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Abstract—Consider a network with N nodes in d-dimensional
Euclidean space, and M subsets of these nodes P1; . . . ; PM . Assume
that the nodes in a given Pi are observed in a local coordinate
system. The registration problem is to compute the coordinates of the
N nodes in a global coordinate system, given the information about
P1; . . . ; PM and the corresponding local coordinates. The network is
said to be uniquely registrable if the global coordinates can be
computed uniquely (modulo Euclidean transforms). We formulate a
necessary and sufficient condition for a network to be uniquely
registrable in terms of rigidity of the body graph of the network.
A particularly simple characterization of unique registrability is
obtained for planar networks. Furthermore, we show that k-vertex-
connectivity of the body graph is equivalent to quasi k-connectivity
of the bipartite correspondence graph of the network. Along with
results from rigidity theory, this helps us resolve a recent conjecture
due to Sanyal et al. (R. Sanyal, M. Jaiswal, and K. N. Chaudhury,
“On a registration-based approach to sensor network localization,”
IEEE Trans. Signal Process., vol. 65, no. 20, pp. 5357–5367, Oct.
2017.) that quasi three-connectivity of the correspondence graph is
both necessary and sufficient for unique registrability in two
dimensions. We present counterexamples demonstrating that while
quasi ðdþ 1Þ-connectivity is necessary for unique registrability in
any dimension, it fails to be sufficient in three and higher dimensions.

Index Terms—Network topology, registration problem, graph
rigidity, connectivity.

I. INTRODUCTION

WE consider the problem of registering nodes of a net-

work in a global coordinate system, given the coordi-

nates of overlapping subsets of nodes in different local

coordinate systems. Registration problems of this kind arise in

situations where we wish to reconstruct an underlying global

structure from multiple local sub-structures, such as in sensor

network localization, multiview registration, protein structure

determination, andmanifold learning [1]–[8]. For instance, con-

sider an adhoc wireless network consisting of geographically

distributed sensor nodes with limited radio range. To make

sense of the data collected from the sensors, one usually requires

the positions of the individual sensors. The positions can be

found simply by attaching a GPS with each sensor, but this is

often not feasible due to cost, power, and weight considerations.

On the other hand, we can estimate (using time-of-arrival) the

distances between sensor that are within the radio range of each

other [9]. The problem of estimating sensor locations from the

available inter-sensor distances is referred to as sensor network

localization (SNL) [9], [10]. Efficient methods for accurately

localizing small-to-moderate sized networks have been pro-

posed over the years [11]–[14]. However, these methods typi-

cally cannot be used to localize large networks. To address this,

scalable divide-and-conquer approaches for SNL have been

proposed in [1], [2], [15], [16], where the large network is first

subdivided into smaller subnetworks which can be efficiently

and accurately localized (pictured in Fig. 1(a)). Each subnet-

work (called patch) is then localized independent of other sub-

networks. Thus, the coordinates returned for a patch will in

general be an arbitrarily rotated, flipped, and translated version

of the ground-truth coordinates (Fig. 1(b)). The network is thus

divided into multiple patches, where each patch can be regarded

as constituting a local coordinate system which is related to the

global coordinate system by an unknown rigid transform. We

now want to assign coordinates to all the nodes in a global coor-

dinate system based on these patch-specific local coordinates.

The registration problem also comes up in multiview

registration, where the objective is to reconstruct a 3D model

of an object based on partial overlapping scans of the object

(Fig. 2(a) and (b)). Here, the scans can be seen as patches,

which are to be registered in a global reference frame via rota-

tions and translations. Similar situation arises in protein con-

formation (Fig. 2(c) and (d)), where we are required to

determine the 3D structure of a protein (or other macromole-

cule) from overlapping fragments [6], [7].

In such problems, a question that naturally arises is that of

uniqueness: Can we uniquely identify the global topology of the

network that is consistent with the information in the various

local coordinate systems? Additionally, do we have computa-

tionally efficient tests to determine if the network is uniquely

registrable? In this paper, we investigate these questions using

results from graph rigidity theory.

A. Problem Formulation

To better facilitate discussion of our contribution, and how it

fits in the context of previous work in this area, we formally

describe the registration problem, and discuss the notion of

uniqueness. Suppose a network consists of N nodes in Rd,

which we label using1 S ¼ ½1 : N �. Let P1; � � � ; PM be subsets

of S. We refer to each Pi as a patch and let P ¼ fP1; � � � ; PMg
be the collection of patches. A natural way to represent

the node-patch correspondence is using the bipartite graph

Manuscript received April 18, 2018; revised March 5, 2019; accepted June
13, 2019. Date of publication June 25, 2019; date of current version September
2, 2020. The work of K. N. Chaudhury was supported by the Department of
Science and Technology, Government of India, under DST-SERB Grant
SERB/F/6047/2016-2017. Recommended for acceptance by M. T. Thai.
(Corresponding author: Aditya Vikram Singh.)

The authors are with the Department of Electrical Engineering, Indian Insti-
tute of Science, Bangalore 560012, India (e-mail: adityavs@iisc.ac.in;
kunal@iisc.ac.in).

Digital Object Identifier 10.1109/TNSE.2019.2924638 1We use ½m : n� to denote the set of integers fm; . . . ; ng.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 3, JULY-SEPTEMBER 2020 1327

2327-4697 � 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 05,2020 at 11:42:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4957-9370
https://orcid.org/0000-0002-4957-9370
https://orcid.org/0000-0002-4957-9370
https://orcid.org/0000-0002-4957-9370
https://orcid.org/0000-0002-4957-9370
https://orcid.org/0000-0002-8136-605X
https://orcid.org/0000-0002-8136-605X
https://orcid.org/0000-0002-8136-605X
https://orcid.org/0000-0002-8136-605X
https://orcid.org/0000-0002-8136-605X
mailto:
mailto:


GC ¼ ðS;P; EÞ, where ðk; iÞ 2 E if and only if node k belongs

to patch Pi. We refer to GC as the correspondence graph. Let

�x1; . . . ; �xN 2 Rd be the true coordinates of the N nodes in

some global coordinate system. We associate with each patch a

local coordinate system: If ðk; iÞ 2 E, let xk;i 2 Rd be the local

coordinates of node k in patch Pi. In other words, if �Ri is the

Euclidean transform (defined with respect to the global coordi-

nate system) associated with patch Pi, then

�xk ¼ �Riðxk;iÞ; ðk; iÞ 2 E: (1)

We will refer to �Ri as the patch transform associated with

patch Pi. We are now ready to give a precise statement of the

registration problem.

Registration Problem: Given a correspondence graph

GC ¼ ðS;P; EÞ and local coordinates fxk;i : ðk; iÞ 2 Eg, find
X ¼ ðxkÞNk¼1, andRR ¼ ðRiÞMi¼1, such that for ðk; iÞ 2 E,

xk ¼ Riðxk;iÞ: (REG)

Clearly, the true global coordinates ð�xkÞNk¼1 and the patch

transforms ð �RiÞMi¼1 satisfy REG. But is this solution unique?

This is a fundamental question one would be faced with when

coming up with algorithmic solutions to the registration prob-

lem [1], [18]. Of course, by uniqueness, we mean uniqueness

up to congruence, i.e., any two solutions that are related

through a Euclidean transform are considered identical. Note

that a solution to REG has two components: the global coordi-

nates, and the patch transforms. We will define uniqueness for

each of these components. Suppose ðX;RRÞ is a solution to

REG. By uniqueness of global coordinates, we mean that

given any other solution ðY; TT Þ to REG, there exists a Euclid-

ean transform Q such that yk ¼ QðxkÞ; k 2 S. Similarly, by

uniqueness of patch transforms, we mean that there exists a

Euclidean transform U such that T i ¼ U � Ri; i 2 ½1 : M�,
where � denotes the composition of transforms. At this point,

we make the following observation.

Observation 1.1: It is clear that uniqueness of patch trans-

forms implies uniqueness of global coordinates. That is, given

two solutions ðX;RRÞ and ðY; TT Þ to REG, if there exists a

Euclidean transform U, such that T i ¼ U � Ri; i 2 ½1 : M�,
then there exists a Euclidean transform Q, such that yk ¼

Fig. 1. Typical registration scenario. ðaÞ Ground truth network; P1, P2, P3 are the subnetworks (patches), ðbÞ Three local coordinate systems, with xk;i denoting
the coordinate of the k-th node in the i-th local coordinate system (based on this information, we would like to recover the ground truth network), ðcÞ Recon-
structed network. Note that the reconstructed network and the ground truth network are related by a global Euclidean transform, which is the best we can do with
the given information. If we want to recover the ground truth network exactly, we need to incorporate at least dþ 1 anchor nodes in our network, which are the
nodes in the network whose global coordinates are known a priori. The anchor nodes (if any) can be considered as forming a patch of their own [1], and thus our
analysis incurs no loss in generality by ignoring their presence.

Fig. 2. Registration in action. (a), (b): Registration of multiview scans [17].
(c), (d): Registration of protein fragments.
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QðxkÞ; k 2 S (in particular, take Q ¼ U). However, unique-
ness of global coordinates does not imply uniqueness of patch

transforms. That is, given two solutions ðX;RRÞ and ðY; TT Þ to
REG, there may not exist a Euclidean transform U, such that

T i ¼ U � Ri; i 2 ½1 : M�, even if there exists a Euclidean

transform Q, such that yk ¼ QðxkÞ; k 2 S. (This is explained
with an example in Fig. 3.)

Notice that each patch has just two nodes in the example in

Fig. 3. However, we know that a Euclidean transform in Rd is

completely specified by its action on a set of dþ 1 non-degen-
erate nodes2. Equivalently, if dþ 1 or more non-degenerate

nodes are left fixed by a Euclidean transform, then the trans-

form must be identity. This leads to the following proposition.

Proposition 1.2: If every patch contains at least dþ 1 non-

degenerate nodes, then uniqueness of global coordinates is

equivalent to uniqueness of patch transforms.

Proof: In Observation 1.1, we saw that uniqueness of patch

transforms implies uniqueness of global coordinates. Thus, we

need only prove the converse: that uniqueness of global coor-

dinates implies uniqueness of patch transforms. Suppose we

have two solutions ðX;RRÞ and ðY; TT Þ. Following the unique-

ness of global coordinates, there exists a Euclidean transform

Q, such that yk ¼ QðxkÞ; k 2 S. Fix some i 2 ½1 : M�. Since
ðY; TT Þ is a solution to REG, we have yk ¼ T iðxk;iÞ; k 2 Pi.

Thus, QðxkÞ ¼ T iðxk;iÞ, or xk ¼ ðQ�1 � T iÞðxk;iÞ; k 2 Pi. On

the other hand, since ðX;RRÞ is also a solution to REG, we

have xk ¼ Riðxk;iÞ; k 2 Pi. Combining the above, we get

ðQ�1 � T iÞðxk;iÞ ¼ Riðxk;iÞ; k 2 Pi. Since jPij � dþ 1, it

follows that Q�1 � T i ¼ Ri, or T i ¼ Q �Ri. This holds for

every i 2 ½1 : M�, which proves our claim. &

In other words, if every patch contains at least dþ 1 non-

degenerate nodes, we need not distinguish between uniqueness

of global coordinates and uniqueness of patch transforms,

and we can generally talk about unique registrability (i.e.

uniqueness of solution to REG) without any ambiguity. Intui-

tively, it is clear that for REG to have a unique solution, there

must be sufficient overlap among patches. In particular, GC

must be connected. In Section III, we will see that the notion

of uniqueness of a solution to REG is essentially combinato-

rial in nature for almost every instance of the problem.

B. Related Work

The correspondence graph GC ¼ ðS;P; EÞ encodes the pat-
tern of overlap among patches, which makes it desirable to

relate the problem of unique registrability to the properties of

GC . In [18], the authors propose a lateration criterion which

guarantees unique registrability. We recall that GC is said to

be laterated if there exists a reordering of the patch indices

such that P1 contains at least dþ 1 non-degenerate nodes, and

Pi and P1 [ P2 [ � � � [ Pi�1 have at least dþ 1 non-degener-

ate nodes in common for i � 2. This criterion, however, has
two major shortcomings. First, an efficient test for lateration is

not known. Second, lateration is a rather strong condition. For

instance, see Fig. 6, where GC is not laterated, but, as we will

see later, the network is uniquely registrable. More recently,

the notion of quasi connectedness of GC was introduced in [1],

which was shown to be necessary for unique registrability,

and conjectured to be sufficient.

In a related work [19], rigidity theory is used to deal with

unique localizability of nodes in a general sensor network

localization problem, where, given inter-node distances of a

subset of node-pairs, a graph is constructed with the vertices

corresponding to the nodes, and an edge between every node-

pair whose inter-node distance is given; it is demonstrated that

this graph has to be globally rigid for unique localizability of

the sensor network. In the context of divide-and-conquer

approach to molecular reconstruction problem, the authors in

[6] use results from graph rigidity theory to obtain uniquely

localizable patches. Tools from rigidity theory have also been

used in network design problem [20], and in quantifying

robustness of networks [21].

C. Contribution and Organization

Our contribution in this paper is two-fold. First, we bring in

the notion of body graph, introduced in [3] in the context of

affine rigidity, and show that unique registrability of a network

is equivalent to global rigidity of the body graph of the net-

work. This, in effect, opens up the possibility of using standard

tools and techniques from rigidity theory to formulate condi-

tions for unique registrability. Second, we address the conjec-

ture posed in [1], namely that quasi ðdþ 1Þ-connectivity of

GC is necessary and sufficient for unique registrability in Rd.

We show that quasi connectivity of GC is equivalent to vertex-

connectivity of the body graph, and then use combinatorial

characterizations of rigidity in two dimensions to establish the

conjecture for d ¼ 2. This, in particular, gives a simple char-

acterization of unique registrability for planar networks, where

we need only check quasi 3-connectivity of GC . Next, we give

counterexamples to show that the conjecture is false when

d � 3.

Fig. 3. Consider the nodes S ¼ f1; 2; 3g, and the patches P ¼ fP1; P2; P3g,
where P1 ¼ f1; 2g; P2 ¼ f2; 3g; P3 ¼ f1; 3g. The true global coordinates are
�X ¼ ðð0; 0Þ; ð1; 0Þ; ð1; 1ÞÞ, and the true patch transforms are �RR ¼ ðId; Id; IdÞ,
where Id is the identity transform (i.e., each patch coordinate system is same as
the global coordinate system). Consider the Euclidean transform T , which is a
reflection along the dotted line marked r, followed by a translation of 2 units
along the dotted ray marked t. Let RR ¼ ðId; T ; IdÞ. Notice that even though
both ð�X; �RRÞ and ð�X;RRÞ are solutions to REG,RR is not congruent to �RR.

2A set of nodes in Rd is said to be non-degenerate if their affine span is Rd.
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The rest of the paper is organized as follows. In Section II,

we review relevant definitions and results from rigidity theory.

In Section III, introduce the notion of body graph and derive

our main results on unique registrability. In Section IV, we

resolve the conjecture posed in [1]. We summarize our results

in Section V. Detailed proofs of some of the technical results

from Sections III and IV are given in Section VI.

D. Graph Notations

We will work with undirected graphs in this paper. If H is a

subgraph of G ¼ ðV;EÞ, which we denote by H � G, then

V ðHÞ denotes the set of vertices of H, and EðHÞ denotes the
set of edges ofH. A complete graph (or clique) on n vertices is

denoted by Kn. Given a graph G ¼ ðV;EÞ, and a set V 0 � V ,

the subgraph induced by V 0 is the graph G0 ¼ ðV 0; E0Þ, where
E0 ¼ fði; jÞ 2 E : i; j 2 V 0g. The degree of a vertex v of a

graph is the number of edges incident on v. A path in a graph

G ¼ ðV;EÞ is an ordered sequence of distinct vertices

v1; . . . ; vn 2 V such that ðvi; viþ1Þ 2 E; 1 � i � n� 1. We

denote a path by v1 � � � � � vn; v1 and vn are called the end ver-
tices of the path, and every other vertex of the path is an internal

vertex. If v1 ¼ a and vn ¼ b, we say that the path connects a
and b, or that v1 � � � � � vn is a path between a and b. Given
subgraphs A and B, an A-B path is a path v1 � � � � � vn where
v1 2 V ðAÞ and vn 2 V ðBÞ. Given a subgraph A, a path

v1 � � � � � vn is said to be within A, if vi 2 V ðAÞ for every

i 2 ½1 : N�. Two paths are said to be disjoint if they do not have
any vertex in common. Two paths are said to be independent if

they do not have any internal vertex in common. A graph is

said to be k-connected (or, k-vertex-connected) if it has more

than k vertices and the subgraph obtained after removing fewer

than k vertices remains connected; equivalently, by Menger’s

theorem [22], there exists k independent paths between every

pair of vertices of the graph.

II. RIGIDITY THEORY

Before moving on to our results, we recall some definitions

and results from rigidity theory [23]–[27].

A. Basic Terminology

Given a graph G ¼ ðV;EÞ, a d-dimensional configuration is

a map p : V ! Rd. The pair ðG;pÞ is called a d-dimensional

framework. Throughout this paper, k�k denotes the Euclidean

norm.

Definition 2.1 (Equivalent frameworks): Two frameworks

ðG;pÞ and ðG;qÞ are said to be equivalent, denoted by

ðG;pÞ 	 ðG;qÞ, if kpðuÞ � pðvÞk ¼ kqðuÞ � qðvÞk, for

every ðu; vÞ 2 E.

Definition 2.2 (Congruent frameworks): Two frameworks

ðG;pÞ and ðG;qÞ are said to be congruent, denoted by

ðG;pÞ 
 ðG;qÞ, if kpðuÞ � pðvÞk ¼ kqðuÞ � qðvÞk for

every u; v 2 V .

In other words, congruent frameworks are related

through a Euclidean transform. Clearly, congruence implies

equivalence, but the converse is generally not true (see

Fig. 4).

Definition 2.3 (Global rigidity): A framework ðG;pÞ is

said to be globally rigid if any framework equivalent to ðG;pÞ
is also congruent to ðG;pÞ.
This means that given any framework equivalent to a glob-

ally rigid framework, there exists a Euclidean transform that

relates the two frameworks.

Definition 2.4 (Local rigidity): A framework ðG;pÞ is said
to be locally rigid if there exists � > 0 such that any

ðG;qÞ 	 ðG;pÞ satisfying kpðvÞ � qðvÞk � �; v 2 V , is con-

gruent to ðG;pÞ.
That is, a locally rigid framework cannot be continuously

deformed into an equivalent framework (see Fig. 4).

B. Rigidity and Genericity

A fundamental problem in rigidity theory is the following:

Given a d-dimensional framework ðG;pÞ, decide whether it is
(locally or globally) rigid inRd. In general, the notions of local

and global rigidity depend not only on the graph, but also on

the configuration (see Fig. 5). This makes testing of rigidity

computationally intractable [28], [29]. A standard way of

getting around this is to make an additional assumption of

genericity. A framework (or configuration) is said to be generic

if there are no algebraic dependencies among the coordinates

of the configuration, i.e., the coordinates of the configuration

do not satisfy any non-trivial algebraic equation with rational

coefficients. For a given graph, the set of non-generic

Fig. 4. Frameworks in ðaÞ and ðbÞ are equivalent because the corresponding
edge lengths are equal; however, they are not congruent because the distance
between vertices 2 and 4 is not equal in the two frameworks. Thus, the frame-
work in ðaÞ is not globally rigid in R2. On the other hand, it can be shown that
the framework is locally rigid in R2. Observe that there exists no continuous
motion in R2 that takes ðaÞ to ðbÞ. Also note that framework ðaÞ is not locally
rigid in R3 since the lower triangle 4-1-3 can be rotated in 3-dimensional
space about the line 1-3 to get framework ðbÞ, which is equivalent but non-
congruent to framework (a).

Fig. 5. Frameworks ðaÞ and ðbÞ with the same underlying graph. Framework
ðaÞ is not globally rigid because vertex 4 can be reflected along the line 1-5-3,
which results in an equivalent but non-congruent framework. Such an edge-
length-preserving reflection is not possible in ðbÞ, which is globally rigid.
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configurations is a measure-zero set in the space of all possible

configurations [30], and hence almost every configuration is

generic.

We have the following useful proposition which illustrates

the utility of the genericity assumption.

Proposition 2.5 ([23], [24], [26]): Local (global) rigidity is

a generic property, i.e., either all or none of the generic config-

urations of a graph form a locally (globally) rigid framework.

That is, the assumption of genericity makes local and global

rigidity a property of the graph, independent of its configuration.

Thus, we can talk of a graph being generically locally (globally)

rigid, by which we mean that every generic configuration of the

graph results in a locally (globally) rigid framework. In particu-

lar, this opens up the possibility of coming up with combinato-

rial characterizations for generic local (global) rigidity solely in

terms of the graph properties. Combined with the fact that a ran-

domly chosen configuration of a graph is generic with high prob-

ability, testing for generic local and global rigidity can be shown

to have complexity RP [26], which means that there is a polyno-

mial-time randomized algorithm that never outputs a false posi-

tive, and outputs a false negative less than half of the time. This

fact illustrates the computational tractability afforded by the

genericity assumption. We now review some results from rigid-

ity theory relevant to our discussion.

C. Combinatorial Results on Rigidity

The notion of redundant rigidity plays an important role in

the context of global rigidity. A graph is said to be redundantly

rigid if the graph is generically locally rigid, and remains

generically locally rigid after removal of any edge. Hendrick-

son [31] gave the following combinatorial conditions neces-

sary for a graph to be generically globally rigid in Rd.

Theorem 2.6 ([31]): If a graph G with at least dþ 2 verti-

ces is generically globally rigid in Rd, then

(i) G is ðdþ 1Þ-connected,
(ii) G is redundantly rigid in Rd.

Later, Jackson and Jordan [27] showed that the conditions

in Theorem 2.6 are also sufficient for generic global rigidity in

R2. Thus, we have the following complete combinatorial char-

acterization of generic global rigidity in R2.

Theorem 2.7 ([27]): A graph G is generically globally rigid

in R2 if and only if either G is a triangle, or

(i) G is 3-connected, and

(ii) G is redundantly rigid in R2.

Conditions in Theorem 2.6 are not sufficient for generic

global rigidity in Rd for d � 3; we shall see instances of such
graphs in Section IV. We now state a result due to [27], [32]

on redundant rigidity in R2. We do not define the terms ‘M-

circuit’ and ‘M-connected’ that appear in the following theo-

rem (as it will take us far afield) and instead refer the reader to

[32] for the definitions. We only need this theorem to derive

Proposition 2.9, which we shall use to prove Theorem 3.2.

Theorem 2.8 ([32]): The following are true in R2:

(i) If a graph G is 3-connected and each edge of G
belongs to an M-circuit, then G is M-connected.

(ii) If a graph G is M-connected, then G is redundantly

rigid.

Theorem 2.8, combined with the fact that complete graph

K4 is an M-circuit in R2 [27], leads us to the following

proposition.

Proposition 2.9: If graph G is 3-connected and each edge

belongs toK4, then G is redundantly rigid.

III. UNIQUE REGISTRABILITY

In this section, we formulate the necessary and sufficient

condition for uniqueness of solution to REG (unique registra-

bility). The main result of the section is Theorem 3.1, which

gives such a condition under the following two assumptions:

(A1) Each patch has at least dþ 1 non-degenerate nodes.
(A2) The nodes of the network are in generic positions.

We briefly recall the rationale behind the assumptions. Under

Assumption (A1), which is grounded in Proposition 1.2, unique-

ness of the global coordinates and uniqueness of the patch trans-

forms become equivalent, making unique registrability a well-

defined notion. In practical applications, we can easily force this

assumption for divide-and-conquer algorithms [1], [4], [16].

Fig. 6. For this example, S ¼ ½1 : 5� and P ¼ fP1; P2; P3g with P1 ¼ f1; 2; 3g, P2 ¼ f1; 4; 5g and P3 ¼ f2; 3; 4; 5g. ðaÞ Visualization of the node-patch
correspondence, ðbÞ Correspondence graph GC ¼ ðS;P; EÞ, ðcÞ Body graph GB.

SINGH AND CHAUDHURY: ON UNIQUELY REGISTRABLE NETWORKS 1331

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on November 05,2020 at 11:42:22 UTC from IEEE Xplore.  Restrictions apply. 



Assumption (A2), which is grounded in Proposition 2.5, allows

us to formulate conditions for unique registrability for almost

every problem instance based solely on the combinatorial struc-

ture of the problem.

We now introduce the notion of a body graph, which will

help us tie unique registrability to rigidity theory. For a net-

work with correspondence graph GC ¼ ðS;P; EÞ, consider a
graph GB ¼ ðV;EÞ, where V ¼ S, and E ¼ fðk1; k2Þ : k1;
k2 2 Pi for some i 2 ½1 : M�g. In other words, vertices of GB

correspond to the nodes in the network, and we connect two

vertices by an edge if and only if the corresponding nodes

belong to a common patch (see Fig. 6). Observe that subgraph

Hi � GB induced by nodes belonging to patch Pi form a cli-

que. We will call GB the body graph of the network. We derive

the term body graph from [3], where a similar notion was

introduced in the context of affine rigidity. Using the notion of

body graph, we now state our main result, whose proof we

defer to Section VI-A.

Theorem 3.1: Under assumptions (A1) and (A2), the

ground-truth solution ð�X; �RRÞ is a unique solution of REG if

and only if the body graph GB is generically globally rigid.

The import of Theorem 3.1 lies in the fact that generic

global rigidity in an arbitrary dimension can be tested using a

randomized polynomial-time algorithm [26]. Moreover, com-

bining Theorem 3.1 with the combinatorial characterization of

generic global rigidity in Theorem 2.7, and using additional

results from rigidity theory, we get the following characteriza-

tion of unique registrability for a two-dimensional network,

whose proof we defer to Section VI-B.

Theorem 3.2: Under assumptions (A1) and (A2), a network

is uniquely registrable in R2 if and only if the body graph GB

is 3-connected.

The implication of Theorem 3.2 is that (assuming each patch

has at least 3 nodes) we need only test for 3-connectivity to

establish generic global rigidity of the body graph in R2. We

need not perform an additional check for redundant rigidity, as

required by Theorem 2.7. As is well-known, 3-connectivity can

be tested efficiently using linear-time algorithms [33].

IV. QUASI CONNECTIVITY

In this section, we address the conjecture posed in [1] which

asserts that, under Assumption (A1) and the assumption that

every set of dþ 1 nodes is non-degenerate, quasi ðdþ 1Þ-con-
nectivity of the correspondence graph GC is sufficient for

unique registrability in Rd. We prove that, under Assumptions

(A1) and (A2), the conjecture holds for d ¼ 2, but fails to hold
for d � 3. We first recall the definition of quasi connectivity

[1].

Definition 4.1 (Quasi k-connectivity): The correspondence

graph GC ¼ ðS;P; EÞ is said to be quasi k-connected if any

two vertices in P have k or more S-disjoint paths between

them. (A set of paths is S-disjoint if no two paths have a vertex
from S in common.)

Observation 4.2: If the correspondence graph GC is

quasi k-connected, we can infer the following by dint of

Definition 4.1:

(a) There are at least k participating nodes in every

patch. (By a participating node, we mean a node that

belongs to at least two patches.)

(b) Let GB be the body graph of GC . LetHi be the clique

of GB induced by patch Pi where i 2 ½1 : M�. Then
there are at least k disjoint Hi-Hj paths in the body

graph, for every 1 � i < j � M (cf. Fig. 7).

We relate quasi connectivity of the correspondence graph

GC to connectivity of the associated body graph GB in the fol-

lowing theorem, whose proof we defer to Section VI-C.

Theorem 4.3 (Connectivity of GC and GB):

(i) If the correspondence graph GC is quasi k-connected,
then the body graph GB is k-connected.

(ii) If each patch has at least k nodes and the body graph

GB is k-connected, then the correspondence graph

GC is quasi k-connected.
We note some corollaries of Theorem 4.3. Corollary 4.4

was already proved in [1]; we give a short proof using the

body graph. Corollary 4.5 establishes the conjecture posed in

[1] for d ¼ 2.
Corollary 4.4: Under Assumptions (A1) and (A2), quasi

ðdþ 1Þ-connectivity of GC is a necessary condition for unique

registrability in Rd.

Proof: From Theorem 3.1, unique registrability is equivalent

to global rigidity of GB. From Theorem 2.6, ðdþ 1Þ-connectiv-
ity of GB is a necessary condition for generic global rigidity of

GB in Rd. The result now follows from Theorem 4.3. &

Corollary 4.5: Under Assumptions (A1) and (A2), quasi 3-

connectivity of the correspondence graph GC is sufficient for

unique registrability in R2.

Proof: Follows from Theorem 4.3 and Theorem 3.2. &

Corollary 4.5, in effect, says that the constraints imposed by

quasi 3-connectivity of GC ensure that GB is redundantly rigid

in addition to being 3-connected, and hence generically glob-

ally rigid in R2. But this trend does not carry over to d � 3.
We demonstrate it with two examples for d ¼ 3 (which appear
in [34]), and then note a prescription for generating such coun-

terexamples in higher dimensions.

Fig. 7. The figure shows a counterexample to the sufficiency of quasi 4-con-
nectivity of the correspondence graph for unique registrability in R3. ðaÞ Cor-
respondence graph GC1, ðbÞ Body graph GB1. The colored paths in ðaÞ show
the four S-disjoint paths between P1 and P4. The corresponding disjoint
H1-H4 paths in the body graph GB1 are colored in ðbÞ, where H1 and H4 are
cliques induced by patches P1 and P4 (see text for details).
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Example 1: Let S ¼ ½1 : 12�, and P ¼ fP1; � � � ; P6g. That
is, we have 12 nodes and 6 patches. Consider the following

node-patch correspondence:

P1 ¼ f1; 2; 3; 4g; P2 ¼ f3; 4; 5; 6g; . . . ;
P5 ¼ f9; 10; 11; 12g; P6 ¼ f11; 12; 1; 2g:

(2)

The correspondence graph GC1 and the associated body graph

GB1 are shown in Fig. 7. It is easy to verify that GC1 is quasi 4-

connected, or equivalently (Theorem 4.3), that GB1 is 4-con-

nected. But, it can be shown [34] that the body graph GB1 is

minimally rigid in R3, i.e. GB1 is generically locally rigid, but

removing any edge destroys generic local rigidity. Hence GB1

is not redundantly rigid in R3. This implies, from Theorem

2.6, that GB1 is not generically globally rigid, and thus (Theo-

rem 3.1), the network is not uniquely registrable in R3.

Example 2: In this example, we will see that quasi

ðdþ 1Þ-connectivity of the correspondence graph is not suffi-

cient for generic global rigidity of the body graph, even when

we ensure that the body graph be redundantly rigid. Let

S ¼ ½1 : 18�, and P ¼ fP1; . . . ; P6g, where

P1 ¼ f1; 2; 3; 4; 13g; P2 ¼ f3; 4; 5; 6; 14g; . . . ;
P5 ¼ f9; 10; 11; 12; 17g; P6 ¼ f11; 12; 1; 2; 18g:

(3)

That is, we have added a non-participating node in each

patch of Example 1. The correspondence graph GC2, and the

associated body graph GB2 are shown in Fig. 8. It is easy to

verify that GC2 is quasi 4-connected, or equivalently, that GB2

is 4-connected. Moreover, GB2 is redundantly rigid [34]. But,

from the fact that GB1 in Example 1 is not generically globally

rigid in R3, it can be deduced (Proposition 6.8) that GB2 is

also not generically globally rigid in R3. Thus, the network is

not uniquely registrable in R3.

Graphs such as GB2 in Example 2 above, which satisfy both

conditions of Theorem 2.6, but are not generically globally rigid

in Rd, are known as H-graphs. By an operation called coning,

which takes a graph G and adds a new vertex adjacent to every

vertex of G, a d-dimensional H-graph can be turned into a

ðdþ 1Þ-dimensional H-graph [34]–[36]. In terms of node-patch

correspondence, this equates to adding a new node that belongs

to every patch. Thus, by applying d� 3 coning operations to

GB2, we can generate a network with a quasi ðdþ 1Þ-connected
correspondence graph, which is not uniquely registrable in Rd

for d > 3.

V. DISCUSSION

In this paper, we looked at the notion of unique registrability of

a network through the lens of rigidity theory. Given that there are

two families of unknowns inherent in the problem—the global

coordinates and the patch transforms—we first addressed the

question as to what uniqueness precisely means for the registra-

tion problem. We saw that a mild assumption of non-degeneracy

makes the notion of uniqueness equivalent for both families of

unknowns, which, in turn, makes the notion of unique registrabil-

ity well-defined.We then introduced the notion of the body graph

of a network, which allowed us to reformulate the question of

unique registrability into a question about graph rigidity. Specifi-

cally, we concluded that unique registrability is equivalent to

global rigidity of the body graph. This equivalence opened up the

possibility of using non-trivial results from rigidity theory. In par-

ticular, we showed that the necessary condition of quasi

ðdþ 1Þ-connectivity of the correspondence graph, which was

conjectured in [1] to be sufficient for unique registrability in Rd,

is indeed sufficient for d ¼ 2, but fails to be so for d � 3. The
practical utility of these characterizations is that they lead to effi-

ciently testable criteria for unique registrability. In particular, to

ascertain unique registrability inR2, we only need to test quasi 3-

connectivity of the correspondence graph or 3-connectivity of the

body graph (whichever is less expensive). As is well known,

three-connectivity can be tested efficiently using linear-time algo-

rithms [33], whereas, quasi 3-connectivity can be tested using a

variant of existing flow-based algorithms [1]. For d � 3, unique
registrability can be tested simply by testing generic global rigid-

ity of the body graph, for which there exists a polynomial-time

randomized algorithm [26]. The practical utility of these tests is

that they can be integrated into existing divide-and-conquer algo-

rithms, including [1], to ascertain whether the chosen subnet-

works can be uniquely registered to localize the entire network.

VI. TECHNICAL PROOFS

In this section, we give proofs for Theorem 3.1, Theorem

3.2 and Theorem 4.3.

A. Proof of Theorem 3.1

We show that unique registrability is equivalent to global

rigidity of the body graph framework corresponding to the

ground-truth. The assumption of genericity (A2) along with

Fig. 8. The figure shows a counterexample to sufficiency of quasi 4-connec-
tivity of the correspondence graph for unique registrability in R3 even when
the body graph is redundantly rigid. ðaÞ Correspondence graph GC2, ðbÞ Body
graph GB2 (see text for details).
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Proposition 2.5 (genericity of global rigidity) allows us to

remove the dependence on any particular framework, and the

theorem is proved. We first make some definitions specialized

to the registration problem which allow us to express the ques-

tion of uniqueness registrability in a form amenable to a rigid-

ity theoretic analysis.

Definition 6.1 (Node-patch framework): Given a correspon-

dence graph GC ¼ ðS;P; EÞ, and a map x : S ! Rd that

assigns coordinates to the nodes, the pair ðGC;xÞ is called a

node-patch framework.

Definition 6.2 (Equivalence of node-patch frameworks): Two

node-patch frameworks ðGC;xÞ and ðGC; yÞ are said to be

equivalent, denoted by ðGC;xÞ 	 ðGC; yÞ, if xðkÞ ¼ QiyðkÞ,
ðk; iÞ 2 E, whereQi is a rigid transform.

Definition 6.3 (Congruence of node-patch frameworks): Two

node-patch frameworks ðGC;xÞ and ðGC; yÞ are said to be

congruent, denoted by ðGC;xÞ 
 ðGC; yÞ, if xðkÞ ¼ QyðkÞ,
k 2 S, whereQ is a rigid transform.

Given a solution ðX;RRÞ to REG, where X ¼ ðxkÞNk¼1,

RR ¼ ðRiÞMi¼1, we will denote by x the map that assigns to node

k the coordinate xk, and say that ðGC;xÞ is the node-patch

framework corresponding to the solution ðX;RRÞ.
Proposition 6.4: Let ðX;RRÞ and ðY; TT Þ be two solutions to

REG. Then the corresponding node-patch frameworks ðGC;xÞ
and ðGC; yÞ are equivalent.
Proof: Since ðX;RRÞ and ðY; TT Þ are solutions to REG, we

have that xðkÞ ¼ Riðxk;iÞ and yðkÞ ¼ T iðxk;iÞ, k 2 Pi, i 2
½1 : M�. Thus xðkÞ ¼ QiyðkÞ, where Qi ¼ Ri � T �1

i . &

Proposition 6.5: Let ðX;RRÞ be a solution to REG with the

corresponding node-patch framework ðGC;xÞ and let y be such

that ðGC; yÞ 	 ðGC;xÞ. Then there exists some TT for which

ðY; TT Þ is a solution of REG.
Proof: Indeed, ðGC; yÞ 	 ðGC;xÞ implies that there exists

rigid transforms ðQiÞMi¼1 such that yðkÞ ¼ QixðkÞ, ðk; iÞ 2 E.
Since ðX;RÞ is a solution to REG, we have xðkÞ ¼ Riðxk;iÞ,
ðk; iÞ 2 E. Thus, yðkÞ ¼ ðQi � RiÞðxk;iÞ, which shows that

ðY; T Þ is a solution to REG, where Y ¼ ðyðkÞÞNk¼1 and T ¼
ðQi � RiÞMi¼1.

&

Foregoing definitions and propositions allow us to express the

condition of unique registrability in a compact manner. Namely,

let ðGC; �xÞ be the ground-truth node-patch framework. Then,

under assumption (A1), REG has a unique solution if and only if

for any node-patch framework ðGC; yÞ such that ðGC; yÞ 	
ðGC; �xÞ, we have ðGC; yÞ 
 ðGC; �xÞ. The next two propositions
relate node-patch framework and body graph framework.

Proposition 6.6: Two node-patch frameworks ðGC;xÞ and
ðGC; yÞ are equivalent (Definition 6.2) if and only if the body

graph frameworks ðGB;xÞ and ðGB; yÞ are equivalent (Defini-
tion 2.1).

Proof: Suppose ðGC;xÞ 	 ðGC; yÞ. Pick an arbitrary edge

ðk; lÞ 2 E in the body graph GB ¼ ðV;EÞ. From construction of

GB, ðk; lÞ 2 E if and only if there is a patch, say Pi, that contains

both the nodes k and l. Since ðGC;xÞ 	 ðGC; yÞ, there exists a

rigid transformQi such that xðkÞ ¼ QiyðkÞ and xðlÞ ¼ QiyðlÞ.
This implies that xðkÞ � xðlÞ ¼ QiðyðkÞ � yðlÞÞ, from where it

follows that kxðkÞ � xðlÞk ¼ kyðkÞ � yðlÞÞk. Thus, ðGB;xÞ 	
ðGB; yÞ.

Conversely, suppose ðGB;xÞ 	 ðGB; yÞ. Consider an arbitrary
patch Pi. Note that any subgraph of GB induced by a patch is a

clique. This, along with the assumption that ðGB;xÞ 	 ðGB; yÞ,
implies that kxðkÞ � xðlÞk ¼ kyðkÞ � yðlÞÞk for every k; l 2
Pi, which, in turn, implies that there exists a rigid transform Qi

such that xðvÞ ¼ QiyðvÞ, v 2 Pi. Thus, ðGC;xÞ 	 ðGC; yÞ. &

Proposition 6.7: Two node-patch frameworks ðGC;xÞ
and ðGC; yÞ are congruent (Definition 6.3) if and only if the

body graph frameworks ðGB;xÞ and ðGB; yÞ are congruent

(Definition 2.2).

The above result easily follows from Definitions 2.2 and 6.3.

We can now complete the proof of Theorem 3.1. Suppose REG

has a unique solution. We will show that the body graph frame-

work ðGB; �xÞ is globally rigid. Consider a framework ðGB; yÞ 	
ðGB; �xÞ. Then, by Proposition 6.6, ðGC; yÞ 	 ðGC; �xÞ. By Prop-
osition 6.5, this implies that ðGC;yÞ correponds to a solution of
REG. Now, since REG has a unique solution, ðGC; yÞ 

ðGC; �xÞ. Thus, by Proposition 6.7, ðGB; yÞ 
 ðGB; �xÞ.
Conversely, suppose ðGB; �xÞ is globally rigid. Let ðY; T Þ be

a solution to REG. By Proposition 6.4, ðGC; yÞ 	 ðGC; �xÞ.
Hence, by Proposition 6.6, ðGB; yÞ 	 ðGB; �xÞ. This, by global

rigidity of ðGB; �xÞ, implies that ðGB; yÞ 
 ðGB; �xÞ. Finally, by
Proposition 6.7, ðGC; yÞ 
 ðGC; �xÞ.

B. Proof of Theorem 3.2:

To prove Theorem 3.2, we need the following proposition

(similar observation was made in [34]).

Proposition 6.8: Given a graph G ¼ ðV;EÞ, consider the
graph G0 ¼ ðV [ fv0g; E0Þ obtained by adding a new vertex v0

to G and attaching it to a clique H � G, i.e., v0 is adjacent to
every vertex of H and to no other vertex of G. If G0 is generi-
cally globally rigid, then G is generically globally rigid.

Proof: Suppose G is not generically globally rigid. Consider

two frameworks ðG;pÞ and ðG;qÞ which are equivalent but

not congruent. To these frameworks, add the new vertex v0 to
get new frameworks ðG0;p0Þ and ðG0;q0Þ such that the distance
between v0 and any vertex of the subgraph H is equal in both

ðG0;p0Þ and ðG0;q0Þ. Note that this can be done because H is a

clique and so the subframeworks induced by H would be con-

gruent in the two frameworks ðG;pÞ and ðG;qÞ. Clearly, the
new frameworks ðG0;p0Þ and ðG0;q0Þ are equivalent. But they

are not congruent because ðG;pÞ and ðG;qÞ were not congru-
ent to begin with. Thus,G0 is not generically globally rigid. &

We now prove Theorem 3.2. The necessity of 3-connectiv-

ity of the body graph GB for unique registrability in R2 fol-

lows from Theorem 3.1 and Theorem 2.6. We now establish

sufficiency. Given that the body graph GB is 3-connected, we

will prove that GB is generically globally rigid in R2; this, by

Theorem 3.1, would imply unique registrability in R2. By

Assumption (A1), there are at least 3 nodes in each patch.

Consider the following cases:

Case 1 (Each patch contains at least 4 nodes). Pick an arbi-

trary edge ðk; lÞ belonging to GB. The fact that there is an

edge between vertices k and l implies that there must be a

patch, say Pi, which contains the nodes k and l. Since Pi

contains at least 4 nodes, we can pick two nodes �k and �l
belonging to Pi which are distinct from the nodes k and l.
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Now, Pi induces a clique, say Hi, in GB. This implies that

the subgraph of GB induced by the vertex set fk; l; �k; �lg is

K4, which, in particular, means that the edge ðk; lÞ belongs
to K4. The edge ðk; lÞ was chosen arbitrarily, and thus, we

have shown that every edge of GB belongs toK4. Since GB

is also 3-connected, Proposition 2.9 leads us to conclude

that GB is redundantly rigid. Thus, GB satisfies conditions in

Theorem 2.7, and is hence generically globally rigid inR2.

Case 2 (There are patches with exactly 3 nodes). Suppose

there are m patches P1; . . . ; Pm that contain exactly 3

nodes. Add a new node k1 exclusively to patch P1 and call

the resulting patch P 0
1. The effect of this on the body graph

is the addition of a degree-3 vertex k1 adjacent to the verti-
ces of the clique induced by the 3 nodes in P1. Call the

resulting body graph G1
B. Addition of a degree-k vertex to a

k-connected graph results in a k-connected graph. Thus, G1
B

is 3-connected. We continue inductively: after obtaining

Gi
B, add a new node kiþ1 exclusively to patch Piþ1 to get

P 0
iþ1 and the resulting body graph Giþ1

B . Note that we pre-

serve 3-connectivity at every step of the induction. We stop

after we have obtained the body graph Gm
B . As a result of

this inductive procedure, every patch now contains at least

4 nodes. Hence, from the arguments made in Case 1 above,

Gm
B is generically globally rigid in R2. Now, Gm

B was

obtained from Gm�1
B by addition of a vertex and attaching it

to a clique. Hence, from Proposition 6.8, Gm�1
B is generi-

cally globally rigid in R2. Backtracking similarly in an

inductive fashion and employing Proposition 6.8 at every

step, we deduce that the original body graph GB is generi-

cally globally rigid inR2.

C. Proof of Theorem 4.3:

We first prove Theorem 4.3.ðiiÞ. We are given that every

patch has at least k nodes and the body graph GB is k-
connected. Let Hi and Hj be the cliques of GB induced by

patches Pi and Pj, i 6¼ j. To establish quasi k-connectivity of

GC , it suffices to show that there exists k disjoint Hi-Hj paths.

Indeed, it is clear from Definition 4.1 that the existence of k dis-
joint Hi-Hj paths in GB implies the existence of k S-disjoint
paths in GC between Pi and Pj. Add two new vertices a and b to
GB such that a is adjacent to every vertex ofHi (and to no other

vertex of GB), and b is adjacent to every vertex ofHj (and to no

other vertex of GB). Since each patch has at least k nodes,

degreeðaÞ � k and degreeðbÞ � k. Addition of a degree-k ver-

tex to a k-connected graph results in a k-connected graph.

Thus, the graph obtained after adding a and b to GB is k-
connected. This implies that there are at least k independent

paths between a and b. Now, each such path has to be of the

form a� v1 � � � � � vr � b, where v1 2 Hi and vr 2 Hj. This

is because a is adjacent only to vertices from Hi and b is adja-
cent only to vertices from Hj. Removing a and b from every

such independent path gives us k disjointHi-Hj paths.

We now prove Theorem 4.3.ðiÞ. Assume, without loss of gen-

erality, that no two patches are identical. To prove k-connectivity
of the body graphGB ¼ ðV;EÞ, we will show that given arbitrary

vertices a; b 2 V , there exists k independent paths between

them.We consider the following cases:

Case 1 (a and b do not belong to the same patch). Suppose

a 2 Pi and b 2 Pj, where i 6¼ j. Denote the cliques of GB

induced by patches Pi and Pj as Hi and Hj. Since GC is

quasi k-connected, there exists k disjoint Hi-Hj paths

(Observation 4.2). Note that a vertex in V ðHiÞ \ V ðHjÞ
is also considered an Hi-Hj path. Let P ¼ v1 � � � � � vr
be one such path, where v1 2 Hi and vr 2 Hj. Since Hi

and Hj are cliques, ða; v1Þ 2 E and ðvr; bÞ 2 E. Thus for

each of the k disjoint Hi-Hj paths, we can, if needed,

append vertices a and b at the ends to make it of the form

a� � � � � b. For instance, if v1 6¼ a and vr 6¼ b, we modify

the path to a� v1 � � � � � vr � b. Thus, we have k inde-

pendent paths between a and b.
Case 2 (a and b belong to the same patch). Suppose a and b

belong to patch Pl. Quasi k-connectivity of the correspon-
dence graph implies that each patch has at least k partici-

pating nodes (Observation 4.2). In particular, this means

that the clique Hl of GB induced by Pl has at least k verti-

ces. Thus, if a and b belong to Pl, there are at least k� 1
independent paths within the clique Hl. If Pl has more

than k nodes, we thus get k independent paths between a
and b, all from within Hl. But suppose Pl has exactly k
nodes. We need an additional path between a and b that is
independent of the k� 1 paths we have from within Hl.

Since we have exactly k nodes in Pl, each node has to be

participating, i.e., each node belongs to at least 2 patches.

We consider the following sub-cases:

Sub-case I (There is a patch Pi, i 6¼ l, containing both a
and b). In this case we get the additional path of the

form a� v� b, where v 2 Pi and v =2 Pl, which,

clearly, is independent of the k� 1 paths from within

Hl. The assumption that no two patches are identical

ensures the existence of the v in question.
Sub-case II (There is no patch other than Pl containing

both a and b). Suppose a 2 Pi and b 2 Pj, i 6¼ j.
From the quasi k-connectivity assumption, we

know there are k disjoint Hi-Hj paths. Moreover,

recall that there are exactly k vertices in Hl. Consider

the following possibilities:

(i) Suppose every disjoint Hi-Hj path contains a

vertex from Hl. This is possible if and only if

each path contains exactly one vertex from Hl.

In this case, there exists a path of the form

a� v1 � � � � � vr, such that v1; . . . ; vr =2 Hl, and

vr 2 Hj. From completeness of the clique Hj, we

can append b to the end of this path to get

a� v1 � � � � � vr � b. This path is independent of
the k� 1 paths we have from within Hl. Thus we

have the required additional path.

(ii) The only other case is when there exists a disjoint

Hi-Hj path that has no vertex from Hl. Let that

path be v1 � � � � � vr where v1 2 Hi and vr 2 Hj.

From completeness of the cliques Hi and Hj, we

can append a and b to the ends of this path to get

a� v1 � � � � � vr � b, which is independent of

the k� 1 paths we have from withinHl. Again, we

have the required additional path.
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