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Supplementary Material for the Paper “The Interplay of
Competition and Cooperation among Service Providers (Part I)”

Xingran Chen, Mohammad Hassan Lotfi, Saswati Sarkar

Abstract—This paper investigates the incentives of mobile
network operators (MNOs) for acquiring additional spectrum to
offer mobile virtual network operators (MVNOs) and thereby
inviting competition for a common pool of end users (EUs). We
consider a base case and two generalizations: (i) one MNO and
one MVNO, (ii) one MNO, one MVNO and an outside option, and
(iii) two MNOs and one MVNO. In each of these cases, we model
the interactions of the service providers (SPs) using a sequential
game, identify when the Subgame Perfect Nash Equilibrium
(SPNE) exists, when it is unique and characterize the SPNE when
it exists. The characterizations are easy to compute, and are in
closed form or involve optimizations in only one decision variable.
We identify metrics to quantify the interplay between cooperation
and competition, and evaluate those as also the SPNEs to show
that cooperation between MNO and MVNO can enhance the
payoffs of both, while increased competition due to the presence
of additional MNOs is beneficial to EUs but reduces the payoffs
of the SPs.

Index Terms—Heterogeneous networks, Wireless Internet
Market, Service Providers, Spectrum provisioning, Subscriber
pricing, Game Theory, Hierarchical games, Nash Equilibrium

I. INTRODUCTION

A. Motivation and Overview

NOWADAYS wireless service providers (SPs) are divided
into (i) mobile network operators (MNOs) that lease

spectrum from a regulator like FCC, and (ii) mobile virtual
network operators (MVNOs) that obtain spectrum from one
or more MNOs. MVNOs can distinguish their plans from
MNOs by bundling their service with other products, offering
different pricing plans for End-Users (EUs), or building a
good reputation through a better customer service. Although
traditionally wireless service has been offered only by MNOs,
in recent years, the number of MVNOs has been rapidly
growing. The number of MVNOs increased by 70 percent
worldwide, during June 2010-June 2015 reaching 1,017 as
of June 2015 [6]. Even some MNOs developed their own
MVNOs. An example of which is Cricket wireless which is
owned by AT&T and offers a prepaid wireless service to EUs.
Another example of MVNOs is the Google’s Project Fi in
which the customer’s service is handled using Wi-Fi hotspots
wherever/whenever they exist; elsewhere the service is handled
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using the spectrum of a number of MNOs, eg, Sprint, T-Mobile
or U.S. Cellular networks.

In this work, we consider the economics of the interaction
among MNOs and MVNOs. We seek to understand why and
under what conditions the MNOs cooperate with the MVNOs
by offering some of their spectrum to the MVNOs, and thereby
inviting competition for a common pool of EUs. We consider
scenarios where the MNOs decide on acquiring new spectrum,
and in exchange for a fee offer those to MVNOs, which decide
to acquire some of the spectrum offered. The SPs decide on
their pricing strategies for the EUs, and the EUs decide to opt
for one of them, or neither, if the access fees and the qualities
of service are not satisfactory. The spectrum acquisition and
pricing decisions of the SPs determine their respective profits.
We characterize their equilibrium choices. We obtain metrics
that quantify the cooperation and competition of the SPs in
terms of their spectrum investments and subscriptions of EUs,
which help quantify the interplay between competition and
cooperation under the equilibrium choices.

We consider a hotelling model in which a continuum of
undecided EUs decide which of the SPs they want to buy
their wireless plan from, if at all. The EUs have different
preferences for each SP. These preferences can be because
of different services and qualities that SPs offer. For example,
the MVNOs may be able to offer a free or cheap international
call plan through VoIP, or an SP may have an infamous
customer service. The preference for a SP also increases with
the spectrum she acquires. If, for example, EUs have high
preferences for MVNOs, then the MNOs may prefer to lease
some of their spectrum to the MVNOs and receive their share
of profit through the MVNOs, instead of competing for EUs by
lowering their access fees. On the other hand, if EUs have high
preferences for the MNOs, the MNOs may not offer spectrum
to the MVNOs and seek to attract the EUs directly. Thus,
cooperation is mutually beneficial only in some scenarios,
which we seek to identify.

B. Contribution

First, we consider a base case in which one MNO and
one MVNO compete for EUs in a common pool, and the EUs
must choose one of the SPs. We present the system model,
important definitions and terminologies, and quantify metrics
such as degree of cooperation and EU-resource-cost that we
use to assess the system from the perspective of various stake-
holders throughout (Section II-A). We consider a sequential
game in which the SPs decide their spectrum investments and
access fees for the EUs (Section II-B). We subsequently seek
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the Subgame Perfect Nash Equilibrium (SPNE) outcome of
the game using backward induction, and identify conditions
under which the SPNE exists and is unique, and characterize
the SPNE whenever it exists (Sections II-C, II-E). The SPNE
is simple to compute, as 1) the amount of spectrum the MNO
invests turns out to be the value that maximizes a function
involving only one decision variable 2) the amount of spectrum
the MVNO leases from the MNO is a simple closed form
expression involving the amount that the MNO offers it and
the leasing fee 3) the access fees for the EUs constitute simple
closed form expressions of the spectrum the SPs acquire.
The characterizations provide several insights. The spectrum
acquired by the MNO never falls below a threshold which de-
pends only on the leasing fee to the MVNO and preferences for
the SPs. When the spectrum equals this threshold, the MVNO
reserves the entire spectrum that the MNO offers it. Thus
cooperation is high in this case. As the MNO acquires higher
amounts of spectrum, the MVNO reserves progressively lower
amounts, leading to lower degrees of cooperation. Numerical
computations reveal that the MNO acquires minimal amount
of spectrum only when the leasing fee to the MVNO is smaller
than a threshold (Section II-D). The SPNE characterizations
show that higher degrees of cooperation invariably reduces
(enhances, respectively) the efficacy of the MNO (MVNO,
respectively) in competing for the EUs; yet, higher degrees
of cooperation enhance the payoffs of both the SPs as our
numerical computations reveal. The MNO’s loss in revenue
from subscription is more than compensated by the leasing
fees obtained from the MVNO.

Second, we generalize the hotelling model for EU sub-
scription in the base case by incorporating an additional
demand function (Section III). The effects of the demand
function are two-fold. First, the demand function models
the attrition in the number of EUs of SPs if the spectrum
investment or price of both SPs is not desirable for EUs. Thus,
in effect, an EU may opt for neither SP if neither offers a price-
quality combo that is to his satisfaction, which is equivalent
to opting for outside options. Second, the demand function
models an exclusive additional customer base for each of the
SPs to draw from depending on her investment and the price
she offers. We characterize the unique interior SPNE outcome
of the game (Section III-A). Numerical results reveal that the
general behavior of the SPNE outcome are as in the base case
and that the EU-resource-cost increases compared to the base
case (Section III-B).

Finally, we generalize the base case to include compe-
tition between MNOs. We consider a wireless market with
two MNOs and one MVNO, in which EUs choose one of
the three SPs (Section IV). We generalize the hotelling model
to consider three players instead of two in the classical ones
(Section IV-A), and characterize the unique SPNE outcome
(Section IV-B). The characterizations show that this enhanced
competition 1) increases the degree of cooperation, as the
MVNO acquires all the spectrum that the MNOs offer, and
2) is beneficial to EUs, as the amounts of spectrum of SPs
acquires are higher, and the SPs charge the EUs less. Numeri-
cal results reveal that the additional competition enhances the

EU-resource-cost compared to the base case.

C. Relation with the Sequel

While in this work we consider that the SPs arrive at
their decisions individually, in the accompanying sequel we
consider that the SPs arrive at certain decisions as a group,
and then arrive at other decisions individually (Part II). Also,
here we assume that the per unit leasing fee the MVNO
pays to MNO(s) is a fixed parameter, which is beyond the
control of individual MNOs and MVNOs. This happens for
example in two important cases: 1) when this fee is determined
by an external regulator to influence the interaction between
different providers (possibly to the betterment of the EUs) 2)
when this fee is a market-driven parameter, for example, in
a large spectrum market with many MNOs and MVNOs. To
understand the impact of the externals (eg, regulator, market),
we investigate the implications of different values of this
fee on the SPNE and the payoffs and the EU-resource-cost
metric. This would also guide the regulatory choice of this fee
for the first case. Note that the overall market may consider
several MNOs and MVNOs, whose presence we consider in
the generalizations (Sections III, IV). In the sequel we consider
that the SPs cooperatively characterize this fee as a decision
variable in a bargaining framework (Part II).

D. Positioning vis-a-vis the State-of-the-Art

Duan et. al made early contributions in the field of
MVNOs [11], [12]. They formulated the interactions between
one cognitive mobile virtual network operator (CMVNO) and
multiple end-users as a multi-stage Stackelberg game, and
showed that spectrum sensing could improve the profit of
the CMVNO and payoffs of the users. Since they considered
only one SP, the issue of competition or cooperation between
multiple SPs did not arise. We investigate the interplay of
cooperation and competition between different SPs, namely
MNO and MVNO.

The economics of the interactions among multiple service
providers have been extensively investigated. We focus on non-
cooperative interactions in this paper as here we consider that
the SPs arrive at their decisions individually. Non-cooperative
games were considered for example in [10], [12], [14], and
[15]. A general framework of strongly Pareto-inefficient Nash
equilibria with noncooperative flow control was considered in
[10]. Applying the framework to communication networks,
it was shown that the Nash equilibria were not efficient.
Intervention schemes, i.e., systems where users and an in-
tervention device interact, were formulated in [13], and a
solution concept of intervention equilibrium was proposed.
The paper showed that intervention schemes could improve
the suboptimal performance of non-cooperative equilibrium.
[15] proposed wireless virtualization to investigate spectrum
sharing in wireless networks.

However, these works did not consider both MNO and
MVNO, whose roles are fundamentally different from each
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other. The MNO acquires spectrum from a central regulator,
which it offers to MVNO in exchange of money, and the
MVNO uses part of this spectrum. Both MNO and MVNO
earn by selling wireless plans to the EUs; the MNO earns
additionally by leasing spectrum to the MVNO. Thus, they
make different decisions, which affect their subscriptions,
and their payoffs have different expressions. Their decisions
also follow different constraints: spectrum acquired by the
MVNO is upper bounded by that acquired by the MNO, which
constitutes the MNO’s decision variable, while the spectrum
acquired by the MNO depend on the availability with the
regulators, the availability does not constitute the decisions of
any provider. The interaction between the MNO and MVNO
lead to an interplay of competition and cooperation between
them, which calls for innovations in the realm of modeling
and analysis.

To our knowledge, the only papers in the genre of non-
cooperative interactions that also consider interactions of the
MNOs and MVNOs are [3], [4] and [5]. In [3] MNOs seek to
maximize the joint profit of MNO and MVNO. The MNO’s
selection of access fees is formulated as a maximization in
which the sales of the MNO is expressed as a function of
only the fee he selects. In contrast we consider that each SP
seeks to maximize his individual profit and obtain the access
fees they select and the spectrum they acquire, which also
determine how the EUs choose between the SPs. Thus we
need to dwell in the realm of a hierarchical game rather than a
single stage optimization. A scenario very different from ours
is considered in [4]: the SPs do not compete for consumer
market shares but for the proportion of resource they are
going to use. The interaction between the SPs is a hierarchical
game in which the MNO and MVNO choose their access fees,
the MVNO also decide investment in content/advertising. The
access fees become roots of a fourth order polynomial equation
which is computed numerically. The closest to our work is
[5], which considers a dynamic three-level sequential game
of spectrum sharing between one MNO and one MVNO. The
focus is however complementary to ours. Unlike our work,
[5] does not consider decisions of the 1) MNO pertaining
to how much spectrum to acquire from a regulatory body
2) MVNO pertaining to how much of the MNO’s spectrum
offer he ought to accept (he assumes that the MVNO uses
the entire spectrum the MNO offers). We also generalize our
model to consider multiple MNOs and an MVNO, which [5]
does not. [5] however considers a decision of the MVNO that
we do not, i.e., how much the MNO would invest in content
generation. The EU subscription models are also entirely
different. We consider a one-shot game involving a continuum
of EUs in which the SP choice of each EU is based on his
intrinsic preferences for the SPs and the spectrum investments
of the SPs. [5] considers a multi-time slot game in which a
discrete number of EUs choose between the SPs based on
their experiences in the previous slots and their estimates of
the quality of service the SPs they had not chosen apriori
offer. The games we consider fundamentally differ in that
the SPNE need not exist in ours (we identify necessary and
sufficient conditions for its existence), while it always exists

in that in [5]. By exploiting the structure of the game, we
obtain closed form expressions for the various decisions we
consider, in the SPNE, whenever it exists. [5] computes the
SPNE only numerically through the solution of a multi-slot
stochastic dynamic program (DP). Our SPNE characterization
is easy to compute, while DPs usually suffer from the curse
of dimensionality.

II. BASE CASE

We present the system model in which we formulate the
payoffs and strategies of SPs, and the utilities and decisions
of EUs (Section II-A). Next, we formulate the interaction
between different entities as a sequential game (Section II-B).
Subsequently, we characterize the conditions under for the
existence and the uniqueness of the SPNE, obtain closed
form expressions for the SPNE when it exists (Section II-C).
We present numerical results in Section II-D. We prove the
analytical results in Section II-E, Appendix B (Theorems 3,
4, 5, 6), and Appendix D-A (Theorems 1, 2).

A. Model

We consider one MNO (SPL, L represents leader) and
one MVNO (SPF , F represents follower) which compete for
a common pool of undecided EUs. SPL offers IL amount
of spectrum (which it acquires from a regulator) to SPF
in exchange of money, and SPF uses IF amount of this
spectrum. Clearly, 0 ≤ IF ≤ IL. For simplicity of analysis
and formulation, we assume that 0 < δ ≤ IL, where δ is
a lower bound of IL, which is a parameter of choice. This
assumption is not significantly restrictive as δ may be chosen
as low a positive quantity as one desires1. Both SPL and SPF
earn by selling wireless plans to EUs; SPL earns additionally
by leasing her spectrum to SPF . We assume that both SPL and
SPF have access to separate spectrum, which they can use to
serve the EUs who join them, above and beyond the IL, IF
amounts they strategically acquire. For example, a SPF like
Google’s Project Fi serves customers using Wi-Fi hotspots and
the spectrum of 3 MNOs (Sprint, T-Mobile or U.S. Cellular
networks). Also, SPL may acquire additional spectrum from
the regulator which it does not offer SPF .

We denote the marginal leasing fee (per spectrum unit)
that SPL pays the regulator as γ, marginal reservation fee SPF
pays to SPL by s, the fraction of EUs that SPF and SPL attract
as nF and nL, respectively, and the access fee that SPF and
SPL charge the EUs as pF and pL, respectively. Since SPL
wants to lease out some of her spectrum to SPF with profit
motive, it is reasonable to assume that s > γ. We assume that
s, γ are pre-determined. The strategies of SPs are to choose
the investment levels (IL, IF ) and the access fees for EUs
(pL, pF ) so as to maximize their overall payoffs, which we
formulate next.

1All results extend, with some modifications, when we consider that IL is
upper bounded by M . Such bounds may apply when the central regulator has
limited spectrum to offer. Refer to Section V for the deductions.
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Fig. 1: The hotelling model for the base case. The EUs in
[0, x0] ([x0, 1], respectively) prefer SPL ( SPF , respectively).
The former fraction of EUs is nL, the latter is nF . x0 is farther
off from SPL as tL becomes lower and vL−vF become higher.

SPF and SPL respectively earn revenues of nF (pF −
c), nL(pL−c) from EU subscription, where c is the transaction
cost SPs incur in subscription. The transaction cost arises
due to traffic management, billing and accounting services,
customer service, etc. associated with each subscription. We
have assumed such costs to be equal for all SPs, as they do not
significantly vary across them. We expect the cost of reserving
spectrum to be strictly convex, i.e. the cost of investment
per spectrum unit increases with the amount of spectrum.
Strictly convex costs do not satisfy the economy of scale;
the regulator may mandate such structures to stop excessive
acquisition by big SPs seeking to control the market, which
has limited spectrum supply, and drive out smaller SPs or new
entrants. Incidentally, several seminal works have considered
strictly convex investment costs, e.g. [7] and [8]. For simplicity
in analysis, we consider a specific kind of strictly convex
cost function, namely quadratic, and discuss generalizations
in Remark 3. That is, SPL incurs a spectrum acquisition cost
of γI2

L, and SPF pays to SPL a leasing fee of sI2
F . Thus, the

payoffs of SPs are:

πF = nF (pF − c)− sI2
F (1)

πL = nL(pL − c) + sI2
F − γI2

L. (2)

EUs: We use a hotelling model[1] to describe how EUs choose
between the SPs. We assume that SPL is located at 0, SPF is
located at 1, and EUs are distributed uniformly along the unit
interval [0, 1] (Figure 1). The closer an EU to a SP, the more
this EU prefers this SP to the other. Note that the notion of
closeness and distance is used to model the preference of EUs,
and may not be the same as physical distance. Let tL (tF ) be
the unit transport cost of EUs for SPL (SPF ), the EU located
at x ∈ [0, 1] incurs a cost of tLx

(
respectively, tF (1 − x)

)
when joining SPL (respectively, SPF ).

uL(x) =vL − (pL + tLx)

uF (x) =vF − (pF + tF (1− x)) .
(3)

The EU at x receives utilities uL(x), uF (x) respectively from
SPL and SPF , and joins the SP that gives it the higher utility.

The first component of the utility functions comprises
of the “static factors”, namely vL and vF of SPL and SPF ,
respectively. The static factor of a SP is the same for all EUs,
which depends on the local presence, its existing spectrum
beyond IL or IF and its reputation in the region, quality of
the customer-service, ease of usage for the online portals, etc.
However, the static factors do not depend on strategies of SPs,
such as the access fees, the investment levels, etc.

The second component, i.e., pL+ tLx or pF + tF (1−x),
is denoted as the “strategy factor”. The strategy factors depend
on the strategies of the SPs, namely their access fees and
the spectrum IL, IF they acquire. Clearly, the utilities would
decrease with the access fees, we consider the dependence to
be linear. As SPF acquires greater fraction of the additional
spectrum SPL offers him, SPF becomes more desirable and
SPL less desirable to the EUs. Denote tL = IF /IL and
tF = (IL−IF )/IL. Then the impact of quality of service in the
decision of EUs is captured through tL and tF . For example,
when IF = IL, i.e., SPF leases the entire IL spectrum from
SPL and SPL can use none of it, then tF = 0 and tL = 1. This
gives SPF an advantage over SPL in attracting EUs. Similarly,
even when IF = 0, i.e., SPF leases no spectrum from SPL,
tF = 1 and tL = 0, SPL has an advantage over SPF . But
subscription may still be divided in both the above extreme
cases. This happens since both SPF and SPL have access to
separate spectrum as reflected in the static factors vF , vL. Note
that the pair of transport cost (tL = IF /IL, tF = 1−tL) is one
of the many functions that can be considered. We choose this
model specifically since it captures the essence of the model,
and is analytically tractable.

Finally, the strategy factors incorporate intrinsic prefer-
ence of the EUs towards the SPs through the coordinate x,
which presents the local distance in the utility model. If an EU
is for example close to SPF , x is high and 1− x is low, and
it is deemed to have a higher intrinsic preference for SPF , as
compared to SPL. The intrinsic preference may be developed
through pre-existing and ongoing relations the EU has with the
SPs, e.g., if an EU is already availing of other services from a
SP, the EU will have a stronger intrinsic preference for the SP,
due to convenience of billing etc. Higher intrinsic preferences
enhance utilities of the SP for the EUs. The impact of the
strategies of the SPs on the EUs will depend on their intrinsic
preferences for the EUs, which is captured in the term tLx or
tF (1 − x) in the utility. Note that the intrinsic preference is
different for different EUs unlike the static factor.

We consider that vL and vF are sufficiently large so
that the utility of EUs for buying a wireless plan is positive
regardless of the choice of SP2. Thus, each EU chooses exactly
one SP to subscribe to, i.e., the market is “fully covered”. This
is a common assumption for hotelling models. We would in
effect relax this assumption in Section III.

SPF ’s leasing of spectrum from SPL constitute an act of
cooperation. Thus, we call IF /IL the degree of cooperation.
Since SPF and SPL compete to attract EUs, the split of
subscription (nL, nF ) represent the level of competition. Since
the amount of spectrum SPF leases from SPL determines
the split of subscription, there is a natural interplay between
cooperation and competition, that these metrics will enable us
to quantify.

We develop the notion of EU-resource-cost to capture

2 Note that all analytical results will depend on the difference of vL and
vF , so absolute values of these (large or otherwise) do not have any impact
on the SPNE choices of various entities.
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the spectral resource per unit access fee averaged over all
EUs, which represents the “bang-for-the-buck” or “value for
money” an average EU gets out of the system. For the EUs
who choose the MVNO, the resource per head is IF /nF .
Thus, for these EUs the resource per head per unit fee is
IF /(nF pF ). Similarly, for the EUs who choose the MNO,
the resource per head per unit fee is (IL − IF )/(nLpL).
Averaging over all the EUs, the resource per unit fee for
an “average” EU then is, nF IF /(nF pF )+nL(IL−IF )/(nLpL)

nF+nL
,

which equals IF /pF + (IL − IF )/pL, since nL + nF = 1.
We therefore consider this as the expression for the EU-
resource-cost. Clearly, higher values of the EU-resource-cost
is beneficial for the EUs.

B. The sequential game framework

The interaction among SPs and EUs can be formulated
as a sequential game. As a leader of the game, SPL makes
the first move. The timing and the stages of the game are as
following:

• Stage 1: SPL decides on the amount of spectrum, IL, to
acquire.

• Stage 2: SPF decides on the amount of spectrum to
lease from SPL, IF .

• Stage 3: SPL and SPF determine the access fees for the
EUs, pL and pF , respectively.

• Stage 4: Each EU subscribes to the SP that gives it the
higher utility.

Remark 1. We assume that the decision of investments (IL
and IF ) happens before the decisions of access fees (pL and
pF ), guided by the fact that spectrum investment decisions are
long-term ones, and are therefore expected to be constants
over longer time horizons in comparison to subscription
pricing decisions.
Definition 1. [2, Chapter 6.2] A strategy is a Subgame Perfect
Nash Equilibrium (SPNE) if and only if it constitutes a Nash
Equilibrium (NE) of every subgame of the game.

We refer to a SPNE choice of spectrum investments
and access fees by the SPs as (I∗L, I

∗
F , p

∗
L, p
∗
F ), and the EU

subscriptions for the SPs under the same as n∗L, n
∗
F , should a

SPNE exist.

C. The SPNE outcome

We next identify the conditions under which SPNE ex-
ists, characterize the SPNE when it exists, and examine its
uniqueness.

We denote vL − vF as ∆. Since 0 ≤ tL, tF ≤ 1, 0 ≤
x ≤ 1, in the expressions for utilities in (3), |∆| ≥ 1 provides
a near insurmountable disadvantage to one of the SPs through
the static factors; this SP might have to choose a significantly
lower price to recoup. Thus, we first focus on the range |∆| <
1. As stated before, we assume δ is small, and let δ <

√
2−∆
9s ,

which reduces to δ <
√

2
9s in the special case that vL = vF .

Theorem 1. Let |∆| < 1. The SPNE is:

(1) any solution of the following maximization is I∗L,

max
IL

πL(IL) = (
2 + ∆

3
− 1−∆

27sI2
L − 3

)2

+ s(
(1−∆)IL
9sI2

L − 1
)2 − γI2

L

s.t

√
2−∆

9s
≤ IL ≤M,

(2) I∗F is characterized in

I∗F =


(1−∆)IL
9I2
Ls− 1

if IL >

√
2−∆

9s

IL if IL =

√
2−∆

9s

,

(3) p∗L = c+ 2
3 −

I∗F
3I∗L

+ ∆
3 , p∗F = c+ 1

3 +
I∗F
3I∗L
− ∆

3 ,

(4) n∗L = ∆
3 + 2

3 −
I∗F
3I∗L

, n∗F =
I∗F
3I∗L

+ 1
3 −

∆
3 .

Remark 2. From (2), I∗F is unique once I∗L is given; from
(3) and (4), (p∗L, p

∗
F , n

∗
L, n

∗
F ) is unique once I∗L and I∗F are

given. Thus, every solution of the maximization in Theorem
1 (1) leads to a distinct SPNE. Thus, the SPNE is unique if and
only if this maximization has a unique solution. Our extensive
numerical computations suggest that this is the case.

The SPNE is easy to compute, despite the expressions
being cumbersome. Otherwise, I∗L can be obtained as a
maximizer of an expression that involves only one decision
variable, IL, and fixed parameters s, γ,∆. I∗F has been ex-
pressed as a closed form function involving I∗L and the fixed
parameters s,∆. p∗L, p

∗
F , n

∗
L, n

∗
F have been expressed as closed

form functions of I∗F /I
∗
L and the fixed parameters c,∆.

From Theorem 1 (3), the price the EUs receive from
SPL (respectively, SPF ) decrease (respectively, increase) with
increase in the degree of cooperation (IF /IL). Thus, since at
least one of the SPs reduce the price, the EUs benefit from
higher degree of cooperation.

From Theorem 1 (3) and (4), n∗L = p∗L− c, n∗F = p∗F − c.
Thus, SPNE subscriptions of the SPs increase with increase in
the access fees they announce. This counter-intuitive feature
arises because the subscriptions also depend on the spectrum
acquisitions of the SPs, through the transport costs tL =
IF /IL and tF = 1− tF in the utilities specified in (3).

From Theorem 1 (1), in the SPNE, SPL acquires at least√
2−∆
9s amount of spectrum. From Theorem 1 (2), when I∗L

equals this minimum, then SPF reserves all the available
spectrum, i.e., I∗L = I∗F (note that I∗F is continuous at

IL =
√

2−∆
9s ). Thus, SPL can not use any of I∗L. However,

from Theorem 1 (4), SPL is still able to attract a positive
fraction of EUs: n∗L = ∆+1

3 > 0 since |∆| < 1. This is
because EUs have spectrum other than I∗L, I

∗
F as captured in

the values of vL, vF .

From Theorem 1 (1) and (2), when I∗L exceeds its
minimum value, then SPF reserves only a fraction of available
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spectrum (I∗F < I∗L). Note that in this case, dI∗F
dIL

< 0. Thus,
the higher the amount of available spectrum, the lower would
be the amount of spectrum reserved by SPF . Also, I∗F is
decreasing with s.

The SPNE depends on the static factors vL, vF only
through their difference ∆. As expected, with increase (respec-
tively, decrease) in ∆, SPL (respectively, SPF ) can increase
his (respectively, her) access fee p∗L (respectively, p∗F ). The
minimum value of his spectrum acquisition I∗L increases with
decrease in ∆, to offset the competitive advantage the static
factors provide. Through our numerical computations, we
elucidate how I∗L, I

∗
F and the payoffs otherwise vary with ∆.

The results illustrate the interplay between cooperation
and competition. From Theorem 1 (4), the subscription n∗L
(respectively, n∗F ) of SPL (respectively, SPF ) decreases (re-
spectively, increases) with the degree of cooperation (I∗F /I

∗
L).

Thus, the higher the degree of cooperation, lesser (respectively,
greater) is the competition efficacy of SPL (respectively,
SPF ). A natural question arises: why would the SPL then
cooperate with the SPF ? From (1) and (2), Theorem 1 (3),
(4), πL = n∗2L + sI∗2F − γI∗2L , and πF = n∗2F − sI∗2F . On
the one hand, if the degree of cooperation increases, then
the amount of subscribers of SPL decreases, thus the revenue
SPL earn from the subscribers decreases. On the other hand,
the payoff of SPL increases through sI∗2F . Thus the second
factor may offset the first, and the payoff of SPL may increase
due to cooperation. Note that it is not a zero sum game,
thus, the payoffs of both players may simultaneously increase
due to cooperation. We illustrate these phenomena definitively
through our numerical computations in the next section.

Then, in the extreme case that |∆| ≥ 1:
Theorem 2. (1) ∆ ≥ 1: The SPNE is

I∗L = δ, I∗F = 0, p∗F = p∗L −∆, n∗L = 1, n∗F = 0,

and p∗L can be chosen any value in [c+ 1, c+ ∆].
(2) ∆ = 1 : The following interior strategy constitute an
additional SPNE:

I∗L = I∗F =
1

3
√
s
, p∗L − c = n∗L = 2/3, p∗F − c = n∗F = 1/3.

(3) ∆ ≤ −1 : The SPNE strategy is:

I∗L = I∗F =
1√
2s
, p∗L = p∗F + ∆− 1, n∗L = 0, n∗F = 1,

and p∗L can be chosen any value in [c+ 1, c−∆].

We prove this theorem in Appendix D-B. As is intuitive,
for large ∆, all EUs subscribe to SPL, despite lower access
fees selected by SPF ; the reverse happens in the other extreme,
despite lower access fees selected by SPF . The extremes
therefore lead to “corner equilibria”, which correspond to 0, 1
as the degrees of cooperation. The SPNE is non-unique in both
these extremes.

Fig. 2: Payoffs (left) and the degree of cooperation (right) vs.
s. Here, γ = 0.5, c = 1, ∆ = 0.

Fig. 3: EU-resource-cost vs. s. Here, γ = 0.5, c = 1.

D. Numerical results

Figure 2 shows the payoffs (left) and the degree of
cooperation (right) under different s when ∆ = 0. The degree
of cooperation reaches the maximum (= 1), i.e., I∗F = I∗L
when s is less than a threshold (≈ 2). In this case, SPL
generates most of its revenue from the reservation fee paid
by SPF . As expected, π∗L increases with s. From Theorem 1
(1), (2), (4), when I∗F = I∗L, I∗L equals its minimum value√

2
9s , and n∗F = 1/3 + I∗F /3I

∗
L = 2/3, thus π∗F = n∗2F − sI∗2F

is a constant which is independent of s. When s is larger than
this threshold, I∗F /I

∗
L < 1, and decreases with s. In this case,

I∗L exceeds its minimum value, and SPF leases only a portion
of the new spectrum invested by SPL, i.e., I∗F < I∗L. Thus,
SPL generates more of its revenue from EUs. The payoff of
SPL (SPF ) first jumps to a lower value at this threshold, and
then increases (decreases) with s. At this threshold, the degree
of cooperation also jumps to a lower value (< 1). Thus, higher
degrees of cooperation can enhance the payoff of both SPs,
and the reservation fee s enhances (reduces) the payoff of SPL
(SPF ). Also, SPF earns more than SPL for lower values of s;
hence SPF gets more from the spectrum sharing between the
2 SPs in this case. For higher values of s, the reverse happens.

s has significant impact on the EU-resource-cost, as
depicted in Figure 3. We first explain the jump at the threshold
value of s. When s is less than the threshold, I∗L = I∗F , as seen
in Figure 2 (right). Thus the EU-resource-cost is I∗F /p

∗
F . At the

threshold, I∗F < I∗L, so the second term in EU-resource-cost(
(I∗L − I∗F )/p∗L

)
jumps to a positive value from 0, leading

to the jump in the EU-resource-cost. The EU-resource-cost
otherwise decreases in s, thus if a regulator chooses s, it ought
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Fig. 4: Investment decisions (left), the split of subscription
(right) vs. s. Here, γ = 0.5, c = 1, ∆ = 0.

Fig. 5: Payoffs (left), investment decisions (right) vs. ∆. Here,
γ = 0.5, c = 1, s = 1.

to opt for a low value of s, though if s is really low, then SPL
may not have enough incentive to cooperate due to low π∗L
(Figure 2 (left)). Note that the degree of cooperation is 1 at
low values of s, thus high degree of cooperation coincides
with high EU-resource-cost.

Figure 4 shows the SPNE level of investment (left) and
subscriptions of SPs (right) when ∆ = 0. It reconfirms that
when s is smaller than a threshold, SPF leases the entire
spectrum SPL offers, and after that threshold, SPF leases only
a portion of the new spectrum offered by SPL. Also, I∗L strictly
decreases with s throughout. When s is small, I∗F = I∗L, n∗F
and n∗L are constant (n∗L = 1/3, n∗F = 2/3) independent of
γ and s, and n∗F > n∗L. After the threshold, n∗F decreases
and n∗L increases with s (because I∗F /I

∗
L decreases with s in

Figure 2 (right)). Comparing Figure 2 (right) and Figure 4
(right) we note that higher degrees of cooperations increase
(decrease, respectively) the competition efficacy of SPF (SPL,
respectively).

Figure 5 plots the payoffs (left) and IL, IF (right) as a
function of ∆ when |∆| < 1, the region in which the SPNE
exists uniquely. We set s = 1. As expected, the payoff of
SPL (SPF , respectively) increase (decrease, respectively) with
increase in ∆. Also, SPF earns more than SPL for lower values
of ∆; hence SPF gets more from the spectrum sharing between
the 2 SPs in this case. For higher values of s, the reverse
happens. With increase in ∆, IL, IF may either increase or
decrease, depending on whether additional spectrum provides
“bang for the buck” by enticing commensurate number of EUs

Fig. 6: Degree of cooperation (left), EU-resource-cost (right)
vs. ∆. Here, γ = 0.5, c = 1, ∆ = 0.

which depends on the EUs’ prior biases (static factors) for or
against the SPs. The figure shows which is the case.

Figure 6 plots the degree of cooperation (left) and the
EU-resource-cost (right) as a function of ∆ when |∆| < 1.
Figure 6 (left) shows that the degree of cooperation is a
constant 1 when ∆ is less than a threshold, and decreases
when ∆ is larger than this threshold. The amount of spectrum
SPF leases from SPL decreases when SPL has larger common
preference. The jump in the EU-resource-cost at the threshold
value of ∆ may be explained similar to that for Figure 3,
considering Figure 6 (left) instead of Figure 2 (right). Other
than this jump, the EU-resource-cost decreases in ∆. Again,
note that high degree of cooperation coincides with high EU-
resource-cost.

E. SPNE Analysis

We use backward induction to characterize SPNE strate-
gies, starting from the last stage of the game and proceeding
backward. For simplicity and brevity, we present this analysis
only for the important special case of ∆ = 0, and defer the
general case to Appendix B. Thus, we prove Theorem 1 while
applying ∆ = 0 in the corresponding expressions. Specific
Theorems 3, 5, 6 are proven in Appendix B.

Stage 4: We first characterize the equilibrium division of EUs
between SPs, i.e., n∗L and n∗F , using the knowledge of the
strategies chosen by the SPs in Stages 1∼3.
Definition 2. x0 is the indifferent location between the two
service providers if uL(x0) = uF (x0) (Figure 1).

By the full market coverage assumption, if 0 < x0 < 1,
then EUs in the interval [0, x0] join SPL and those in the
interval [x0, 1] join SPF . If x0 ≤ 0, all EUs choose SPF ; and
if x0 ≥ 1, all EUs choose SPL (Figure 1).

From Definition 2, uF (x0) = v − tF (1 − x0) − pF =
v − tLx0 − pL = uL(x0). Since tL + tF = 1, then x0 =
tF+pF−pL
tL+tF

= tF + pF − pL. Thus,

x0 = tF + pF − pL (4)

7
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Thus, since EUs are distributed uniformly along [0, 1],
the fraction of EUs with each SP is:

nL =


0, if x0 ≤ 0

x0, if 0 < x0 < 1

1, if x0 ≥ 1

, nF = 1− nL, (5)

where x0 is defined in (4) and nF = 1− nL (Figure 1).

Only “interior” strategies may be SPNE, as:
Theorem 3. In the SPNE it must be that 0 < x0 < 1.

Stage 3: SPL and SPF determine their access fees for EUs,
pL and pF , respectively, to maximize their payoffs.
Lemma 1. The payoffs of SPs are:

πL =(tF + pF − pL)(pL − c) + sI2
F − γI2

L

πF =(tL + pL − pF )(pF − c)− sI2
F

(6)

Proof. From (5), substitute (nL, nF ) = (tF +pF−pL, 1−nL)
into (1) and (2), and get (6).

We next obtain the SPNE p∗F and p∗L which maximize
the payoffs πL and πF of the SPs respectively.
Theorem 4. The SPNE pricing strategies are:

p∗L = c+
2

3
− IF

3IL
, p∗F = c+

1

3
+

IF
3IL

(7)

Proof. p∗F and p∗L must satisfy the first order condition, i.e.,
dπF
dpF

= 0 and dπL
dpL

= 0. Thus, p∗F = c + IL+IF
3IL

& p∗L =

c+ 2IL−IF
3IL

. p∗F and p∗L are the unique SPNE strategies if they
yield 0 < x0 < 1 and no unilateral deviation is profitable for
SPs. We establish these respectively in Parts A and B.

Part A. From (7), x0 =
I∗L−I

∗
F

I∗L
+ p∗F − p∗L =

2I∗L−I
∗
F

3I∗L
. Since

I∗L ≥ I∗F and I∗L > 0, then 0 < x0 < 1.

Part B. Since d2πF
dp2
F
< 0, d

2πL
dp2
L
< 0, a local maxima is also a

global maximum, and any solution to the first order conditions
maximize the payoffs when 0 < x0 < 1, and no unilateral
deviation by which 0 < x0 < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to nL = 0, nF = 1 and nL = 1, nF = 0 is not
profitable. Note that the payoffs of the SPs, (1) and (2), are
continuous as nL ↓ 0, and nL ↑ 1 (which subsequently yields
nF ↑ 1 and nF ↓ 0, respectively). Thus, the payoffs of both
SPs when selecting pL and pF as the solutions of the first
order conditions are greater than or equal to the payoffs when
nL = 0 and nL = 1. Thus, the unilateral deviations under
consideration are not profitable for the SPs.

Remark 3. The proof shows that x0, p
∗
L, p
∗
F do not depend

on the specific nature of the costs of leasing spectrum IF , IL,
neither does n∗L, n

∗
F from (5). Thus the SPNE expressions for

these would remain the same for any other cost function. But,
the SPNE of investment levels (I∗L, I∗F ) as obtained in the next
results depend on the specific nature of these functions.

Stage 2: SPF decides on the amount of spectrum to be leased
from SPL, IF , with the condition that 0 ≤ IF ≤ IL, to
maximize πF .
Theorem 5. The SPNE spectrum acquired by SPF is:

I∗F =


IL

9I2
Ls− 1

when IL >

√
2

9s

IL when δ ≤ IL ≤
√

2

9s

(8)

Stage 1: SPL chooses the amount of spectrum IL to lease
from the regulator, to maximize πL.
Theorem 6. The SPNE spectrum acquired by SPL, I∗L is the
solution of the following maximization

max
IL

πL =
1

9
(2−

1

9sI2L − 1
)2 + s(

IL

9sI2L − 1
)2 − γI2L

s.t

√
2

9s
≤ IL.

(9)

Let ∆ = 0. Theorem 1 follows from Theorems 3, 4, 5, 6.
Theorem 3 allows us to consider only interior SPNE. Parts (1)
and (2) of Theorem 1 follow respectively from Theorems 6 and
5. Part (3) follows from Theorem 4, part (4) from Theorem 4
and (5).

III. EUS WITH OUTSIDE OPTIONS

We now generalize our framework to consider a sce-
nario in which the EUs from the common pool the SPs are
competing over, may not choose either of the two SPs if the
service quality-price tradeoff they offer is not satisfactory. In
effect, there is an outside option for the EUs. Also, each
SP has an exclusive additional customer base which can
provide customers beyond the common pool depending on the
service quality and access fees they offer. We introduce these
modifications through demand functions we describe next.
Definition 3. The fraction3 of EUs with each SP is

ñL = αnL + ϕ̃L(pL, IL), ñF = αnF + ϕ̃F (pF , IF ),

where

ϕ̃L(pL, IL) = k′ − θ′pL + b′(IL − IF ),

ϕ̃F (pF , IF ) = k′ − θ′pF + b′IF

and α > 0, k′, θ′ and b′ are constants.

Here, nL, nF represent fractional subscriptions from the
common pool as before, and are determined in Stage 4 of the
sequential game described in Section II-B, based on the utili-
ties specified in (3), with vL = vF for simplicity. The demand
functions ϕ̃L(., .) and ϕ̃F (., .) can be positive or negative.
A positive value denotes attracting EUs presumably from an
exclusive additional customer base beyond the common pool,
and a negative value denotes losing some of the EUs in the
common pool to an outside option. The size of the common

3The fraction may be replaced with actual number (of EUs) in this case,
by altering scale factors in this expression and in those of the payoffs. Our
results hold for both interpretations as we do not use 0 ≤ ñL, ñF ≤ 1 in
any derivation. We use 0 ≤ nL, nF ≤ 1 though.

8
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pool may be different from the exclusive additional customer
bases of the SPs; to account for this disparity, we multiply the
fractional subscriptions from the common pool, nL, nF with
a constant α.

Considering θ′ = α, for analytical tractability:

ñL = α
(
nL + ϕL(pL, IL)

)
,

ñF = α
(
nF + ϕF (pF , IF )

)
,

(10)

with k = k′/α, b = b′/α, and

ϕL(pL, IL) = k − pL + b(IL − IF ),

ϕF (pF , IF ) = k − pF + bIF
(11)

The formulation is the same as in Sections II-A, II-B, with
ñL, ñF replacing nL, nF in (1) and (2). Using the argument
that led us to the expression for the As in Section II-A, the
EU-resource-cost is I∗F /p

∗
F + (I∗L − I∗F )/p∗L, following the

argument in the last paragraph of Section II-A. We characterize
the SPNE strategies in Section III-A, and provide numerical
results in Section III-B.

A. The SPNE outcome

For simplicity, we consider only interior SPNE strategies,
that is, 0 < n∗L, n

∗
F < 1. We define functions f(IL), g(IL),

πL(IF ) and sets L1, L2 as follows:

g(IL) =
b

15
IL +

1

15
−
c

3
+
k

3
, f(IL) =

1

5IL
+
b

5
,

θ(y) = 2α
( b

5
IL +

1

5
+ g(IL)− f(IL)y

)2
+ sy2 − γI2L,

L1 ={s > 2αf2(IL) + 2αf(IL)g(IL)/IL, g(IL) ≥ 0,

δ ≤ IL, IL < 4/b},

L2 ={0 ≤ IL, IL < 4/b} ∩
(
{g(IL) ≥ 0,

2αf2(IL) ≤ s ≤ 2αf2(IL) + 2αf(IL)g(IL)/IL}

∪{2αf2(IL) + 4αf(IL)g(IL)/IL ≥ s, 2αf2(IL) > s}
)
.

With δ < 4/b, we prove in Appendix E:
Theorem 7. The interior SPNE strategies are:

(1) I∗L is characterized in

I∗L = argmax
IL

(
max
IL∈L1

θ(
−2αf(IL)g(IL)

2αf2(IL) − s
), max
IL∈L2

θ(IL)
)

(2) I∗F is characterized in

I∗F =


−2αf(IL)g(IL)

2αf2(IL)− s
if IL ∈ L1

IL if IL ∈ L2

(3) p∗L = 1
15 + 2c

3 + k
3 +

I∗L−I
∗
F

5I∗L
− b

5I
∗
F + 4b

15I
∗
L, p∗F = 1

15 +
2c
3 + k

3 +
I∗F
5I∗L

+ b
15I
∗
L + b

5I
∗
F .

(4) ñ∗L =
I∗L−I

∗
F

I∗L
+ p∗F − 2p∗L + k + bI∗L − bI∗F , ñ∗F =

I∗F
I∗L

+

p∗L − 2p∗F + k + bI∗F

Remark 2 holds here with Theorem 7 substituting Theo-
rem 1.

Fig. 7: Spectrum (left), degree of cooperation and subscrip-
tions (right) vs. s Here, γ = 0.8, c = k = 1, b = 2.

Despite the expressions being cumbersome, the charac-
terization is easy to compute, as in Theorem 1, and lead to
important insights, as enumerated below.

ñ∗L =
3

5
(1− I∗F

I∗L
) + ϕL(pL, IL) +

2b

5
I∗F −

b

5
I∗L

ñ∗F = 1− 3

5
(1− I∗F

I∗L
) + ϕF (pF , IF )− 2b

5
I∗F +

b

5
I∗L

In both equations, intuitively, the first term, 3
5 (1 − I∗F

I∗L
), 1 −

3
5 (1− I∗F

I∗L
), represents the subscription from the common pool,

if there had been no attrition to an outside option. The second
and third terms represent the impacts of the attritions as also
the additions from the exclusive customer bases. The first term
depends on the degree of cooperation similar to the the base
case specified in part (4) of Theorem 1. In the special case
that b = 0, i.e., when the demand functions depend only on
the access fees, the third term is 0 and the demand functions
capture the impact of attrition and additions in the SPNE
expression for the subscriptions. For b > 0, the second and
the third term together become k− p∗L + b

5I
∗
L(4− 3I∗F /I

∗
L) in

the expression for ñ∗L, and k−p∗F+ b
5I
∗
L(1+3I∗F /I

∗
L) in that for

ñ∗F . Thus, higher degree of cooperation decreases (increases,
respectively) the subscription for SPL (SPF , respectively)
even in these terms, and therefore, overall, like in the base
case. Note that the subscriptions represent the efficacy in
competition. However, as in the base case, the decrease in
subscription does not directly lead to reduction in overall
payoffs of SPL, as the deficit may be compensated through
income generated by leasing spectrum to SPF .

B. Numerical results

Figure 7 show that now, both n∗L, n
∗
F can decrease (eg,

with changes in s) because of attrition to the outside option
possibly due to decrease of I∗L, I

∗
F . We note this when s is

below a threshold. Otherwise, the trends resemble Figures 2
and 4 (the base case).

Figure 8 (left) shows the payoffs under different s. The
trends of payoffs are similar with Figure 2 (left). The SPs earn

9
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Fig. 8: Payoffs (left), EU-resource-cost (right) vs. s Here, γ =
0.8, c = 1.

higher payoffs than in the base case, as they have additional
exclusive customers bases to draw additional EUs from.

Figure 8 (right) shows that for different values of the
parameters b, k, the EU-resource-cost exceeds that for the base
case shown in Figure 3. This is because the SPs provide better
resource-cost tradeoff to the EUs so as not to loose them to
the outside option, and also to draw more EUs from their
exclusive additional bases.

IV. THE 3-PLAYER MODEL

We now generalize our framework to consider competi-
tion between MNOs, rather than that only between an MNO
and an MVNO. In a 3-player model, we consider two MNOs
and one MVNO competing for a common pool of EUs in a
covered market (i.e., each EU needs to opt for exactly one SP).
We present the model in Section IV-A, and characterize the
SPNE in Section IV-B. We show that the competition among
multiple SPs reduces their payoffs, but benefits the EUs: the
SPs acquire higher amounts of spectrum (hence provide higher
service quality), and charge the EUs less. The competition also
reduces the payoffs of SPs. We prove the results in Appendix C
(Theorems 8, 9) and in Section F (Corollary 1).

A. Model

We consider a symmetric model and seek a symmetric
equilibrium i.e., the strategies of the MNOs are the same, and
the MVNO leases the same amount of spectrum from each
MNO. Thus, in the SPNE, IL = IL1 = IL2 , IF = IF1 = IF2 ,
pL = pL1 = pL2 , and nL = nL1 = nL2 . The total amount
spectrum of SPs is 2IL. Thus, each MNO retains IL − IF
spectrum. We define the payoffs of MVNO and MNOs as

πF = nF (pF − c)− 2sI2
F (12)

πL = nL(pL − c) + sI2
F − γI2

L (13)

To accommodate the three SPs, we modify the hotelling
model. The EUs are uniformly distributed along a circle of
radius 1 on which the SPs are virtually located (Figure 9).
Since the radius is 1, each arc length equals the corresponding

Fig. 9: The hoteling model for the three players case

angle. Thus, the number of EUs located 1) between the MVNO
and MNOi is φ0,i and 2) between the MNOs is φ1,2.

We consider that φ0,1, φ0,2 and φ1,2 reflect the natural
preferences of EUs for SPs (intuitively, for example, those in
the arc φ0,1 would have stronger preference for the MVNO
and MNO1, and so on). We allow the preferences to depend
on spectrum investments by defining these arcs as: φ0,1 =
φ0,2 = h1(IL, IF ) and φ1,2 = h2(IL, IF ) for some functions
h1 and h2 (considering that the model is symmetric). We can
now consider the transport cost as a parameter t > 0 rather
than a function of IL, IF , unlike in Section II. We focus on
the special case that vL = vF = v.

Similar to (3), if an EU is located in the arc of φ0,1, at
a distance of x from the MVNO,

uMVNO =v − tx− pF
uMNO1

=v − t(φ0,1 − x)− pL
uMNO2

=v − t ·min(x+ φ0,2, φ0,1 − x+ φ1,2)− pL
(14)

By calculation, if x ≤ φ0,1/2, then uMNO1
≤ uMVNO, and

uMNO2 = v − t(x + φ0,2) − pL < uMVNO. Then, EUs
choose MVNO. If x > φ0,1/2, then uMVNO < uMNO1 , and
uMNO2

= v− t(φ0,1− x+ φ1,2)− pL < uMNO1
. Then, EUs

choose MNO1 instead of MNO2.

Similarly, due to symmetry, if an EU is located in the arc
of φ0,2, he does not choose MNO1, and suppose the distance
from the EU to the MVNO is x, thus

uMVNO =v − tx− pF
uMNO2 =v − t(φ0,2 − x)− pL

(15)

If an EU is located in the arc of φ1,2, at a distance of x
to the MNO1, then his utility is;

uMNO1
=v − tx− pL,

uMNO2
=v − t(φ1,2 − x)− pL

uMVNO =v − t ·min(x+ φ0,1, φ1,2 − x+ φ0,2)− pF
(16)

Now we have the following lemma,
Lemma 2. If pL − pF ≥ tφ0,1, then all EUs choose the
MVNO; if pL − pF < tφ0,1, then EUs located in the arc
of φ1,2 do not choose the MVNO.

Henceforth, we only consider pL − pF < tφ0,1, as:

10
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Theorem 8. No SPNE strategy exists if pL − pF ≥ tφ0,1.

Now, from Lemma 2 and the discussion above, the
MVNO and MNOi (MNO1 and MNO2, respectively) compete
to attract the EUs located only on the arc of φ0,i (φ1,2,
respectively). Thus, we define the number of EUs of any two
SPs depends only on their total investment levels, i.e., for a
constant ζ,

φ01 = φ02 = ζ
2IF + IL − IF

2IL
= ζ

IF + IL
2IL

,

φ12 = ζ
2(IL − IF )

IL
= ζ

IL − IF
IL

.

B. The SPNE outcome

With δ < π
2

√
t

3s , we prove in Appendix C:
Theorem 9. The unique symmetric SPNE strategy, with I∗L, p

∗
L

representing the choices of, and n∗L subscription to, each
MNO, and I∗F , p

∗
F , n

∗
F the corresponding quantities for the

MVNO, is:

I∗L = I∗F =
π

2

√
t

3s
, p∗L = p∗F = tπ + c, n∗F = 2n∗L = π.

Remark 4. The MVNO leases the entire new spectrum from
each MNO. The degree of cooperation, I∗F /I

∗
L is 1. The

characterization of the SPNE is easy to compute.

We compare the outcome of the 3-player model with the
2-player model, to understand the impact of the competition
between the MNOs. To ensure consistency of comparison, we
modify the 2-player model of the base case in Section II as
follows: (1) The transport cost is t instead of tL = IF /IL
and tF = 1− tL. (2) EUs are distributed uniformly along the
interval [0, 2π] instead of [0, 1], since in the 3-player model,
the total amount of EUs is 2π (3) vL = vF = v. By the same
analysis method in Section II, we prove in Appendix F:
Corollary 1. In the 2-player game formulation, the unique
SPNE strategies are:

I∗L = δ, I∗F = 0, p∗L = p∗F = 2tπ + c, n∗F = n∗L = π.

Comparing Theorem 9 and Corollary 1, we note that due
to the competition by an additional MNO, SPs acquire higher
amounts of spectrum in the 3-player model, i.e., the two MNOs
order additional spectrum, and the MVNO leases the entire
new spectrum from each MNO. The SPs charge the EUs less
too: tπ + c, as opposed to 2tπ + c in the 2-player model.
In both models, the MNO(s) and the MVNO divide the EUs
equally: in the 2-player model, each SP has half of the EUs
(π), while in the 3-player model, the MVNO has half of the
EUs (π), and each MNO has a quarter of the EUs (π/2).

From (12) and (13), for 3 players, the payoffs are: (1)
5tπ2

6 for each MNO, and (2) tπ2

12 (7− γ
s ) for the MVNO. For 2

players, the payoffs are 2tπ2− δ2 and 2tπ2 for the MNO and
the MVNO respectively. Thus, clearly (each) MNO secures
a higher payoff than the MVNO for both the 3-player and
the 2−player cases. Also, the SPs earn more in the 2-player
model, since fewer SPs compete for the same number of EUs.

Fig. 10: Spectrum (left), access fees (right) vs. s

Fig. 11: Relative payoffs (left), the overall resource per unit
price of all subscribers (right) vs. s.

Since there are 2 MNOs and 1 MVNO now, and the
MVNO leases I∗F amount of spectrum from each MNO, the
EU-resource-cost becomes 2I∗F /p

∗
F + 2(I∗L − I∗F )/p∗L.

C. Numerical results

In Figure 10 (left), I∗L,3, I
∗
F,3 (respectively, I∗L,2, I

∗
F,2) are

investment levels of SPs in 3-player (respectively, 2-player)
model, comparing Theorem 9 and Corollary 1, we note that
due to the competition by an additional MNO, SPs acquire
higher amounts of spectrum in the 3-player model, i.e., the
two MNOs order additional spectrum, and the MVNO leases
the entire new spectrum from each MNO. From Figure 10
(right), p∗L,3, p

∗
F,3 (respectively, p∗L,2, p

∗
F,2) are access fees of

SPs in 3-player (respectively, 2-player) model, the SPs charge
the EUs less too: tπ+c, as opposed to 2tπ+c in the 2-player
model.

Figure 11 (left) shows that SPs can gain less if an
additional MNO enters the system due to the additional
competition. Figure 11 (right) shows that the EU-resource-cost
in the 3-player model exceeds that in the base case for 2 SPs
shown in Figure 3. This follows because as noted earlier EUs
pay lower access fees and the SPs acquire higher spectrum
overall. Thus, like in Section III-B, the additional competition
among the SPs is beneficial for the EUs.

V. GENERALIZATION: LIMITED SPECTRUM FROM THE
CENTRAL REGULATOR

Since we have assumed the spectrum available to the
central regulator is limited. A natural assumption is that to
set an upper bound to the investment level of SPL, IL. In this
section, we assume δ ≤ IL ≤M . Similar with the assumption
of δ, M is parameter of choice. After considering the new
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condition of IL, we characterize the SPNE of the three cases
above as follows. The proofs of Theorems 10, are given in
Appendix G.

A. The Base Case

Theorem 10. Let |∆| < 1. The SPNE is:

(1) If M ≤ 2−∆
9s , I∗L = I∗F = M p∗L − c = n∗L = 1+∆

3 ,
p∗F − c = n∗F = 2−∆

3 .
(2) If M > 2−∆

9s , the SPNE are the same as that in
Theorem 1.

Theorem 11. (1) ∆ ≥ 1: The SPNE is the same as that in
Theorem 2 (1).
(2) ∆ = 1 : The following interior strategy constitute an
additional SPNE, if M ≤ 1

3
√
s
,

I∗L = I∗F = M,p∗L − c = n∗L = 2/3, p∗F − c = n∗F = 1/3.

If M > 1
3
√
s
, the SPNE is the same as that in Theorem 2 (2).

(3) ∆ ≤ −1 : The SPNE strategy is: If δ ≤ M ≤ 1√
2s

,
then

I∗L = I∗F = M,p∗L = p∗F + ∆− 1, n∗L = 0, n∗F = 1.

If M > 1√
2s

, the SPNE is the same as that in Theorem 2 (3).

From Theorems 10 and 11, we can find that if the upper
bound M is relative small, the MNO acquires the maximum
amount of spectrum from the regulator, and the MVNO leases
all spectrum from the MNO.

B. EUs with Outside Options

For simplicity, we consider only interior SPNE strategies,
that is, 0 < n∗L, n

∗
F < 1. We define sets L1,M , L2,M as

follows:
L1,M ={s > 2αf2(IL) + 2αf(IL)g(IL)/IL, g(IL) ≥ 0,

δ ≤ IL ≤M, IL < 4/b},

L2,M ={0 ≤ IL ≤M, IL < 4/b} ∩
(
{g(IL) ≥ 0,

2αf2(IL) ≤ s ≤ 2αf2(IL) + 2αf(IL)g(IL)/IL}

∪{2αf2(IL) + 4αf(IL)g(IL)/IL ≥ s, 2αf2(IL) > s}
)
.

With δ < 4/b, we have the following SPNE:
Theorem 12. The interior SPNE strategies are:

(1) I∗L is characterized in

I∗L = argmax
IL

(
max

IL∈L1,M

θ(
−2αf(IL)g(IL)

2αf2(IL) − s
), max
IL∈L2,M

θ(IL)
)

(2) I∗F is characterized in

I∗F =


−2αf(IL)g(IL)

2αf2(IL)− s
if IL ∈ L1,M

IL if IL ∈ L2,M

(3) p∗L = 1
15 + 2c

3 + k
3 +

I∗L−I
∗
F

5I∗L
− b

5I
∗
F + 4b

15I
∗
L, p∗F = 1

15 +
2c
3 + k

3 +
I∗F
5I∗L

+ b
15I
∗
L + b

5I
∗
F .

(4) ñ∗L =
I∗L−I

∗
F

I∗L
+ p∗F − 2p∗L + k + bI∗L − bI∗F , ñ∗F =

I∗F
I∗L

+

p∗L − 2p∗F + k + bI∗F

The proof of Theorem 12 is the same as the proof of
Theorem 7. Comparing Theorems 12 and 7, after adding the
new condition δ ≤ IL ≤M on IL, the only change is that the
region of IL is shrinked by the upper bound.

C. The 3-player model

With δ < π
2

√
t

3s , we have:
Theorem 13. The unique symmetric SPNE strategy, with
I∗L, p

∗
L representing the choices of, and n∗L subscription to,

each MNO, and I∗F , p
∗
F , n

∗
F the corresponding quantities for

the MVNO, is:

(1) If M ≤ π
2

√
t

3s , then

I∗L = I∗F = M, p∗L = p∗F = tπ+c, n∗F = 2n∗L = π.

(2) If M > π
2

√
t

3s , the SPNE is the same as that in
Theorem 9.

Similar with Theorem 10, if the upper bound M is relative
small, the MNO acquires the maximum amount of spectrum
from the regulator, and the MVNO leases all spectrum from
the MNO.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper investigates the incentives of mobile network
operators (MNOs) for acquiring additional spectrum to of-
fer mobile virtual network operators (MVNOs) and thereby
inviting competition for a common pool of end users (EUs).
We consider a base case and two generalizations: (i) one
MNO and one MVNO, (ii) one MNO, one MVNO and
an outside option, and (iii) two MNOs and one MVNO.
We identify metrics

(
I∗F /I

∗
L for cooperation between SPs,

(n∗L, n
∗
F ) for competition between SPs, I∗F /p

∗
F +(I∗L−I∗F )/p∗L

for resource-cost tradeoff of the EUs
)

to quantify the interplay
between cooperation and competition. Four-stage noncooper-
ative sequential games are formulated and SPNE are obtained
analytically.

Analytical and numerical results show that higher degree
of cooperation can enhance the payoff of both SPs, and in-
crease (respectively, decrease) the competition efficacy of SPF
(respectively, SPL). In addition, high degree of cooperation
coincides with high EU-resource-cost, and provides low access
fee options to the EUs. Increased competition due to the
presence of additional MNOs is beneficial to EUs but reduces
the payoffs of the SPs.

All results extend, with some modifications, when we
consider that IL is upper bounded by M . Such bounds may
apply when the central regulator has limited spectrum to offer.
In this case, if the upper bound M is relatively small (less
than some threshold), in the SPNE, I∗L = I∗F = M , but
otherwise I∗L, I

∗
F characterized in various Theorems apply. The

12
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thresholds will in general be different for different cases and
have been quantified. The SPNE values of the other decisions
variables, namely p∗L, p

∗
F , n

∗
L, n

∗
F remain as in various Theo-

rems. Refer to Section V of the technical report [9] for the
deductions.

Future research includes generalization to accommodate:
1) non-uniform distribution of EUs between the two SPs in
the hotelling model, 2) distinct transaction costs cL and cF ,
3) potentially non-convex spectrum reservation fee functions
that the SPF pays the SPL and the SPL pays the regulator, 4)
arbitrary number of MNOs and MVNOs, 5) arbitrary transport
cost tL, tF functions of the spectrum acquired by the SPs,
IL, IF . We next provide research directions in each.

1) If the EUs are non-uniformly distributed in [0, 1], one
can start with a cumulative distribution function F (x)
which gives the fraction of EUs in (0, x). Starting with
the base case and vL = vF , in (5), for x0 ∈ (0, 1),
nL will now be F (x0), where x0 is given by (4),
nF = 1 − nL as before. Following the analytical
progression in Section II-E, the results must now be de-
rived using specific expressions for F (·) (eg, Lemma 1,
Theorems 4, 5, 6). This will in turn help determine how
the characteristics of the distribution function F (·) affect
the equilibrium closed forms, which currently remains
open.

2) The EUs may incur different amounts of transaction
costs for the SPs, namely cF , cL respectively for SPF ,
SPL. Starting with the base case, (4), (5) continue to
hold. But, c need to be replaced by cL, cF respectively
in the expressions for the payoffs πL, πF in Lemma 1.
Also, c need to be replaced by 2cF+cL

3 , 2cL+cF
3 respec-

tively in the expressions for the access fees p∗L, p
∗
F in

Theorem 4. The expressions in Theorems 5, 6 must
now be derived and modified, building on the above
modifications. This derivation remains open.

3) Following Remark 3, the SPNE of investment levels (I∗L,
I∗F ) remain open for an arbitrary spectrum reservation
fee function that the SPF pays the SPL and the SPL
pays the regulator. The analytical methodology used
in Theorems 5, 6 should however apply, though the
expressions would depend on the specific function in
question.

4) To obtain the SPNE for arbitrary number of MNOs and
MVNOs, one may distribute them on a circle as for 3
SPs (refer to Section IV-A and Figure 9), and follow the
analytical approach presented in Sections IV-A, IV-B.
The limitation of this distribution of SPs on a circle is
that a SP can compete for EUs with only 2 other SPs,
as a SP can have only 2 adjacent SPs and effectively
only a pair of SPs compete for the EUs in the segment
of the circumference between them. For 3 SPs, this is
not restrictive, as each SP anyway has no more than 2
SPs to compete with, but it is restrictive for n SPs when
n > 3 as there in general each SP competes with n− 1
other SPs. Nonetheless, our circular distribution method
provides a foundation for this general problem, by

allowing SPNE computation for arbitrary number of SPs
when each SP competes for EUs with 2 predetermined
SPs. More innovative topology of placements of SPs
involving distributions in potentially higher dimensions
may be able to relax this restriction, which remains open.

5) For arbitrary transport cost tL, tF functions, the analyt-
ical methodologies (eg, Section II-E for the base case)
would apply. But the derivation of the results remain
open.

APPENDIX A
ON QUADRATIC FUNCTION MAXIMIZATION

Lemma 3. Define a quadratic function f(x) = ax2 + bx+ c
with a 6= 0. The maximum of f(x) in an interval [d, e](d < e)
can be obtained by the following rules:

(1) If a > 0, and define the midpoint of the interval M =
d+e

2 , then fmax(x) = f(d) if M < − b
2a ; fmax(x) = f(e)

if M ≥ − b
2a .

(2) If a < 0, i.e., f(x) is concave, then fmax(x) = f(d)
if d ≥ − b

2a ; fmax(x) = f(e) if e ≤ − b
2a ; fmax(x) =

f(− b
2a ) if d < − b

2a < e.

Proof. (1). Since a > 0, then f(x) is convex, thus the
maximum point can only be obtained at the boundary points,
i.e., x = d or x = e. Thus,

f(d)− f(e) = (a(d+ e) + b)(d− e). (17)

Let M < − b
2a . Since a > 0, M < − b

2a ⇔
d+e

2 <
− b

2a ⇔ (d+ e)a+ b < 0. Note d− e < 0, from (17), f(d)−
f(e) = (a(d+ e) + b)(d− e) > 0, which implies fmax(x) =
f(d). Similarly, if M ≥ − b

2a , note a > 0, then M ≥ − b
2a ⇔

d+e
2 ≥ −

b
2a ⇔ (d+ e)a+ b ≥ 0. Since d− e < 0, then from

(17), f(d)− f(e) = (a(d+ e) + b)(d− e) ≤ 0, which implies
fmax(x) = f(e).

(2). If a < 0, then f(x) is concave. Since f ′(x) = 2ax + b,
then 1) f ′(x) < 0 and f(x) is decreasing if x > − b

2a , 2)
f ′(x) ≥ 0 and f(x) is increasing if x ≤ − b

2a . (i) If d ≥
− b

2a , then f(x) is decreasing if x ∈ [d, e], hence fmax(x) =
f(d). (ii) If e ≤ − b

2a , then f(x) is increasing if x ∈ [d, e],
hence fmax(x) = f(e). (iii) Let d < − b

2a < e. Since f(x) is
concave, thus f(x) has a unique maximum point (stationary
point) x = − b

2a , i.e., f(− b
2a ) ≥ f(x) for all x ∈ R. If [d, f ]

contains − b
2a , i.e., d ≤ − b

2a ≤ f , then f(− b
2a ) ≥ f(x) for

all x ∈ [d, f ], hence fmax(x) = f(− b
2a ).

APPENDIX B
PROOFS IN THE BASE CASE WHEN vL = vF

Proof of Theorem 3 when vL = vF .

Proof. Let (p∗L, p
∗
F , I

∗
L, I
∗
F ) be a corner SPNE strategy. Thus,

1) x0 ≥ 1, or 2) x0 ≤ 0. We arrive at a contradiction for 1)
Step 1 and 2) in Step 2 respectively.

Lemma 4. π∗F ≥ 0. If n∗F > 0, p∗F ≥ c.

13
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Proof. Let π∗F < 0. Consider a unilateral deviation in which
IF = 0, pF ≥ c. From (12), πF ≥ 0, leading to a
contradiction. Now, let n∗F > 0 and p∗F < c. Thus, π∗F < 0
which is a contradiction.

Step 1. Let x∗0 ≥ 1. Clearly, n∗F = 0 and n∗L = 1. From (2),
π∗F = −sI∗2F .

From Lemma 4, I∗F = 0. Thus, π∗F = 0, t∗F = 1. From
(4), 1 ≤ x∗0 = t∗F + p∗F − p∗L = 1 + p∗F − p∗L. Thus, p∗F ≥ p∗L.

From (1), π∗L = p∗L − c − γI∗2L . If p∗L < c, then π∗L <
−γδ2 < 0 since I∗L ≥ δ. Consider a unilateral deviation by
which IL = δ, pL = c, then πL = −γδ2, which is beneficial
for SPL. Thus, p∗L ≥ c.

Now, let p∗L > c. Thus, p∗F ≥ p∗L > c. Recall that x∗0 =
1 + p∗F − p∗L. Consider a unilateral deviation by which pF =
p∗L − ε > c. Now, by (4), x0 < 1, and hence nF > 0. Now,
from (2), πF > 0 = π∗F . Thus, (I∗F , p

∗
F ) is not SPF ’s best

response to SPL’s choices (I∗L, p
∗
L), which is a contradiction.

Hence, p∗L = c.

Now consider another unilateral deviation of SPL, p′L =
p∗F + ε, where 0 < ε < 1, with all the rest the same. Since
p∗L ≤ p∗F , p′L > p∗L = c.

n′L = x′0 = t∗F + p∗F − p′L = 1− ε.

Then

π′L − π∗L = n′L(p′L − c)− (p∗L − c) = (1− ε)(p′L − c) > 0.

The last inequality follows because p′L > c and ε < 1. Thus,
we again arrive at a contradiction.

Step 2. Let x∗0 ≤ 0. Clearly, n∗F = 1, n∗L = 0. Since n∗F > 0,
by Lemma 4, p∗F ≥ c. From (4), x∗0 = t∗F + p∗F − p∗L ≤ 0.
Thus, p∗L ≥ p∗F + t∗F . Now, from (1),

π∗L = sI∗2F − γI∗2L . (18)

Consider a unilateral deviation by SPL, by which p′L = t∗F +
p∗F − ε, 0 < ε < 1. Then

n′L = x′0 = t∗F + p∗F − p′L = ε > 0

Therefore, by (62),

π′L − π∗L = n′L(p′L − c) = ε(p∗F − ε+ t∗F − c)

Since p∗F ≥ c, either p∗F = c or p∗F > c. If p∗F > c, then let
ε < p∗F − c. Then, π′L − π∗L > 0. If p∗F = c, then I∗F = 0
(otherwise π∗F < 0, which by Lemma 4 implies that p∗F is not
a NE), then t∗F = 1. Thus, π′L− π∗L > 0. We again arrive at a
contradiction.

By Theorem 3 proved above henceforth we only consider
interior SPNE in which 0 < x∗0 < 1.

Proof of Theorem 5 when vL = vF .

Proof. Substituting pF and pL from (7) into (6), using tL =
IF /IL and tF = 1− tL, SPF ’s payoff becomes,

πF (IF ) = (
1

9I2
L

− s)I2
F +

2

9IL
IF +

1

9
(19)

Thus, the following maximization yields I∗F :

max πF (IF ) = (
1

9I2
L

− s)I2
F +

2

9IL
IF +

1

9

s.t 0 ≤ IF ≤ IL.
(20)

(A). If IL = 1√
9s

, i.e., 1
9I2
L
− s = 0, πF (IF ; IL) is increasing

in IF . Thus, I∗F = IL.

(B). Let IL 6= 1√
9s

. Referring to the terminology of Lemma
3, −b/2a = IL

9I2
Ls−1

, which we denote as F1.

(B-1). Let IL < 1√
9s

, i.e., 1 − 9I2
Ls > 0. Then πF is a

convex function. Note that IF ∈ [0, IL], and the midpoint of
the interval is IL/2. From Lemma 3, since 1−9I2

Ls > 0, then
F1 < 0 < IL/2, ⇒ the maximum is obtained at I∗F = IL.

(B-2). Let IL > 1√
9s

, i.e., 1 − 9I2
Ls < 0. Then πF is a

concave function. Note that F1 = IL
9I2
Ls−1

> 0. From Lemma

3, 0 < F1 < IL ⇔
√

2
9s < IL and F1 ≥ IL ⇔ 1√

9s
< IL ≤√

2
9s , thus

I∗F =


F1 if

√
2

9s
< IL

IL if
1√
9s

< IL ≤
√

2

9s

.

Combining (A) and (B), we obtain (8).

Proof of Theorem 6.

Proof. Substituting pL and pF from (7) into πL from (6),
using tL = IF /IL and tF = IL−IF

IL
, SPL’s payoff becomes:

πL(IL) = (
2

3
− I∗F

3IL
)2 + sI∗2F − γI2

L. (21)

Now, the following optimization yields I∗L:

max
IL

πL(IL) = (
2

3
− I∗F

3IL
)2 + s(I∗F )2 − γI2

L

s.t δ ≤ IL.

Then, we have the following two sub-cases.

(A). From (8), if δ ≤ IL ≤
√

2
9s , then I∗F = IL, thus

for IL in this range, the objective function of the optimization
is 1

9 + (s− γ)I2
L. This is an increasing function of IL, since

s > γ. Thus the optimum solution for IL ∈ [δ,
√

2
9s ] is

√
2
9s .

(B). Next, if
√

2
9s < IL, then I∗F = IL

9I2
Ls−1

. Since

IL = IL
(9I2

Ls−1)
when IL =

√
2
9s , then I∗F is continuous at

IL =
√

2
9s . So πL(IL; I∗F ) → πL|IL=I∗F=

√
2
9s

as IL ↓
√

2
9s .
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Therefore, this case also includes the optimum solution of
previous case. Thus substituting I∗F = IL

9I2
Ls−1

to (66), (9)
is obtained.

APPENDIX C
THE PROOFS IN THE 3-PLAYER MODEL

Proof of Lemma 2.

Proof. First, let pL − pF ≥ tφ0,1. Consider EUs in the arc
of φ1,2. Consider an EU at distance x from MNO1. From the
symmetry of MNO1 and MNO2, 1) if x ≤ φ1,2

2 , uMNO1
≥

uMNO2
, and 2) if x > φ1,2

2 , uMNO2
≥ uMNO1

. Since pL −
pF ≥ tφ0,1, 1) if x < φ1,2

2 , then uMNO1 = v − tx − pL <

v − t(x + φ0,1) − pF = uMVNO, and 2) if x >
φ1,2

2 , then
uMNO2 = v − tx − pL < v − t(x + φ0,1) − pF = uMVNO.
Thus, all the EUs in arc φ1,2 will choose the MVNO.

Note that φ0,1 = φ0,2. Now consider the EUs in arc φ0,1

(φ0,2), at a distance of x from MNO1 (MNO2, respectively).
From (14) and (15), uMNOi − uMVNO = tφ0,i − pL + pF −
2tx < 0 since pL − pF ≥ tφ0,1, x > 0. Thus all these EUs
opt for the MVNO.

Let pL − pF < tφ0,1. One can similarly show that the
EUs in arc φ1,2 choose either MNO1 or MNO2.

Proof of Theorem 8.

Proof. Since I∗L ≥ δ > 0, φ∗0,1 = φ∗0,2 > 0. From Lemma 2,
n∗F = 2π, and n∗L = 0. Thus,

π∗F = 2π(p∗F − c)− 2s(I∗F )2, π∗L = sI∗2F − γI∗2L .

Let p∗F < c, then π∗F < 0. Consider a unilateral deviation
of the MVNO, by which pF = c, IF = 0. Thus, πF = 0, and
the unilateral deviation is profitable, which is a contradiction.
Thus, p∗F = c.

Thus, since φ∗0,1 > 0, and from the condition of the
theorem, p∗L ≥ p∗F + tφ∗0,1 > c. Consider a unilateral deviation
of MNO1, by which p′L = p∗F + tφ0,1 − ε > c, with ε > 0.
Now consider the utilities of the EUs in arc φ0,1, at a distance
of x from MNO1. From (14),

u′MNO1
− uMVNO = tφ∗0,1 − p′L + p∗F − 2tx = ε− 2tx.

So for x ∈ (0, ε/2t), uMNO1 > uMVNO. Thus n′MNO1
> 0.

Since I∗F and I∗L are the same as before, then π′MNO1
=

n′MNO1
(p′L − c) + sI∗2F − γI∗2L . Thus,

π′MNO1
− π∗MNO1

= n′MNO1
(p′L − c) > 0.

The last inequality follows since p′L > c and n′MNO1
> 0.

Thus, the unilateral deviation is profitable which leads to a
contradiction.

Proof of Theorem 9.

Proof. Due to Theorem 8, we consider that pL − pF < tφ0,1

henceforth. We sequentially progress from Stage 4 to Stage 1.

Stage 4: First, we determine the constant ζ.

Lemma 5. ζ = π, and φ0,1 = φ0,2 = π IF+IL
2IL

, φ1,2 =

π IL−IFIL
.

Proof. φ01 + φ02 + φ12 = 2π, then ζ = π. The rest follows
from the definition of φ01, φ02, and φ12.

By symmetry, we only consider the split of the EUs
between the MNO1 and the MVNO.

Theorem 14.

nMVNO =


0 x0 ≤ 0

π
IF + IL

2IL
+
pL − pF

t
0 < x0 < φ0,1

π
IL + IF
IL

x0 ≥ φ0,1

(22)

nMNO1
=


π x0 ≤ 0

π
3IL − IF

4IL
+
pF − pL

2t
0 < x0 < φ0,1

π
IL − IF

2IL
x0 ≥ φ0,1

(23)
where x0 =

φ0,1

2 + pL−pF
2t .

Proof. Suppose x0 is the indifferent location of joining
MVNO and MNO1, then:

v − tx0 − pF = v − t(φ0,1 − x0)− pL

⇒x0 =
φ0,1

2
+
pL − pF

2t
.

(24)

Let xMVNO,MNO2, xMNO1,MNO2 be the indifferent locations
between 1) MVNO and MNO2, and 2) MNO1 and MNO2

respectively. Then, xMVNO,MNO2 =
φ0,2

2 + pL−pF
2t , and

xMNO1,MNO2 =
φ1,2

2 . The number of EUs per unit length
to be normalized to one, nMVNO equals x0 +xMVNO,MNO2

if 0 < x0 < φ0,1, 0 if x0 ≤ 0, and φ0,1 + φ0,2 if x0 ≥ φ0,1.
From the symmetry of the game, xMVNO,MNO2 = x0. Now,
(22) follows from Lemma 5.

Next, nMNO1
and nMNO2

equal (φ0,1 − x0) +
xMNO1,MNO2

if 0 < x0 < φ0,1, φ0,1 + xMNO1,MNO2
if

x0 ≤ 0, and xMNO1,MNO2 if x0 ≥ φ0,1. Similarly, (23)
follows.

Stage 3: Now we characterize the SPNE access fees.

Theorem 15. The SPNE access fees of EUs of SPs, (p∗F , p
∗
L)

by which 0 < x0 < φ0,1, is:

p∗F =
tπ

3

IF + 5IL
2IL

+ c, p∗L =
tπ

3

7IL − IF
2IL

+ c. (25)

Proof. Substituting (22) and (23) into (12) and (13),

πF = (π
IF + IL

2IL
+
pL − pF

t
)(pF − c)− 2sI2

F (26)
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πL = (π
3IL − IF

4IL
+
pF − pL

2t
)(pL − c) + sI2

F − γI2
L (27)

p∗F and p∗L should be determined to satisfy the first order
condition, i.e., πF

dpF
|p∗F = 0 and πL

dpL
|p∗L = 0, thus p∗F =

tπ
3
IF+5IL

2IL
+ c, p∗L = tπ

3
7IL−IF

2IL
+ c. Therefore, p∗F and

p∗L are the unique interior SPNE strategies if 1) they yield
0 < x0 < φ0,1 and pL − pF ≤ tφ0,1, and 2) no unilateral
deviation is profitable for SPs. We establish these in Parts A
and B respectively.

Part A. Substituting p∗L and p∗F into (24), x0 =
φ0,1

2 +
pL−pF

2t = π( 5
12 + IF

12IL
) ∈ (0, φ0,1), since 0 ≤ IF ≤ IL

IL > 0. Also, pL − pF = tπ
3
IL−IF
IL

< tπ
2
IL+IF
IL

= tφ0,1.

Part B. Since d2πF
d(p∗F )2 = − 2

t < 0, d2πL
d(p∗L)2 = − 1

t < 0,
then p∗L and p∗F are the unique maximal solutions of πL and
πF , respectively for 0 < x0 < φ0,1. Similar to the proof
of Theorem 4, any deviation by SPs such that x0 ≤ 0 or
x0 ≥ φ0,1 (which yields nL = 1, nF = 0 and nL = 0, nF = 1,
respectively) is not profitable.

Stage 2: We characterize the spectrum SPF acquires from SPL
in the SPNE.

Theorem 16. I∗F is given by:

I∗F =


5tπ2IL

72I2
Ls− tπ2

if IL ≥
π

2

√
t

3s

IL if δ ≤ IL <
π

2

√
t

3s

(28)

Proof. I∗F is obtained as the optimum solution of

max
IF

πF =(
tπ2

36I2
L

− 2s)I2
F +

5tπ2

18IL
IF +

25tπ2

36

s.t 0 ≤ IF ≤ IL
(29)

The objective function follows from substituting (25)
into (26). The constraints come from the model assumptions
directly.

(A). Let IL = π
6

√
t

2s . Then πF is increasing in IF , as πF =
5tπ2

18IL
IF + 25tπ2

36 . Thus I∗F = IL.

(B). Let IL 6= π
6

√
t

2s .Referring to the terminology of Lemma

3, (−b/2a) = −
5tπ2

18IL

2( tπ2

36I2
L

−2s)
= 5tπ2IL

72I2
Ls−tπ2 . We denote this

quantity as F1.

(B-1). Let IL < π
6

√
t

2s . Then πF is convex. IF ∈ [0, IL].

Since tπ2

36I2
L
−2s > 0, then 72sI2

L−tπ2 < 0, thus F1 < 0 < IL
2 .

From Lemma 3, I∗F = IL.

(B-2). Let IL > π
6

√
t

2s , i.e., tπ2

36I2
L
− 2s < 0, then πF is

concave, and F1 = 5tπ2IL
72I2

Ls−tπ2 > 0. From Lemma 3,

I∗F =


5tπ2IL

72I2
Ls− tπ2

if IL ≥
π

2

√
t

3s

IL if
π

6

√
t

2s
< IL <

π

2

√
t

3s

The desired results come from (A), (B) and (C).

Stage 1: We characterize the spectrum SPL acquires from the
regulator in the SPNE.

Theorem 17. Any solution to the following maximization
problem constitutes I∗L,

max
IL

πL =
tπ2

18
(
7IL − 5tπ2IL

72I2
L
s−tπ2

2IL
)2 + s(

5tπ2IL

72I2Ls− tπ2
)2 − γI2L

s.t
π

2

√
t

3s
≤ IL.

(30)

Proof. Each MNO chooses its IL as the solution of the
following maximization:

max
IL

πL(IL) =
tπ2

18
(
7IL − I∗F

2IL
)2 + sI∗2F − γI2

L

s.t δ ≤ IL.
(31)

The objective function follows by substituting (25) into (27).
The constraint follows from the modeling assumption.

We consider two cases separately: A) δ ≤ IL ≤ π
2

√
t

3s

and B) IL > π
2

√
t

3s .

(A). From (28), if δ ≤ IL ≤ π
2

√
t

3s , then I∗F = IL,

thus the objective function of (31) is tπ2

2 + (s− γ)I2
L. This is

an increasing function of IL since s > γ. Thus the optimum
solution in this range is π

2

√
t

3s .

(B). Next, if IL > π
2

√
t

3s , then I∗F = 5tπ2IL
72I2

Ls−tπ2 , thus

πL(IL, I
∗
F ) = πL(IL,

5tπ2IL
72I2

Ls−tπ2 ). Note that IL = 5tπ2IL
72I2

Ls−tπ2

when IL = π
2

√
t

3s , then I∗F is continuous at IL = π
2

√
t

3s .

So πL(IL; I∗F ) → πL|I∗F=π
2

√
t
3s

as IL → π
2

√
t

3s . Therefore,
this case also includes the optimum solution of previous case.
Substituting I∗F = 5tπ2IL

72I2
Ls−tπ2 into (31), we get (30).

Theorem 18. I∗L = I∗F = π
2

√
t

3s .

Proof. From (30), we have πL(IL) = tπ2

18 (
7IL−

5tπ2IL
72I2

L
s−tπ2

2IL
)2 +

s( 5tπ2IL
72I2

Ls−tπ2 )2 − γI2
L , f1(IL) + f2(IL) + f3(IL), where

f1(IL) = tπ2

18 ( 7
2 −

5tπ2

144I2
Ls−2tπ2 )2, f2(IL) = s( 5tπ2IL

72I2
Ls−tπ2 )2,

and f3(IL) = −γI2
L. Now we take the derivatives of f1, f2,

and f3 with respect to IL, dπLdIL
= f ′1(IL)+f ′2(IL)+f ′3(IL) =

10t2π4sI2
L

(72I2
Ls−tπ2)3 ×19 ·(tπ2−144I2

Ls)−2γIL. Since IL ≥ π
2

√
t

3s ,
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then tπ2 ≤ 12I2
Ls, thus 72I2

Ls− tπ2 ≥ 0 and tπ2−144I2
Ls ≤

0, which implies df1

dIL
+ df2

dIL
≤ 0. df3

dIL
= −2γIL < 0,

therefore dπL
dIL

< 0 so πL is a decreasing functions of IL,

so I∗L = π
2

√
t

3s . In addition, π∗L = tπ2

2 + (s− γ)I∗L > 0, and

I∗F =
5tπ2I∗L

72I∗2L s−tπ2 = π
2

√
t

3s = I∗L.

Theorem 9 follows from Theorems 14, 15, 18.
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Supplementary Proofs

APPENDIX D
SPNE ANALYSIS OF BASIC CASE

If SPL invests in the minimum new spectrum, i.e., IL = δ,
and set pL = c, then

πL = sI2
F − γδ2.

Thus for any Nash equilibrium (NE) strategy (I∗L, p
∗
L), we

have

π∗L|p∗L,I∗L ≥ −γδ
2.

If SPF leases no new spectrum from SPL, then πF = 0.
So for any NE strategy (I∗F , p

∗
F ), we have

π∗F |p∗F ,I∗F ≥ 0.

Stage 4: We first characterize the equilibrium division of EUs
between SPs, i.e., n∗L and n∗F , using the knowledge of the
strategies chosen by the SPs in Stages 1∼3.
Theorem 19. The indifferent location between the two service
providers is

x0 = ∆ + tF + pF − pL. (32)

Proof. From Definition 2,

uF (x0) = vF − tF (1− x0)− pF
= vL − tLx0 − pL = uL(x0).

Note tL + tF = 1, then

x0 =
∆ + tF + pF − pL

tL + tF
=∆ + tF + pF − pL.

The fraction of EUs with each SP (nL and nF ) is:

nL =


0, if x0 ≤ 0

x0, if 0 < x0 < 1

1, if x0 ≥ 1

nF = 1− nL,

(33)

where x0 is defined in (32).

A. The interior SPNE

In this section, we consider the interior SPNE (0 <
nF , nL < 1), and the corner SPNE

(
(nL, nF ) = (1, 0) or

(0, 1)
)

are considered in Appendix D-B.

Stage 3: SPL and SPF determine their prices for EUs, pL and
pF , respectively, to maximize their payoffs.
Lemma 6. The utility functions of SPs are

πL =(∆ + tF + pF − pL)(pL − c) + sI2
F − γI2

L

πF =(−∆ + tL + pL − pF )(pF − c)− sI2
F .

(34)
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Proof. From (33), substituting (nL, nF ) = (∆ + tF + pF −
pL, 1− nL) into (2) and (1), we get (34).

In the following theorem, we characterize the SPNE
access fees of SPs.

Theorem 20. The interior SPNE access fees p∗L, p∗F are

p∗L =c+
2

3
− IF

3IL
+

∆

3

p∗F =c+
1

3
+

IF
3IL
− ∆

3
,

(35)

and (p∗L, p
∗
F ) are unique if and only if

∆− 1 <
IF
IL

< ∆ + 2. (36)

Proof. We complete the proof in two steps: we first obtain
equilibrium access fees (p∗L, p

∗
F ) (Step 1); then we get the

condition (36) and prove that p∗L and p∗F ) are the unique Nash
equilibrium access fees of SPL and SPF , respectively (Step 2).

Step 1. Consider a SPNE, every Nash equilibrium (p∗L, p
∗
F )

should satisfy the first order condition. Get πF and πL from
(34), then p∗L and p∗F should be solved by

dπL
dpL
|p∗L = 0,

dπF
dpF
|p∗F = 0.

Note that tL + tF = 1, then

p∗L =c+
2

3
− IF

3IL
+

∆

3

p∗F =c+
1

3
+

IF
3IL
− ∆

3
.

Step 2. In this step, we prove that the p∗F and p∗L are the
unique maximum solutions (in (A)). Then, we prove that the
condition (36) is sufficient and necessary (in (B)). Finally, we
show that p∗F and p∗L are Nash equilibrium by proving that no
unilateral is profitable for SPs (in (C)).

(A). Taking the second derivative of πL (πF ) with respect to
p∗L (p∗F ),

d2πL
d(p∗L)2

=
d2πF
d(p∗F )2

= −2 < 0,

then p∗L and p∗F are the unique maximal solutions of πL and
πF , respectively.

(B). Substituting (35) into (33), we have

x0 =
∆

3
+

2IL − IF
3IL

=
∆

3
+

2

3
− IF

3IL
,

thus
0 < x0 =

∆

3
+

2

3
− IF

3IL
< 1

⇔∆− 1 <
IF
IL

< ∆ + 2.

(37)

From (37), 0 < x0 < 1 if and only if (36) holds. Therefore
if (36) does not hold, then x0 ≤ 0 or x0 ≥ 1, which implies
nL = 0, nF = 1 or nL = 1, nF = 0.

(C). Since d2πF
dp2
F

< 0, d
2πL
dp2
L

< 0, a local maxima is also a
global maximum, and any solution to the first order conditions

maximize the payoffs when 0 < x0 < 1, and no unilateral
deviation by which 0 < x0 < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to nL = 0, nF = 1 and nL = 1, nF = 0 is not
profitable. Note that the payoffs of the SPs, (1) and (2), are
continuous as nL ↓ 0, and nL ↑ 1 (which subsequently yields
nF ↑ 1 and nF ↓ 0, respectively). Thus, the payoffs of both
SPs when selecting pL and pF as the solutions of the first
order conditions are greater than or equal to the payoffs when
nL = 0 and nL = 1. Thus, the unilateral deviations under
consideration are not profitable for the SPs.

Corollary 2. No corner SPNE access fees exist if (IF , IL) ∈
R, where

R ={δ ≤ IL, 0 ≤ IF ≤ IL}
∩{∆− 1 < IF /IL < ∆ + 2}.

(38)

Proof. From Theorem 20, if (36) holds, then no corner SPNE
access fees (p∗L, p

∗
F ) exist. Note that δ ≤ IL ≤ M and 0 ≤

IF ≤ IL, combining with (36), we obtain the desired results.

Based on the results in Theorem 20, we can obtain the
payoffs of SPs as follows,

Lemma 7. The payoff of SPF is

πF (IF ) =(
1

9I2
L

− s)I2
F +

2(1−∆)

9IL
IF +

(1−∆)2

9
.

(39)

Proof. First, we consider interior equilibrium strategies, from
(34) in Lemma 6 , we have

πF = (tL + pL − pF −∆)(pF − c)− sI2
F .

Note that tL = IF /IL and tF = 1− tL.

(i). Calculate tL + pL − pF − ∆. Substituting pF and pL in
(35) into tL + pL − pF −∆, we have

tL + pL − pF −∆

=−∆ + tL +
IL − IF

3IL
+

∆

3
− IF

3IL
− −∆

3

=
1−∆

3
+

IF
3IL

.

(ii). Calculate pF − c. Substituting pF in (35) into pF − c, we
have

pF − c =c+
1

3
+

IF
3IL

+
−∆

3
− c =

1−∆

3
+

IF
3IL

.

From (i) and (ii), we can obtain (39).

Lemma 8. The payoff of SPL is

πL(IL) = (
∆ + 2

3
− IF

3IL
)2 + s(IF )2 − γI2

L. (40)

Proof. From (34), we have

πL(IL) =(∆ + tF + pF − pL)(pL − c) + sI2
F − γI2

L.
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(i). Calculate ∆ + tF + pF − pL. Note that tL = IF /IL and
tF = IL−IF

IL
. From (35), then

∆ + tF + pF − pL

=∆ + tF + (c+
1

3
+

IF
3IL

+
−∆

3
)

−(c+
1

3
+
IL − IF

3IL
+

∆

3
)

=
∆

3
+ tF +

2IF − IL
3IL

=
∆ + 2

3
− IF

3IL
.

(ii). Calculate pL − c. From (35),

pL − c = c+
1

3
+
IL − IF

3IL
+

∆

3
− c

=
1

3
+
IL − IF

3IL
+

∆

3
=

∆ + 2

3
− IF

3IL
.

From (i) and (ii), we get (40).

Based on the proof of Theorem 20, the existence of
equilibria are showed in the following statement:

In Stage 2 and Stage 1, we characterize the optimum
investment levels I∗L and I∗F of SPs. To analyze easily, we
consider 4 cases: −1 < ∆ < 1 (Case A), 1 ≤ ∆ < 2
(Case B), −2 < ∆ ≤ −1 (Case C), and |∆| ≥ 2 (Case D).

Case A: −1 < ∆ < 1

In this section, we consider −1 < ∆ < 1. First, we
show that if a SPNE exists when −1 < ∆ < 1, then
it must be an interior SPNE (in Proposition 1). Then, we
characterize the unique optimum I∗F (in Theorem 21) and
an optimum I∗L (in Theorem 22), respectively. Finally, we
collect the optimum strategies in Stages 1∼4, and prove that
this strategiy (p∗L, p

∗
F , I

∗
L, I
∗
F ) is an interior Nash equilibrium

strategy.

Proposition 1. If a SPNE exists when −1 < ∆ < 1, then it
is an interior SPNE.

Proof. From Corollary 2, no corner SPNE access fees exist if
(IL, IF ) ∈ R. Note that −1 < ∆ < 1, then

∆− 1 < 0 ≤ IF /IL ≤ 1 < ∆ + 2.

Thus from (38),

R = {δ ≤ IL ≤M, 0 ≤ IF ≤ IL} .

So (36) holds for any δ ≤ IL ≤ M and 0 ≤ IF ≤ IL when
−1 < ∆ < 1.

Stage 2: SPF decides on the amount of spectrum to be leased
from SPL (IF ), with the condition that 0 ≤ IF ≤ IL, to
maximize πF . From the model assumptions, δ is small, then
let δ < min(

√
2−∆
9s , 1√

9s
).

Theorem 21. If −1 < ∆ < 1, then the optimum investment
level of SPF , I∗F , is

I∗F =


(1−∆)IL
9I2
Ls− 1

IL >

√
2−∆

9s

IL δ ≤ IL ≤
√

2−∆

9s

. (41)

Proof. From (39) and Proposition 1, the optimal investment
level of SPF , I∗F , is a solution of the following optimization
problem,

max πF (IF ) = (
1

9I2L
− s)I2F +

2(1 − ∆)

9IL
IF +

(1 − ∆)2

9

s.t 0 ≤ IF ≤ IL

(42)

(A). If IL = 1√
9s

, then πF (IF ; IL) is a linear function of IF ,
i.e.,

πF (IF ) =
2(1−∆)

9IL
IF +

(1−∆)2

9
.

Since −1 < ∆ < 1, then 2(1−∆)
9IL

> 0, πF (IF ; IL) is an
increasing function of IF , so I∗F = IL.

(B). If IL 6= 1√
9s

and πF is a quadratic function. We discuss
the optimal solutions in two cases: (i) δ ≤ IL < 1√

9s
, and (ii)

IL >
1√
9s

. We denote F1 as

dπF
dIF
|IF=F1

= 0⇒ F1 =
(1−∆)IL
9I2
Ls− 1

. (43)

(B-1). If δ ≤ IL <
1√
9s

, then πF is a convex function. Since
IF ∈ [0, IL], then the midpoint is IL/2. Note that−1 < ∆ < 1
and 1− 9I2

Ls > 0, thus

F1 =
(1−∆)IL
9I2
Ls− 1

< 0 < IL/2.

From Lemma 3, the maximum is obtained at I∗F = IL.

(B-2). If IL > 1√
9s

, then πF is a concave function. Note that
−1 < ∆ < 1 and 1− 9I2

Ls < 0, then

F1 =
(1−∆)IL
9I2
Ls− 1

> 0.

From Lemma 3,{
I∗F = F1 if 0 < F1 < IL

I∗F = IL if F1 ≥ IL
.

By simple calculation,

0 < F1 < IL ⇔
√

2−∆

9s
< IL

F1 ≥ IL ⇔
1√
9s

< IL ≤
√

2−∆

9s
,

thus 
I∗F = F1 if

√
2−∆

9s
< IL

I∗F = IL if
1√
9s

< IL ≤
√

2−∆

9s

.
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From (A) and (B), we obtain (41). Given vL, vF , s and IL,
I∗F is the unique maximum of πF , so no unilateral deviation
is beneficial for SPF .

Stage 1: SPL decides on the amount of spectrum IL acquired
from the regulator to maximize πL.

Theorem 22. If −1 < ∆ < 1, then the optimal investment of
SPL, I∗L is a solution of the following optimization problem:

max
IL

πL(IL) = (
2 + ∆

3
− 1−∆

27sI2
L − 3

)2

+ s(
(1−∆)IL
9sI2

L − 1
)2 − γI2

L

s.t

√
2−∆

9s
≤ IL.

(44)

Proof. Substituting I∗F in (41) into (40), the optimal in-
vestment level of SPL, I∗L, is a solution of the following
optimization problem,

max
IL

πL(IL) = (
2 + ∆

3
− I∗F

3IL
)2 + s(I∗F )2 − γI2L

s.t δ ≤ IL.

(45)

Case 2. If M >
√

2−∆
9s , then we have to consider the

following sub-cases.

(A). From (41), if δ ≤ IL ≤
√

2−∆
9s , then I∗F = IL, thus (45)

is equivalent to

max
IL

πL(IL) =
(1 + ∆)2

9
+ (s− γ)I2

L

δ ≤ IL ≤
√

2−∆

9s

Since s > γ, then πL(IL) is an increasing function of IL, thus
I∗L =

√
2−∆
9s . This case can be considered as part of the next

part.

(B). If
√

2−∆
9s < IL ≤ M , then I∗F = (1−∆)IL

9I2
Ls−1

. Note that

I∗F = IL when IL =
√

2−∆
9s , then I∗F is continuous at IL =√

2−∆
9s . Thus

πL(IL)|I∗F → πL|IL=I∗F=
√

2−∆
9s

as

IL ↓
√

2−∆

9s
.

Therefore, this case also includes the optimum solution of
previous case. Thus in this case (45) is equivalent to

max
IL

πL(IL) = (
2 + ∆

3
− 1−∆

27sI2
L − 3

)2

+ s(
(1−∆)IL
9sI2

L − 1
)2 − γI2

L

s.t

√
2−∆

9s
≤ IL.

Given vL, vF and s, I∗L is a maximum of πL, then no unilateral
deviation is beneficial for SPL.

Collect all interior equilibria of p∗F , p
∗
L, and I∗F , I

∗
L, we

have

Corollary 3. If −1 < ∆ < 1, then the unique SPNE strategy
is:

Stage 1: I∗L is characterized by

max
IL

πL(IL) = (
2 + ∆

3
− 1−∆

27sI2
L − 3

)2

+ s(
(1−∆)IL
9sI2

L − 1
)2 − γI2

L

s.t.

√
2−∆

9s
≤ IL.

Stage 2: I∗F is characterized in

I∗F =


(1−∆)IL
9I2
Ls− 1

if IL >

√
2−∆

9s

IL if IL =

√
2−∆

9s

Stage 3: p∗L = c+ 2
3 −

I∗F
3I∗L

+ ∆
3 , p∗F = c+ 1

3 +
I∗F
3I∗L
− ∆

3 .

Stage 4: n∗L = ∆
3 + 2

3 −
I∗F
3I∗L

, n∗F =
I∗F
3I∗L

+ 1
3 −

∆
3 .

Section B: 1 ≤ ∆ < 2

In this section, we consider 1 ≤ ∆ < 2. First, give the
conditions under which the interior SPNE may exist (Propo-
sition 2). Then, We obtain an optimum I∗F (in Theorem 23)
and an optimum I∗L (in Theorem 24), respectively. Finally, we
find the interior SPNE I∗F and I∗L. Note that δ is small, let

δ < min
(√ 2

9s∆
−

1

9s
,

1√
2s(∆− 1)

)
.

Proposition 2. If 1 ≤ ∆ < 2, then no corner SPNE strategies
exist when

(IF , IL) ∈ {δ ≤ IL, (∆− 1)IL < IF ≤ IL} .

Proof. From Corollary 2, no corner equilibrium strategies exist
if (IL, IF ) ∈ R. Since

0 ≤ ∆− 1 < 1 (46)
3 ≤ 2−∆ < 4, (47)

then from (38), (46) and (47),

R = {δ ≤ IL, (∆− 1)IL < IF ≤ IL} .

Stage 2: SPF decides on the amount of spectrum to be leased
from SPL (IF ), with the condition that 0 ≤ IF ≤ IL, to
maximize πF .

Theorem 23. If 1 ≤ ∆ < 2, then the optimum investment
level of SPF , I∗F , is obtained by the following rules:
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(1) if ∆ = 1, then I∗F ∈ [0, 1√
9s

] when IL = 1√
9s

; I∗F = IL
when 0 ≤ IL < 1√

9s
; and no optimum I∗F when IL >

1√
9s

;
(2) if 1 < ∆ < 2, then I∗F = IL when δ ≤ IL ≤√

2
9s∆ −

1
9s ; no interior equilibria I∗F exist when IL >√

2
9s∆ −

1
9s .

Proof. From (39) and Proposition 2, I∗F is obtained by the
following optimization problems,

max
IF

πF (IF ) = (
1

9I2L
− s)I2F +

2(1−∆)

9IL
IF +

(1−∆)2

9

s.t (∆− 1)IL < IF ≤ IL
(48)

(A). First, we consider IL = 1√
9s

, then

πF (IF ) =
2(1−∆)

9IL
IF +

(1−∆)2

9

is a linear function of IF . Since 1 ≤ ∆ < 2, then 2(1−∆)
9IL

≤ 0.

(A-1). If 1 < ∆ < 2, then πF (IF ) is a strictly decreasing
function of IF , then

I∗F ↓ (∆− 1)IL,

which means

πF (I∗F )→ πF
(
(∆− 1)IL

)
,

which means SPF always wants to make a deviation to get a
higher payoff by decreasing the investment level (IF ↓ (∆−
1)IL). There exists no optimum I∗F in this case.

(A-2). If ∆ = 1, then πF (IF ) = 0, so I∗F can be any number
in the interval (0, 1√

9s
] since IL = 1√

9s
.

(B). Then, we consider IL 6= 1√
9s

. πF is a quadratic function.
Note that

F1 =
(1−∆)IL
9I2
Ls− 1

.

(B-1). If δ ≤ IL <
1√
9s

, then πF is a convex function. Since
IL ∈

(
(∆− 1)IL, IL], the midpoint of the interval is ∆IL/2.

Note that 1 ≤ ∆ < 2 and 1− 9sI2
L > 0, then

F1 =
(1−∆)IL
9I2
Ls− 1

≥ 0,

From Lemma 3,
I∗F → (∆− 1)IL

∆

2
IL < F1

I∗F = IL
∆

2
IL ≥ F1

.

By simple calculation

∆

2
IL < F1 ⇔

1
√

9s
> IL >

√
2

9s∆
−

1

9s

∆

2
IL ≥ F1 ⇔ δ ≤ IL ≤

√
2

9s∆
−

1

9s
.

thus

(i) I∗F ↓ (∆− 1)IL when
√

2
9s∆ −

1
9s < IL <

1√
9s

;

(ii) I∗F = IL when δ ≤ IL ≤
√

2
9s∆ −

1
9s .

If
√

2
9s∆ −

1
9s < IL < 1√

9s
, then I∗F ↓ (∆ − 1)IL, which

means
πF (I∗F )→ πF ((∆− 1)IL),

which means SPF always wants to make a deviation to get a
higher payoff by decreasing the investment level (IF ↓ (∆−
1)IL). There exists no optimum I∗F when

√
2

9s∆ −
1
9s < IL <

1√
9s

. So the optimum investment level, I∗F , is

I∗F = IL when δ ≤ IL ≤
√

2

9s∆
− 1

9s
.

(B-2). If IL > 1√
9s

, then πF is a concave function. Since
1 ≤ ∆ < 2 and 1− 9I2

Ls < 0, then

F1 =
(1−∆)IL
9I2
Ls− 1

≤ 0 ≤ (∆− 1)IL.

From Lemma 3, we have

I∗F ↓ (∆− 1)IL,

which means

πF (IF )→ πF ((∆− 1)IL),

which means SPF always wants to make a deviation to get a
higher payoff by decreasing the investment level (IF ↓ (∆−
1)IL). There exists no optimum I∗F in this case.

From (A) and (B), we obtain the desired results. Given
vL, vF , s and IL, if I∗F exists, then I∗F is the unique maximum
of πF , so no unilateral deviation is beneficial for SPF .

Stage 1: In this stage, MNO decides on the level of investment
IL with the condition that δ ≤ IL ≤ M , to maximize his
payoff πL.

Theorem 24. If 1 ≤ ∆ < 2, the unique optimum investment
level of SPL, I∗L, is I∗L = I∗F = 1√

9s
when ∆ = 1, otherwise

no interior SPNE I∗L exists.

Proof. Substituting I∗F in Theorem 23 into (40), then the
optimal investment level of SPL, I∗L, is a solution of the
following optimization problem,

max
IL

πL(IL) = (
∆ + 2

3
− I∗F

3IL
)2 + s(I∗F )2 − γI2

L

s.t. δ ≤ IL.
(49)

(A). Consider 1 < ∆ < 2. From Theorem 23 (2), I∗F = IL

when δ ≤ IL ≤
√

2
9s∆ −

1
9s , thus the optimization (49) is

equivalent to

max
IL

πL(IL) =
(1 + ∆)2

9
+ (s− γ)I2

L

s.t δ ≤ IL ≤
√

2

9s∆
− 1

9s
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Since s > γ, then πL(IL) > 0 for all δ ≤ IL ≤
√

2
9s∆ −

1
9s ,

and πL is an increasing function of IL, thus I∗L =
√

2
9s∆ −

1
9s .

(B). Consider ∆ = 1, then we have the following sub-cases.

Sub-case 1: If IL = 1√
9s

, from Theorem 23 (1), (49) is
equivalent to

πL(IL) =
1

9
(1−

√
9sI∗F )2 + s(I∗F )2 − γ

9s

=2sI∗2F − 2

√
s

9
I∗F +

1

9
(1− γ

s
).

Since I∗F ≤ 1√
9s

, then
√

9sI∗F ≤ 1, thus πL is an increasing
function of I∗F , and πL(IL; I∗F ) ≤ s−γ

9s . Note that if I∗F <
1√
9s

πL(IL) =2sI∗2F − 2

√
s

9
I∗F +

1

9
(1− γ

s
)

< lim
IL→ 1√

9s

(s− γ)I2
L =

s− γ
9s

;

and if I∗F = 1√
9s

, πL(IL) = s−γ
9s .

Sub-case 2: From Theorem 23 (1), if 0 ≤ IL <
1√
9s

, (49) is
equivalent to πL(IL; I∗F ) = (s− γ)I2

L <
s−γ
9s .

From two sub-cases above, I∗L = I∗F = 1√
9s

when ∆ = 1.
Note that √

2

9s∆
− 1

9s
=

1√
9s
,

when ∆ = 1. Thus this case can be considered as part of the
above part. Therefore I∗L =

√
2

9s∆ −
1
9s for any 1 ≤ ∆ < 2.

(C). Now we compute πF , from Theorem 23,

πF =nF (pF − c)− sI∗F = (
2−∆

3
)2 − 2

9∆
+

1

9

=
1

9
(∆2 − 4∆− 2

∆
+ 5) , f(∆)

Taking the derivative with respect to ∆,

f ′(∆) =
1

9
(2∆− 4 +

2

∆2
) =

2

9∆2
(∆3 − 2∆2 + 1)

=
2

9∆2
(∆− 1)(∆2 −∆− 1)

Therefore, f ′(∆) > 0 when ∆ ∈ [ 1+
√

5
2 , 2), and f ′(∆) ≤ 0

when ∆ ∈ [1, 1+
√

5
2 ). Thus, fmax(∆) = f(1) = 0, which

implies the possible interior equilibria exist when ∆ = 1.
Then, I∗F = I∗L =

√
1
9s , and

p∗L = c+
2

3
, p∗F = c+

1

3

n∗L =
2

3
, n∗F =

1

3
.

It is easy to check that if ∆ = 1, then
(I∗L, I

∗
F , p

∗
L, p
∗
F , n

∗
L, n

∗
F ) satisfies Corollary 3.

Corollary 4. If ∆ = 1, then the unique SPNE strategy is:
I∗L = I∗F =

√
1
9s and n∗L = p∗L−c = 2

3 and n∗F = p∗F−c = 1
3 .

Section C: −2 < ∆ ≤ −1

In this section, we consider −2 < ∆ ≤ −1. First,
give the conditions under which the interior SPNE may exist
(Proposition 3). Then, we prove that no interior SPNE exists
(Theorem 26). Note that δ is small, let δ < 1√

9s
.

Proposition 3. If −2 < ∆ ≤ −1, then no corner SPNE exist
when δ ≤ IL and 0 ≤ IF < (∆ + 2)IL.

Proof. From Corollary 2, no corner Nash equilibria exist if
(IL, IF ) ∈ R. If −2 < ∆ ≤ −1, then

0 <∆ + 2 ≤ 1

−3 <∆− 1 ≤ −2.

Thus from (38),

R = {δ ≤ IL, 0 ≤ IF < (∆ + 2)IL} .

Stage 2: SPF decides on the amount of spectrum to be leased
from SPL (IF ), with the condition that 0 ≤ IF ≤ IL, to
maximize πF .

Theorem 25. If −2 < ∆ ≤ −1 and πF (I∗F ; IL) ≥ 0, the
optimum investment level of SPF , I∗F , is I∗F = (1−∆)IL

9I2
Ls−1

when
IL > 1√

3s(∆+2)
; and no interior SPNE I∗F exist when δ ≤

IL ≤ 1√
3s(∆+2)

.

Proof. From (39), the optimal investment level of SPF , I∗F , is
the solution of the following optimization problem,

max πF (IF ) = (
1

9I2
L

− s)I2
F +

2(1−∆)

9IL
IF +

(1−∆)2

9

s.t 0 ≤ IF < (∆ + 2)IL.

(A). If IL = 1√
9s

, then

πF (IF ) =
2(1−∆)

9IL
IF +

(1−∆)2

9

is a linear function of IF . Since −2 < ∆ ≤ −1, then
2(1−∆)

9IL
> 0, thus πF (IF ; IL) is a strictly increasing function

of IF . Therefore the optimum investment I∗F , I∗F ↑ (∆+2)IL,
which implies

πF (IF )→ πF ((∆ + 2)IL),

which means SPF always wants to make a deviation to get a
higher payoff by increasing the investment level (IF ↑ (∆ +
2)IL). No interior equilibria I∗F exists in this case.

(B). If IL 6= 1√
9s

, then πF is a quadratic function, and F1 =
(1−∆)IL
9I2
Ls−1

.

(B-1). If δ ≤ IL < 1√
9s

, then πF is a convex function.
Since IF ∈ [0, (∆ + 2)IL), the midpoint of the interval is
(∆ + 2)IL/2. Since −2 < ∆ ≤ −1 and 1− 9I2

Ls > 0, then

F1 =
(1−∆)IL
9I2
Ls− 1

< 0 < (∆ + 2)IL/2,
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from Lemma 3 (1), I∗F ↑ (∆ + 2)IL, which means

πF (IF ; IL)→ πF ((∆ + 2)IL; IL),

which means SPF always wants to make a deviation to get a
higher payoff by increasing the investment level. No interior
equilibria I∗F exists in this case.

(B-2) . If IL > 1√
9s

, then πF is a concave function. Since
−2 < ∆ ≤ −1 and 1− 9I2

Ls < 0, then

F1 =
(1−∆)IL
9I2
Ls− 1

> 0.

From Lemma 3 (2),

I∗F =

{
I∗F = F1 when 0 < F1 < (∆ + 2)IL

I∗F → (∆ + 2)IL when F1 ≥ (∆ + 2)IL
.

By simple calculation,

0 < F1 < (∆ + 2)IL ⇔ IL >
1√

3s(∆ + 2)

F1 ≥ (∆ + 2)IL ⇔
1√
9s

< IL ≤
1√

3s(∆ + 2)
,

then

I∗F


=

(1−∆)IL
9I2
Ls− 1

when IL >
1√

3s(∆ + 2)

→ (∆ + 2)IL when
1√
9s

< IL ≤
1√

3s(∆ + 2)

.

Note that I∗F ↑ (∆ + 2)IL, which means

πF (IF ; IL)→ πF ((∆ + 2)IL; IL),

which means SPF always wants to make a deviation to get a
higher payoff by increasing the investment level (IF ↑ (∆ +
2)IL). Thus

I∗F =
(1−∆)IL
9I2
Ls− 1

when IL >
1√

3s(∆ + 2)

Since I∗F is the unique maximum of πF , so no unilateral
deviation is beneficial for SPF . From (A) and (B), we obtain
the desired results.

Stage 1: In this stage, MNO decides on the level of investment
IL with the condition that δ ≤ IL ≤ M , to maximize his
payoff πL.

Theorem 26. If −2 < ∆ ≤ −1, then no interior SPNE I∗L
exists.

Proof. Substituting I∗F in Theorem 25 into (40), the optimum
investment level of SPL, I∗L, is a solution of the following
optimization problem,

max
IL

πL = (
2 + ∆

3
− 1 − ∆

27I2Ls− 3
)2 + s(

3(1 − ∆)IL
9I2Ls− 1

)2 − γI2L

s.t
1√

3s(∆ + 2)
< IL

Denote

f(IL) =(
2 + ∆

3
−

1−∆

27I2Ls− 3
)2 + s(

3(1−∆)IL

9I2Ls− 1
)2,

we prove that f(IL) is a strictly decreasing function of IL.
Denote

f1(IL) = (
1−∆

27I2
Ls− 3

− 2 + ∆

3
)2

and

f2(IL) = s
(3(1−∆)IL

9I2
Ls− 1

)2

,

then f(IL) = f1(IL) + f2(IL). In fact,

f ′1(IL) =2(
1 − ∆

27I2Ls− 3
− 2 + ∆

3
) · (∆ − 1)

(27I2Ls− 3)2
54ILs

=
4(∆ − 1)ILs

(9I2Ls− 1)2
· (

1 − ∆

9I2Ls− 1
− (2 + ∆)),

and

f ′2(IL) =
6s(1 − ∆)IL
(9I2Ls− 1)3

[3(1 − ∆)(9I2Ls− 1) − 54(1 − ∆)I2Ls]

=
−18ILs(1 − ∆)2(9I2Ls+ 1)

(9I2Ls− 1)3

Therefore

f ′(IL) =f ′1(IL) + f ′2(IL) =
2(1 − ∆)ILs

(9ILs− 1)2
[
−2(1 − ∆)

9I2Ls− 1
+ 2(2 + ∆)

−9(1 − ∆)(9I2Ls+ 1)

9I2Ls− 1
]

=
2(1 − ∆)ILs

(9ILs− 1)2
[
−20(1 − ∆)

9I2Ls− 1
+ 2(2 + ∆) − 9(1 − ∆)]

=
2(1 − ∆)ILs

(9ILs− 1)2
[
−20(1 − ∆)

9I2Ls− 1
+ 11∆ − 5]

Note that −2 < ∆ ≤ −1, then 2 ≤ 1 − ∆ < 3 and 0 <
∆ + 2 ≤ 1. Since

IL >
1√

3s(∆ + 2)
,

then
9I2
Ls− 1 >

1−∆

∆ + 2
> 0.

Thus

−20(1−∆)

9I2
Ls− 1

< 0, 11∆− 5 < 0,

so f ′(IL) < 0, and f(IL) is a strictly decreasing function.
Therefore πL(IL) = f(IL) − γI2

L is a strictly decreasing
function of IL when IL > 1√

3s(∆+2)
. Hence

I∗L ↓
1√

3s(∆ + 2)
,

which implies

πL(IL) ↑ πL(
1√

3s(∆ + 2)
),

which implies SPL always wants to make a deviation to get
a higher payoff by decreasing the investment level (IL ↓

1√
3s(∆+2)

). No interior equilibria I∗L in this case.
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Section D: |∆| ≥ 2

Theorem 27. If |∆| ≥ 2, then no interior Nash equilibrium
strategies exist.

Proof. We calculate R in Corollary 2: If ∆ ≥ 2, then

IF
IL

> ∆− 1 ≥ 1⇒ IF > IL,

which is contradicted by 0 ≤ IF ≤ IL, thus R = ∅. Similarly,
if ∆ ≤ −2, then

IF
IL

< vF − vL + 2 ≤ 0⇒ IF < 0,

which is contradicted by 0 ≤ IF ≤ IL, thus R = ∅.
Therefore, (36) does not hold for any δ ≤ IL ≤ M and
0 ≤ IF ≤ IL when |∆| ≥ 2.

Thus no interior SPNE access fees exist, hence no interior
Nash equiliberium strategies exist.

B. Corner SPNE

Note that δ is small, let δ < 1√
2s

in this section.

Lemma 9. Consider x0 ≤ 0, no corner SPNE strategies exist
when ∆ > −1.

Proof. Let x∗0 ≤ 0. Clearly, n∗F = 1 and n∗L = 0. From (32),

p∗F − p∗L + ∆ + t∗F ≤ 0. (50)

Step 1. We prove that p∗F − p∗L + ∆ + t∗F = 0.

Assume not, suppose p∗F − p∗L + ∆ + t∗F < 0. Consider a
unilateral deviation by which p′F = p∗F +ε, such that p′F−p∗L+
∆+t∗F < 0. From (32), x′0 = 1. Now, from (2), π′F−π∗F = ε >
0. Thus, (I∗F , p

∗
F ) is not SPF ’s best response to SPL’s choices

(I∗L, p
∗
L), which is a contradiction. Hence, p∗F −p∗L+∆+t∗F =

0.

Step 2. We prove that p∗F ≥ c.

From (2), π∗F = p∗F − c − sI∗2F . If p∗F < c, then π∗F <
−sI∗2F < 0. Consider a unilateral deviation by which IF =
0, pF = c, then πF = 0, which is beneficial for SPF . Thus,
p∗F ≥ c.

Step 3. If ∆ > −1, then p∗F < c+ 1.

If ∆ > −1, then let p∗F ≥ c + 1. Consider a unilateral
deviation by which pL = p∗L−ε, then x0 = p∗F−pL+∆+t∗F =
ε. In addition, pL = p∗L− ε = p∗F + ∆ + t∗F ≥ c+ 1 + ∆, thus

πL − π∗L ≥ ε(1 + ∆− ε).

We can choose some 0 < ε < 1 such that πL − π∗L > 0.
Hence, pF < c+ 1.

Now consider another unilateral deviation of SPF , p′F =
p∗F + ε, where 0 < ε < 1, with all the rest the same, then

n′L = x′0 = t∗F + ∆ + p∗F − p′L = ε

n′F = 1− n′L = 1− ε.

Thus,

π′F − π∗F = n′F (p′F − c)− (p∗F − c)
=− ε(p∗F − c) + (1− ε)ε
=ε(−p∗F + c+ 1− ε) > 0.

The last inequality follows because we can choose 0 < ε <
1 such that p′F = p∗F + ε < c + 1. Thus, we arrive at a
contradiction.

Lemma 10. Consider x0 ≥ 1, no corner SPNE strategies exist
when ∆ < 1.

Proof. Let x∗0 ≥ 1. Clearly, n∗F = 0 and n∗L = 1. From (32),
1 ≤ x∗0 = ∆ + t∗F + p∗F − p∗L. Thus,

p∗F − p∗L + ∆ + t∗F − 1 ≥ 0. (51)

Step 1. We prove that p∗F − p∗L + ∆ = 0.

Assume not, suppose p∗F − p∗L + ∆ > 0. Consider
a unilateral deviation by which p′L = p∗L + ε, such that
p∗F − p′L + ∆ > 0. From (32), x′0 = 1. Now, from (1),
π′L − π∗L = ε > 0. Thus, (I∗L, p

∗
L) is not SPL’s best response

to SPF ’s choices (I∗F , p
∗
F ), which is a contradiction. Hence,

p∗F − p∗L + ∆ = 0.

Step 2. We prove that p∗L ≥ c.

From (1), π∗L = p∗L−c+sI∗2F −γI∗2L . If p∗L < c, then π∗L <
sI∗2F − γI∗2L ≤ sI∗2F − γδ2. Consider a unilateral deviation by
which IL = δ, pL = c, then πL = sI∗2F − γδ2, which is
beneficial for SPL. Thus, p∗L ≥ c.

Step 3. We prove that I∗F = 0 and π∗F = 0.

For any SPNE (I∗F , p
∗
F ), we have π∗F ≥ 0. Otherwise,

assume πF < 0, we consider a unilateral deviation IF = 0
and pF = c, then πF = 0, which is beneficial for SPF . If
n∗F = 0, then π∗F = −sI∗2F ≥ 0⇒ I∗F = 0, π∗F = 0.

Based on Step 3, since I∗F = 0, then

t∗F =
I∗L − I∗F
I∗L

= 1.

Step 4. If ∆ < 1,then pL < c+ 1.

If ∆ < 1, let p∗L ≥ c+ 1. Thus,

p∗F = p∗L −∆ ≥ c−∆. (52)

Recall that x∗0 = 1 + ∆ + p∗F − p∗L , then consider a unilateral
deviation by which pF = p∗L−∆−ε > c+1−∆. Now, by (32),
x0 < 1, and hence nF > 0. Now, from (2), πF > 0 = π∗F .
Thus, (I∗F , p

∗
F ) is not SPF ’s best response to SPL’s choices

(I∗L, p
∗
L), which is a contradiction. Hence, p∗L < c+ 1.

Now consider another unilateral deviation of SPL, p′L =
p∗L + ε, where 0 < ε < 1, with all the rest the same, then

n′L = x′0 = t∗F + ∆ + p∗F − p′L = 1− ε.
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Then

π′L − π∗L = n′L(p′L − c)− (p∗L − c)
=− ε(p∗L − c) + (1− ε)ε
=ε(−p∗L + c+ 1− ε).

The last inequality follows because we can choose 0 < ε <
1 such that p′L = p∗L + ε < c + 1. Thus, we arrive at a
contradiction.

Theorem 28. If ∆ ≤ −1, then the unique corner SPNE
strategy is: I∗L = I∗F = 1√

2s
, p∗L = p∗F + ∆ − 1, c + 1 ≤

p∗F ≤ c−∆− 1 and n∗L = 0, n∗F = 1.

Proof. Step 1. We prove that p∗F ≤ c−∆− t∗F .

Suppose p∗F > c−∆−t∗F , then from Step 1 in Lemma 9,
p∗L = p∗F + ∆ + t∗F − t∗F > c. Now consider a unilateral
deviation of SPL, pL = p∗L − ε, where 0 < ε < 1, with the
rest keeping original, then

nL = x0 = t∗F + ∆ + p∗F − pL = ε.

Thus,

πL − π∗L = nL(pL − c) = ε(pL − c) > 0.

The last inequality holds because we can choose 0 < ε < 1
such that pL = p∗L − ε > c. So p∗F > c − ∆ can not be a
SPNE.

Step 2. We prove that p∗F ≥ c+ 1.

Suppose p∗F < c + 1, consider a unilateral deviation of
SPF , pF = p∗F + ε, where 0 < ε < 1, with the rest keeping
original, then

nL = x0 = t∗F + ∆ + p∗F − pL = ε

nF = 1− nL = 1− ε.

Thus,

πF − π∗F = nF (pF − c)− p∗F + c

=ε(1− ε− p∗F + c) > 0.

The last inequality holds because we can choose 0 < ε < 1
such that p∗F + ε < 1 + c. So p∗F < c+ 1 can not be a SPNE.

Therefore from Steps 1, 2, note that t∗F = 1− I∗F /I∗L, so
c+ 1 > c−∆− t∗F when I∗F

I∗L
< 2 + ∆, thus no corner SPNE

exists in this range. Then we consider I∗F
I∗L
≥ 2 + ∆.

Step 3. We prove that no unilateral deviation is beneficial for
both SPs when c+ 1 ≤ p∗F ≤ c−∆− t∗F .

Consider a unilateral deviation of SPL, p′L = p∗L − ε,
where 0 < ε < 1, with the rest keeping original, then

n′L = x′0 = t∗F + ∆ + p∗F − p′L = ε.

Since p∗L = p∗F + ∆ + t∗F , then p∗L ∈ [c+ 1 + ∆ + t∗F , c], then

π′L − π∗L = n′L(p′L − c) < 0,

which implies no unilateral deviation is beneficial for SPL.

Consider another unilateral deviation of SPF , p′F = p∗F +
ε, where 0 < ε < 1, with the rest keeping original, then

n′L = x′0 = t∗F + ∆ + p′F − p∗L = ε

n′F = 1− n′L = 1− ε.

Note that c+ 1 ≤ p∗F ≤ c−∆− t∗F ,

π′F − π∗F = n′F (p′F − c)− p∗F + c

=ε(−p∗F + c+ 1− ε) ≤ −ε2 < 0.

which implies no unilateral deviation is beneficial for SPL.

Step 5. Find I∗F .

Note that p∗L is independent of I∗F . Substituting p∗F =
p∗L − ∆ − t∗F into (2), I∗F is the solution of the following
optimization problem,

max πF (IF ) = −sI2
F +

IF
IL
−∆ + p∗L − c− 1

s.t 0 ≤ IF ≤ IL

πF (IF ) is a concave function, and the symmetric axis is F2 =
1

2sIL
> 0. From Lemma 3 (2),

I∗F =

{
F2 when F2 < IL

IL when F2 ≥ IL

which is equivalent to

I∗F =


1

2sIL
when

1√
2s

< IL

IL when IL ≤
1√
2s

Since I∗F is the unique maximum of πF , thus no unilateral
deviation is beneficial to SPF .

Step 6. Find I∗L.

Substituting I∗F from Step 5 into (1), the optimum
investment level of SPL, I∗L, is a solution of the following
optimization problem,

max
IL

πL(IL; I∗F ) = sI∗2F − γI2
L

s.t δ ≤ IL.
(53)

(A). If δ ≤ IL ≤ 1√
2s

, then I∗F = IL, thus the
optimization (53) is equivalent to

max
IL

πL,1 = (s− γ)I2
L

s.t δ ≤ IL ≤
1√
2s
.

Note that s > γ, then πL,1 is an increasing function of IL,
thus I∗L = I∗F = 1√

2s
. Denote

π∗L,1 = πL,1(
1√
2s

) =
s− γ

2s
.
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(B). If 1√
2s

< IL ≤ M , then I∗F = 1
2sIL

, thus the
optimization (53) is equivalent to

max
IL

πL,2 =
1

4sI2
L

− γI2
L

s.t
1√
2s

< IL.

πL,2 is a decreasing function of IL, note that γ < s, denote

π∗L,2 = πL,2(
1√
2s

) =
1

2
(1− γ

s
) > 0,

so πL,2 ↑ π∗L,2 as IL ↓ 1√
2s

, which means SPL always wants
to make a deviation to get a higher payoff by decreasing the
investment level (IL ↓ 1√

2s
). No negative-corner equilibria I∗L

in this case. From (A) and (B), π∗L,1 = π∗L,2 > πL,2, thus
I∗L = I∗F = 1√

2s
.

From Sub-cases 1, 2, we can obtain the desired results.

Theorem 29. If ∆ ≥ 1, then the unique negative-corner SPNE
strategy is: I∗L = δ, I∗F = 0, p∗F = p∗L−∆, c+1 ≤ p∗L ≤ c+∆,
n∗L = 1, n∗F = 0.

Proof. Step 1. We prove that c+ 1 ≤ p∗L ≤ c+ ∆.

From Steps 1, 3 in Lemma 10, I∗F = 0, t∗F = 1 and
p∗F = p∗L −∆.

Suppose p∗L > c+ ∆, p∗F = p∗L −∆ > c. Now consider
a unilateral deviation of SPF , pF = p∗F − ε, where 0 < ε < 1,
with the rest keeping original, then

nL = x0 = t∗F + ∆ + pF − p∗L = 1− ε
nF = 1− nL = ε.

Thus,

πF − π∗F = ε(pF − c) > 0,

the last inequality holds because we can choose 0 < ε < 1
such that pF − ε > c. Thus, p∗L > c+ ∆ can not be a SPNE.

Suppose p∗L < c + 1, consider a unilateral deviation of
SPL, pL = p∗L + ε, where 0 < ε < 1, with the rest keeping
original, then

nL = x0 = t∗F + ∆ + pF − p∗L = 1− ε.

Thus,

πL − π∗L = ε(−p∗L + c+ 1− ε) > 0,

the last inequality follows because we can choose 0 < ε < 1
such that pL = p∗L + ε < c+ 1. Thus, p∗L < c+ 1 can not be
a SPNE.

In addition, we prove that no unilateral deviation is
beneficial for both SPs when c + 1 ≤ p∗L ≤ c + ∆. Consider
another unilateral deviation of SPF , p′F = p∗F − ε, where
0 < ε < 1, with the rest keeping original, then

n′L = x′0 = t∗F + ∆ + p′F − p∗L = 1− ε
n′F = 1− n′L = ε.

Since p∗F = p∗L −∆, then p∗F ∈ [c−∆ + 1, c], then

π′F − π∗F = n′F (p′F − c) < 0,

which implies no unilateral deviation is beneficial for SPF .

Consider another unilateral deviation of SPL, p′L = p∗L+
ε, where 0 < ε < 1, with the rest keeping original, then

n′L = x′0 = t∗F + ∆ + p∗F − p′L = 1− ε.

Thus, note that c+ 1 ≤ p∗L ≤ c+ ∆,

π′L − π∗L = n′L(p′L − c)− p∗L + c

=ε(−p∗L + c+ 1− ε) ≤ −ε2 < 0.

which implies no unilateral deviation is beneficial for SPL.

Step 2. Find I∗F = 0. From Lemma 10, π∗F ≥ 0, so I∗F = 0.

Step 3. Find I∗L = δ.

Since p∗L is independent of I∗L, then from (1), πL = p∗L−
c − γI∗L is a decreasing function of IL. Note that IL ≥ δ,
therefore I∗L = δ. Since I∗L = δ is the unique maximum of
πL, so no unilateral deviation is beneficial for SPL.

APPENDIX E
EUS WITH OUTSIDE OPTION: SPNE ANALYSIS

Note that δ is small, so let δ < 4
b .

Stage 3: We consider interior NE strategies, i.e., 0 <
nF , nL < 1. Using Definition 3, (2), (1) and (5), note that
vL = vF , the payoffs of SPs are:

πF =α(tL + k + pL − 2pF + bIF )(pF − c) − sI2F

πL =α(tF + k + pF − 2pL + bIL − bIF )(pL − c)

+sI2F − γI2L

(54)

We characterize the NE of access fees as follows,

Theorem 30. For given IF and IL, the NE strategies of access
fees are unique, and are:

p∗L =
1

15
+

2c

3
+
k

3
+
tF
5
− b

5
IF +

4b

15
IL,

p∗F =
1

15
+

2c

3
+
k

3
+
tL
5

+
b

15
IL +

b

5
IF .

(55)

if and only if IL satisfies:

IL <
4

b
. (56)

Proof. In this case, every NE by which 0 ≤ x0 ≤ 1, should
satisfy the first order condition. Thus p∗L and p∗F should be
such that

dπL
dpL
|p∗L = 0,

dπF
dpF
|p∗F = 0,

note that tL + tF = 1, then

p∗L =
1

15
+

2c

3
+
k

3
+
tF
5
− b

5
IF +

4b

15
IL,

p∗F =
1

15
+

2c

3
+
k

3
+
tL
5

+
b

15
IL +

b

5
IF .
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Take the second derivative of πL with respect to pL,

d2πL
d(p∗L)2

=
d2πF
d(p∗F )2

= −4α < 0,

then p∗L and p∗F are the unique maximal solutions of πL and
πF , respectively.

Thus, p∗F and p∗L are the unique interior NE strategies if
and only if 0 < x0 < 1. Substituting (55), tL = IF /IL, and
tF = (IL − IF )/IL into (4) yields:

x0 =
4

5
− b

5
IL + (

2b

5
− 3

5IL
)IF , Ψ(IF ).

Once IL is fixed, Ψ(IF ) would be a linear function of IF .
Thus, 0 < Ψ(IF ) < 1 for any values of IF such that 0 ≤
IF ≤ IL, if and only if

0 < Ψ(0) < 1

0 < Ψ(IL) < 1.

Thus,

Ψ(IL) =
1

5
+
b

5
IL ∈ (0, 1)

Ψ(0) =
4

5
− b

5
IL ∈ (0, 1)

if and only if 0 < IL <
4
b .

Stage 2: Based on the NE strategies of access fees, we obtain
the optimum investment level of the MVNO.

Definition 4. g(IL) = b
15IL+ 1

15−
c
3 + k

3 , f(IL) = 1
5IL

+ b
5 > 0

Theorem 31. If πF (IF ; IL) ≥ 0, and denote

I0
F =

−2αf(IL)g(IL)

2αf2(IL)− s
.

Then, the unique optimal investment level of SPF , I∗F , is:

I∗F =



I0F if IL ∈ {s > 2αf2(IL) + 2αf(IL)g(IL)/IL,

g(IL) ≥ 0}
IL if IL ∈ {2αf2(IL) ≤ s ≤ 2αf2(IL)

+ 2αf(IL)g(IL)/IL, g(IL) ≥ 0}
∪ {2αf2(IL) + 4αf(IL)g(IL)/IL ≥ s,
2αf2(IL) > s}

(57)

Proof. First, we give the following the lemma

Lemma 11. The optimum investment level I∗F is obtained by

max
IF

πF = (2αf2(IL)− s)I2F + 4αf(IL)g(IL)IF + 2αg2(IL)

s.t 0 ≤ IF ≤ IL.
(58)

Proof. Substituting (55) into πF in (54), we get the objective
function. The constraints come from the model assumptions
directly.

We consider different cases. First, we consider the case
that 2αf2(IL)− s = 0 (Step (i)). Then, we consider the case
that 2αf2(IL) − s 6= 0 and πF is a quadratic function of IF
(Step (ii)). In Step (iii), we prove that I∗F 6= 0. Combining the
steps yields the result of the theorem.

Step (i): If 2αf2(IL) − s = 0, πF is linear function of IF ,
i.e., πF = 4αf(IL)g(IL)IF + 2αg2(IL) Thus,{

I∗F = 0 if g(IL) < 0

I∗F = IL if g(IL) ≥ 0
.

Step (ii): Now, consider the case that 2αf2(IL)− s 6= 0 and
πF is a quadratic function of IF . We characterize the optimum
answer in two cases: (a) if 2αf2(IL) − s > 0, and (b) if
2αf2(IL)− s < 0, πF (IF ; IL).

For the case that πF is a quadratic function, we use the
solution to the first order condition (I0

F ),

dπF
dIF
|I0
F

= 0⇒ I0
F =

−2αf(IL)g(IL)

2αf2(IL)− s
.

Case (ii-a): If 2αf2(IL)− s > 0, then πF is convex function.
From Lemma 3 (1), I0F −

IL

2
≤ 0 if 2αILf

2(IL) + 4αf(IL)g(IL)− ILs ≥ 0

I0F −
IL

2
> 0 if 2αILf

2(IL) + 4αf(IL)g(IL)− ILs < 0

,

thus{
I∗F = IL if 2αILf

2(IL) + 4αf(IL)g(IL)− ILs ≥ 0

I∗F = 0 if 2αILf
2(IL) + 4αf(IL)g(IL)− ILs < 0

.

Case (ii-b): If 2αf2(IL) − s < 0, then πF is a concave
function. Thus, from Lemma 3 (2),

I0F − 0 < 0 if g(IL) < 0

0 ≤ I0F < IL if 2αILf
2(IL) + 2αf(IL)g(IL)− ILs < 0,

g(IL) ≥ 0

I0F ≥ IL if 2αILf
2(IL) + 2αf(IL)g(IL)− ILs ≥ 0,

g(IL) ≥ 0

,

Thus,
I∗F = 0 if g(IL) < 0

I∗F = I0F if 2αILf
2(IL) + 2αf(IL)g(IL)− ILs < 0,

g(IL) ≥ 0

I∗F = IL if 2αILf
2(IL) + 2αf(IL)g(IL)− ILs ≥ 0,

g(IL) ≥ 0

.

Step (iii): We now prove I∗F 6= 0. From Case (ii-a), if I∗F = 0,
then

2αILf
2(IL) + 4αf(IL)g(IL)− ILs < 0,

i.e.,
s > 2αf2(IL) + 4αf(IL)g(IL)/IL,

which implies g(IL) < 0 since 2αf2(IL)− s > 0. Thus from
Step (i), and Cases (ii-a) and (ii-b), if I∗F = 0, then g(IL) < 0.

Since t∗L = 0 and t∗F = 1, when I∗F = 0, then

p∗F − c =
1

15
− c

3
+
k

3
+

b

15
IL = g(IL) < 0.

For an equilibrium solution p∗F , p∗F ≥ c, otherwise

π∗L = ñ∗F (p∗F − c)− s(I∗F )2 < 0.

Hence I∗F = 0 can not be an equilibrium solution for SPF .
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Combining Steps (i), (ii), and (iii), we obtain the desired
results.

Stage 1: Finally, we characterize the optimum investment level
of SPL, I∗L.

Theorem 32. The unique optimum investment level of SPL,
I∗L, a solution of the following optimization problem:

max
IL

πL(IL) = 2α(
b

5
IL +

1

5
+ g(IL) − f(IL)I∗F )2

+ s(I∗F )2 − γI2L

s.t δ ≤ IL

IL < 4/b.

(59)

Proof. Substituting (55) into πL in (54), we get the objective
function. The constraints come from the model assumptions
directly.

We define functions f(IL), g(IL), πL(IF ) and sets L1,
L2 as follows:

g(IL) =
b

15
IL +

1

15
−
c

3
+
k

3
, f(IL) =

1

5IL
+
b

5
,

θ(y) = 2α
( b

5
IL +

1

5
+ g(IL)− f(IL)y

)2
+ sy2 − γI2L,

L1 ={s > 2αf2(IL) + 2αf(IL)g(IL)/IL, g(IL) ≥ 0,

δ ≤ IL, IL < 4/b},

L2 ={0 ≤ IL, IL < 4/b} ∩
(
{g(IL) ≥ 0,

2αf2(IL) ≤ s ≤ 2αf2(IL) + 2αf(IL)g(IL)/IL}

∪{2αf2(IL) + 4αf(IL)g(IL)/IL ≥ s, 2αf2(IL) > s}
)
.

Collecting results in Stages 1∼4, we have

Corollary 5. The interior SPNE strategies are:

(1) I∗L is characterized in

I∗L = argmax
IL

(
max
IL∈L1

θ(
−2αf(IL)g(IL)

2αf2(IL)− s
), max
IL∈L2

θ(IL)
)

(2) I∗F is characterized in

I∗F =


−2αf(IL)g(IL)

2αf2(IL)− s
if IL ∈ L1

IL if IL ∈ L2

(3) p∗L = 1
15 + 2c

3 + k
3 +

I∗L−I
∗
F

5I∗L
− b

5I
∗
F + 4b

15I
∗
L, p∗F = 1

15 +
2c
3 + k

3 +
I∗F
5I∗L

+ b
15I
∗
L + b

5I
∗
F .

(4) ñ∗L =
I∗L−I

∗
F

I∗L
+ p∗F − 2p∗L + k + bI∗L − bI∗F , ñ∗F =

I∗F
I∗L

+

p∗L − 2p∗F + k + bI∗F

APPENDIX F
PROOF OF COROLLARY 1

Stage 4: Similar with Definition 2, uF (x0) = v−t(2π−x0)−
pF = v − tx0 − pL = uL(x0), thus,

x0 = π +
pF − pL

2t
. (60)

Since EUs are distributed uniformly along [0, 2π], the fraction
of EUs with each SP is:

nL =


0, if x0 ≤ 0

x0, if 0 < x0 < 2π

2π, if x0 ≥ 2π

, nF = 2π − nL, (61)

where x0 is defined in (60) and nF = 2π − nL.

Only “interior” strategies may be SPNE, as:

Theorem 33. In the SPNE it must be that 0 < x0 < 2π.

Proof. Let (p∗L, p
∗
F , I

∗
L, I
∗
F ) be a corner SPNE strategy. Thus,

1) x0 ≥ 2π, or 2) x0 ≤ 0. We arrive at a contradiction for 1)
Step 1 and 2) in Step 2 respectively.

Lemma 12. π∗F ≥ 0. If n∗F > 0, p∗F ≥ c.

Proof. Let π∗F < 0. Consider a unilateral deviation in which
IF = 0, pF ≥ c. From (2), πF ≥ 0, leading to a contradiction.
Now, let n∗F > 0 and p∗F < c. Thus, π∗F < 0 which is a
contradiction.

Step 1. Let x∗0 ≥ 2π. Clearly, n∗F = 0 and n∗L = 2π. From
(2), π∗F = −sI∗2F . From Lemma 12, I∗F = 0. Thus, π∗F = 0.

From (60), 2π ≤ x∗0 = π +
p∗F−p

∗
L

2t . Thus, p∗F ≥ p∗L + 2πt.

From (1), π∗L = 2π(p∗L − c) − γI∗2L . If p∗L < c, then
π∗L < −γδ2 < 0 since I∗L ≥ δ. Consider a unilateral deviation
by which IL = δ, pL = c, then πL = −γδ2, which is beneficial
for SPL. Thus, p∗L ≥ c.

Now, let p∗L > c. Thus, p∗F ≥ p∗L + 2πt > c + 2πt > c.
Recall that x∗0 = π +

p∗F−p
∗
L

2t . Consider a unilateral deviation
by which pF = p∗L + 2πt − ε. Now, by (60), x0 < 2π, and
hence nF > 0. Now, from (2), πF > 0 = π∗F . Thus, (I∗F , p

∗
F )

is not SPF ’s best response to SPL’s choices (I∗L, p
∗
L), which

is a contradiction. Hence, p∗L = c.

Now consider another unilateral deviation of SPL, p′L =
p∗F − 2πt + ε, where 0 < ε < min(1, t), with all the rest the
same. Since p∗L ≤ p∗F − t, p′L > p∗L = c.

n′L = x′0 = π +
p∗F − p′L

2t
= 2π − ε

2t
.

Then

π′L − π∗L = n′L(p′L − c)− (p∗L − c) = (2π− ε

2t
)(p′L − c) > 0.

The last inequality follows because p′L > c and ε < min(1, t).
Thus, we again arrive at a contradiction.

Step 2. Let x∗0 ≤ 0. Clearly, n∗F = 2π, n∗L = 0. Since n∗F > 0,
by Lemma 12, p∗F ≥ c. From (4), x∗0 = π+

p∗F−p
∗
L

2t ≤ 0. Thus,
p∗L ≥ p∗F + 2πt. Now, from (1),

π∗L = sI∗2F − γI∗2L . (62)
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Consider a unilateral deviation by SPL, by which p′L = 2πt+
p∗F − ε, 0 < ε < min(1, t). Then

n′L = x′0 = π +
p∗F − p′L

2t
=

ε

2t
> 0

Therefore, by (62),

π′L − π∗L = n′L(p′L − c) =
ε

2t
(p∗F − ε+ 2πt− c)

Since p∗F ≥ c, and ε < min(1, t). Then, π′L − π∗L > 0. We
again arrive at a contradiction.

By Theorem 33 proved above henceforth we only con-
sider interior SPNE in which 0 < x∗0 < 2π.

Stage 3: SPL and SPF determine their access fees for EUs,
pL and pF , respectively, to maximize their payoffs.

Lemma 13. The payoffs of SPs are:

πL =
1

2t
(2πt+ pF − pL)(pL − c) + sI2

F − γI2
L

πF =
1

2t
(2πt+ pL − pF )(pF − c)− sI2

F

(63)

Proof. From (60) and (61), substitute (nL, nF ) = (π +
pF−pL

2t , 2π − nL) into (1) and (2), and get (63).

We next obtain the SPNE p∗F and p∗L which maximize
the payoffs πL and πF of the SPs respectively.

Theorem 34. The SPNE pricing strategies are:

p∗L = c+ 2πt, p∗F = c+ 2πt (64)

Proof. p∗F and p∗L must satisfy the first order condition, i.e.,
dπF
dpF

= 0 and dπL
dpL

= 0. Thus, p∗F = p∗L = c + 2πt. p∗F and
p∗L are the unique SPNE strategies if they yield 0 < x0 < 2π
and no unilateral deviation is profitable for SPs. We establish
these respectively in Parts A and B.

Part A. From (64), x0 = π +
p∗F−p

∗
L

2t = π ∈ (0, 2π) since
p∗L = p∗F = 2πt+ c.

Part B. Since d2πF
dp2
F
< 0, d

2πL
dp2
L
< 0, a local maxima is also a

global maximum, and any solution to the first order conditions
maximize the payoffs when 0 < x0 < 2π, and no unilateral
deviation by which 0 < x0 < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to nL = 0, nF = 2π and nL = 2π, nF = 0 is not
profitable. Note that the payoffs of the SPs, (1) and (2), are
continuous as nL ↓ 0, and nL ↑ 2π (which subsequently yields
nF ↑ 2π and nF ↓ 0, respectively). Thus, the payoffs of both
SPs when selecting pL and pF as the solutions of the first
order conditions are greater than or equal to the payoffs when
nL = 0 and nL = 2π. Thus, the unilateral deviations under
consideration are not profitable for the SPs.

Stage 2: SPF decides on the amount of spectrum to be leased
from SPL, IF , with the condition that 0 ≤ IF ≤ IL, to
maximize πF .

Theorem 35. The SPNE spectrum acquired by SPF is: I∗F =
0.

Proof. Substituting pF and pL from (64) into (63), SPF ’s
payoff becomes,

πF (IF ; IL) = 2π2t− sI2
F . (65)

Since πF (IF ; IL) is a decreasing function of IF and 0 ≤ IF ≤
IL, so I∗F = 0.

Stage 1: SPL chooses the amount of spectrum IL to lease
from the regulator, to maximize πL.

Theorem 36. The SPNE spectrum acquired by SPL is: I∗L = δ.

Proof. Substituting pL and pF from (64) into (63), SPL’s
payoff becomes:

πL(IL; I∗F ) = 2π2t− γI2
L. (66)

since from Theorem 35, I∗F = 0. Note that πL is a decreasing
function of IL, and δ ≤ IL ≤M , so I∗L = δ.

Collecting all SPNE from Stages 1∼4, the unique SPNE
strategies are:

I∗L = δ, I∗F = 0, p∗L = p∗F = 2tπ + c, n∗F = n∗L = π.

APPENDIX G
LIMITED SPECTRUM: SPNE ANALYSIS

Proof of Theorem 10.

Proof. The proofs of in Stage 2 (finding I∗F ), Stage 3 (finding
p∗L, p

∗
F ) and Stage 4 (finding n∗L, n

∗
F ) are the same as proofs

of Theorems 19, 20, 21, respectively. Now we only consider
Stage 1 (finding I∗L). Similar with the proof of Theorem 22,
substituting I∗F in (41) into (40), the optimal investment
level of SPL, I∗L, is a solution of the following optimization
problem,

max
IL

πL(IL) = (
2 + ∆

3
− I∗F

3IL
)2 + s(I∗F )2 − γI2L

s.t δ ≤ IL ≤M.

(67)

If M ≤
√

2−∆
9s , from (41) in Theorem 21, I∗F = IL, thus

(67) is equivalent to

max
IL

πL(IL) =
(1 + ∆)2

9
+ (s− γ)I2

L

δ ≤ IL ≤M

Since s > γ, then πL(IL) is an increasing function of IL, thus
I∗L = M . In this case, I∗F = M , and from (32), (33) and (35),
n∗L = p∗L − c = ∆+1

3 and n∗F = p∗F − c = 2−∆
3 .

If M >
√

2−∆
9s , the proof are the same with that of

Theorem 22.
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Proof of Theorem 11.

Proof. The proofs of in Stage 3 (finding p∗L, p
∗
F ) are the same

as proofs of Lemmas 9 10 and Theorems 28 and 29. Now we
only consider Stages 1, 2 (finding I∗L, I

∗
F ).

(A) We consider ∆ ≤ −1. Similar with the proof of
Theorem 28, substituting I∗F from Step 5 in Theorem 28 into
(1), the optimum investment level of SPL, I∗L, is a solution of
the following optimization problem,

max
IL

πL(IL; I∗F ) = sI∗2F − γI2
L

s.t δ ≤ IL ≤M
(68)

Then, we consider two sub-cases: δ ≤ M ≤ 1√
2s

and M >
1√
2s

.

If δ ≤ M ≤ 1√
2s

, Since IL ≤ M ≤ 1√
2s

, then I∗F = IL,
thus the optimization (68) is equivalent to

max
IL

πL = (s− γ)I2
L

s.t δ ≤ IL ≤M.

Note that s > γ, then πL is an increasing function of IL, thus
I∗L = I∗F = M . If 1√

2s
< M , the proof is the same as the

proof in Theorem 28.

(B) We consider ∆ ≥ 1. The proof is the same as the
proof in Theorem 29.

Proof of Theorem 13.

Proof. The proofs of in Stage 2 (finding I∗F ), Stage 3 (finding
p∗L, p

∗
F ) and Stage 4 (finding n∗L, n

∗
F ) are the same as proofs

of Theorems 15, 14 and 16. Now we only consider Stage 1
(finding I∗L). Similar with the proof of Theorem 17, each MNO
chooses its IL as the solution of the following maximization:

max
IL

πL(IL) =
tπ2

18
(
7IL − I∗F

2IL
)2 + sI∗2F − γI2

L

s.t δ ≤ IL ≤M.

(69)

The objective function follows by substituting (25) into (27).
The constraint follows from the modeling assumption.

If M ≤ π
2

√
t

3s , from (28), I∗F = IL, thus the objective

function of (69) is tπ2

2 + (s − γ)I2
L. This is an increasing

function of IL since s > γ. Thus the optimum solution in this
range is M .

If M > π
2

√
t

3s , the proof is the same as that of
Theorem thm: 3p-payoff-L-sectionA.
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