-layer coupling
term, we account for properties related to a community on two layers; more in
detail, we evaluate the projections of a community over any two comparable
layers, i.e., the sets of nodes belonging to a community that lay on those layers.
Remarkably, the comparability of layers is another key aspect of our definition
of modularity: we generalize the inter-layer coupling term by admitting the exis-
tence of a partial order relation ≺L over the layers, in order to properly represent
scenarios in which a particular ordering among layers is required. For instance,
it may be the case that the network layers have to be processed according to
their natural order (e.g., lexicographic order of the network labels), or according
to a temporal order; moreover, it may be required to compare adjacent layers
only, or each layer with any other succeeding it in the ordering. Figure 1 pro-
vides an illustration of a multilayer network and the aforementioned key aspects
we deal with in our proposed multilayer modularity, which is formally presented
next.

Definition 4.1 (Multilayer Modularity). Let GL = (VL, EL,V,L) be a multi-
layer network graph, and let ≺L be an optionally provided partial order relation
over the set of layers L. Given a community structure C = {C1, . . . , Ck} as a
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Figure 1: Example multilayer network. The ordering over the set of layers
enables the introduction of constraints to compare layers; for instance, adjacent-
layer coupling forces the comparison of adjacent layers only, while succeeding-
layer coupling allows each layer to be compared with the subsequent ones. Note
also that any community across the layers is visually represented by means
of each projection from one layer to another valid layer; for instance, using
succeeding-layer coupling, community C3 in layer L1 is projected onto layer L2

and layer L3.

partitioning of the multilayer graph GL, the multilayer modularity is defined as:

Q(C) =
1

d(VL)

∑
C∈C

∑
L∈L

dintL (C)− γ(L,C)
(dL(C))2

d(VL)
+ β

∑
L′∈P(L)

IC(C,L,L′)


(3)

where for any C ∈ C and L ∈ L:

• dL(C) and dintL (C) are the degree of C and the internal degree of C, re-
spectively, by considering only edges of layer L;

• γ(L,C) is the value of the resolution function;

• IC(C,L,L′) is the value of the inter-layer coupling function for any valid
layer pairings with L;

• β ∈ {0, 1} is a parameter to control the exclusion /inclusion of inter-layer
couplings; and

• P(L) is the set of valid pairings with L defined as:

P(L) =

{
{L′ ∈ L | L ≺L L′}, if ≺L is defined

L \ {L}, otherwise

�



Notably, unlike the multislice modularity in Eq. (2), our proposed modularity
originally introduces a resolution factor that varies with each community, and
an inter-layer coupling scheme that might also depend on the layer ordering.
Moreover, Eq. (3) utilizes the total degree d(VL) of the multilayer graph instead
of the layer-specific degree (i.e., term 2|ELi

|, for each Li ∈ L). The latter
difference w.r.t. the multislice modularity is also important because, as we shall
later discuss more in detail, the total degree of the multilayer graph includes the
inter-layer couplings and it might be defined in different ways depending on the
scheme of inter-layer coupling. In the following, we elaborate on the resolution
functional term, γ(·, ·), and the inter-layer coupling functional term, IC(·, ·, ·).

4.1 Redundancy-based resolution factor

The layer-specific resolution factor intuitively expresses the relevance of a par-
ticular layer to the calculation of the expected community connectivity in that
layer. While this can always reflect some predetermined scheme of relevance
weighting of layers, we propose a more general definition that accounts for the
strength of the contribution that a layer takes in determining the internal con-
nectivity for each community. The key assumption underlying our approach is
that, since a high quality community should envelope high information content
among its elements, the resolution of a layer to control the expected connectiv-
ity of a given community should be lowered as the layer’s contribution to the
information content of the community increases.

In this regard, the redundancy measure proposed in [41] is particularly suited
to quantify the variety of connections, such that it is higher if edges of more
types (layers) connect each pair of nodes in the community. Let us denote with
P1 the set of node pairs connected in at least one layer in the graph, and with
P2 the set of “redundant” pairs, i.e., the pairs of nodes connected in at least
two layers. Given a community C, PC

1 and PC
2 denote the subset of P1 and the

subset of P2, respectively, corresponding to nodes in C. The redundancy of C,
ρ(C), expresses the number of pairs in C with redundant connections, divided
by the number of layers connecting the pairs. Formally [41]:

ρ(C) =
∑

(v,u)∈PC
2

SL(v, u,L)

|L|×|PC
1 |

, (4)

with SL(v, u,L) = {L ∈ L | (v, u, L) ∈ EL}.
Note that in the above formula, each of the sets SL refers to the layers on

which two nodes in a redundant pair are linked. Upon this concept, we define
the set of supporting layers sup for each community C as:

sup(C,L) =
⋃

(v,u)∈PC
2

SL(v, u,L). (5)

Using the above defined sup(C,L), we provide the following definition of
redundancy-based resolution factor.
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Figure 2: Multilayer network for our running example

Definition 4.2 (Redundancy-based resolution factor). Given a layer L and a
community C, the redundancy-based resolution factor in Eq. (3) is defined as:

γ(L,C) =
2

1 + log2(1 + nrp(L,C))
(6)

where nrp(L,C) = |{s=SL(v, u,L) ∈ sup(C,L) | L ∈ s}| expresses the number
of times layer L participates in redundant pairs. �

Note that γ(L,C) ranges in (0, 1]∪[2]. In particular, it ranges in (0, 1] as long
as L participates in at least one redundant pair, and it decreases as nrp(L,C)
increases; moreover, as special case, γ(L,C) is equal to 2 when nrp(L,C) = 0.

Example 4.1. Consider the network with 16 entities and 5 layers shown in
Fig. 2, and let us first focus on some specific cases for the computation of the
γ(L,C) terms. For instance, given community C4 and layers L1 and L5, the cor-
responding values of redundancy-based resolution are equal to 2, because L1, L5

never participate in redundant pairs for nodes of C4. By contrast, layers L2 and
L5 participate in one redundant pair for community C1, which corresponds to



Table 1: Redundancy-based resolution factor γ(L,C) for each community and
layer of the example network in Fig. 2.

L1 L2 L3 L4 L5

C1 0.667 1.000 - 0.667 1.000
C2 0.525 0.558 0.667 0.667 0.667
C3 0.602 0.667 0.667 0.602 0.558
C4 2.000 - - - 2.000

the edge linking entities 2 and 3 for L5 and the edge linking entities 1 and 2
for L2; therefore, the values of redundancy-based resolution associated with C1

on L2 and L5 are equal to 1. Also, the resolution for C1 on L1 takes a value
lower than 1 since there is more than one redundant pair. Table 1 reports on the
entire set of values for the resolution factor computed on the network of Fig. 2.

4.2 Projection-based inter-layer couplings

We propose a general and versatile approach to quantify the strength of coupling
of nodes in one layer with nodes on another layer. Our key idea is to determine
the fraction of nodes belonging to a community onto a layer that appears in the
projection of the community on another layer, and express the relevance of this
projection w.r.t. that pair of layers.

Given a community C ∈ C and layers Li, Lj ∈ L, we will use symbols C(i)

and C(j) to denote the projection of C onto the two layers, i.e., the set of
nodes in C that lay on Li and Lj , respectively. In the following, we define two
approaches for measuring inter-layer couplings based on community projection.

For any two layers Li, Lj and community C, the first approach, we call
symmetric, determines the relevance of inter-layer coupling of nodes belonging
to C as proportional to the fraction of nodes shared between Li and Lj that
belong to C.

Definition 4.3. Given a community C ∈ C and layers Li, Lj ∈ L, the symmet-
ric projection-based inter-layer coupling, denoted as ICs(C,Li, Lj) and referring
to term IC in Eq. (3), is defined as the probability that C lays on Li and Lj:

ICs(C,Li, Lj)=Pr[C in Li, C in Lj ] =
|C(i) ∩ C(j)|
|Vi ∩ Vj |

(7)

�

The above definition assumes that the two events “C in Li” and “C in
Lj” are independent to each other, and it does not consider that the coupling
might have a different meaning depending on the relevance a community has
on a particular layer in which it is located. By relevance of community, we
simply mean here the fraction of nodes in a layer graph that belong to the
community; therefore, the larger the community in a layer, the more relevant



is w.r.t. that layer. However, we observe that more relevant community in a
layer corresponds to less surprising projection from that layer to another. This
would imply that the inter-layer coupling for that community is less interesting
w.r.t. projections of smaller communities, and hence the strength of the coupling
might be lowered. We capture the above intuition by the following definition of
asymmetric projection-based inter-layer coupling.

Definition 4.4. Given a community C ∈ C and layers Li, Lj ∈ L, the asym-
metric projection-based inter-layer coupling, denoted as ICa(C,Li, Lj) and re-
ferring to term IC in Eq. (3), is defined as the probability that C lays on Lj

given that C lays on Li:

ICa(C,Li, Lj) = Pr[C in Lj |C in Li] =

=
Pr[C in Li, C in Lj ]

Pr[C in Li]
=

=
|C(i) ∩ C(j)|
|Vi ∩ Vj |

× |Vi|
|C(i)|

(8)

�

Dealing with layer ordering. Our formulation of multilayer modularity is
general enough to account for an available ordering of the layers, according to
a given partial order relation.

The previously defined asymmetric inter-layer coupling is well suited to
model situations in which we might want to express the inter-layer coupling
from a “source” layer to a “destination” layer. Given any two layers Li, Lj , it
may be the case that only comparison of Li to Lj , or vice versa, is allowed. This
is clearly motivated when there exist layer-coupling constraints, thus only some
of the layer couplings should be considered in the computation of Q.

In practical cases, we might assume that the layers can be naturally ordered
to reflect a predetermined lexicographic order, which might be set, for instance,
according to a progressive enumeration of layers or to a chronological order of
the time-steps corresponding to the layers. That said, we can consider two
special cases of layer ordering :

• Adjacent layer coupling : Li ≺L Lj iff j = i + 1 according to a predeter-
mined natural order.

• Succeeding-layer coupling : Li ≺L Lj iff j > i according to a predetermined
natural order.

Note that the adjacent layer coupling scheme requires ` − 1 pairs to consider,
while the succeeding-layer coupling scheme involves the comparison between a
layer and its subsequent ones, i.e., (`2 − `)/2 pairs.

Moreover, it should be noted that the availability of a layer ordering enables
two variants of the asymmetric projection-based inter-coupling given in Eq. (8).
For any two layers Li, Lj ∈ L, such that Li ≺L Lj holds, we refer to as inner



the direct evaluation of ICa(C,Li, Lj), and as outer the case in which Li and
Lj are switched, i.e., ICa(C,Lj , Li).

In the inner case, the strength of coupling is higher as the projection of C on
the source layer (i.e., the preceding one in the order) is less relevant; vice versa,
the outer case weights more the coupling as the projection on the destination
layer (i.e., the subsequent one in the order) is less relevant.

Example 4.2. Consider again the example network of Fig. 2. The asymmetric
coupling for the projection of community C2 from L2 to L3 is ICa(C2, L2, L3) =
(2/5) × (9/4) = 9/10 = 0.9 in the inner case, and ICa(C2, L3, L2) = (2/5) ×
(6/3) = 4/5 = 0.8 in the outer case.

We hereinafter use symbols ICia and ICoa to distinguish between the inner
asymmetric and the outer asymmetric evaluation cases.

Time-evolving multilayer networks. So far we have assumed that when com-
paring any two layers Li, Lj , with Li ≺L Lj , it does not matter the number of
layers between Li and Lj . Intuitively, we might want to penalize the strength
of the coupling as more “distant” Lj is from Li. This is often the case in time-
sliced networks, whereby we want to understand how community structures
evolve over time.

In light of the above remarks, we define a refinement of the asymmetric
projection-based inter-layer coupling, by introducing a multiplicative factor that
smoothly decreases the value of the ICa function as the temporal distance be-
tween Li and Lj increases.

Definition 4.5. Given a community C ∈ C and layers Li, Lj ∈ L, such that
Li ≺L Lj, the time-aware asymmetric projection-based inter-layer coupling,
denoted as ICt

a(C,Li, Lj), is defined as

ICt
a(C,Li, Lj)=ICa(C,Li, Lj)×

2

1 + log2(1 + j − i)
(9)

�

Note that the second term in the above equation is 1 for the adjacent layer
coupling scheme, thus making no penalization effect when only consecutive lay-
ers are considered.

Example 4.3. Referring again to the example in Fig. 2, in Table 2 we sum-
marize the mean and standard deviation values for the different variants of the
inter-layer coupling factor. One remark is that the values for communities C2

and C3 are higher than those corresponding to communities C1 and C4. This is
mainly due to the representativity of C2 and C3 in all layers. The lowest val-
ues are obtained for community C4, which is in fact less represented than other
communities (only in layers L1 and L5). For instance, let us focus on this com-
munity. The mean inter-layer coupling factor ICSuc

oa for community C4 is 0.11,

since: |C(5)
4 ∩ C(1)

4 |= 2, |V5 ∩ V1|= 10 (which is exactly the size of L5 without



Table 2: Different variants of the inter-layer coupling factor, for each community
of the example network in Fig. 2. Values are cumulated over the admissible
pairings of layers. Mean and standard deviation values are reported.

ICs ICia ≡ ICoa ICAdj
ia ICAdj

oa ICSuc
ia ICSuc

oa

C1 0.135 ± 0.038 0.612 ± 0.214 0.444 ± 0.314 0.525 ± 0.071 0.619 ± 0.274 0.606 ± 0.159
C2 0.398 ± 0.096 1.105 ± 0.284 1.115 ± 0.157 1.192 ± 0.320 1.018 ± 0.245 1.193 ± 0.305
C3 0.416 ± 0.074 1.148 ± 0.258 1.188 ± 0.239 1.088 ± 0.118 1.249 ± 0.306 1.048 ± 0.158
C4 0.018 ± 0.000 0.091 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.091 ± 0.000 0.110 ± 0.000

Table 3: Multilayer modularity for the various combinations of resolution and
inter-layer coupling terms, on the example network in Fig. 2. Community-
specific values correspond to the modularity contribution given by each partic-
ular community to the overall modularity.

γ, ICs γ, ICia γ, ICoa γ, ICAdj
ia γ, ICAdj

oa γ, ICSuc
ia γ, ICSuc

oa γ, IC=0 γ=1, ICs γ=1, ICia γ=1, ICoa γ=1, IC=0
C1 0.064 0.098 0.098 0.129 0.131 0.142 0.141 0.126 0.063 0.097 0.097 0.123
C2 0.164 0.214 0.214 0.318 0.320 0.317 0.329 0.310 0.162 0.213 0.213 0.307
C3 0.161 0.213 0.213 0.313 0.309 0.325 0.312 0.266 0.160 0.212 0.212 0.299
C4 0.022 0.028 0.028 0.044 0.044 0.045 0.045 0.048 0.022 0.027 0.027 0.047

Q 0.411 0.554 0.554 0.803 0.804 0.828 0.827 0.750 0.408 0.550 0.550 0.777

node 16), |V5|= 11 and |C(5)
4 |= 2; this determines an inter-layer coupling factor

of 1.1, which is divided by the admissible pairings of layers, i.e., 10. On the
contrary, the mean ICAdj

oa for C4 is equal to zero, because the projection of this
community is always empty when the adjacent coupling scheme is used.

Finally, Table 3 reports the multilayer modularity values, including the com-
munity-specific contributions. Note that, regardless of the settings of γ and IC
factors, communities C2 and C3 obtain the highest values of modularity, which is
mainly determined since they are disconnected from the rest of the graph at layer
L3. In general, it should be noted that the contribution given by each community
is consistent w.r.t. the various settings of γ and IC factors. Also, it is interest-
ing to note that discarding the inter-layer couplings (IC = 0, which corresponds
to the 9th and 13th columns) can lead to values of community-modularity and
global modularity that tend to be much higher than the corresponding cases with
IC 6= 0. This overestimation can also occur, though to a lesser extent, when
fixing γ = 1 (13th column) vs. redundancy-based γ (9th column). Also, it is
worth noting that using the redundancy-based resolution factor γ with unordered
layers (2nd, 3rd and 4th columns) increases the community as well as global
modularity vs. the same cases with γ = 1 (10th, 11th, and 12th columns).

4.2.1 Relations between the resolution and inter-layer coupling fac-
tors

Both factors take into consideration the network context, however they differ
in that γ(L,C) considers a “global” multiplex context, whereas IC considers
a “local” multiplex context. Intuitively, γ(L,C) is defined for each valid layer-
community pair according to the status of the links among nodes in community
C that lays on L versus their status on the other layers. By contrast, IC con-



siders the status of the same community from one layer to another comparable
layer.

In terms of numerical comparison, when the size of the community structure
tends to the number of nodes of the network, γ(L,C) tends to increase (i.e., to
the maximum value of 2) while IC tends to decrease (i.e., to zero).

4.3 Properties of the proposed multilayer modularity

We provide theoretical insights on Q, focusing on the effect of increase in the
size of the community structure and on the analytical derivation of the range of
values of Q.

4.3.1 Effect of increase in the number of communities

We discuss the effect of increasing k (i.e., decreasing the average size of commu-
nities in C) by distinguishing three configurations of Q: (i) symmetric inter-layer
coupling, (ii) asymmetric inter-layer coupling, and (iii) ordered layers.

In the first case, Q tends to have a monotonic decreasing trend. This is easily
explained by the combination of three contingencies. The first one is an aver-
age decrease in the internal degree dintL . The second contingency is an increase
in the redundancy-based resolution factor γ: in fact, smaller communities cor-
respond to lower probability of observing redundant pairs within communities
over different layers; this decreases the logarithmic term in the resolution factor,
which will progressively tend to 2 (maximum value). The third contingency is
a decrease in the inter-layer coupling factor ICs, since the size of community
intersection becomes increasingly smaller as the community size decreases.

By contrast, when equipped with the asymmetric projection-based inter-
layer coupling ICa, Q tends to differ from a monotonic decreasing trend because

of the bias term |Vi|
|C(i)| , which increases with communities of smaller size.

In the third case (i.e., ordered layers), Q can again follow an increasing or
decreasing trend. Recall that the term d(VL) includes the contribution of the
inter-layer edges, which obviously are fewer when the layer couplings are order-
dependent. A decrease in the number of inter-layer couplings also makes the

decrease in the actual connectivity term (i.e.,
dint
L (C)
d(VL) ) slower as k increases,

since d(VL) is smaller than in the unordered-layer contingency. Consequently,
the inter-layer coupling term could compensate the actual connectivity term,
which will result in increasing the value of Q. Finally, considering time-aware
asymmetric inter-layer coupling, Q is more likely to follow a decreasing trend
because of the effect due to the smoothing term 2

1+log2(1+j−i) , which penalizes

ICa for any two no time-consecutive layers. Consequently, since the inter-layer
coupling factor ICt

a is smaller than ICa, Q could monotonically decrease despite

the bias term |Vi|
|C(i)| in ICt

a.



4.3.2 Lower and upper bounds

To determine the range of values of the basic modularity in simple graphs, the
theoretical frameworks previously studied in [4] and [24] define two canonical
structures to support the analytical computation of the minimum and maximum
value of the modularity, respectively. More specifically, the former work proved
that any bipartite graph with the canonical two-way clustering obtains the min-
imum value of modularity, whereas the latter work proved that the maximum
modularity is reached in a graph composed of disjoint cliques.

Following the lead of the above works, here we provide theoretical results
about the analytical derivation of the lower bound and upper bound of our
proposed multilayer modularity.

Proposition 1. Given a multilayer network GL = (VL, EL,V,L), with n =
|V|, ` = |L|, and a community structure C for GL, the lower bound of Q is as
follows:

Q(C) = − n2`

(n`+ 2p)2
+

4(1 + η)p

n2(n`+ 2p)
, (10)

with η = 0 for ICs and η = 1 for ICa, and p =
∑

L∈L|P(L)| is the total number
of valid layer-pairings.

Proof. Proof is reported in the Appendix.

Proposition 2. Given a multilayer network GL = (VL, EL,V,L), with n =
|V|, ` = |L|, and a community structure C for GL, the upper bound of Q is as
follows:

Q(C) =2

[
1

2

(n
2 − 1)`

(n
2 − 1)`+ p

− γ`
(

1

2

(n
2 − 1)

(n
2 − 1)`+ p

)2

+

+
(1 + η)p

n2(n
2 − 1)`+ n2p

] (11)

with η = 0 for ICs and η = 1 for ICa, and p =
∑

L∈L|P(L)| is the total number
of valid layer-pairings.

Proof. Proof is reported in the Appendix.

Note that, in the special case for β = 0, i.e., the inter-layer coupling factor
is discarded, the lower bound of Q is

Q(C) = −1

`
. (12)

Analogously, the upper bound of Q is rewritten as:

Q(C) =
2`− γ

2`
, (13)

with γ = 2(1 + log2(1 +
n
2 (n

2−1)
2 ))−1.



5 Evaluation Methodology

We discuss here the evaluation networks (Sect. 5.1), the multilayer community
detection methods (Sect. 5.2), and the experimental settings (Sect. 5.3).

5.1 Datasets

Our selection of network datasets was motivated to fulfill the reproducibility
requirement: in fact, all of our evaluation datasets, including both real-world
networks and synthetic generators, are publicly available. Moreover, we also
took the opportunity of diversifying the choice of real-world networks by con-
sidering various domains that are profitably modeled as multilayer networks.

5.1.1 Real-world network datasets

We considered 10 real-world multilayer network datasets. AUCS [42, 43] de-
scribes relationships among university employees: work together, lunch together,
off-line friendship, friendship on Facebook, and coauthorship. EU-Air transport
network [42] (EU-Air, for short) represents European airport connections con-
sidering different airlines. FAO Trade network (FAO-Trade) [44] represents dif-
ferent types of trade relationships among countries, obtained from FAO (Food
and Agriculture Organization of the United Nations). FF-TW-YT (stands for
FriendFeed, Twitter, and YouTube) [12] was built by exploiting the feature of
FriendFeed as social media aggregator to align registered users who were also
members of Twitter and YouTube. Flickr refers to the dataset studied in [45].
We used the corresponding timestamped interaction network whose links express
“who puts a favorite-marking to a photo of whom”. We extracted the layers
on a month-basis and aggregated every six (or more) months. GH-SO-TW
(stands for GitHub, StackOverflow and Twitter) [46] is another cross-platform
network where edges express followships on Twitter and GitHub, and “who
answers to whom” relations on StackOverflow. Higgs-Twitter [42] represents
friendship, reply, mention, and retweet relations among Twitter users. London
transport network [18] (London, for short) models three types of connections of
train stations in London: underground lines, overground, and DLR. ObamaInIs-
rael2013 [47] (Obama, for short) models retweet, mention, and reply relations of
users of Twitter during Obama’s visit to Israel in 2013. 7thGraders [18] (VC-
Graders, for short) represents students involved in friendship, work together,
and affinity relations in the class. Table 4 reports for each dataset, the size of
set V, the number of edges in all layers, and the average coverage of node set
(i.e., 1/|L|

∑
Li∈L(|Vi|/|V|)). The table also shows basic, monoplex structural

statistics (degree, average path length, and clustering coefficient) for the layer
graphs of each dataset.

5.1.2 Synthetic network datasets

Besides the real-world network data, we generated four synthetic multilayer
network datasets. Our goal was the evaluation of the multilayer modularity Q



Table 4: Main characteristics of our evaluation network datasets. Mean and
standard deviation over the layers are reported for degree, average path length,
and clustering coefficient statistics.

#entities #edges #layers node set degree avg. path clustering
(|V|) (`) coverage length coefficient

AUCS 61 620 5 0.73 10.43 ± 4.91 2.43 ± 0.73 0.43 ± 0.097
EU-Air 417 3 588 37 0.13 6.26 ± 2.90 2.25 ± 0.34 0.07 ± 0.08
FAO-Trade 214 318 346 364 1.00 7.35±6.17 2.43±0.39 0.31±0.11
FF-TW-YT 6 407 74 836 3 0.58 9.97 ± 7.27 4.18 ± 1.27 0.13 ± 0.09
Flickr 789 019 17 071 325 5 0.33 23.15 ± 5.61 4.50 ± 0.60 0.04 ± 0.01
GH-SO-TW 55 140 2 944 592 3 0.68 41.29 ± 45.09 3.66 ± 0.62 0.02 ± 0.01
Higgs-Twitter 456 631 16 070 185 4 0.67 18.28 ± 31.20 9.94 ± 9.30 0.003 ± 0.004
London 369 441 3 0.36 2.12 ± 0.16 11.89 ± 3.18 0.036 ± 0.032
Obama 2 281 259 4 061 960 3 0.50 4.27 ± 1.08 13.22 ± 4.49 0.001 ± 0.0005
VC-Graders 29 518 3 1.00 17.01 ± 6.85 1.66 ± 0.22 0.61 ± 0.89

on different network models. Two out of the four networks are composed of
2 layers and 256 entities. In one network, hereinafter referred to as ER-ER,
the two layers are Erdös-Rényi (ER) random graphs. In the second network,
dubbed LFR-ER, the first layer is generated by the Lancichinetti-Fortunato-
Radicchi (LFR) benchmark, while the second layer is an Erdös-Rényi random
graph. The other two networks are composed of 4 layers and 128 nodes. Both
networks are characterized by two Erdös-Rényi layers and two layers built as
Girvan-Newman (GN) graphs, but they differ in the layer ordering: GN-ER-
GN-ER in the first network, and GN-ER-ER-GN in the second network.

Moreover, mainly for purposes of efficiency evaluation, we generated a set of
synthetic multilayer networks using the Lancichinetti-Fortunato-Radicchi (LFR)
benchmark. In particular, single-layer network datasets were provided by the
LFR benchmark using a variable number of nodes with steps of 128 until 1024.
Also, the maximum and average node degrees were set to 16, and the mixing
coefficient µ was set to 0.1. Each network dataset was characterized by four
communities. From each of such networks, a multilayer network was created by
replicating the LFR single-layer from 2 to 10.

5.2 Community detection methods

We resorted to state-of-the-art methods for community detection in multilayer
networks, which belong to the two major approaches, namely aggregation and
direct methods. The former detect a community structure separately for each
network layer, after that an aggregation mechanism is used to obtain the final
community structure, while the latter directly work on the multilayer graph
by optimizing a multilayer quality-assessment criterion. (Note that while it is
possible to flatten the multilayer graph in order to apply on it any conventional
community detection algorithm, this approach can be too simplistic, since, e.g.,
it would not permit to investigate about the temporal evolution of communities.)

As exemplary methods of the aggregation approach, we used Principal Mod-
ularity Maximization (PMM) [48] and Enhanced Modularity-driven Ensemble-
based Multilayer Community Detection (M-EMCD∗) [20]. PMM aims to find a



concise representation of features from the various layers (dimensions) through
structural feature extraction and cross-dimension integration. Features from
each dimension are first extracted via modularity maximization, then concate-
nated and subjected to PCA to select the top eigenvectors, which represent
possible community partitions. Using these eigenvectors, a low-dimensional em-
bedding is computed to capture the principal patterns across all the dimensions
of the network, finally a k-means on this embedding is carried out to discover
a community structure. M-EMCD∗ is a parameter-free extension of the M-
EMCD method proposed in [19]. Given an ensemble of community structures
available for a multilayer network, M-EMCD optimizes a consensus objective
function to discover a consensus solution with maximum modularity, subject to
the constraint of being searched over a hypothetical space of consensus com-
munity structures that are valid w.r.t. the input ensemble and topologically
bounded by two baseline solutions. To detect the initial cluster memberships
of nodes, M-EMCD utilizes a consensus or co-association matrix, which stores
the fraction of clusterings in which any two nodes are assigned to the same
cluster. To filter out noisy, irrelevant co-association, a user-specified threshold
must be specified. Besides introducing flexibility in community assignments
of nodes during the modularity optimization, M-EMCD∗ overcomes the limi-
tation of setting such a parameter of minimum co-association, by providing a
parameter-free identification of consensus clusters based on generative models
for graph pruning.

As for the direct methods, we resorted to Generalized Louvain (GL) [15]
and Locally Adaptive Random Transitions (LART) [17]. GL extends the classic
Louvain method using multislice modularity, so that each node-layer tuple is
assigned separately to a community. Majority voting is adopted to decide the
final assignment of an entity node to the community that contains the major-
ity of its layer-specific instances. LART is a random-walk based method. It
first runs a different random walk for each layer, then a dissimilarity measure
between nodes is obtained leveraging the per-layer transition probabilities. A
hierarchical clustering method is used to produce a hierarchy of communities
which is eventually cut at the level corresponding to the best value of multislice
modularity.

It should be emphasized that we selected the above methods because, while
having different characteristics, they all use modularity either as optimization
criterion (GL, PMM and M-EMCD∗) or as evaluation criterion to produce the
final community structure (LART).

Note also that PMM requires the desired number of communities (k) as
input. Due to different size of our evaluation datasets, we devised several con-
figurations of variation of parameter k in PMM, by reasonably adapting each of
the configuration range and increment step to the network size. Concerning M-
EMCD∗, we used the marginal likelihood filter (MLF) to perform parameter-free
detection of the number of communities [20].

It should be noted that the selected methods actually discover different com-
munity structures, thus supporting our choice in terms of diversity of evaluation
scenarios for the two competing modularity measures under study. Table 5 re-



Table 5: Number of communities found by GL, LART, PMM and M-EMCD∗

with MLF model-filter on the real-world network datasets
GL LART PMM M-EMCD∗

AUCS 5 27 2 13
EU-Air 10 381 5 39

FAO-Trade 12 - 10 11
FF-TW-YT 749 - 10 115
GH-SO-TW 87 - 10 392

Flickr 12290 - 10 7660
Higgs-Twitter 15218 - 10 121

London 21 339 30 46
Obama 297062 - 10 328367

VC-Graders 3 6 2 16

ports the number of communities of the solutions found by the various methods
on the real-world network datasets. (The number of communities k in PMM
is selected according to the solution with highest modularity value.) We found
that GL tends to discover a high number of communities for larger networks
(i.e., Flickr, Higgs-Twitter, FF-TW-YT, and Obama), and the size distribution
of these communities (results not shown) is highly right-skewed on the larger
networks, while it is moderately left-skewed on the remaining datasets. A simi-
lar result can be observed in M-EMCD∗ for the different networks, although in
Higgs-Twitter and FF-TW-YT (resp. GH-SO-TW ) the number of communities
is much lower (resp. higher) than in GL. By contrast, the best performances
of PMM usually correspond to a low and quite stable number of communities.
Also, LART generally tends to produce much more communities than the other
methods, on the networks for which it is able to discover communities.

As a final general remark, we used the original implementations of the se-
lected methods, based on the source code made available by the respective
authors. We emphasize that it is beyond the goals of this work to make any
performance improvement in the community detection methods under study,
which hence are considered here with no intent of comparative evaluation and
with all their limitations. (This justifies, in particular, the inability of LART in
terminating the task for some network datasets.)

5.3 Experimental settings

We carried out GL, PMM, LART and M-EMCD∗ methods on each of the net-
work datasets and measured, for each community structure solution, our pro-
posed multilayer modularity (Q) as well as the Mucha et al.’s multislice modu-
larity (Qms).

We evaluated Q using the redundancy-based resolution factor γ(L,C) with
either the symmetric (ICs) or the asymmetric (ICa) projection-based inter-layer
coupling. We also considered cases corresponding to ordered layers, using either
the adjacent-layer scheme or the succeeding-layer scheme, and for both schemes



Table 6: Multilayer modularity Q and multislice modularity Qms on GL com-
munity structures of the four synthetic networks.

#comm. Qms γ = 1, γ = 1, γ, γ, γ,
by GL ICs ICia ≡ ICoa β = 0 ICs ICia ≡ ICoa

ER-ER 10 0.249 0.192 0.196 0.290 0.258 0.262
LFR-ER 16 0.486 0.404 0.411 0.486 0.434 0.441
GN-ER-GN-ER 4 0.429 0.432 0.436 0.552 0.471 0.475
GN-ER-ER-GN 4 0.429 0.432 0.436 0.552 0.471 0.475

considering inner (ICia) as well as outer (ICoa) asymmetric coupling. We fur-
ther evaluated the case of temporal ordering, using the time-aware asymmetric
projection-based inter-layer coupling. Yet, we considered the particular setting
of uniform resolution (i.e., γ(L,C) = 1, for each layer L and community C).

As for Qms, we devised two settings: the first by varying ω within [0..2] while
fixing γ = 1, the second by varying γ and ω = 1− γ [15].

6 Results

We organize our main experimental results into two parts, depending on whether
layer ordering was considered in the evaluation networks. Experiments were
carried out on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM machine.

6.1 Evaluation with unordered layers

6.1.1 Synthetic network datasets

Table 6 reports the multilayer modularity Q, multislice modularity Qms and
number of communities obtained by the GL solution on the four synthetic net-
works.

One first remark is that using the redundancy-based resolution factor γ
always leads to higher Q w.r.t. the cases corresponding to γ fixed to 1. In
particular, we observe gains up to 0.1 on ER-ER, 0.07 on LFR-ER, and 0.12 on
GN-ER-GN-ER and GN-ER-ER-GN.

Another remark is that the fully combination of resolution and inter-layer
coupling factors (i.e., rightmost two columns) tends to lower the value of Q
w.r.t. the cases corresponding to varying γ with β = 0 (i.e., third last column);
moreover, the asymmetric inter-layer coupling results in a higher Q w.r.t. the
symmetric setting of IC. This would hint that when the normalization term in
the Q equation accounts for the inter-layer couplings, this results in lowering
the value of Q, which is turn smoother when the asymmetric setting is used.

Comparing Q and Qms, it should be noted that the two measures behave
consistently on ER-ER vs. LFR-ER, i.e., the presence of a layer with a (LFR)
modular structure actually leads to an increase in both modularity measures
w.r.t. ER-ER. By contrast, Q tends increase faster than Qms on the two GN-
ER networks: this can be explained since a higher number of layers (as occurs



Table 7: Multilayer modularity Q on GL community structures
γ(L,C) γ = 1

ICa ICs ICa ICs

AUCS 0.41 0.37 0.39 0.35
EU-Air 0.04 0.03 0.04 0.03
FAO-Trade 0.11 0.03 0.11 0.03
FF-TW-YT 0.50 0.42 0.42 0.34
Flickr 0.32 0.31 0.28 0.27
GH-SO-TW 0.40 0.40 0.35 0.35
Higgs-Twitter 0.15 0.13 0.14 0.12
London 0.35 0.26 0.34 0.26
Obama 0.43 0.32 0.43 0.32
VC-Graders 0.54 0.53 0.44 0.43

for the two GN-ER networks than for the ER-ER and LFR-ER networks) has a
higher effect on the inter-layer coupling factor IC, which is not present in Qms.

6.1.2 Real-world network datasets

Tables 7–9 and Fig. 3 report Q measurements on the community structure
solutions obtained by the various community detection methods.

Concerning GL (Table 7), we observe that with the exception of GH-SO-TW
on which effects on Q are equivalent, using ICa leads to higher Q than ICs. On
average over all networks, using ICa yields an increment of 13.4% and 14.6%
(with γ fixed to 1) w.r.t. the value of Q corresponding to ICs. This higher
performance of Q due to ICa supports our initial hypothesis on the opportunity
of asymmetric inter-layer coupling. It is also interesting to note that, when
fixing γ to 1, Q decreases w.r.t. the setting with redundancy-based resolution
γ(L,C) — decrement of 11% and 12% using ICa and ICs, respectively.

Table 8 shows results obtained from LART solutions. (Due to memory-
resource and efficiency issues shown by the currently available implementation
of LART, we are able to report results only on some networks). We observe that
the relative performance difference between ICs and ICa settings is consistent
with results found in the GL evaluation; this difference is even extreme (0.98 or
0.99) on EU-Air and London, which is likely due also to the different sizes of
community structures detected by the two methods (cf. Sect. 5.2).

Table 9 shows results obtained by M-EMCD∗ solutions. Also in this case,
using ICa generally leads to better Q than ICs, regardless of the setting of γ.
In particular, the observed increase is higher in VC-Graders and London (0.2),
followed by AUCS (0.18) and Obama (0.13). Moreover, when fixing γ to 1, in
most cases Q decreases (0.01-0.06) w.r.t. the setting with redundancy-based
resolution γ(L,C).

Figure 3 shows how Q varies in function of the number (k) of clusters given
as input to PMM. One major remark is that Q tends to decrease as k increases.
This holds consistently for the configuration of Q with symmetric inter-layer



Table 8: Multilayer modularity Q on LART community structures
γ(L,C) γ = 1

ICa ICs ICa ICs

AUCS 0.47 0.19 0.43 0.15
EU-Air 1.00 0.02 1.00 0.02
London 1.00 0.01 1.00 0.01
VC-Graders 0.30 0.28 0.22 0.20

Table 9: Multilayer modularity Q on M-EMCD∗ community structures
γ(L,C) γ = 1

ICa ICs ICa ICs

AUCS 0.51 0.33 0.50 0.32
EU-Air 0.20 0.14 0.20 0.14
FAO-Trade 0.02 0.03 0.02 0.03
FF-TW-YT 0.47 0.41 0.47 0.41
Flickr 0.37 0.35 0.31 0.29
GH-SO-TW 0.64 0.63 0.61 0.60
Higgs-Twitter 0.58 0.58 0.52 0.52
London 0.46 0.26 0.46 0.25
Obama 0.42 0.29 0.42 0.29
VC-Graders 0.52 0.32 0.50 0.30

coupling; in fact, as discussed in Sect. 4.3.1, the decrease of Q for increasing k
depends on a combination of decrease of the internal degree dintL , decrease of
the symmetric inter-layer coupling factor ICs, and increase of the redundancy-
based resolution factor γ(L,C). Moreover, values of Q corresponding to ICa

tend to be close to the ones obtained for ICs on the large networks, while on the
smaller ones, ICa trends are above ICs, by diverging for high k in some cases;
in particular, in London modularity for ICa follows a rapidly, roughly linear
increasing trend with k; even more evident is the divergence of the ICs and
ICa trends for AUCS. Again, as we previously discussed in Sect. 4.3.1, this is

due to the bias term |Vi|
|C(i)| of ICa, which increases with communities of smaller

size. Note that, from an inspection of the behavior of Q for higher regimes of k,
we also found that Q values eventually tend to stabilize below 1. As concerns
the setting with γ fixed to 1 (results not shown), while the trends of Q for
ICa and for ICs do not change significantly, the values are typically lower than
those obtained with redundancy-based resolution, which is again consistent with
results observed for GL, LART and M-EMCD∗ evaluations.

Correlation analysis. We investigated whether any correlation may exist
at community-level between the value of Q and selected statistics based on
structural characteristics of the input network. For this purpose, we focused
on the average path length, clustering coefficient, redundancy, and node- and
edge-set coverage, for each community in an evaluation network; note that the
latter two statistics are computed as, given a community C, the fraction of
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Figure 3: Multilayer modularity Q on PMM community structure solutions

nodes (resp. edges) in a layer Li that belong to C, averaged over all layers in
the network.

Figure 4 shows the correlation between each of the above structural charac-
teristics and the values of Q, with redundancy-based resolution factor γ(L,C)
and ICs, on the solution found on selected networks by GL, M-EMCD∗ and
PMM; for the latter, k was chosen as that corresponding to the best modularity
performance. Note also that the correlation results obtained by Q with γ = 1
and ICs, γ = 1 and ICa, γ(L,C) only, and combination of γ(L,C) and ICa, do
not show significant differences, hence their presentation is discarded. Looking
at the three plots in the figure, we observe a mid-high positive correlation of
Q with the topological measures in most cases. More in detail, in Fig. 4 (a)
the modularity of the solution found by GL on EU-Air shows an average cor-
relation of 0.85 with the other measures. Also, an average correlation of 0.95
and 0.96 is obtained between Q and respectively node-set and edge-set coverage
on FF-TW-YT. For AUCS, Q has a positive correlation of 0.76 with clustering
coefficient and a negative correlation with the other measures. For VC-Graders,
Q shows a positive correlation with all measures except with redundancy. For
London and GH-SO-TW, the correlation is up to 0.5. For FAO-Trade, Q shows
a higher correlation up to 1 with node-set and edge-set coverage, and a lower
correlation up to 0.5 with average path length, clustering coefficient and re-
dundancy. Considering Fig. 4 (b), the multilayer modularity Q of the solution
found by PMM shows an average correlation of 0.99 with clustering coefficient
for EU-Air, of 1 and 0.92 with average path length, node-set and edge-set cov-
erage for AUCS and FF-TW-YT, respectively, and of 1 with redundancy for
VC-Graders. On the contrary, a correlation of -1 is obtained between Q and
the clustering coefficient and redundancy for AUCS, and between Q and all
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Figure 4: Pearson correlation coefficient between average path length (APL),
clustering coefficient (CC), node-set coverage (NC), edge-set coverage (EC),
and redundancy (RED) and the multilayer modularity Q with γ(L,C) and ICs

computed on the solution found by (a) GL, (b) PMM, and (c) M-EMCD∗ for
selected networks. Each statistic is computed at community-level

measures except the redundancy for VC-Graders. For FAO-Trade, Q shows a
positive correlation up to 1 with average path length, node-set and edge-set
coverage, and a negative correlation up to -1 with the redundancy. A weakly
negative correlation is shown between Q and clustering coefficient. In the other
cases, the correlation ranges between -0.5 and 0.5. Finally, considering Fig. 4
(c), the multilayer modularity Q of the solution found by M-EMCD∗ shows a
very high correlation with node-set and edge-set coverage in all networks. Also,
Q shows a correlation with the average path length which is up to 0.5 in all
networks, with the only exception of EU-Air and GH-SO-TW. For redundancy
and clustering coefficient, Q obtains a high correlation with clustering coefficient
and redundancy in FAO-Trade and with clustering coefficient in VC-Graders.

Figure 5 shows the correlation between various settings of Q and the previ-
ously analyzed set of statistics for solutions obtained by LART. Looking at the
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Figure 5: Pearson correlation coefficient between average path length (APL),
clustering coefficient (CC), node-set coverage (NC), edge-set coverage (EC),
and redundancy (RED) and the multilayer modularity Q with: (a) γ(L,C), (b)
γ(L,C) and ICs, and (c) γ(L,C) and ICa computed on the solution found by
LART for the different real-world network datasets. Each statistics is computed
at community-level

plots, Q obtains the highest correlation with the edge-set coverage, followed by
the node-set coverage, clustering coefficient and redundancy. Overall, results by
LART confirm the trends observed for GL and PMM, with even higher tendency
to positive correlation in general. Remarkably, this particularly holds when Q
involves the inter-layer coupling terms, with ICa leading to higher correlation
than ICs.

6.2 Evaluation with ordered layers

In this section we focus on evaluation scenarios that correspond to the spec-
ification of an ordering of the set of layers. We will present results on the
real-world networks EU-Air and Flickr. The former was chosen because of its
highest dimensionality (i.e., number of layers) over all datasets, the latter is a
time-evolving multilayer network and was chosen for evaluating the time-aware
asymmetric inter-layer coupling.

Table 10 summarizes results by GL, LART and M-EMCD∗ on EU-Air, corre-



Table 10: Multilayer modularity Q, with layer ordering, from GL, LART and
M-EMCD∗ community structures, on EU-Air

γ(L,C) γ = 1

ICSuc
ia ICSuc

oa ICAdj
ia ICAdj

oa ICSuc
ia ICSuc

oa ICAdj
ia ICAdj

oa

GL 0.786 0.734 0.512 0.511 0.783 0.729 0.504 0.503
LART 0.981 0.972 0.665 0.656 0.981 0.972 0.664 0.656
M-EMCD∗ 0.997 0.998 0.970 0.969 0.997 0.999 0.974 0.973
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Figure 6: Multilayer modularity Q of PMM solutions with layer ordering.
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Figure 7: Pearson correlation coefficient between average path length (APL),
clustering coefficient (CC), node coverage (NC), edge coverage (EC), redun-

dancy (RED), and the multilayer modularity Q with γ(L,C) and ICAdj
ia , ICAdj

oa ,
ICSuc

ia , ICSuc
oa , and ascendent layer ordering, computed on the solution found

by (a) GL, (b) LART, (c) PMM, and (d) M-EMCD∗ on the EU-Air network.
Each statistics is computed at community-level

sponding to adjacent and succeeding-layer coupling. We observe that, regardless
of the setting of the resolution factor, values of Q with succeeding-layer coupling



are higher than the corresponding ones for the adjacent layer coupling scheme.
This suggests that the impact on the inter-layer coupling term is higher when all
ordered pairs of layers are taken into account, than when only adjacent pairs are
considered. In this regard, recall that the total degree of the multilayer graph,
which normalizes the inter-layer coupling term as well, is properly computed
according to the actual number of inter-layer couplings considered, depending
on whether adjacent or succeeding-layer scheme was selected.

The above result is also confirmed by PMM, as shown in Fig. 6, where the
plots for the succeeding-layer scheme superiorly bound those for the adjacent
scheme, over the various k. Note also that, while results on EU-Air are shown
only for the ascendent layer ordering, by inverting this order we will have a
switch between results corresponding to the inner asymmetric case with results
corresponding to the outer asymmetric case. Moreover, Fig. 6(b) compares
the effect of asymmetric inter-layer coupling on Flickr with and without time-
awareness, for PMM solutions. Here we observe that both ICt

ia and ICt
oa plots

are above those corresponding to ICia and ICoa. This indicates that considering
a smoothing term for the temporal distance between layers (Eq. (9)) leads to an
increase in modularity. This general result is also confirmed by GL, LART and
M-EMCD∗ (results not shown); for instance, GL achieved on Flickr modularity
0.462 for ICt

ia, 0.468 for ICt
oa, and 0.460 for ICt

s, which compared to results
shown in Table 7 represent increments in Q of 43%. Similarly, M-EMCD∗

obtained on Flickr modularity 0.975 for ICt
ia, ICt

oa, and ICt
s, which is higher

than the corresponding values reported in Table 9 for ICa and ICs, respectively.
Correlation analysis. Analogously to correlation analysis performed for

the unordered case, we compare different settings of Q with selected statistics
on topological properties. Figures 7 show results on EU-Air obtained by GL,
LART, PMM and M-EMCD∗, respectively. Again, for PMM, k was set to
the number of communities corresponding to the best modularity performance
achieved by the method.

As a general remark Q is always non-negatively correlated with all topo-
logical measures. More specifically, the correlation is highly positive with all
measures, when GL is used, and with all measures but average path length
and clustering coefficient, when LART and M-EMCD∗ are used; for PMM, cor-
relation is very high with clustering coefficient, and mid-low with the other
measures. When equipped with succeeding-layer coupling, correlation is higher
than in the adjacent-layer setting with average path length (up to +0.14), node-
set coverage (up to +0.02) and redundancy (up to +0.05) for the solution found
by GL and M-EMCD∗, and with average path length (up to +0.07), node-set
coverage (up to +0.11) and edge-set coverage (up to +0.11) for the solution
found by PMM. We also found that the layer ordering does not provide mean-
ingful variations on the correlation values — plots regarding descendent layer
ordering are reported in the Appendix.
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Figure 8: Mucha et al.’s modularity (Qms) by varying γ with ω = 1− γ

6.3 Analysis of Qms and comparison with Q

We discuss here performance results obtained by the community detection al-
gorithms with Qms as assessment criterion. We will refer to the default setting
of unordered set of layers as stated in [15].

Using GL, Qms tends to decrease as γ increases (while ω decreases, as it was
varied with γ as ω = 1−γ). This occurs monotonically in most datasets, within
positive ranges (e.g., from 0.636 to 0.384 on FF-TW-YT, from 0.525 to 0.391
on GH-SO-TW ) or including negative modularity for higher γ (e.g., from 0.645
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Figure 9: Mucha et al.’s modularity (Qms) by varying ω with γ = 1

to -0.05 on Flickr, from 0.854 to -4 on AUCS ). Remarkably, the simultaneous
effect of γ and ω = 1 − γ on Qms leads on some datasets (Obama, EU-Air,
London) to a drastic degradation of modularity (down to much negative values)
for some γ > 1, followed by a rapid increase to modularity of 1 as γ increases
closely to 2. Analogous considerations hold for LART, PMM and M-EMCD∗.
For the latter method, the trend of drastic degradation of modularity followed
by a rapid increase is only visible for EU-Air. For PMM, the plots of Fig. 8
show results by varying k, on the real-world datasets. Surprisingly, it appears
that Qms is relatively less sensitive to the variation in the community structure
than our Q. This is particularly visible in AUCS, London (not shown), and
Obama where Qms shows no variation for increasing k. Also, it is worth noting
that, for specific values of γ, Qms may have an abrupt decrease with very low
peaks, as it happens for Obama. By contrast, for FAO-Trade, a value around
0.8 for γ induces high modularity which is stable for the different k values.

When varying ω within [0..2], with γ = 1, Qms tends to monotonically
increase as ω increases. This holds consistently on all datasets (Fig. 9 shows
plots for some of them) with the only exception of FAO-Trade, where Qms is
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Figure 10: Mucha et al.’s modularity (Qms) by varying γ with ω = 1 − γ and
by varying ω with γ = 1, on the ground-truth community structure of AUCS.

stable at 1 for ω > 0.8. Variations are always on positive intervals (e.g., from
0.248 to 0.621 on Flickr, from 0.305 to 0.541 on FF-TW-YT, from 0.136 to 0.356
on Higgs-Twitter).

6.3.1 Comparison between Q and Qms: qualitative evaluation on the
solutions generated by the community detection methods

In the light of the above analysis, a few interesting remarks arise by observing the
different behavior of Q and Qms over the same community structure solutions,
in function of the resolution and inter-layer coupling factors. From a qualitative
viewpoint, the effect of ω on Qms turns out to be opposite, in most cases,
to the effect of our IC terms on Q: that is, accounting more for the inter-
layer couplings leads to increase Qms, while this does not necessarily happen
in Q. Less straightforward is comparing the use of a constant resolution for
all layers, as done in Qms, and the use of variable (i.e., for each pair of layer
and community) resolutions, as done in Q. In this regard, we have previously
observed that the use of a varying redundancy-based resolution factor improves
Q w.r.t. the setting γ = 1. By coupling this general remark with the results
(not shown) of an inspection of the values of γ(L,C) in the computation of Q
on the various network datasets (which confirmed that γ(L,C) values span over
its range, in practice), we can conclude that a more appropriate consideration
of the term modeling the expected connectivity of community is realized in our
Q w.r.t. keeping the resolution as constant for all layers in Qms.

6.3.2 Comparison between Q and Qms: evaluation on AUCS ground-
truth communities

Let us now consider a further stage of evaluation of Q vs. Qms, which is com-
plementary to the previous comparative analysis, with the specific purpose of
assessing their behavior w.r.t. a ground-truth community structure. To this aim,
we resorted again to the AUCS data: in their original work [43], the authors
filled a gap in the literature (actually, still largely open) corresponding to a



lack of benchmarks for understanding multilayer/multiplex networks. In that
work, the authors also provided a ground-truth multiplex community struc-
ture for AUCS, which reflects affiliation of the university employees/students
to research groups. Please refer to [43] for a detailed description of how this
ground-truth was obtained.

In this context of evaluation, we analyzed again the behaviors of Q and
Qms under particular settings of the resolution and inter-layer coupling factors,
while keeping fixed the community structure to a reference one corresponding to
ground-truth knowledge. Before going into details of such analysis, let us first
provide some remarks on the trends of Qms under its two settings previously
considered in Sect. 6.3: varying γ within [0..2] with ω = 1 − γ, and varying ω
within [0..2] with γ = 1. As we observe from the results shown in Fig. 10, Qms

can vary significantly depending on the setting of γ, ω: when γ = 1, ω ∈ [0..2],
Qms monotonically increases with ω, varying within a relatively small range
(i.e., from 0.38 to 0.76); however, when γ ∈ [0..2], ω = 1 − γ, Qms follows
an inverse trend, with a more rapid decrease for γ > 1.5, and overall wider
range (from 0.768 to -1.09). Note that these considerations on the trends are
consistent with the previous analysis for Qms computed on the solution found
by PMM for AUCS (cf. Figs. 8–9 (e)). We shall come back later on such a high
parameter-sensitivity of Qms.

Table 11 shows the global and community-specific values of Q and Qms for
particular combinations of their corresponding γ and inter-layer coupling factors
(IC and ω, respectively). Columns 2 to 5 report basic structural statistics for
each of the communities, while the rest of the table is organized into three
subtables: the first refers to Qms results, the second to our Q, and the third
again to Qms with Q-biased settings of γ, ω. In the latter case, we wanted to
make Qms “closer to” Q by setting its parameters to the values of γ(L,C) and
ICs, respectively, averaged over the different communities and layers. Moreover,
note that ground-truth communities in AUCS are 14 in total, however we only
reported results for those (7) that contain more than one node, in order to
avoid cluttering the table with roughly constant, zero-close modularity values
that correspond to the singleton communities.

Looking at the table, communities C2 and C7 (resp. C5, C3, and C4) cor-
respond to the highest (resp. lowest) modularity values, for either modularity
measure, under each of the parameter-combinations considered. In general, be-
yond the differences in the respective values of modularity (note that Qms values
still differ from the corresponding Q ones even for the Q-biased settings), the
two measures appear to behave similarly over the various communities. To con-
firm this intuition, we evaluated the Pearson correlation of different pairings
of Q and Qms community-specific values. Results show indeed almost perfect
correlation (always above 0.98).

One aspect of evaluation that we also investigated is whether disrupting the
multiplex network by layer may have effect on the comparison between Q and
Qms, which resembles a sort of layer-oriented resiliency analysis. More specif-
ically, based on the structural impact due to the various layers in AUCS [43],
we considered the following alternative configurations: (i) we removed layer co-
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authorship (i.e., the smallest and less connected of all layers), (ii) we removed
layers co-authorship and leisure (i.e., the ones having the lowest number of
edges), (iii) we removed layer work (i.e., the one with the most edges), (iv) we
retained layers work and lunch only. For each of such multiplex-disruption con-
figurations, we replicated the above analysis corresponding to the full multiplex.
Results (not shown) indicated no particular differences in terms of rankings of
community modularity obtained by Qms and Q, respectively; however, we also
observed a general decrease in Pearson correlation of the pairings of Qms and Q
community-specific values, although the correlation remained still high, in par-
ticular always above 0.96 (e.g., when removing layer work, correlation was 0.965
between Qms with γ = 1, ω = avg ICs and Q with γ = 1, ICs, and 0.98 between
Qms with γ = avg γ(L,C), ω = avg ICs and Q with varying γ(L,C), ICs).

To sum up, in this ground-truth evaluation, Qms and Q exhibited consis-
tently similar behaviors at community level for specific settings of their respec-
tive parameters of resolution and inter-layer coupling. However, it should be
emphasized that such a similarity between the two modularity values was ac-
tually achieved for either canonical settings of γ, ω in Qms (i.e., γ = 1 and
ω ∈ {1, 2}) or Q-biased settings of γ, ω (i.e., γ = avg γ(L,C), ω = avg ICs). In
general, Qms has shown to be highly sensitive to the settings of its parameters,
whereas by contrast, our Q has the key advantage of automatically determining
the resolution and inter-layer coupling factors based on the structural informa-
tion of the communities in the multilayer network.

6.4 Efficiency evaluation

We analyzed the computation time of Q for the different combinations of redun-
dancy-based resolution factor γ and inter-layer coupling factors IC. The 3-D
plots in Figs. 11–12 display the time vs. the number of layers and the number
of nodes per layer. For this analysis, we referred to the solutions found by
GL for the multilayer networks generated through the LFR benchmark (cf.
Section 5.1.2).

As expected, the computation time increases with both the number of layers
and nodes per layer, with the latter being less evident when setting γ fixed to
1. Also, while it is obvious that the computation time is higher when using
variable (i.e., redundancy-based) resolution factor than in the case γ = 1 (with
percentage increase of 50%, for the maximum number of layers and nodes per
layer), we observe much less fluctuations in the plot surfaces than in the case
of resolution factor fixed to 1, regardless of the setting of inter-layer coupling
factors. The reader is also referred to the Appendix for further results by
varying the inter-layer coupling settings.

7 Conclusion

We proposed a new definition of modularity for multilayer networks. Motivated
by the opportunity of revising the multislice modularity proposed in [15], we



(a) β = 0 (b) ICs

(c) ICia (d) ICoa

Figure 11: Computation time (in seconds) of the multilayer modularity Q, with
γ = 1, measured on the solution found by GL on the multiplex LFR network

conceived alternative notions of layer resolution and inter-layer coupling, which
are key-enabling for generalizations of modularity for multilayer networks. Us-
ing four state-of-the-art methods for multilayer community detection, synthetic
multilayer networks and ten real-world multilayer networks, we provided empir-
ical evidence of the significance of our proposed modularity.

Our work paves the way for the development of new optimization methods of
community detection in multilayer networks which, by embedding our multilayer
modularity, can discover community structures having the interesting proper-
ties relating to the proposed per-layer/community redundancy-based resolution
factors and projection-based inter-layer coupling schemes. In this respect, we
point out that our multilayer modularity is able to cope with communities that
are overlapping at entity level, which eventually reflect the different roles that
the same entity can play when occurring in two or more layers of the network.
Within this view, one benefit of adopting the multilayer network model is that
the problem of computing soft community-memberships of entities can be trans-
lated into a simpler problem of identification of crisp community-memberships
of nodes within each layer. Nonetheless, a further interesting direction would



(a) β = 0 (b) ICs

(c) ICia (d) ICoa

Figure 12: Computation time (in seconds) of the multilayer modularity Q, with
redundancy-based γ(L,C), measured on the solution found by GL on the mul-
tiplex LFR network

be to evaluate our multilayer modularity in contexts of node-overlapping com-
munities. In this case, however, one challenge to face is whether and to what
extent an overlapping-aware multilayer modularity should be able to measure
the community overlaps within each layer and/or across the layers. Along this
direction, it would be interesting to study an integration of our multilayer mod-
ularity into recently developed works that propose probabilistic representations
or stochastic generative models for overlapping community detection in multi-
layer networks [49, 50].
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plex networks preserving modularity,” New J. Phys., vol. 9, no. 6, p. 176,
2007.

[30] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E, vol. 70,
p. 056131, Nov 2004.

[31] J. Xiang and K. Hu, “Limitation of multi-resolution methods in community
detection,” Physica A Stat. Mech. Appl., vol. 391, no. 20, pp. 4995–5003,
2012.

[32] J. Zhang, K. Zhang, X. ke Xu, C. K. Tse, and M. Small, “Seeding the
kernels in graphs: toward multi-resolution community analysis,” New J.
Phys., vol. 11, no. 11, p. 113003, 2009.

[33] A. Arenas, A. Fernández, and S. Gómez, “Analysis of the structure of
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Appendix

A Analytical derivation of lower and upper bounds

Proof of Proposition 1 (Lower bound of Q). Let us assume that each
of the ` layer graphs in GL has the form of a bipartite graph Ki(a, b), with
i = 1, . . . , `, and sets a and b induce a partitioning of the set of nodes in two
communities denoted as C1 and C2, respectively, so that C = {C1, C2} with
|C1|= |C2|= n

2 , and no internal links are drawn between nodes of the same
community (because of the bipartite assumption).

To begin with, consider the reduction of Q to its simplest form, i.e., γ(L,C)
fixed to 1 for any L,C and β = 0. Therefore, the contribution of community
C1 to Q is:

Q(C1) = −
∑
L∈L

(
dL(C1)

d(VL)

)2

.

Since dL(C1) = n2

4 and d(VL) = n2

4 (2`) = n2`
2 , Q(C1) is calculated as:

Q(C1) = −
∑
L∈L

(
n2

4
n2`
2

)2

= − 1

4`
.

The same above holds for C2. Therefore, the minimum value of Q when
γ(L,C) = 1 and β = 0 is as follows:

Q(C) = − 1

4`
2 = − 1

2`
. (14)

Let us now consider Q with its redundancy-based resolution factor while
keeping β = 0. Since the internal degree of community C1 is 0, there are no
redundant pairs for any community and layer, and hence γ(L,C) = 2. Conse-
quently, the contribution of C1 to Q is:

Q(C1) = −2
∑
L∈L

(
dL(C1)

d(VL)

)2

= −2
∑
L∈L

(
1

2`

)2

= − 1

2`
.

The same above holds for C2. Therefore, the lower bound of Q when γ(L,C) is
variable and β = 0 is as follows:

Q(C) = − 1

2`
2 = −1

`
. (15)

In the general form of Q with both resolution and inter-layer coupling factors
(i.e., varying γ and β = 1), the contribution of C1 to Q is:

Q(C1) =
∑
L∈L

−2

(
dL(C1)

d(VL)

)2

+
∑

L′∈P(L)

IC(C1, L, L
′)

d(VL)

 .



In the above formula, let us indicate the terms X(C1) =
∑

L∈L−2(dL(C1)
d(VL) )2,

and Y (C1) =
∑

L∈L,L′∈P(L)
IC(C1,L,L′)

d(VL) . If we denote with p =
∑

L∈L|P(L)| the

total number of valid layer-pairings, then d(VL) = n2`
2 + np, and X(C1) can be

rewritten as follows:

X(C1) = −2
∑
L∈L

(
n2

4
n2`
2 + np

)2

= −1

2

n2`

(n`+ 2p)2
.

For the reduction of the term Y (C1), we consider the two cases of symmetric
inter-layer coupling and asymmetric inter-layer coupling. In the first case, the

minimum value for ICs(C1, Li, Lj) is equal to
|C(i)

1 ∩C
(j)
1 |

|Vi∩Vj | = 1
n . Accordingly,

Y (C1) is reduced as follows:

Y (C1) =
∑
L∈L

∑
L′∈P(L)

1
n

n2`
2 + np

=
2p

n2(n`+ 2p)

In the second case, ICa(C1, Li, Lj) =
|C(i)

1 ∩C
(j)
1 |

|Vi∩Vj | ×
|Vi|
|C(i)

1 |
= 1

n ×
n
n
2

= 2
n . Accord-

ingly, Y (C1) is reduced as follows:

Y (C1) =
∑
L∈L

∑
L′∈P(L)

2
n

n2`
2 + np

=
4p

n2(n`+ 2p)
.

The above expressions for X and Y hold for C2. Therefore, the lower bound of
Q in its general form is as follows:

Q(C) =2(X(C1) + Y (C1)) =

=− n2`

(n`+ 2p)2
+

4(1 + η)p

n2(n`+ 2p)
,

(16)

with η = 0 for ICs and η = 1 for ICa.
It should be noted that Eq. 15 is a special case of Eq. 16 with β = 0 and d(VL)

discarding the contribution given by the inter-layer edges (i.e., d(VL) = n2`
2 ).

Proof of Proposition 2 (Upper bound of Q). Let us assume that each
of the ` layer graphs in GL has community structure C = {C1, C2} such that

|C1|= |C2|= n
2 and each community is a clique with

n
2 (n

2−1)
2 edges. Moreover,

there are no external edges connecting the communities, therefore dL(C) =
dintL (C). Note that by uniformly distributing the n nodes into the two commu-
nities, it can easily be shown that the maximum of Q is higher.

Analogously to the analysis of the minimum value of Q, let us first consider
the setting γ(L,C) = 1, for any L,C, and β = 0. Therefore, the contribution of
community C1 to Q is:

Q(C1) =
∑
L∈L

dintL (C1)

d(VL)
−
(
dintL (C1)

d(VL)

)2

.



Because dintL (C1) = n
2 (n

2 − 1) and dL(V) = n
2 (n

2 − 1)2`, the above expression is
rewritten as:

Q(C1) =
∑
L∈L

n
2 (n

2 − 1)
n
2 (n

2 − 1)2`
−
( n

2 (n
2 − 1)

n
2 (n

2 − 1)2`

)2

=
1

2
− 1

4`
.

The same above holds for C2. Therefore, the maximum of Q when γ(L,C) = 1
and β = 0 is as follows:1

Q(C) = 2

(
1

2
− 1

4`

)
= 1− 1

2`
=

2`− 1

2`
. (17)

Consider now the setting with redundancy-based γ(L,C) and β = 0. The
contribution of C1 to Q is calculated as:

Q(C1) =
∑
L∈L

n
2 (n

2 − 1)
n
2 (n

2 − 1)2`
− γ(L,C1)

( n
2 (n

2 − 1)
n
2 (n

2 − 1)2`

)2

.

Since nrp(L,C1) =
n
2 (n

2−1)
2 , it follows that γ(L,C1) is equal to 2(1 + log2(1 +

n
2 (n

2−1)
2 ))−1 for each layer and community. Note that the above constant quan-

tity, hereinafter denoted as γ, tends to be � 1, and it is smaller for higher
number of nodes n. The contribution of C1 to Q is rewritten as:

Q(C1) =
1

2
− γ 1

4`
.

The same above holds for C2. Therefore, the maximum of Q with redundancy-
based γ(L,C) and β = 0 is as follows:

Q(C) = 2

[
1

2
− γ 1

4`

]
= 1− γ 1

2`
=

2`− γ
2`

. (18)

Note that the above quantity is as much closer to 1 as n and ` are higher.
In the general setting of Q with redundancy-based γ(L,C) and β = 1, the

contribution of C1 to Q is:

Q(C1) =
∑
L∈L

[
dintL (C1)

d(VL)
− γ(L,C)

(
dintL (C1)

d(VL)

)2

+

+
∑

L′∈P(L)

IC(C1, L, L
′)

d(VL)

 .
In the above formula, let us indicate the terms X(C1) =

∑
L∈L[

dint
L (C1)
d(VL) −

γ(L,C)(
dint
L (C1)
d(VL) )2], and Y (C1) =

∑
L∈L

∑
L′∈P(L)

IC(C1,L,L′)
d(VL) . Because dintL (C1) =

1If C1 and C2 would have n − 1 and 1 nodes, respectively, the resulting maximum value
of Q will be `−1

`
, hence lower than what we obtain in Eq. 17.



n
2 (n

2 − 1), dL(V) = n
2 (n

2 − 1)2`+ np, and γ(L,C1) = 2(1 + log2(1+
n
2 (n

2−1)
2 ))−1

for each layer and community, we obtain:

X(C1)=
∑
L∈L

n
2 (n

2 − 1)
n
2 (n

2 − 1)2`+ np
− γ

( n
2 (n

2 − 1)
n
2 (n

2 − 1)2`+ np

)2

=

=
1

2

(n
2 − 1)`

(n
2 − 1)`+ p

− γ`
(

1

2

(n
2 − 1)

(n
2 − 1)`+ p

)2

,

Y (C1) =
∑
L∈L

∑
L′∈P(L)

IC(C1, L, L
′)

n
2 (n

2 − 1)2`+ np
.

For the reduction of the term Y (C1), we again consider the two cases of
symmetric inter-layer coupling and asymmetric inter-layer coupling. In the first

case, ICs(C1, Li, Lj) =
|C(i)

1 ∩C
(j)
1 |

|Vi∩Vj | = 1
n . Therefore:

Y (C1)=
∑
L∈L

∑
L′∈P(L)

1
n

n(n
2 − 1)`+ np

=
p

n2(n
2 − 1)`+ n2p

.

In the second case, ICa(C1, Li, Lj) =
|C(i)

1 ∩C
(j)
1 |

|Vi∩Vj | ×
|Vi|
|C(i)

1 |
= 1

n ×
n
n
2

= 2
n .

Therefore:

Y (C1)=
∑
L∈L

∑
L′∈P(L)

2
n

n
2 (n

2 − 1)2`+ np
=

2p

n2(n
2 − 1)`+ n2p

.

The same above holds for C2. Therefore, the maximum value of Q is as
follows:

Q(C) =2(X(C1) + Y (C1)) =

=2

[
1

2

(n
2 − 1)`

(n
2 − 1)`+ p

− γ`
(

1

2

(n
2 − 1)

(n
2 − 1)`+ p

)2

+

+
(1 + η)p

n2(n
2 − 1)`+ n2p

] (19)

with η = 0 for ICs and η = 1 for ICa.
It is worth noting that Eq. 18 is a special case of Eq. 19 with β = 0 and

d(VL) discarding the contribution given by the inter-layer edges.

B Evaluation with ordered layers

Figure 13 provides further details on correlation analysis using descendent layer
ordering.
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Figure 13: Pearson correlation coefficient between average path length (APL),
clustering coefficient (CC), node coverage (NC), edge coverage (EC), redun-

dancy (RED), and the multilayer modularity Q with γ(L,C) and ICAdj
ia , ICAdj

oa ,
ICSuc

ia , ICSuc
oa , and descendent layer ordering, computed on the solution found

by (a) GL, (b) LART, (c) PMM, and (d) M-EMCD∗ on the EU-Air network.
Each statistics is computed at community-level

C Efficiency results

Figures 14–15 show the computation time of Q for the different combinations
of γ and IC factors.
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Figure 14: Computation time (in seconds) of the multilayer modularity Q, with
γ = 1, measured on the solution found by GL on the multiplex LFR network
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Figure 15: Computation time (in seconds) of the multilayer modularity Q, with
redundancy-based γ(L,C), measured on the solution found by GL on the mul-
tiplex LFR network
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