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Abstract—This paper investigates the incentives of mobile
network operators (MNOs) for acquiring additional spectrum to
offer mobile virtual network operators (MVNOs) and thereby
inviting competition for a common pool of end users (EUs). We
consider a base case and two generalizations: (i) one MNO and
one MVNO, (ii) one MNO, one MVNO and an outside option, and
(iii) two MINOs and one MVNO. In each of these cases, we model
the interactions of the service providers (SPs) using a sequential
game, identify when the Subgame Perfect Nash Equilibrium
(SPNE) exists, when it is unique and characterize the SPNE when
it exists. The characterizations are easy to compute, and are in
closed form or involve optimizations in only one decision variable.
We identify metrics to quantify the interplay between cooperation
and competition, and evaluate those as also the SPNEs to show
that cooperation between MNO and MVNO can enhance the
payoffs of both, while increased competition due to the presence
of additional MNOs is beneficial to EUs but reduces the payoffs
of the SPs.

Index Terms—Heterogeneous networks, Wireless Internet
Market, Service Providers, Spectrum provisioning, Subscriber
pricing, Game Theory, Hierarchical games, Nash Equilibrium

I. INTRODUCTION

A. Motivation and Overview

OWADAYS wireless service providers (SPs) are divided

into (i) mobile network operators (MNOs) that lease
spectrum from a regulator like FCC, and (ii) mobile virtual
network operators (MVNOs) that obtain spectrum from one
or more MNOs. MVNOs can distinguish their plans from
MNOs by bundling their service with other products, offering
different pricing plans for End-Users (EUs), or building a
good reputation through a better customer service. Although
traditionally wireless service has been offered only by MNOs,
in recent years, the number of MVNOs has been rapidly
growing. The number of MVNOs increased by 70 percent
worldwide, during June 2010-June 2015 reaching 1,017 as
of June 2015 [6]. Even some MNOs developed their own
MVNOs. An example of which is Cricket wireless which is
owned by AT&T and offers a prepaid wireless service to EUs.
Another example of MVNOs is the Google’s Project Fi in
which the customer’s service is handled using Wi-Fi hotspots
wherever/whenever they exist; elsewhere the service is handled
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using the spectrum of a number of MNOs, eg, Sprint, T-Mobile
or U.S. Cellular networks.

In this work, we consider the economics of the interaction
among MNOs and MVNOs. We seek to understand why and
under what conditions the MNOs cooperate with the MVNOs
by offering some of their spectrum to the MVNOs, and thereby
inviting competition for a common pool of EUs. We consider
scenarios where the MNOs decide on acquiring new spectrum,
and in exchange for a fee offer those to MVNOs, which decide
to acquire some of the spectrum offered. The SPs decide on
their pricing strategies for the EUs, and the EUs decide to opt
for one of them, or neither, if the access fees and the qualities
of service are not satisfactory. The spectrum acquisition and
pricing decisions of the SPs determine their respective profits.
We characterize their equilibrium choices. We obtain metrics
that quantify the cooperation and competition of the SPs in
terms of their spectrum investments and subscriptions of EUs,
which help quantify the interplay between competition and
cooperation under the equilibrium choices.

We consider a hotelling model in which a continuum of
undecided EUs decide which of the SPs they want to buy
their wireless plan from, if at all. The EUs have different
preferences for each SP. These preferences can be because
of different services and qualities that SPs offer. For example,
the MVNOs may be able to offer a free or cheap international
call plan through VoIP, or an SP may have an infamous
customer service. The preference for a SP also increases with
the spectrum she acquires. If, for example, EUs have high
preferences for MVNOs, then the MNOs may prefer to lease
some of their spectrum to the MVNOs and receive their share
of profit through the MVNOs, instead of competing for EUs by
lowering their access fees. On the other hand, if EUs have high
preferences for the MNOs, the MNOs may not offer spectrum
to the MVNOs and seek to attract the EUs directly. Thus,
cooperation is mutually beneficial only in some scenarios,
which we seek to identify.

B. Contribution

First, we consider a base case in which one MNO and
one MVNO compete for EUs in a common pool, and the EUs
must choose one of the SPs. We present the system model,
important definitions and terminologies, and quantify metrics
such as degree of cooperation and EU-resource-cost that we
use to assess the system from the perspective of various stake-
holders throughout (Section [[I-A). We consider a sequential
game in which the SPs decide their spectrum investments and
access fees for the EUs (Section [[I-B). We subsequently seek
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the Subgame Perfect Nash Equilibrium (SPNE) outcome of
the game using backward induction, and identify conditions
under which the SPNE exists and is unique, and characterize
the SPNE whenever it exists (Sections [I-E). The SPNE
is simple to compute, as 1) the amount of spectrum the MNO
invests turns out to be the value that maximizes a function
involving only one decision variable 2) the amount of spectrum
the MVNO leases from the MNO is a simple closed form
expression involving the amount that the MNO offers it and
the leasing fee 3) the access fees for the EUs constitute simple
closed form expressions of the spectrum the SPs acquire.
The characterizations provide several insights. The spectrum
acquired by the MNO never falls below a threshold which de-
pends only on the leasing fee to the MVNO and preferences for
the SPs. When the spectrum equals this threshold, the MVNO
reserves the entire spectrum that the MNO offers it. Thus
cooperation is high in this case. As the MNO acquires higher
amounts of spectrum, the MVNO reserves progressively lower
amounts, leading to lower degrees of cooperation. Numerical
computations reveal that the MNO acquires minimal amount
of spectrum only when the leasing fee to the MVNO is smaller
than a threshold (Section [[I-D). The SPNE characterizations
show that higher degrees of cooperation invariably reduces
(enhances, respectively) the efficacy of the MNO (MVNO,
respectively) in competing for the EUs; yet, higher degrees
of cooperation enhance the payoffs of both the SPs as our
numerical computations reveal. The MNO’s loss in revenue
from subscription is more than compensated by the leasing
fees obtained from the MVNO.

Second, we generalize the hotelling model for EU sub-
scription in the base case by incorporating an additional
demand function (Section [I). The effects of the demand
function are two-fold. First, the demand function models
the attrition in the number of EUs of SPs if the spectrum
investment or price of both SPs is not desirable for EUs. Thus,
in effect, an EU may opt for neither SP if neither offers a price-
quality combo that is to his satisfaction, which is equivalent
to opting for outside options. Second, the demand function
models an exclusive additional customer base for each of the
SPs to draw from depending on her investment and the price
she offers. We characterize the unique interior SPNE outcome
of the game (Section [[lI-A). Numerical results reveal that the
general behavior of the SPNE outcome are as in the base case
and that the EU-resource-cost increases compared to the base

case (Section [I1I-B).

Finally, we generalize the base case to include compe-
tition between MNOs. We consider a wireless market with
two MNOs and one MVNO, in which EUs choose one of
the three SPs (Section [[V). We generalize the hotelling model
to consider three players instead of two in the classical ones
(Section , and characterize the unique SPNE outcome
(Section [IV-B)). The characterizations show that this enhanced
competition 1) increases the degree of cooperation, as the
MVNO acquires all the spectrum that the MNOs offer, and
2) is beneficial to EUs, as the amounts of spectrum of SPs
acquires are higher, and the SPs charge the EUs less. Numeri-
cal results reveal that the additional competition enhances the

EU-resource-cost compared to the base case.

C. Relation with the Sequel

While in this work we consider that the SPs arrive at
their decisions individually, in the accompanying sequel we
consider that the SPs arrive at certain decisions as a group,
and then arrive at other decisions individually (Part II). Also,
here we assume that the per unit leasing fee the MVNO
pays to MNO(s) is a fixed parameter, which is beyond the
control of individual MNOs and MVNOs. This happens for
example in two important cases: 1) when this fee is determined
by an external regulator to influence the interaction between
different providers (possibly to the betterment of the EUs) 2)
when this fee is a market-driven parameter, for example, in
a large spectrum market with many MNOs and MVNOs. To
understand the impact of the externals (eg, regulator, market),
we investigate the implications of different values of this
fee on the SPNE and the payoffs and the EU-resource-cost
metric. This would also guide the regulatory choice of this fee
for the first case. Note that the overall market may consider
several MNOs and MVNOs, whose presence we consider in
the generalizations (Sections [[TI} [[V). In the sequel we consider
that the SPs cooperatively characterize this fee as a decision
variable in a bargaining framework (Part II).

D. Positioning vis-a-vis the State-of-the-Art

Duan et. al made early contributions in the field of
MVNGOs [[1L1], [12]. They formulated the interactions between
one cognitive mobile virtual network operator (CMVNO) and
multiple end-users as a multi-stage Stackelberg game, and
showed that spectrum sensing could improve the profit of
the CMVNO and payoffs of the users. Since they considered
only one SP, the issue of competition or cooperation between
multiple SPs did not arise. We investigate the interplay of
cooperation and competition between different SPs, namely
MNO and MVNO.

The economics of the interactions among multiple service
providers have been extensively investigated. We focus on non-
cooperative interactions in this paper as here we consider that
the SPs arrive at their decisions individually. Non-cooperative
games were considered for example in [10], [12], [14], and
[15]. A general framework of strongly Pareto-inefficient Nash
equilibria with noncooperative flow control was considered in
[LO]. Applying the framework to communication networks,
it was shown that the Nash equilibria were not efficient.
Intervention schemes, i.e., systems where users and an in-
tervention device interact, were formulated in [13], and a
solution concept of intervention equilibrium was proposed.
The paper showed that intervention schemes could improve
the suboptimal performance of non-cooperative equilibrium.
[15] proposed wireless virtualization to investigate spectrum
sharing in wireless networks.

However, these works did not consider both MNO and
MVNO, whose roles are fundamentally different from each
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other. The MNO acquires spectrum from a central regulator,
which it offers to MVNO in exchange of money, and the
MVNO uses part of this spectrum. Both MNO and MVNO
earn by selling wireless plans to the EUs; the MNO earns
additionally by leasing spectrum to the MVNO. Thus, they
make different decisions, which affect their subscriptions,
and their payoffs have different expressions. Their decisions
also follow different constraints: spectrum acquired by the
MVNO is upper bounded by that acquired by the MNO, which
constitutes the MNO’s decision variable, while the spectrum
acquired by the MNO depend on the availability with the
regulators, the availability does not constitute the decisions of
any provider. The interaction between the MNO and MVNO
lead to an interplay of competition and cooperation between
them, which calls for innovations in the realm of modeling
and analysis.

To our knowledge, the only papers in the genre of non-
cooperative interactions that also consider interactions of the
MNOs and MVNOs are [3]], [4]] and [5]. In [3] MNOs seek to
maximize the joint profit of MNO and MVNO. The MNO’s
selection of access fees is formulated as a maximization in
which the sales of the MNO is expressed as a function of
only the fee he selects. In contrast we consider that each SP
seeks to maximize his individual profit and obtain the access
fees they select and the spectrum they acquire, which also
determine how the EUs choose between the SPs. Thus we
need to dwell in the realm of a hierarchical game rather than a
single stage optimization. A scenario very different from ours
is considered in [4]]: the SPs do not compete for consumer
market shares but for the proportion of resource they are
going to use. The interaction between the SPs is a hierarchical
game in which the MNO and MVNO choose their access fees,
the MVNO also decide investment in content/advertising. The
access fees become roots of a fourth order polynomial equation
which is computed numerically. The closest to our work is
[Sl], which considers a dynamic three-level sequential game
of spectrum sharing between one MNO and one MVNO. The
focus is however complementary to ours. Unlike our work,
[S] does not consider decisions of the 1) MNO pertaining
to how much spectrum to acquire from a regulatory body
2) MVNO pertaining to how much of the MNO’s spectrum
offer he ought to accept (he assumes that the MVNO uses
the entire spectrum the MNO offers). We also generalize our
model to consider multiple MNOs and an MVNO, which [3]]
does not. [|5] however considers a decision of the MVNO that
we do not, i.e., how much the MNO would invest in content
generation. The EU subscription models are also entirely
different. We consider a one-shot game involving a continuum
of EUs in which the SP choice of each EU is based on his
intrinsic preferences for the SPs and the spectrum investments
of the SPs. [5] considers a multi-time slot game in which a
discrete number of EUs choose between the SPs based on
their experiences in the previous slots and their estimates of
the quality of service the SPs they had not chosen apriori
offer. The games we consider fundamentally differ in that
the SPNE need not exist in ours (we identify necessary and
sufficient conditions for its existence), while it always exists

in that in [5]. By exploiting the structure of the game, we
obtain closed form expressions for the various decisions we
consider, in the SPNE, whenever it exists. [3] computes the
SPNE only numerically through the solution of a multi-slot
stochastic dynamic program (DP). Our SPNE characterization
is easy to compute, while DPs usually suffer from the curse
of dimensionality.

II. BASE CASE

We present the system model in which we formulate the
payoffs and strategies of SPs, and the utilities and decisions
of EUs (Section [[I-A). Next, we formulate the interaction
between different entities as a sequential game (Section [II-B).
Subsequently, we characterize the conditions under for the
existence and the uniqueness of the SPNE, obtain closed
form expressions for the SPNE when it exists (Section [[I-C).
We present numerical results in Section We prove the
analytical results in Section Appendix [B] (Theorems [3]

[ 5l [6), and Appendix [D-A] (Theorems [1] [2).

A. Model

We consider one MNO (SP;, L represents leader) and
one MVNO (SPp, F represents follower) which compete for
a common pool of undecided EUs. SP; offers I; amount
of spectrum (which it acquires from a regulator) to SPpg
in exchange of money, and SPr uses Ir amount of this
spectrum. Clearly, 0 < Ir < Ir. For simplicity of analysis
and formulation, we assume that 0 < ¢ < I, where ¢ is
a lower bound of Iy, which is a parameter of choice. This
assumption is not significantly restrictive as  may be chosen
as low a positive quantity as one desire Both SP;, and SPfg
earn by selling wireless plans to EUs; SP;, earns additionally
by leasing her spectrum to SPr. We assume that both SP;, and
SPr have access to separate spectrum, which they can use to
serve the EUs who join them, above and beyond the Iy, Ip
amounts they strategically acquire. For example, a SPr like
Google’s Project Fi serves customers using Wi-Fi hotspots and
the spectrum of 3 MNOs (Sprint, T-Mobile or U.S. Cellular
networks). Also, SP;, may acquire additional spectrum from
the regulator which it does not offer SPp.

We denote the marginal leasing fee (per spectrum unit)
that SPy, pays the regulator as 7, marginal reservation fee SPp
pays to SP, by s, the fraction of EUs that SPr and SPy, attract
as np and nr, respectively, and the access fee that SPr and
SP;, charge the EUs as pr and pj, respectively. Since SPp,
wants to lease out some of her spectrum to SPr with profit
motive, it is reasonable to assume that s > . We assume that
s,y are pre-determined. The strategies of SPs are to choose
the investment levels (I, Ir) and the access fees for EUs
(pr, pr) so as to maximize their overall payoffs, which we
formulate next.

L A1l results extend, with some modifications, when we consider that T L is
upper bounded by M. Such bounds may apply when the central regulator has
limited spectrum to offer. Refer to Section M for the deductions.
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Fig. 1: The hotelling model for the base case. The EUs in
[0, 20] ([0, 1], respectively) prefer SP;, ( SPp, respectively).
The former fraction of EUs is n g, the latter is ng. g is farther
off from SPy, as t;, becomes lower and vy, —vr become higher.

SPr and SPj, respectively earn revenues of np(pp —
¢),nr(pr —c) from EU subscription, where c is the transaction
cost SPs incur in subscription. The transaction cost arises
due to traffic management, billing and accounting services,
customer service, etc. associated with each subscription. We
have assumed such costs to be equal for all SPs, as they do not
significantly vary across them. We expect the cost of reserving
spectrum to be strictly convex, i.e. the cost of investment
per spectrum unit increases with the amount of spectrum.
Strictly convex costs do not satisfy the economy of scale;
the regulator may mandate such structures to stop excessive
acquisition by big SPs seeking to control the market, which
has limited spectrum supply, and drive out smaller SPs or new
entrants. Incidentally, several seminal works have considered
strictly convex investment costs, e.g. [7] and [8]]. For simplicity
in analysis, we consider a specific kind of strictly convex
cost function, namely quadratic, and discuss generalizations
in Remark [3] That is, SP;, incurs a spectrum acquisition cost
of vI#, and SPy pays to SPy, a leasing fee of s/%. Thus, the
payoffs of SPs are:

7r =np(pr —c) — sk (1)

7 =np(py —c) + sle — yI7. )

EUs: We use a hotelling model[[l] to describe how EUs choose
between the SPs. We assume that SPy, is located at 0, SPy is
located at 1, and EUs are distributed uniformly along the unit
interval [0,1] (Figure [1). The closer an EU to a SP, the more
this EU prefers this SP to the other. Note that the notion of
closeness and distance is used to model the preference of EUs,
and may not be the same as physical distance. Let ¢1, (tr) be
the unit transport cost of EUs for SP;, (SPr), the EU located
at z € [0,1] incurs a cost of ¢t z (respectively, tp(1 — z))
when joining SPj, (respectively, SPr).

UL(JE) ZUL - (pL + tLl‘)

F (3)
up(z) =v" — (pr +tr(l —2)).

The EU at x receives utilities ur,(x), up(x) respectively from
SP;, and SPr, and joins the SP that gives it the higher utility.

The first component of the utility functions comprises
of the “static factors”, namely vT and v¥ of SP;, and SPp,
respectively. The static factor of a SP is the same for all EUs,
which depends on the local presence, its existing spectrum
beyond 1, or Ir and its reputation in the region, quality of
the customer-service, ease of usage for the online portals, etc.
However, the static factors do not depend on strategies of SPs,
such as the access fees, the investment levels, etc.

The second component, i.e., py, +trx or pp+tp(l—2x),
is denoted as the “strategy factor”. The strategy factors depend
on the strategies of the SPs, namely their access fees and
the spectrum I, I[r they acquire. Clearly, the utilities would
decrease with the access fees, we consider the dependence to
be linear. As SPr acquires greater fraction of the additional
spectrum SP; offers him, SPr becomes more desirable and
SPy, less desirable to the EUs. Denote t;, = Ir/I; and
tp = (I, —Ir)/I. Then the impact of quality of service in the
decision of EUs is captured through t; and ¢p. For example,
when Ir = I, i.e., SPr leases the entire I spectrum from
SP;, and SP;, can use none of it, then ¢t = 0 and ¢;, = 1. This
gives SPr an advantage over SPy, in attracting EUs. Similarly,
even when Ir = 0, i.e., SPr leases no spectrum from SPy,
trp = 1 and t; = 0, SP;, has an advantage over SPp. But
subscription may still be divided in both the above extreme
cases. This happens since both SPr and SP;, have access to
separate spectrum as reflected in the static factors v*', v, Note
that the pair of transport cost (t;, = Ip /Iy, tp = 1—tr) is one
of the many functions that can be considered. We choose this
model specifically since it captures the essence of the model,
and is analytically tractable.

Finally, the strategy factors incorporate intrinsic prefer-
ence of the EUs towards the SPs through the coordinate z,
which presents the local distance in the utility model. If an EU
is for example close to SPr, x is high and 1 — z is low, and
it is deemed to have a higher intrinsic preference for SPr, as
compared to SPy. The intrinsic preference may be developed
through pre-existing and ongoing relations the EU has with the
SPs, e.g., if an EU is already availing of other services from a
SP, the EU will have a stronger intrinsic preference for the SP,
due to convenience of billing etc. Higher intrinsic preferences
enhance utilities of the SP for the EUs. The impact of the
strategies of the SPs on the EUs will depend on their intrinsic
preferences for the EUs, which is captured in the term ¢;,x or
tr(1 — ) in the utility. Note that the intrinsic preference is
different for different EUs unlike the static factor.

We consider that v* and v are sufficiently large so
that the utility of EUs for buying a wireless plan is positive
regardless of the choice of S Thus, each EU chooses exactly
one SP to subscribe to, i.e., the market is “fully covered”. This
is a common assumption for hotelling models. We would in
effect relax this assumption in Section [II]

SPr’s leasing of spectrum from SP;, constitute an act of
cooperation. Thus, we call I /I}, the degree of cooperation.
Since SPr and SP; compete to attract EUs, the split of
subscription (ny,, np) represent the level of competition. Since
the amount of spectrum SPr leases from SP; determines
the split of subscription, there is a natural interplay between
cooperation and competition, that these metrics will enable us
to quantify.

We develop the notion of EU-resource-cost to capture
2 Note that all analytical results will depend on the difference of v~ and

v, so absolute values of these (large or otherwise) do not have any impact
on the SPNE choices of various entities.
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the spectral resource per unit access fee averaged over all
EUs, which represents the “bang-for-the-buck” or “value for
money” an average EU gets out of the system. For the EUs
who choose the MVNO, the resource per head is Ir/np.
Thus, for these EUs the resource per head per unit fee is
Ir/(nppr). Similarly, for the EUs who choose the MNO,
the resource per head per unit fee is (I — Ir)/(nrpr).

Averaging over all the EUs, the resource per unit fee for
an “average” EU then is, “ele/tnrpr)tniUp=1r)/(nipL)
’ nrp+ng

which equals Ir/pr + (I — Ir)/pL, since ny, +np = 1.
We therefore consider this as the expression for the EU-
resource-cost. Clearly, higher values of the EU-resource-cost
is beneficial for the EUs.

>

B. The sequential game framework

The interaction among SPs and EUs can be formulated
as a sequential game. As a leader of the game, S P makes
the first move. The timing and the stages of the game are as
following:

o Stage 1: SP;, decides on the amount of spectrum, I, to
acquire.
o Stage 2: SPy decides on the amount of spectrum to
lease from SPy, Ir.
o Stage 3: SP; and SPy determine the access fees for the
EUs, pr, and pp, respectively.
o Stage 4: Each EU subscribes to the SP that gives it the
higher utility.
Remark 1. We assume that the decision of investments (I,
and Ir) happens before the decisions of access fees (pr, and
pr), guided by the fact that spectrum investment decisions are
long-term ones, and are therefore expected to be constants
over longer time horizons in comparison to subscription
pricing decisions.
Definition 1. /2| Chapter 6.2] A strategy is a Subgame Perfect
Nash Equilibrium (SPNE) if and only if it constitutes a Nash
Equilibrium (NE) of every subgame of the game.

We refer to a SPNE choice of spectrum investments
and access fees by the SPs as (I}, I, p},p}), and the EU
subscriptions for the SPs under the same as n7,nJ, should a
SPNE exist.

C. The SPNE outcome

We next identify the conditions under which SPNE ex-
ists, characterize the SPNE when it exists, and examine its
uniqueness.

We denote v — v¥ as A. Since 0 < ¢1,tp < 1,0 <
x < 1, in the expressions for utilities in (3), |A| > 1 provides
a near insurmountable disadvantage to one of the SPs through
the static factors; this SP might have to choose a significantly
lower price to recoup. Thus, we first focus on the range [A]| <
2-A

9s

which reduces to § < /2 in the special case that v> = v

1. As stated before, we assume ¢ is small, and let § <

Theorem 1. Let |A| < 1. The SPNE is:
(1) any solution of the following maximization is I7,

24+ A 1-A

I = — 2
max (L) = (5=~ 55,7 —3)
(I=A)IL 4 9
———— )" =1
+ s 93[%—1) 7L
2—A
s.t <Ip <M,
9s
(2) I} is characterized in
(1-A)I, . 2-A
— I
. Jemso1 ey gy
Ip = ’
2—-A
17, lfIL: J—
9s
(3)p’2:c+§—3%+§, p?=c+§+3%—%,

« A2 Ip o« Ip 1 A
Wnp=5+3—3fnp=3z +3- 3
Remark 2. From (2), I}, is unique once Iy is given; from
(3) and (4), (p},py,n%,n%) is unique once Iy and Iy are
given. Thus, every solution of the maximization in Theorem
(1) leads to a distinct SPNE. Thus, the SPNE is unique if and
only if this maximization has a unique solution. Our extensive
numerical computations suggest that this is the case.

The SPNE is easy to compute, despite the expressions
being cumbersome. Otherwise, I; can be obtained as a
maximizer of an expression that involves only one decision
variable, Iy, and fixed parameters s,7y,A. I} has been ex-
pressed as a closed form function involving I7 and the fixed
parameters s, A. p} , py, n},, n}j have been expressed as closed
form functions of I /I and the fixed parameters c, A.

From Theorem (1| (3), the price the EUs receive from
SP;, (respectively, SPr) decrease (respectively, increase) with
increase in the degree of cooperation (Ir/I;). Thus, since at
least one of the SPs reduce the price, the EUs benefit from
higher degree of cooperation.

From Theorem (1| (3) and (4), n}, = p} —c,np = pr —c.
Thus, SPNE subscriptions of the SPs increase with increase in
the access fees they announce. This counter-intuitive feature
arises because the subscriptions also depend on the spectrum
acquisitions of the SPs, through the transport costs t; =
Ip/Ip and tp =1 — tp in the utilities specified in (3).

From Theorem [1| (1), in the SPNE, SP;, acquires at least
% amount of spectrum. From Theorem (1| (2), when I}
equals this minimum, then SPp reserves all the available

spectrum, i.e., I} = Iy (note that Iy is continuous at
Iy, = %). Thus, SP;, can not use any of /7. However,
from Theorem [I] (4), SP., is still able to attract a positive
fraction of EUs: nj = 28 > 0 since |A| < 1. This is
because EUs have spectrum other than I7, I3 as captured in
the values of v¥, vF.

From Theorem (1) and (2), when I} exceeds its
minimum value, then SPy reserves only a fraction of available
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spectrum (I < I7). Note that in this case, ZITf < 0. Thus,

the higher the amount of available spectrum, the lower would
be the amount of spectrum reserved by SPp. Also, Iy is
decreasing with s.

The SPNE depends on the static factors v, v’ only
through their difference A. As expected, with increase (respec-
tively, decrease) in A, SP;, (respectively, SPr) can increase
his (respectively, her) access fee pj (respectively, p}.). The
minimum value of his spectrum acquisition I} increases with
decrease in A, to offset the competitive advantage the static
factors provide. Through our numerical computations, we
elucidate how I7, Iy and the payoffs otherwise vary with A.

The results illustrate the interplay between cooperation
and competition. From Theorem [I| (4), the subscription n},
(respectively, n}.) of SPy, (respectively, SPr) decreases (re-
spectively, increases) with the degree of cooperation (I}./I7}).
Thus, the higher the degree of cooperation, lesser (respectively,
greater) is the competition efficacy of SPp (respectively,
SPr). A natural question arises: why would the SP; then
cooperate with the SPx? From and (2), Theorem [I] (3),
@), m, = n2 + sl — 4132, and 7p = n}? — sI3?. On
the one hand, if the degree of cooperation increases, then
the amount of subscribers of SP;, decreases, thus the revenue
SP;, earn from the subscribers decreases. On the other hand,
the payoff of SP;, increases through sI3?. Thus the second
factor may offset the first, and the payoff of SP;, may increase
due to cooperation. Note that it is not a zero sum game,
thus, the payoffs of both players may simultaneously increase
due to cooperation. We illustrate these phenomena definitively
through our numerical computations in the next section.

Then, in the extreme case that |A| > 1:
Theorem 2. (1) A > 1: The SPNE is

Ij = 6.1; = 0.pj = pj, — Anj = 1, njp =0,

and p} can be chosen any value in [c+ 1,c+ A].
(2) A = 1 : The following interior strategy constitute an
additional SPNE:

1

3Vs
(3) A < —1: The SPNE strategy is:

1
IZ/ZI;‘:7ap}::p}+A_17n2:07n}:17

V2s

and p} can be chosen any value in [c+ 1,¢c — A].

We prove this theorem in Appendix As is intuitive,
for large A, all EUs subscribe to SPy, despite lower access
fees selected by SPr; the reverse happens in the other extreme,
despite lower access fees selected by SPr. The extremes
therefore lead to “corner equilibria”, which correspond to 0, 1
as the degrees of cooperation. The SPNE is non-unique in both
these extremes.

0.5 1 15 s 2 25 3 05 1 15 8§ 2 2.5 3

Fig. 2: Payoffs (left) and the degree of cooperation (right) vs.
s. Here, v=0.5,c=1, A=0.

2,

0.2
0.5 1 15 g 2 25 3

Fig. 3: EU-resource-cost vs. s. Here, v = 0.5, c = 1.

D. Numerical results

Figure 2| shows the payoffs (left) and the degree of
cooperation (right) under different s when A = 0. The degree
of cooperation reaches the maximum (= 1), ie., I}, = I}
when s is less than a threshold (= 2). In this case, SPj,
generates most of its revenue from the reservation fee paid
by SPr. As expected, 7} increases with s. From Theorem
(1), (2), (4), when I}, = I}, I7 equals its minimum value
V& and g = 1/3+ I5/31; = 2/3, thus . = nj? — sT?
is a constant which is independent of s. When s is larger than
this threshold, I}./I; < 1, and decreases with s. In this case,
I7 exceeds its minimum value, and SPr leases only a portion
of the new spectrum invested by SPy, i.e., I < I7. Thus,
SP;, generates more of its revenue from EUs. The payoff of
SP;, (SPp) first jumps to a lower value at this threshold, and
then increases (decreases) with s. At this threshold, the degree
of cooperation also jumps to a lower value (< 1). Thus, higher
degrees of cooperation can enhance the payoff of both SPs,
and the reservation fee s enhances (reduces) the payoff of SPy,
(SPg). Also, SPr earns more than SP;, for lower values of s;
hence SPr gets more from the spectrum sharing between the
2 SPs in this case. For higher values of s, the reverse happens.

s has significant impact on the EU-resource-cost, as
depicted in Figure [3] We first explain the jump at the threshold
value of s. When s is less than the threshold, I7 = IF., as seen
in Figure [2|(right). Thus the EU-resource-cost is I}./p}.. At the
threshold, Iy < I7, so the second term in EU-resource-cost
((I; — Ij)/p;) jumps to a positive value from 0, leading
to the jump in the EU-resource-cost. The EU-resource-cost
otherwise decreases in s, thus if a regulator chooses s, it ought
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Fig. 5: Payoffs (left), investment decisions (right) vs. A. Here,
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to opt for a low value of s, though if s is really low, then SPy,
may not have enough incentive to cooperate due to low 77
(Figure E] (left)). Note that the degree of cooperation is 1 at
low values of s, thus high degree of cooperation coincides
with high EU-resource-cost.

Figure E] shows the SPNE level of investment (left) and
subscriptions of SPs (right) when A = 0. It reconfirms that
when s is smaller than a threshold, SPy leases the entire
spectrum SP;, offers, and after that threshold, SPr leases only
a portion of the new spectrum offered by SP,. Also, I strictly
decreases with s throughout. When s is small, I = I7, n}
and nj are constant (n} = 1/3, n}, = 2/3) independent of
v and s, and ny > nj. After the threshold, n}. decreases
and n} increases with s (because I}./I; decreases with s in
Figure [] (right)). Comparing Figure | (right) and Figure @]
(right) we note that higher degrees of cooperations increase
(decrease, respectively) the competition efficacy of SPr (SPy,
respectively).

Figure [3] plots the payoffs (left) and Iy, I (right) as a
function of A when |A| < 1, the region in which the SPNE
exists uniquely. We set s = 1. As expected, the payoff of
SP;, (SPr, respectively) increase (decrease, respectively) with
increase in A. Also, SPy earns more than SP;, for lower values
of A; hence SPy gets more from the spectrum sharing between
the 2 SPs in this case. For higher values of s, the reverse
happens. With increase in A, I, Ir may either increase or
decrease, depending on whether additional spectrum provides
“bang for the buck” by enticing commensurate number of EUs
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Fig. 6: Degree of cooperation (left), EU-resource-cost (right)
vs. A. Here, vy =0.5,c=1, A =0.

which depends on the EUs’ prior biases (static factors) for or
against the SPs. The figure shows which is the case.

Figure [6] plots the degree of cooperation (left) and the
EU-resource-cost (right) as a function of A when |A| < 1.
Figure [6] (left) shows that the degree of cooperation is a
constant 1 when A is less than a threshold, and decreases
when A is larger than this threshold. The amount of spectrum
SPr leases from SPy, decreases when SPy, has larger common
preference. The jump in the EU-resource-cost at the threshold
value of A may be explained similar to that for Figure 3]
considering Figure [§] (left) instead of Figure [2] (right). Other
than this jump, the EU-resource-cost decreases in A. Again,
note that high degree of cooperation coincides with high EU-
resource-cost.

E. SPNE Analysis

We use backward induction to characterize SPNE strate-
gies, starting from the last stage of the game and proceeding
backward. For simplicity and brevity, we present this analysis
only for the important special case of A = 0, and defer the
general case to Appendix |B} Thus, we prove Theorem |1| while
applying A = 0 in the corresponding expressions. Specific
Theorems [3] 3] [6] are proven in Appendix

Stage 4: We first characterize the equilibrium division of EUs
between SPs, ie., n; and n}., using the knowledge of the
strategies chosen by the SPs in Stages 1~3.

Definition 2. x( is the indifferent location between the two
service providers if ur,(zo) = up(zo) (FigureI).

By the full market coverage assumption, if 0 < xy < 1,
then EUs in the interval [0,x¢] join SP; and those in the
interval [xg, 1] join SPg. If 2y < 0, all EUs choose SPr; and
if 29 > 1, all EUs choose SP;, (Figure [I).

From Definition 2} up(zg) = v — tp(l — x¢) — pr =
v —trxog — pr, = ur(xg). Since ty, + tp = 1, then zg =

tr+Pr—pPL _
W = tF +pF —PL. ThuS,

o =tr +Dpr — DL 4
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Thus, since EUs are distributed uniformly along [0, 1],
the fraction of EUs with each SP is:

0, lf {,C()SO
if 0<zog<1l,np=1-ng, (@)
1, if J,‘()Zl

nr =4 2o,

where x( is defined in and np = 1 —ny (Figure [I).

Only “interior” strategies may be SPNE, as:
Theorem 3. In the SPNE it must be that 0 < xg < 1.

Stage 3: SP;, and SPr determine their access fees for EUs,
pr, and pr, respectively, to maximize their payoffs.
Lemma 1. The payoffs of SPs are:

wr =(tr +pr —pr)(pr — ¢) + slp — 717 ©
mr =(tL +pr — pr)(pr — ¢) — s}
Proof. From (3)), substitute (nr,,np) = (tr+pp—pr,1—nr)

into (I) and (2), and get (6). O

We next obtain the SPNE p7%. and p7 which maximize
the payoffs 7y, and mr of the SPs respectively.
Theorem 4. The SPNE pricing strategies are:
2 Ir 1 Ip

2_F * o —4 7
3 31, PrTet3tan 7

*

pp=c¢+

Proof. py and p; must satisfy the first order condition, i.e.,

drp _ drp * Ir+irp *
g = 0and 7L = 0. Thus, pp = c+ K5 & pp =

c+ 2L éI_LI £ p}% and p} are the unique SPNE strategies if they

yield 0 < 29 < 1 and no unilateral deviation is profitable for
SPs. We establish these respectively in Parts A and B.

Ip—Ir

Part A. From (7), zo = " + pr — DL,
L
It > Iy and I7 > 0, then 0 < 29 < 1.

21 — 15
3T%

. Since

. 2 2 . .
Part B. Since dd;f <0, dd;f < 0, a local maxima is also a
F

global maximum, and any sofution to the first order conditions
maximize the payoffs when 0 < zyp < 1, and no unilateral
deviation by which 0 < zy < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to ny = O,np = 1 and ny, = 1,np = 0 is not
profitable. Note that the payoffs of the SPs, (I)) and (2), are
continuous as ny, J 0, and ny, 11 (which subsequently yields
ngp T 1 and ng | 0, respectively). Thus, the payoffs of both
SPs when selecting p;, and pp as the solutions of the first
order conditions are greater than or equal to the payoffs when
nr = 0 and ny = 1. Thus, the unilateral deviations under
consideration are not profitable for the SPs. O

Remark 3. The proof shows that xq,pj} ,py do not depend
on the specific nature of the costs of leasing spectrum I, Iy,
neither does n’ ,n%. from @). Thus the SPNE expressions for
these would remain the same for any other cost function. But,
the SPNE of investment levels (I}, I}.) as obtained in the next
results depend on the specific nature of these functions.

Stage 2: SPr decides on the amount of spectrum to be leased
from SPy, Ip, with the condition that 0 < Ip < I, to
maximize 7g.

Theorem S. The SPNE spectrum acquired by SPr is:

Iy, 2
_-Lr h I il
oZs —1  m =gy

2
I, when 6 <1Ip <4/ —
9s

Stage 1: SP; chooses the amount of spectrum I; to lease
from the regulator, to maximize 7.

Theorem 6. The SPNE spectrum acquired by SPy, I7 is the
solution of the following maximization

1 2 1
max my, = — -
It T 9" 912 —

/2
/= <Iy.
5 stL

Let A = 0. Theorem [I] follows from Theorems [3} [] [3} [6]
Theorem E] allows us to consider only interior SPNE. Parts (1)
and (2) of Theorem I]follow respectively from Theorems[6|and
[l Part (3) follows from Theorem [4] part (4) from Theorem [4]

and (3).

I =

®)

)2 =1

I
2 L
)t elE

C)]

III. EUSs wiTH OUTSIDE OPTIONS

We now generalize our framework to consider a sce-
nario in which the EUs from the common pool the SPs are
competing over, may not choose either of the two SPs if the
service quality-price tradeoff they offer is not satisfactory. In
effect, there is an outside option for the EUs. Also, each
SP has an exclusive additional customer base which can
provide customers beyond the common pool depending on the
service quality and access fees they offer. We introduce these
modifications through demand functions we describe next.
Definition 3. The fractio of EUs with each SP is

iy, = ang +@¢L(pr,{L), fr = anp + or(pr, Ir),
where
¢r(pr, IL) =K —0'pr + ' (I — Ir),
or(pr, Ip) =k — 0'pp +b'Ir
and o > 0, k', ' and V' are constants.

Here, nr,np represent fractional subscriptions from the
common pool as before, and are determined in Stage 4 of the
sequential game described in Section based on the utili-
ties specified in , with v* = v¥" for simplicity. The demand
functions ¢ (.,.) and $p(.,.) can be positive or negative.
A positive value denotes attracting EUs presumably from an
exclusive additional customer base beyond the common pool,
and a negative value denotes losing some of the EUs in the
common pool to an outside option. The size of the common

3The fraction may be replaced with actual number (of EUs) in this case,
by altering scale factors in this expression and in those of the payoffs. Our
results hold for both interpretations as we do not use 0 < np,np < 1 in
any derivation. We use 0 < ny,,np < 1 though.
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pool may be different from the exclusive additional customer
bases of the SPs; to account for this disparity, we multiply the
fractional subscriptions from the common pool, ny,nr with
a constant o.

Considering ¢’ = «, for analytical tractability:

i =a(ng +erlpr,Ip)),

~ (10)
ip = a(nr + op(pr, Ir)),
with k = k'/a, b=1'/a, and
er(pr, 1) =k —pr +b(Ir — Ip), (11

or(pr,Ir) =k —prp +blp

The formulation is the same as in Sections with
fip, g replacing np,ng in (I) and @). Using the argument
that led us to the expression for the As in Section [[I-A] the
EU-resource-cost is Iy /py + (Iy — I})/p}., following the
argument in the last paragraph of Section [[I-A] We characterize
the SPNE strategies in Section [[[I-A] and provide numerical
results in Section

A. The SPNE outcome

For simplicity, we consider only interior SPNE strategies,
that is, 0 < n},n} < 1. We define functions f(I), g(Ir),
7w, (Ir) and sets Ly, Ly as follows:

1 +b
57

Ly +f—7+
I 517,

15 15
b
0(y) = 2C‘é(gIL + 5 +g(IL)

g(Ip) = » fL) =

— fIL)y)” + sy® — 12,

={s > 2af*(Ir) + 2af(IL)g(IL)/IL, g(IL) > 0,
§<Ip, I <4/b},
={0<1Ip, I <4/b}N ({Q(IL) >0,
20f2(I1) < s < 20f2(I) + 20f (I)g(IL) /1 }
U202 (1) + 4af (IL)gUL) /11 = 5, 2af*(IL) > s}).

With § < 4/b, we prove in Appendix [E}
Theorem 7. The interior SPNE strategies are:

(1) Iy is characterized in

20/ U)oL ) vy g1,

I] = argmaX( max O(W Ir €Ly

Ip, Ipely

(2) Iy is characterized in

—2af(IL)g(IL) .
— 22l jf I eL
n={ P -s el
I, if I € Ly
@ pi=h+¥+i+ At 8L =
2 k b *
§+§+51*+15IL s 1r

@ ny =1 LIF + P — 20f, + k+ bIf = bl i = 15 +
i, — 2p% + k4 bI%

Remark [2] holds here with Theorem [7] substituting Theo-
rem [11

06 I3

Amount of Spectrum

01 o o

Fig. 7: Spectrum (left), degree of cooperation and subscrip-
tions (right) vs. s Here, y =08, c=k =1, b= 2.

Despite the expressions being cumbersome, the charac-
terization is easy to compute, as in Theorem [} and lead to
important insights, as enumerated below.

3 Ix 2b b
n 1—-—= I — Iy —-I7
ng = 5( I; E)+er(pr, In) + 5 5iL
3 1% 2b b
nhm=1-——-(1--2% I —Ir+=I
ng 5( I*)‘HPF(PF, F)— 5 F+5 L
In both equations, intuitively, the first term, %( — %) 1-—

g( ﬁf ), represents the subscription from the common pool,
if there had been no attrition to an outside option. The second
and third terms represent the impacts of the attritions as also
the additions from the exclusive customer bases. The first term
depends on the degree of cooperation similar to the the base
case specified in part (4) of Theorem [I] In the special case
that b = 0, i.e., when the demand functions depend only on
the access fees, the third term is 0 and the demand functions
capture the impact of attrition and additions in the SPNE
expression for the subscriptions. For b > 0, the second and
the third term together become k — pL + LI (4—3Ip/13) in
the expression for 72}, and k—pp+% IL(1+3I}/IL) in that for
7. Thus, higher degree of cooperation decreases (increases,
respectively) the subscription for SP; (SPg, respectively)
even in these terms, and therefore, overall, like in the base
case. Note that the subscriptions represent the efficacy in
competition. However, as in the base case, the decrease in
subscription does not directly lead to reduction in overall
payoffs of SPr, as the deficit may be compensated through
income generated by leasing spectrum to SPg.

B. Numerical results

Figure [/| show that now, both n},n} can decrease (eg,
with changes in s) because of attrition to the outside option
possibly due to decrease of I}, I;.. We note this when s is
below a threshold. Otherwise, the trends resemble Figures E]
and [] (the base case).

Figure [§| (left) shows the payoffs under different s. The
trends of payoffs are similar with Figure [2] (left). The SPs earn
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3 when (b,4) = (1.2
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Fig. 8: Payoffs (left), EU-resource-cost (right) vs. s Here, v =
0.8, c=1.

higher payoffs than in the base case, as they have additional
exclusive customers bases to draw additional EUs from.

Figure [] (right) shows that for different values of the
parameters b, k, the EU-resource-cost exceeds that for the base
case shown in Figure [3| This is because the SPs provide better
resource-cost tradeoff to the EUs so as not to loose them to
the outside option, and also to draw more EUs from their
exclusive additional bases.

IV. THE 3-PLAYER MODEL

We now generalize our framework to consider competi-
tion between MNOs, rather than that only between an MNO
and an MVNO. In a 3-player model, we consider two MNOs
and one MVNO competing for a common pool of EUs in a
covered market (i.e., each EU needs to opt for exactly one SP).
We present the model in Section and characterize the
SPNE in Section TV-B] We show that the competition among
multiple SPs reduces their payoffs, but benefits the EUs: the
SPs acquire higher amounts of spectrum (hence provide higher
service quality), and charge the EUs less. The competition also
reduces the payoffs of SPs. We prove the results in Appendix [C]
(Theorems 8, 9) and in Section [E (Corollary 1).

A. Model

We consider a symmetric model and seek a symmetric
equilibrium i.e., the strategies of the MNOs are the same, and
the MVNO leases the same amount of spectrum from each
MNO. Thus, in the SPNE, I = IL1 = ILQ, Ir = IFl = IFQ,
PL = PL, = PL,, and ny, = ny, = nr,. The total amount
spectrum of SPs is 2. Thus, each MNO retains Iy, — Ip
spectrum. We define the payoffs of MVNO and MNOs as

(12)
(13)

r =np(pr —c) — 2515

7L =nrp(pp —c) + sle —~yI7

To accommodate the three SPs, we modify the hotelling
model. The EUs are uniformly distributed along a circle of
radius 1 on which the SPs are virtually located (Figure [9).
Since the radius is 1, each arc length equals the corresponding

10

Fig. 9: The hoteling model for the three players case

angle. Thus, the number of EUs located 1) between the MVNO
and MNO; is ¢o,; and 2) between the MNOs is ¢ ».

We consider that ¢ 1, ¢o,2 and ¢ o reflect the natural
preferences of EUs for SPs (intuitively, for example, those in
the arc ¢ ; would have stronger preference for the MVNO
and MNOy, and so on). We allow the preferences to depend
on spectrum investments by defining these arcs as: ¢g1 =
¢0,2 = h1(Ip,Ip) and ¢1 9 = ho(Iy, Ir) for some functions
hy and hy (considering that the model is symmetric). We can
now consider the transport cost as a parameter ¢ > 0 rather
than a function of I, I, unlike in Section We focus on

the special case that v = v = v.

Similar to (3)), if an EU is located in the arc of ¢q 1, at
a distance of x from the MVNO,
UMVNO =V — tx — pF
upNO, =V — t(po1 —x) — pL
UMNO, =V — L -min(z + ¢o2, Po,1 — = + $1,2) — PL
(14)
By calculation, if x < ¢g1/2, then upno, < umvno, and
UMNOy; = U — t(iC + ¢072) — pr. < upyyno- Then, EUs
choose MVNO. If x > ¢¢.1/2, then upyrvvo < upno,. and

UMNO, =V —t(¢o,1 — 2+ ¢1,2) —pr, < umno,. Then, EUs
choose MNO; instead of MNO..

Similarly, due to symmetry, if an EU is located in the arc
of ¢¢.2, he does not choose MNO1, and suppose the distance
from the EU to the MVNO is z, thus

UMVNO =V —tx — pp

(15)
upNo, =V — t(¢o2 — x) — pr

If an EU is located in the arc of ¢ o, at a distance of x
to the MNOj, then his utility is;

UpMNO, =V —tr — pr,
upNO, =V — (P12 — ) — pr.

upvNo =v —t-min(z + ¢o,1, 01,2 — T + ¢o2) — PF
(16)
Now we have the following lemma,
Lemma 2. If p;, — pr > t¢o,1, then all EUs choose the
MVNO; if pr, — pr < t¢o,1, then EUs located in the arc
of ¢1,2 do not choose the MVNO.

Henceforth, we only consider p;, — pr < t¢g,1, as:
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Theorem 8. No SPNE strategy exists if pr, — pr > t¢o,1.

Now, from Lemma [2| and the discussion above, the
MVNO and MNO; (MNO; and MNO., respectively) compete
to attract the EUs located only on the arc of ¢o; (¢1,2,
respectively). Thus, we define the number of EUs of any two
SPs depends only on their total investment levels, i.e., for a
constant (,

eI —Ir I+
¢o1 = P2 = (¢ 51, =( 51,
201y, — 1 Ir —1
gy = 2L =10 _ o Ir
1, Iy,

B. The SPNE outcome

With 6§ < §/4, we prove in Appendix
Theorem 9. The unique symmetric SPNE strategy, with I7 , p},
representing the choices of, and ny subscription to, each

MNO, and I}, py.,n} the corresponding quantities for the
MVNO, is:

T |t
fwg,pz:p}:tﬂ'—i—c, np =2n; =m.

2

Remark 4. The MVNO leases the entire new spectrum from
each MNO. The degree of cooperation, Iy /I; is 1. The
characterization of the SPNE is easy to compute.

I =Tp=

We compare the outcome of the 3-player model with the
2-player model, to understand the impact of the competition
between the MNOs. To ensure consistency of comparison, we
modify the 2-player model of the base case in Section [[I] as
follows: (1) The transport cost is ¢ instead of t;, = Ir/Iy,
and tr = 1 —tr. (2) EUs are distributed uniformly along the
interval [0, 27] instead of [0, 1], since in the 3-player model,
the total amount of EUs is 27 (3) v* = v = v. By the same
analysis method in Section [, we prove in Appendix [F}
Corollary 1. In the 2-player game formulation, the unique
SPNE strategies are:

I; =0, Ip =0, pj, =pp =2tn+¢, np=n} =7.
Comparing Theorem [9] and Corollary [T} we note that due
to the competition by an additional MNO, SPs acquire higher
amounts of spectrum in the 3-player model, i.e., the two MNOs
order additional spectrum, and the MVNO leases the entire
new spectrum from each MNO. The SPs charge the EUs less
too: ¢tm + ¢, as opposed to 2¢{m + ¢ in the 2-player model.
In both models, the MNO(s) and the MVNO divide the EUs
equally: in the 2-player model, each SP has half of the EUs
(m), while in the 3-player model, the MVNO has half of the
EUs (7), and each MNO has a quarter of the EUs (7/2).

From (I2) and (T3], for 3 players, the payoffs are: (1)
3t1° for each MNO, and (2) & (7— 1) for the MVNO. For 2
players, the payoffs are 2t72 — 62 and 2¢72 for the MNO and
the MVNO respectively. Thus, clearly (each) MNO secures
a higher payoff than the MVNO for both the 3-player and
the 2—player cases. Also, the SPs earn more in the 2-player
model, since fewer SPs compete for the same number of EUs.

11
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Fig. 10: Spectrum (left), access fees (right) vs. s

Fig. 11: Relative payoffs (left), the overall resource per unit
price of all subscribers (right) vs. s.

Since there are 2 MNOs and 1 MVNO now, and the
MVNO leases I;. amount of spectrum from each MNO, the
EU-resource-cost becomes 21} /pt + 2(IF7 — I7)/p} .

C. Numerical results

In Figure 10| (left), I} 5, I 5 (respectively, IT o, I ,) are
investment levels of SPs in 3-player (respectively, 2-player)
model, comparing Theorem [9] and Corollary [I] we note that
due to the competition by an additional MNO, SPs acquire
higher amounts of spectrum in the 3-player model, i.e., the
two MNOs order additional spectrum, and the MVNO leases
the entire new spectrum from each MNO. From Figure
(right), p7, 3, P 3 (respectively, py o, pf ) are access fees of
SPs in 3-player (respectively, 2-player) model, the SPs charge
the EUs less too: ¢+ ¢, as opposed to 2tm + ¢ in the 2-player
model.

Figure [I1] (left) shows that SPs can gain less if an
additional MNO enters the system due to the additional
competition. Figure [IT](right) shows that the EU-resource-cost
in the 3-player model exceeds that in the base case for 2 SPs
shown in Figure [3] This follows because as noted earlier EUs
pay lower access fees and the SPs acquire higher spectrum
overall. Thus, like in Section the additional competition
among the SPs is beneficial for the EUs.

V. GENERALIZATION: LIMITED SPECTRUM FROM THE
CENTRAL REGULATOR

Since we have assumed the spectrum available to the
central regulator is limited. A natural assumption is that to
set an upper bound to the investment level of SPy, I;. In this
section, we assume ¢ < [, < M. Similar with the assumption
of §, M is parameter of choice. After considering the new
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condition of I, we characterize the SPNE of the three cases
above as follows. The proofs of Theorems are given in

Appendix

A. The Base Case

Theorem 10. Let |A| < 1. The SPNE is:
ey

FM< %A I =T = Mpy —c=nj =
pp—c=np =55

If M > %, the SPNE are the same as that in
Theorem

Theorem 11. (1) A > 1: The SPNE is the same as that in
Theorem ) (1).

(2) A =1 : The following interior strategy constitute an

additional SPNE, if M < #

It =1y, =M,p; —c=n} =2/3,pp —c=np=1/3.

IfM> 57,

(3) A < —1: The SPNE strategy is: If § < M < \/%,

1+A
3 ’

@)

the SPNE is the same as that in Theorem |2|(2).

then

Iy = Iy = M,pp, =pp+ A —1,np =0, ng = 1.
o

If M > NoTL the SPNE is the same as that in Theorem 2| (3).
From Theorems [T0] and [T1} we can find that if the upper
bound M is relative small, the MNO acquires the maximum

amount of spectrum from the regulator, and the MVNO leases
all spectrum from the MNO.

B. EUs with Outside Options

For simplicity, we consider only interior SPNE strategies,
that is, 0 < n},np < 1. We define sets Ly ps, Lo s as
follows:

Li,v ={s > 2af*(I1) + 2af (I£)g(IL) /1L, 9(I1) > 0,
6 <Ip <M, I <4/b},
Lo ={0 < I < M, Iy < 4/6}0 ({g(1) > 0,
20f2(I1) < s < 20f2(I1) + 20f (I)g(IL) /1 }
Uf2af2(11) + 4af(IL)g(IL)/ 11 > s, 2af2(I1) > 5}).

With 6 < 4/b, we have the following SPNE:
Theorem 12. The interior SPNE strategies are:

(1) I7 is characterized in
. _ —2af(IL)g(IL)
1 = om0y ), )
(2) Iy is characterized in
—20f(IL)gUL) .
— = IfIp el
=4 api(y)-s Ulecluu
Iy, ifIp € Loy
* C I* _I* * * *
G pr=F+F+5+ S — sy + 15 v = 15 +
R R LR Y

12

Ii—Ir

4) n; = 5 +py —2p7 +k+0I7 — bl 0 =
pr — 2pF + k + bl

15
1L

+

The proof of Theorem [I2] is the same as the proof of
Theorem [7] Comparing Theorems [12] and [7] after adding the
new condition § < I;, < M on I, the only change is that the
region of I, is shrinked by the upper bound.

C. The 3-player model

With 6 < /4, we have:
Theorem 13. The unique symmetric SPNE strategy, with
17, p} representing the choices of, and nj subscription to,
each MNO, and I, p},ng the corresponding quantities for
the MVNQO, is:

(€)) IfMgg,/é, then
I} =1, =M, pj =pp =tntc, np =2n] =m.
@ IfM >3 é, the SPNE is the same as that in
Theorem [9

Similar with Theorem[I0] if the upper bound M is relative
small, the MNO acquires the maximum amount of spectrum
from the regulator, and the MVNO leases all spectrum from
the MNO.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper investigates the incentives of mobile network
operators (MNOs) for acquiring additional spectrum to of-
fer mobile virtual network operators (MVNOs) and thereby
inviting competition for a common pool of end users (EUs).
We consider a base case and two generalizations: (i) one
MNO and one MVNO, (ii) one MNO, one MVNO and
an outside option, and (iii) two MNOs and one MVNO.
We identify metrics (I} /I for cooperation between SPs,
(n},n?%) for competition between SPs, I /p5+ (17 —13)/p}
for resource-cost tradeoff of the EUs) to quantify the interplay
between cooperation and competition. Four-stage noncooper-
ative sequential games are formulated and SPNE are obtained
analytically.

Analytical and numerical results show that higher degree
of cooperation can enhance the payoff of both SPs, and in-
crease (respectively, decrease) the competition efficacy of SPg
(respectively, SPy). In addition, high degree of cooperation
coincides with high EU-resource-cost, and provides low access
fee options to the EUs. Increased competition due to the
presence of additional MNOs is beneficial to EUs but reduces
the payoffs of the SPs.

All results extend, with some modifications, when we
consider that I;, is upper bounded by M. Such bounds may
apply when the central regulator has limited spectrum to offer.
In this case, if the upper bound M is relatively small (less
than some threshold), in the SPNE, I} Iy, = M, but
otherwise I , I} characterized in various Theorems apply. The
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thresholds will in general be different for different cases and
have been quantified. The SPNE values of the other decisions
variables, namely p7,p%,n7,ny remain as in various Theo-
rems. Refer to Section V of the technical report [9] for the
deductions.

Future research includes generalization to accommodate:
1) non-uniform distribution of EUs between the two SPs in
the hotelling model, 2) distinct transaction costs ¢z, and cp,
3) potentially non-convex spectrum reservation fee functions
that the SPr pays the SP, and the SPy, pays the regulator, 4)
arbitrary number of MNOs and MVNGOs, 5) arbitrary transport
cost tr,tr functions of the spectrum acquired by the SPs,
Iy, Ir. We next provide research directions in each.

1) If the EUs are non-uniformly distributed in [0, 1], one
can start with a cumulative distribution function F'(z)
which gives the fraction of EUs in (0, z). Starting with
the base case and vX = vf, in (§), for 2y € (0,1),
ny will now be F(zg), where zo is given by (@),
ng 1 — ny as before. Following the analytical
progression in Section the results must now be de-
rived using specific expressions for F(-) (eg, Lemma
Theorems [4] [B] [6). This will in turn help determine how
the characteristics of the distribution function F'(-) affect
the equilibrium closed forms, which currently remains
open.

The EUs may incur different amounts of transaction
costs for the SPs, namely cr, ¢y, respectively for SPr,
SPy,. Starting with the base case, @), (3) continue to
hold. But, ¢ need to be replaced by ¢y, cr respectively
in the expressions for the payoffs 7, 7 in Lemma [I]
Also, ¢ need to be replaced by 2£teL 2CLECE regpec-
tively in the expressions for the access fees p7,pr in
Theorem 4 The expressions in Theorems [5] [ must
now be derived and modified, building on the above
modifications. This derivation remains open.

Following Remark the SPNE of investment levels (I,
I%) remain open for an arbitrary spectrum reservation
fee function that the SPr pays the SP; and the SPj,
pays the regulator. The analytical methodology used
in Theorems [3] [6] should however apply, though the
expressions would depend on the specific function in
question.

To obtain the SPNE for arbitrary number of MNOs and
MVNGOs, one may distribute them on a circle as for 3
SPs (refer to Section and Figure [0), and follow the
analytical approach presented in Sections
The limitation of this distribution of SPs on a circle is
that a SP can compete for EUs with only 2 other SPs,
as a SP can have only 2 adjacent SPs and effectively
only a pair of SPs compete for the EUs in the segment
of the circumference between them. For 3 SPs, this is
not restrictive, as each SP anyway has no more than 2
SPs to compete with, but it is restrictive for n SPs when
n > 3 as there in general each SP competes with n — 1
other SPs. Nonetheless, our circular distribution method
provides a foundation for this general problem, by

2)

3)

4)

13

allowing SPNE computation for arbitrary number of SPs
when each SP competes for EUs with 2 predetermined
SPs. More innovative topology of placements of SPs
involving distributions in potentially higher dimensions
may be able to relax this restriction, which remains open.

5) For arbitrary transport cost t1,, ¢t functions, the analyt-
ical methodologies (eg, Section for the base case)
would apply. But the derivation of the results remain
open.

APPENDIX A
ON QUADRATIC FUNCTION MAXIMIZATION

Lemma 3. Define a quadratic function f(z) = ax® +bx +c
with a # 0. The maximum of f(x) in an interval [d, e](d < e)
can be obtained by the following rules:

(1) If a > 0, and define the midpoint of the interval M =
d+e , then fmaX( )=f(d)ifM < _%; fmax(z) = f(e)
sz > -2

d)

2) If a < 0, ze f(zx) is concave, then funax(z) = f(
lfd > - 2 ; fmax( ) = f(e) lfe < _%; fmax(x)
fl=5) ifd<—% <e

Proof. (1). Since a > 0, then f(x) is convex, thus the
maximum point can only be obtained at the boundary points,
i.e., x = d or x = e. Thus,

f(d) = fle) =

Let M < —2a &
—2—<:>(d+ e)a+b<0.Noted—e <0, from
fle) = (a(d + )+b)(d—e) > 0, which implies fmax( ):
f(d). Similarly, if M > —2=, note a > 0, then M > —5- <
d+e>— (d+e)a+b>0 Sinced—e<0thenfr0m
. fd = (a(d+e) +b)(d — e) < 0, which implies
fmax (@ ) = f(e)

(2). If a < 0, then f(x) is concave. Since f'(z) = 2ax + b,
then 1) f'(z) < 0 and f(x) is decreasing if z > —L, 2)
f'(z) > 0 and f(z) is increasing if z < —L2. () If d >
5=, then f(x) is decreasing if z € [d,e], hence frax(z) =
f(d). (i) If e < —L, then f(z) is increasing if x € [d, €],
hence fuax(x) = f(e). (iii) Let d < —5- < e. Since f(x) is
concave, thus f(z) has a unique max1mum point (stationary
point) x = — 2ba,1€ f(—=2L) > f(z) for all z € R.If [d, f]

contains —=, i.e., d < —= < f, then f(—) > f(z) for
b

(a(d+e)+b)(d—e).

Since a > 0, M < —2b

a7

d+e
2

<

all z € [d, f], hence fiax(x ): f(=%). O
APPENDIX B
PROOFS IN THE BASE CASE WHEN v = ovf
Proof of Theorem 3] when vl = vF.

Proof. Let (p},p5, 15, I}) be a corner SPNE strategy. Thus,
1) zg > 1, or 2) zg < 0. We arrive at a contradiction for 1)
Step 1 and 2) in Step 2 respectively.

Lemma 4. 7. > 0. If n}. > 0, p}. > c.
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Proof. Let w3 < 0. Consider a unilateral deviation in which
Ir = 0,pp > c. From ({12), 7 > 0, leading to a
contradiction. Now, let nz > 0 and p < c. Thus, 7 < 0
which is a contradiction. O

Step 1. Let j > 1. Clearly, n}, = 0 and nj = 1. From (@),
g sIz2.

From Lemma [ I = 0. Thus, 73, = 0,t5 = 1. From
@. 1< x5 =tp+pp—p; =1+pp—pi. Thus, pp. > p;.

From (1), 75 = p} — ¢ — 1% If p} < c, then 7} <
—v62% < 0 since I7 > 4. Consider a unilateral deviation by
which I = §,p;, = ¢, then 7, = —v462, which is beneficial
for SPy,. Thus, p7 > c.

Now, let p7, > c. Thus, p}. > p; > c. Recall that 2§ =
1+ p% — p},. Consider a unilateral deviation by which pr =
p}, — € > c. Now, by @), o < 1, and hence np > 0. Now,
from @), 7 > 0 = w}.. Thus, (I}, p}) is not SPg’s best
response to SPy’s choices (I, p} ), which is a contradiction.
Hence, p7 =c.

Now consider another unilateral deviation of SPy, p/L =
pr + €, where 0 < € < 1, with all the rest the same. Since

P < g, Dy, > Dl =c.

np=xy=tp+pp—pp=1—c

7 — 7L =np(Pr — ) — (L —¢) = (1 =€) (p, —¢) > 0.

The last inequality follows because p} > ¢ and € < 1. Thus,
we again arrive at a contradiction.

Step 2. Let zj < 0. Clearly, ny = 1,n} = 0. Since n}j > 0,
by Lemma [ p} > c. From @), zf = t% + py — pp < 0.
Thus, p§ > p% + t%. Now, from (),

7y = sl — 12 (18)
Consider a unilateral deviation by SPy, by which p} =t +
pr —¢€, 0 <e <1 Then

Therefore, by (62),
Ty —mp =np(pp —¢) = e(pp —e+tp —c)

Since py > c, either p}, = c or p% > c. If p}. > ¢, then let
€ < pj —c Then, n}, — 7} > 0. If pj, = ¢, then I, =0
(otherwise 7}, < 0, which by Lemma [d] implies that p7, is not
a NE), then t}, = 1. Thus, 7, — 7}, > 0. We again arrive at a
contradiction. O

By Theorem 3| proved above henceforth we only consider
interior SPNE in which 0 < 25 < 1.

L _ ,F

Proof of Theorem B] when v vt

14

Proof. Substituting pr and pr from into (6), using ¢z, =
Irp/I, and tp =1 — tr, SPg’s payoff becomes,

1 2 1
Ip) =(— —s)p + —Ip+— 19
mrllr) = (g = s)r +gpIr + g (1%
Thus, the following maximization yields [r:
1 2 1
Ip) = (=5 —8) It + —1I —
max 7r(Ir) (91% s) e+ oI, F+ 9 20)

S.tOSIFSIL.

A).If I, = \/% ie., ﬁ

in Ip. Thus, I, = I

—s=0, mp(Ip;I5) is increasing

(B). Let I, # \/%. Referring to the terminology of Lemma
—b/2a = w’é’lﬁ’ which we denote as F}.
L

B-1). Let I, < \/%, ie., 1 — 9I%s > 0. Then 7p is a
convex function. Note that I € [0, 1], and the midpoint of
the interval is I, /2. From Lemma since 1 — 9[%5 > 0, then
Fy; <0< I/2, = the maximum is obtained at I = I.

(B-2). Let I, > ——, ie, 1 = 9I}s < 0. Then 7p is a

V9s

concave function. Note that F; = % > (0. From Lemma

o1z
0<F1<IL<:>,/%<ILandFlzlL@)\/%<IL§

/2
9s° thus

Combining (A) and (B), we obtain (8).
Proof of Theorem [6

Proof. Substituting p;, and pg from into 7, from (@),

using t;, = Ip/I;, and tp = ILI;IF, SP;’s payoff becomes:
2 Ip o *2 2
WL(IL):(gf?’I ) +SIF 7’}/IL. (21)
L

Now, the following optimization yields I7:
2 Iy

3 3

S - aE P s -1

max WL(IL) = (
I
st 0 S IL.
Then, we have the following two sub-cases.
(A). From (8), if § < I, < ,/%, then I}, = I, thus

for Iy, in this range, the objective function of the optimization

is § + (s —~)I7. This is an increasing function of I, since

s > . Thus the optimum solution for I, € [§, /] is \/&.

e /2 R | :
(B). Next, if 5 < Iy, then Iy = Miﬁ Since
I

= —t— = 2 ks :
I, = (O1Zs—1) when I;, = /5., then I is continuous at
- . /2 LT 2
IL* QS'SO WL(IL,IF)%’/TL‘IL:I;:\/% as IL\L 95"
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Therefore, this case also includes the optimum solution of

previous case. Thus substituting I}, = géﬁ to ,
is obtained. ]

APPENDIX C
THE PROOFS IN THE 3-PLAYER MODEL

Proof of Lemma

Proof. First, let p;, — pr > t¢p,1. Consider EUs in the arc
of ¢1,2. Consider an EU at distance x from MNO;. From the

symmetry of MNO; and MNO., 1) if z <
¢1,2

UMNO,» and 2) if z > 5
1.2

5= UMNO; 2
, UMNO, = UMNO,- Since pr, —
pr > tgo, 1) if 2 < 5=, then uprno, = v —tx —pr <
v —t(x + do1) — pr = upvno, and 2) if = > 242 then
UMNO, = U —tx —pr < v —t(x+ ¢o,1) — PF = UMVNO-
Thus, all the EUs in arc ¢ 2 will choose the MVNO.

Note that ¢g,1 = ¢o,2. Now consider the EUs in arc ¢g 1
(¢0,2), at a distance of = from MNO; (MNOy, respectively).

From and (13), upnvo, — umvNo = tdoi — pr + pr —
2tx < 0 since pr, — pr > t¢o,1,2 > 0. Thus all these EUs
opt for the MVNO.

Let pr, — pr < t¢p,1. One can similarly show that the
EUs in arc ¢; > choose either MNO; or MNOs. O

Proof of Theorem

Proof. Since I} > 6 >0, ¢5, = &5 > 0. From Lemma 2]
ny = 2m, and n} = 0. Thus,

wp = 21(pf — ) = 2s(If)%, ) = sIi? — I

Let p}. < ¢, then 7}, < 0. Consider a unilateral deviation
of the MVNO, by which pr = ¢, Ir = 0. Thus, 7r = 0, and
the unilateral deviation is profitable, which is a contradiction.
Thus, p7 = c.

Thus, since ¢5; > 0, and from the condition of the
theorem, p7, > py +1¢;, > c. Consider a unilateral deviation
of MNOy, by which p} = p + to1 — € > ¢, with € > 0.
Now consider the utilities of the EUs in arc ¢ 1, at a distance
of z from MNO;. From (T4),

UpNo, — UMVNO = tdp 1 — Pp, + Pp — 2tx = € — 2tx.
So for x € (0,¢/2t), unno, > umvno- Thus nyno, > 0.

Since I}, and I} are the same as before, then 7,y =
2 2
nyno, (Pp —¢) + sl —~yI;°. Thus,

/ * o /
TMNO, — TMNO, = "m0, (P, —¢) > 0.

The last inequality follows since p7, > ¢ and nly; o, > 0.
Thus, the unilateral deviation is profitable which leads to a
contradiction. O

Proof of Theorem

15

Proof. Due to Theorem (8} we consider that p;, — pr < t¢0,1
henceforth. We sequentially progress from Stage 4 to Stage 1.

Stage 4: First, we determine the constant (.

_ - Irpt+Ip
= 7751,

Lemma 5. ( = 7, and ¢p1 = ¢Po2

Ip—Ir
Iy, :

’ ¢1,2

™

Proof. ¢o1 + ¢oa + @12 = 2, then ¢ = 7. The rest follows
from the definition of ¢g1, ¢o2, and @ja. O

By symmetry, we only consider the split of the EUs
between the MNO; and the MVNO.

Theorem 14.

0 o § 0

Ir +11  prL—pr
nyvNo =14 21, + t 0 <o < o (22)

I, +1

ﬂ'% o > $o,1

L

T 29 <0

3Ip, —Ir  pr—>pL
NAMNO, = s AT, o 0<zg < (25071

I, — Ip
—_ >

™ 57, o > ¢o,1

(23)
where xg = % 4 BLZPE

Proof. Suppose xo is the indifferent location of joining
MVNO and MNOI, then:

v —txg —pr =v —t(do1 — To) — PL
$0,1 , PL — PF
= T
Let TMVNO,MNO2; TMNO1,MNO2 be the indifferent locations
between 1) MVNO and MNOs, and 2) MNO; and MNO,
respectively. Then, v No,MNO2 % + BLPE and
TMNOL,MNO2 = ¢12’2. The number of EUs per unit length
to be normalized to one, nyv o equals o+ 2y vNO,MNO,
if 0 <ag < d)o,l, 0 if xg <0, and (Z)071 + (25072 if xg > (]5071.
From the symmetry of the game, xyv No,MNO, = To. Now,
(22) follows from Lemma [5}

(24)
=0

Next, nayno, and nayno, equal (do1 — xo) +
TMNO,,MNO, if 0 < xo < @01, ¢0,1 + TarNo,,MNO, if
o < 0, and TMNO1,MNO> if xg > (]50’1. Similarly, l|
follows. O

Stage 3: Now we characterize the SPNE access fees.

Theorem 15. The SPNE access fees of EUs of SPs, (%, p})
by which 0 < xg < ¢o.,1, is:

tLTIF-FE)IL t£7IL—IF

= 7= . 25
Pr= g5 GPL= g o T (25)
Proof. Substituting (22) and (23) into (I12) and (I3),
I I —
mp= (PP o) —2sTE (26)
217, t
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3, —Ir
41y,

+pF—pL)(

—~I% (27
ot yI7 (27)

7w = (7 pL —c) + slp

py and pj should be
conditif)n, ie., (;;—ih,* |PL
%% + ¢ pL tg ”L fa + c. Therefore, p} and
p; are the unique interior SPNE strategies if 1) they yield
0 < 29 < ¢o,1 and pr, — pr < t@o,1, and 2) no unilateral
deviation is profitable for SPs. We establish these in Parts A

and B respectively.

determined to satisfy the first order
= 0 and 0, thus p}

Part A. Substituting pj and pj. into , Zo ¢g,1 +
BLoPE — (5 + 55-) € (0,¢0.), since 0 < Ip < If

121
I, > 0. Also, PL —Pr = fﬂILI L < tTrIL+IF _t¢01

d27TF 2 d27TL _ l

Part B. Since FIrAL -2 < 0, 5% = < 0,
pF) 3 t . d(pL) 3 t

then p} and p} are the unique maximal solutions of 77, and

mr, respectively for 0 < xg < ¢g,1. Similar to the proof

of Theorem [ any deviation by SPs such that zp < 0 or

o > ¢o,1 (Whichyieldsny =1,np =0andn; = 0,np =1,

respectively) is not profitable. O

Stage 2: We characterize the spectrum SPr acquires from SP;,
in the SPNE.

Theorem 16. I;. is given by:

5tr2l t
721273T —Lt 2 F = g 3s
A (28)
t
Iy if 0<1g <
3s
Proof. Iy is obtained as the optimum solution of
tm? 5tm? 25t
= —925)J2 + T o
max 7 =(gam — 29)0p + 35 Ir + =55 (29)

s.t OSIFSIL

The objective function follows from substituting (23]
into (26). The constraints come from the model assumptions
directly.

(A). Let I, = E i. Then 7p is increasing in I, as mp =
5t 25t
18’}LI + 2507 Thys Iy, =1Ir.

(B). Let I, # ¢4/ z—ts.Referring to the terminology of Lemma

5tx?
_ _ 181L _ _5tr?Ip :
, (=b/2a) = 2t e = Tlds i We denote this
361
L

quantity as Fj.

(B-1). Let I; < ,/ . Then 7p is convex. Ir € [0, IL].

Since 3612 —2s > 0, then 725[L tn? < 0,thus F; < 0 < 2
From Lemma Bl I = IL.

16

. 2 .
(B-2). Let I, > Z,/+, ie, ;6—12 — 25 < 0, then 7p is
2
concave, and F} = % > (. From Lemma
L
5t T T |t
72125 — tn L5\ 5

In =

I
L 33

if “ IL

The desired results come from (A), (B) and (C).

Stage 1: We characterize the spectrum SPy, acquires from the
regulator in the SPNE.

Theorem 17. Any solution to the following maximization
problem constitutes 17,

2
7, — Stm I
tm? L 72[%3—7571‘2 2 5t7’|’21L 2 2
ma = — s —~I
T 20, Vs, ) T
s t
st = <I
3s L
(30)

Proof. Each MNO chooses its I as the solution of the
following maximization:
tr? 71, — I

2 2 2
I —~T
18( o7, )"+ sl — ol

max 71 (1) = 31)

The objective function follows by substituting [23) into (27).
The constraint follows from the modeling assumption.

We consider two cases separately: A) 6 < I < g, / 3%
and B) I, > 3 3

s
jus

(A). From , if 6 < Iy < %/&, then I} = Ip,
. . . . 2 . .
thus the objective function of is % + (s —)I%. This is

an increasing function of I;, since s > ~y. Thus the optimum
t

3s”

7T

solution in this range is

5t Iy,
7217 s—tmw?’

). Note that I, = %

t
3s°

. Therefore,

s

t *
51/ 35, then I

*\ 5t ]
WL(IL’IF) - 7TL(IL, 72125 §7r2

(B). Next, if Iy, > thus

7\'

s

when I;, = 5

So uvs (IL7 I3 )
2 3

this case also includes the optimum solutlon of previous case.
s into (31)), we get ( @ O

* 5t Iy
Substituting [}, = st

3g, then I}, is continuous at I;, =

asIL—>

t

Theorem 18. I7 = I;

3s*
) TIL—
Proof. 2From (30D, we have 7, (I,) = ¥ ( ety
5(%)2 — 12 & f(I) + fo(IL) + fs(IL), where
2 7r2
) = & (I - 1441?5#)2’ folIy) = 5(%)2,
and f3(I1) = —’712 Now we take the derivatives of fi, fo,

and f3 with respect to Ir, & d”—L = filo)+ f5(IL) + f3(Ip) =

10t? I3 .
(72[%”7%;)3 x19- (tr? —144135)—27&. Since I, > 54/35,
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then tm? < 1213, thus 72125 —tr? >0 and tn® — 144135 <
0, which implies $/- + 92 < 0. 9 = —2yI;, < 0,
therefore ffTLL < O so 7wy, is a decreasing functions of I,

(s —~)Iy >0, and

O

tr?

2

so I} =3 . In addition, 7}

N

Theorem [9] follows from Theorems [14] [T3] [T8]

5t I*
72[*25—tﬂ'2 -

Iy =
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Supplementary Proofs

APPENDIX D
SPNE ANALYSIS OF BASIC CASE

If SP, invests in the minimum new spectrum, i.e., I;, = 9,

and set p;, = ¢, then
7y = sl% — 762

Thus for any Nash equilibrium (NE) strategy (I5,p7 ).
have

we

7TL|pL,I* > 752
If SPr leases no new spectrum from SPy, then 7p = 0.
So for any NE strategy (I, p}), we have
> 0.

Stage 4: We first characterize the equilibrium division of EUs
between SPs, i.e., n} and n}, using the knowledge of the
strategies chosen by the SPs in Stages 1~3.

Theorem 19. The indifferent location between the two service
providers is

zg = A+1tp +pr —pr. (32)
Proof. From Definition [2]
up(zo) = v —tp(l —0) — pp
=of —tpzg—pr = ur(xo).
Note t;, + tF = 1, then
A+tp+pr—pL
o =
tp +tr
=A+1tp +pr—prL-
O
The fraction of EUs with each SP (ny, and np) is:
0, if Zo § 0
nrp =1 xp, if 0<zg<1
" v ’ (33)
17 if o > 1

ngp = 1- nr,
where x is defined in (32).

A. The interior SPNE

In this section, we consider the interior SPNE (0 <

ng,ny;, < 1), and the corner SPNE ((np,nr) = (1,0) or
(0,1)) are considered in Appendix [D-B|

Stage 3: SP;, and SPp determine their prices for EUs, py, and
pr, respectively, to maximize their payoffs.
Lemma 6. The utility functions of SPs are

7 =(A+tp+pr—pL)(pr —¢) + slp — I}

(34)
=(=A+ty, +pr —pr)(pr —c) — slf.

TF
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Proof. From (33), substituting (ny,np) = (A + tp + pp —
pr,1—ng) into @) and (1), we get (34). O

In the following theorem, we characterize the SPNE
access fees of SPs.

Theorem 20. The interior SPNE access fees pj, pr. are

PL=et3 T3 T3 )
. 1 Ir A
Dp =C+ 3 + 3, 3

and (p},p%) are unique if and only if
A—1<I—F<A+2. (36)

1,

Proof. We complete the proof in two steps: we first obtain
equilibrium access fees (p},p}) (Step 1); then we get the
condition and prove that p} and p},) are the unique Nash
equilibrium access fees of SP;, and SPr, respectively (Step 2).

Step 1. Consider a SPNE, every Nash equilibrium (p},p})
should satisfy the first order condition. Get mr and 7, from
(34), then p} and p}, should be solved by

d’]TL dﬂ'F

dpﬁ'pz: v%p}zo'
Note that t;, + tp = 1, then
N 2 Ip A
Pr _C+§*E+§
% 1 IF A
PF :C+§+E_§'

Step 2. In this step, we prove that the p} and pj are the
unique maximum solutions (in (A)). Then, we prove that the
condition (36) is sufficient and necessary (in (B)). Finally, we
show that p}. and p} are Nash equilibrium by proving that no
unilateral is profitable for SPs (in (C)).

(A). Taking the second derivative of 7;, (wp) with respect to

r1 (PR)
d27TL

d27TF

d(pp)?  d(py)?

then p7, and pj. are the unique maximal solutions of 77 and
T, respectively.

(B). Substituting (33) into (B3], we have

=-2<0,

-1 - S S
0773 3, 3 '3 3I.
th
: 0<a=242 Ir
73 "3 31,

I (37)
sA-1<E At
Iy,

From (37), 0 < z¢ < 1 if and only if (36) holds. Therefore

if (36) does not hold, then oy < 0 or zy > 1, which implies

ny, =0,nF =1or ny = 1,TLF =0.

(O). Since LZ£ < 0
F

global maximum, and

2 . .
dnr ~ (0, a local maxima is also a
) dp

L . I
any solution to the first order conditions
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maximize the payoffs when 0 < x¢ < 1, and no unilateral
deviation by which 0 < zy < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to n;, = O,np = 1 and ny = 1,nrp = 0 is not
profitable. Note that the payoffs of the SPs, (I) and (2)), are
continuous as ny, | 0, and nz 11 (which subsequently yields
nrg T 1 and np | 0, respectively). Thus, the payoffs of both
SPs when selecting p;, and pr as the solutions of the first
order conditions are greater than or equal to the payoffs when
ny = 0 and ny, 1. Thus, the unilateral deviations under
consideration are not profitable for the SPs. O

Corollary 2. No corner SPNE access fees exist if (Ip,I1,) €
R, where
R={6<I.,0<Ir<Ip}

A -1<Ip/I, < A+ 2} 38)

Proof. From Theorem 20} if (36) holds, then no corner SPNE
access fees (p}p};) exist. Note that 6 < Iy, < M and 0 <
Ir < Iy, combining with (36), we obtain the desired results.

O

Based on the results in Theorem we can obtain the
payoffs of SPs as follows,

Lemma 7. The payoff of SPr is

1 2(1 —
912 91y,

A) (1-A)?2

s)I% + 9

WF(IF)Z( IF+

(39
Proof. First, we consider interior equilibrium strategies, from
(34) in Lemmal6], we have
7 = (tL +pr — pr — A)(pr — ¢) — sl
Note that t;, = IF/IL and tp =1 —t.

(i). Calculate t;, + pr, — pr — A. Substituting pr and py, in
into t7, +pr, — pr — A, we have

tr +pr —pr—A

I, —Ir A Ip —A

=— A+t - _ £ _ _=

Ry i i Sy
1-A  Ip
REEEETT

(ii). Calculate pr — c. Substituting pr in (35) into pr — ¢, we
have

e it oA 1A T
bProc=er gy, T3 T Ty T
From (i) and (ii), we can obtain (39). O

Lemma 8. The payoff of SPy, is
A+2 I
m(lp) = (5= — o) +s(Ip)* —=yI7.  (40)
3 31,

Proof. From (34)), we have

mr(Ir) =(A +tp +pr —pr)(pr — ¢) + slp — yI3.
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(i). Calculate A 4+ tp + pp — pr,. Note that t;, = Ir/I;, and
tp = % From , then

A4ty +pr—pL

1 Ir  -A
:A — —_— RS
+tF+(c+3+SIL+ 3)
1 Ip—1Ir A
etg+ =5, T3
A 2lp =1, A+2 I
e F—dL _ A+ _1tr
3 31 3 31

(>ii). Calculate p;, — c¢. From (33),

B 1 Ip—Ir A
PL c—c+3+ 37, 3

L Lo A Avy @
3 31 3 3 31
From (i) and (ii), we get (#0). O

Based on the proof of Theorem [20] the existence of
equilibria are showed in the following statement:

In Stage 2 and Stage 1, we characterize the optimum
investment levels I7 and I of SPs. To analyze easily, we
consider 4 cases: —1 < A < 1 (Case A), 1 < A < 2
(Case B), —2 < A < —1 (Case C), and |A| > 2 (Case D).

Case A: —1<A<1

In this section, we consider —1 < A < 1. First, we
show that if a SPNE exists when —1 < A < 1, then
it must be an interior SPNE (in Proposition [I). Then, we
characterize the unique optimum Iz (in Theorem and
an optimum I; (in Theorem @, respectively. Finally, we
collect the optimum strategies in Stages 1~4, and prove that
this strategiy (p},p5, I3, I5) is an interior Nash equilibrium
strategy.

Proposition 1. If a SPNE exists when —1 < A < 1, then it
is an interior SPNE.

Proof. From Corollary [2} no corner SPNE access fees exist if
(I,Ir) € R. Note that —1 < A < 1, then

A—1<0§IF/IL§1<A+2.
Thus from (38),
R={0<I, <M,0<Ip<I}.

So (36) holds for any 6 < I, < M and 0 < Ip < I, when
-1<A<1. O

Stage 2: SPr decides on the amount of spectrum to be leased
from SP; (Ir), with the condition that 0 < Ip < Ip, to
maximize 7g. From the model assumptions, § is small, then

let § < min( QESA, \/19:)

Theorem 21. If —1 < A < 1, then the optimum investment
level of SPp, Iy, is

1—A) 2_A
(912 —)1L I >4/ =
I = LS . @
I s< I <222
9s

Proof. From (39) and Proposition [I| the optimal investment
level of SPp, I}, is a solution of the following optimization
problem,

2(1_A)IF+ (1—-A)?

—5)[12: + o, 9

1
max TI'F(IF):(@
s.t OSIFSIL

(42)

(A).If I, = \/19?, then wp(Ip; 1) is a linear function of Ip,
ie.,
2(1-A) (1—A)?
Ir) = I .
mr(IF) oI, F+ 9

2(1-A4)

Since —1 < A < 1, then o, 0, mr(Ip; 1) is an
increasing function of I, so I} = Iy,.

®B). If I, # \/% and 7 is a quadratic function. We discuss
the optimal solutions in two cases: (i) 6 < I, < \/%, and (ii)

Iy, > \/% We denote [ as
dng (1 — A)IL
e =0=F =~/ 43
ary e=n = 0= R 9125 — 1 43

B-1).If6 < I < \/%, then 7 is a convex function. Since
Ir € [0, Ir], then the midpoint is I1,/2. Note that —1 < A < 1
and 1 — 91%s > 0, thus
(1-A)I
9I2s—1

From Lemma [3] the maximum is obtained at [} = I ..

F = <0< 1Ip/2.

B-2). If I, > \/% then 7 is a concave function. Note that
—1<A<1land1—9I%s <0, then

(1-A)

F =
YT os—1

> 0.

From Lemma [3]

In=F
In =1,

By simple calculation,
[2—A

O<h<Ip& < Iy

9s

1 [2—A
B> —<Ip <\/—,

1= 1p /05 L= Y

if O0< Fy <1
if Fy>1p '

thus
2-A
It =r if <I
r 1 1 9s L
1 2- A
It =1 f — <. <
Y i e
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From (A) and (B), we obtain (#1). Given v*, v, s and Iy,
I is the unique maximum of 7, so no unilateral deviation
is beneficial for SPg. O

Stage 1: SP;, decides on the amount of spectrum [, acquired
from the regulator to maximize 7y,.

Theorem 22. If —1 < A < 1, then the optimal investment of
SP;, I7 is a solution of the following optimization problem:

2+ A 1-A

I) = — 2
max m(ln) = (5=~ o7 p —3)
(1-A)IL 2 2
——— )" =l
tsCgm o) (44)
2-A
s.t SIL
9s

Proof. Substituting I in into (@0), the optimal in-
vestment level of SPy, I}, is a solution of the following
optimization problem,

_ 24+ A I o *12 2
max mr(IL) = ( 3 SIL) +s(Ip)” =1L 45)
st 0 S IL.
Case 2. If M > %, then we have to consider the

following sub-cases.

(A). From , if § <1, < /%2, then I} = Iy, thus

is equivalent fo

1+A)2
max WL(IL) = g + (S - 7)1—%
I 9
2-A
0 <1 <
9s
Since s > 7, then 7, (I1,) is an increasing function of Iy, thus
I7 = %. This case can be considered as part of the next
part.
B). If /252 < I, < M, then I} = (5210 Note that
L

It = I, when I, = /%52, then I} is continuous at I, =

QEA. Thus
S

WL(IL)

i el ey

2—A
I .
L 95

Therefore, this case also includes the optimum solution of
previous case. Thus in this case (45) is equivalent to

as

2+ A 1-A
1) = —
max milln) = (5=~ o7 —3)
(1-A)p ., 2
i e |
+s( 9sI? — 1 ) =L
2—A
1 <Iy.
s 9s — ¢
Given v, v¥ and s, T 7 18 a maximum of 7y, then no unilateral

deviation is beneficial for SPy.
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O
Collect all interior equilibria of p%.,p7, and I, I, we
have

Corollary 3. If —1 < A < 1, then the unique SPNE strategy
is:

Stage 1: I is characterized by

24A 1-A
Ir) = -
max () = (73—~ g7 —3)
A=Ay oo
)" =1
2-A
.t. <I.
§ 9s — F
Stage 2: 17, is characterized in
1-A)I; . 2-A
o2 >
I — 9I7s -1 9s
2-A
Iy if I =
9s
Iy Ir A

Stage3:p’2=c+§—312+%, p}zc—l—%—&-yz—g.

ot = A2 Ip s _Ip 1A
Stage 4: n}, = 3 + 3 s P =317 T35 3

Section B: 1 < A < 2

In this section, we consider 1 < A < 2. First, give the
conditions under which the interior SPNE may exist (Propo-
sition @) Then, We obtain an optimum [} (in Theorem @)
and an optimum /7 (in Theorem [24), respectively. Finally, we
find the interior SPNE I}, and I;. Note that § is small, let

2 1 1
5h 05 UnATT)
Proposition 2. [f 1 < A < 2, then no corner SPNE strategies
exist when

5<min(

(IF,IL> S {(SS[L,(A—I)IL <Ip SIL}

Proof. From Corollary 2] no corner equilibrium strategies exist
if (I, Ir) € R. Since

0<A-1<1 (46)
3<2-A<4, (47)
then from (38)), (@6) and @7),
R={6<Ip,(A-1)I <Ip<I.}.
O

Stage 2: SPr decides on the amount of spectrum to be leased
from SP; (Ir), with the condition that 0 < Igp < Ip, to
maximize 7g.

Theorem 23. If 1 < A < 2, then the optimum investment
level of SPp, Iy, is obtained by the following rules:
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(1) if A =1, then I}, € [O,\/%] when I, = \/%; Iy, =1

when 0 < I, < \/%; and no optimum Iy, when Iy, >

1

\/9s’
@) ifl < A < 2 then I}, = Iy when § < I
2 1.
9sA ~ 9s’
2 1

9sA ~ 9s°

IA

no interior equilibria I}, exist when I,

Proof. From (39) and Proposition [2] I} is obtained by the
following optimization problems,

2(1—A) (1-2A)?
Ip) = (—5 — s)I? I
max mp(lr) (gfg M+ =g —Ir+—5 48)
s.t (A—l)IL <Ip <Ij
(A). First, we consider I;, = \/% then
2(1—A4) (1—24)2
Ip) = I
mr(IF) ol, Pt

is a linear function of Ir. Since 1 < A < 2, then 2(%7?) <0.

(A-1). If 1 < A < 2, then np(IF) is a strictly decreasing
function of Ig, then

Ip L (A - 1)L,
which means
mr(If) = 7 ((A = 1)1L),

which means SPp always wants to make a deviation to get a
higher payoff by decreasing the investment level (Ir | (A —
1)I1). There exists no optimum I}, in this case.

(A-2). If A =1, then mp(IF) =0, so I} can be any number

in the interval (0, \/%] since Iy, = \/19:

(B). Then, we consider I, # \/%. 7r is a quadratic function.
Note that

1-A)I
. : Mo
9I7s -1
B-1).If6 < I < \/%, then 7 is a convex function. Since
It € ((A—1)Ip, 1], the midpoint of the interval is Al /2.
Note that 1 < A < 2 and 1 — 9sIZ > 0, then

(1-A)I

B=sps1 ="
From Lemma 3]
I > (A-1D)I, —I.<F
I =1, —Ip, > Fy
By simple calculation
Seme tona 21
%IL2F1©6§IL§ QjA_é'
thus
() Ip L (A=1)Ip when (/52 — o= < I < ﬁ;

21

(ii) I3 = I, when 6 < I, <

9sA 9s*

2 1
If 9sA ~ 9s
means

< I, < ——, then I} | (A — 1), which

Vs

mr(IF) = mr((A = 1)1L),
which means SPr always wants to make a deviation to get a
higher payoff by decreasing the investment level (Ir | (A —
2 & <I; <

9sA
So the optimum investment level, I7., is

[ 2 1
Ih =1 when 6 < I <4/ — — —.
F L WA 0= AL = 9sA  9s

B-2). If I;, > \/%, then wp is a concave function. Since
1<A<2and1—9I%s <0, then

(1-A),

Pn=-—=

Yooz —1

1)1I1,). There exists no optimum [}, when

1
V9s®

<0< (A-1)IL.

From Lemma 3] we have
Ip L (A= 1)L,
which means
mr(Ip) = 7r((A = 1)I1),

which means S Pr always wants to make a deviation to get a
higher payoff by decreasing the investment level (I | (A —
1)I1). There exists no optimum I} in this case.

From (A) and (B), we obtain the desired results. Given
vl oF | s and Iy, if I7, exists, then I}, is the unique maximum
of 7, so no unilateral deviation is beneficial for SPr. O

Stage 1: In this stage, MNO decides on the level of investment
I;, with the condition that § < I < M, to maximize his
payoff 7.

Theorem 24. If 1 < A < 2, the unique optimum investment
level of SPy, Iy, is I} = Iy, = i when A = 1, otherwise
no interior SPNE I7 exists.

Proof. Substituting [} in Theorem into (@#0), then the
optimal investment level of SP;, I7, is a solution of the
following optimization problem,

A+2 Ip

2 I* 2 _ IQ
3 3IL) +s(Ig)” —1f

H}ZL%X WL(IL):( (49)

s.t. 6§IL

(A). Consider 1 < A < 2. From Theorem ), Iy =1,

2 1
when § < Iy, < /535 — 55>
equivalent to

thus the optimization (49) is

(1+ A)?

max (1) = + (s =)}
I 9
2 1
R <I _——
st 0s<lps 9sA  9s
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2
9sA

1

Since s > 7, then 7, (I) > 0 for all 6 < I, <

>

©
w

1

and 7z, is an increasing function of Iz, thus I7 = o5+

2 _
9sA
(B). Consider A = 1, then we have the following sub-cases.

Sub-case 1: If I, from Theorem (D), is

equivalent to

1

V9s’

1 * *
mr(I1) :§(1 —V9sIp)? + s(Ip)* — %
X s 1 Y

Since I} < \/%, then /9s} < 1, thus 7y, is an increasing
function of I}, and 7 (I; I}) < 5. Note that if I}, < —

V9s
mn(I) =282 — 2\/51; + %(1 - %)
< lim (s-yF ="
In— = 9s
and if I} = \/%, (L) = 55

Sub-case 2: From Theorem [23| (1), if 0 < I}, < J% is

equivalent to 71, (Iz; I}) = (s — )} < 5.
From two sub-cases above, I7 = I}, = \/19: when A = 1.
Note that
2 11
9sA  9s /95’

when A = 1. Thus this case can be considered as part of the

2 1
9ax — o forany 1 <A <2,

above part. Therefore I7

(C). Now we compute 7, from Theorem [23]

. 2-A 2 1
mr =np(pr —c¢) — slfp = (T)2 “9A T
1 2
=— (A% —4A - 2 f(A
o S +5) £ f(A)
Taking the derivative with respect to A,
f(A) —1(2A -4+ l) = i(A3 —2A% +1)
9 A7 9A?

2
Therefore, f/(A) > 0 when A € [1+T\/5,2), and f'(A) <0
when A € [1, 1+2\/g). Thus, fmax(A) = f(1) = 0, which

implies the possible interior equilibria exist when A = 1.

Then, I} = I} = /5, and
= C -, = C —_
pr 3 br 3
ny=-, np=-=-.
Loy TP
It is easy to check that if A = 1, then
(I5, I, p5 iyt , %) satisfies Corollary O

Corollary 4. If A = 1, then the unique SPNE strategy is:
I} =15 = L

1 £ _ 2 ¥ ok —
5; andny =pp—c= 5 andny = pp—c= 3.
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Section C: =2 < A < -1

In this section, we consider —2 < A < —1. First,
give the conditions under which the interior SPNE may exist
(Proposition [3). Then, we prove that no interior SPNE exists
(Theorem Note that ¢ is small, let § < \/%.

Proposition 3. If —2 < A < —1, then no corner SPNE exist
when 6 < I, and 0 < Ip < (A +2)I.

Proof. From Corollary [2| no corner Nash equilibria exist if
(Ip,Ir) € R.If —2 < A < —1, then
0<A+2<1
-3 <A-1< -2,
Thus from (38]),
R={§<1;,0<Ip <(A+2)}.
O

Stage 2: SPr decides on the amount of spectrum to be leased
from SP; (Ir), with the condition that 0 < Ip < Iy, to
maximize mwg.

Theorem 25. If —2 < A < —1 and np(I5;1L) > 0, the
optimum investment level of SPp, Iy, is Iy U-A)lL

91%3—1
Iy, > L ; and no interior SPNE I}, exist when § <
I <

\/351(A+2)’
— \/3s(A+2)’
Proof. From , the optimal investment level of SPp, I}, is
the solution of the following optimization problem,

when

2(1-A) (1—-A)?
Ip) = (= — 8)I3% I
max TI'F( F) (91% 3) Pt o7, F+ 9
st 0<Ip<(A+2)I.

(A). IfIL:\/%,then

2(1 - A) (1—A)2

Ir) = I
mr(Ir) o, F+ 9

is a linear function of Ir. Since —2 < A < -1, then
Q(é;LA) > 0, thus 7p(Ip;I1) is a strictly increasing function
of I'r. Therefore the optimum investment [}, I3 T (A+2)1z,

which implies

mr(Ir) = Tr((A +2)IL),

which means S Pr always wants to make a deviation to get a
higher payoff by increasing the investment level (I 1 (A +
2)I1). No interior equilibria I}, exists in this case.

®B). If I, # \/% then 7y is a quadratic function, and F}
(1-A)I,
91251 °

B-1.If 6 < Iy < i, then 7 is a convex function.
Since Ir € [0,(A + 2)I), the midpoint of the interval is
(A+2)I1/2. Since =2 < A < —1 and 1 — 9I%s > 0, then

(1-A)I

F =
YT oons 1

<0< (A+2)I/2,
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from Lemma (1), I} 1 (A +2)Ir, which means
mr(Ir; 1) = mr((A+2)11; IL),

which means S Pr always wants to make a deviation to get a
higher payoff by increasing the investment level. No interior
equilibria I, exists in this case.

B-2).IfI; > \/% then 7 is a concave function. Since
—2<A<-land1—91%s <0, then
(1-A)I

F =
! 9[,%5 -1

> 0.

From Lemma [3] (2),

|

By simple calculation,

I;;:Fl when 0<F1<(A+2)IL

I*
Fl Iy = (A+2)I, when F, > (A+2)I

1
O<Fi <A+l &1 > ——u
1<(@t9 el 35(A 1 2)
1 1
PF>A4+2) & —< I < —,
12(A+ e 7= <l 3s(A + 2)
then
1—-A)I 1
:(27)L when [ >
. 9I7s -1 3s(A+2)
Tk 1 1
— (A+2)I;, when — < I <
B+l Vos P T Bs(A 1 2)

Note that I} 1 (A + 2)I1,, which means
mr(Ip;IL) = mr((A+2)11; L),

which means S Pr always wants to make a deviation to get a
higher payoff by increasing the investment level (Ir 1 (A +
2)I1,). Thus

(1-A)
9I2s—1

1

I = S S—
F 3s(A +2)

when I7, >
Since Iy is the unique maximum of 7p, so no unilateral
deviation is beneficial for SPr. From (A) and (B), we obtain
the desired results.

O

Stage 1: In this stage, MNO decides on the level of investment
I;, with the condition that § < I; < M, to maximize his
payoff 7.

Theorem 26. If —2 < A < —1, then no interior SPNE I}
exists.

Proof. Substituting I}, in Theorem [25]into (40), the optimum
investment level of SPy, I7, is a solution of the following
optimization problem,

24N 1-A 5 30-Ap,
max T = (5=~ grp—g) Tegps 1 ) Tk
st —— <1,

35(A +2)

23

Denote
_ 1-A
27125 — 3

24+ A
3

3(1— A,

f(IL) :( )2+ 9[%871 )27

s(

we prove that f(I;,) is a strictly decreasing function of Ij,.
Denote

1-A 2+A,
I) = -
A= (g =5~ 5 )
and 3(1— A)IL\2
_ —A)l
fQ(IL)*S( 9I%s — 1 ) ’
then f(Ir) = fi(IL) + fo(Ir). In fact,
Sy 1A 24A (A1)
W) =N =3 ~ 5 ) @rms — g Hes
CA4A-DIps  1-A
T (9I3s —1)2 (913571 (2+4),
and
’ 68(1—A)]L
f2(IL) 2(91257_1)3[3(1 — A)(9I7s — 1) = 54(1 — A)[Ls]
~ —18I1s(1 — A)?(9IFs + 1)
N (912s —1)3
Therefore

21 = M)l 201 = A)
(9Ips—1)2 " 9I2s—1

fI) =fiIL) + foa(IL) =

91— A)(9IFs + 1)}

+2(24A)

9]%8 -1
_2(1—A)Ips —20(1 — A)
= hs 1) [ 025 1 +2(2+A)—9(1 — A)]
~2(1— A)Ips, —20(1 — A) B
T (9Ins —1)2 [ 925 —1 + 1A =9

Note that —2 < A < —1,then 2 < 1 —-A <3 and 0 <
A +2 < 1. Since

1
I, > ——,
V3s(A+2)
then 1_A
9I%s —1 — 0
s >A—|—2>
Thus
—20(1 — A)
— 2 <0, 11A-5<0
o2s—1 =

so f'(I) < 0, and f(Iy) is a strictly decreasing function.
Therefore 71, (1) = f(IL) — vI? is a strictly decreasing

4 1
function of I;, when I}, > JiarD)’ Hence

1

V3s(A+2)

Iy

which implies
1

WL(IL)TWL(W

)

which implies SP;, always wants to make a deviation to get

a higher payoff by decreasing the investment level (I |
L ). No interior equilibria I7 in this case. O

\/35(A+2)
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Section D: |A| > 2

Theorem 27. If |A| > 2, then no interior Nash equilibrium
strategies exist.

Proof. We calculate R in Corollary @ If A > 2, then

I—F>A7121¢IF>IL,
I,
which is contradicted by 0 < I'r < I, thus R = &. Similarly,
if A < —2, then
Iy
I
which is contradicted by 0 < Ip < [, thus R = .
Therefore, does not hold for any § < I, < M and
0 <Ip <I; when |A] >2.

<o =l 4+2<0=1Ip <0,

Thus no interior SPNE access fees exist, hence no interior
Nash equiliberium strategies exist. O

B. Corner SPNE

. 1 . . .
Note that § is small, let § < 755 In this section.

Lemma 9. Consider xo < 0, no corner SPNE strategies exist
when A > —1.

Proof. Let xj < 0. Clearly, n}, = 1 and n} = 0. From (32),

P —pL + A+t <0. (50)

Step 1. We prove that pj. —pj + A +t5 = 0.

Assume not, suppose pj —pj + A+t < 0. Consider a
unilateral deviation by which p, = p}.+e€, such that pp —pj +
A-+t3 < 0. From (32), z(, = 1. Now, from @), nfp—75 = € >
0. Thus, (I}, p}) is not SPx’s best response to SPy,’s choices
(I7,p}), which is a contradiction. Hence, p}, —p} + A+t
0.

Step 2. We prove that p}. > c.

From @), 7% = py — ¢ — sI}2. If pi < ¢, then 75 <
—sI3? < 0. Consider a unilateral deviation by which Ip =
0,pr = ¢, then mp = 0, which is beneficial for SPr. Thus,
Pp > C.

Step 3. If A > —1, then p}j, < c+ 1.

If A > —1, then let p}, > ¢+ 1. Consider a unilateral
deviation by which p;, = p} —¢, then xg = pj,—pr+A+t}; =
€. In addition, p, = p] —e =pp+ A+t > c+ 1+ A, thus

L — 75 > e(1+A—e).

We can choose some 0 < ¢ < 1 such that 7, — 7} > 0.
Hence, pr < c+ 1.

Now consider another unilateral deviation of SPp, p’F =
pr + €, where 0 < € < 1, with all the rest the same, then

np =0 =tp +A+pp—pp =¢

np=1-nfp =1—¢

24

Thus,

Tp = Tp = np(PF — ) — (Pp — ©)
€(pp —c)+ (1 —e)e
=e(—pp+c+1—¢€) >0.

The last inequality follows because we can choose 0 < € <
1 such that p» = pj + € < ¢+ 1. Thus, we arrive at a
contradiction. O

Lemma 10. Consider xo > 1, no corner SPNE strategies exist
when A < 1.

Proof. Let x§ > 1. Clearly, nj = 0 and n} = 1. From (32),
1<2f=A+1ty +pp —p}. Thus,

Pr—pp + A+t —12>0. (51

Step 1. We prove that pj, —pj + A =0.

Assume not, suppose py — p; + A > 0. Consider
a unilateral deviation by which p/ pi + €, such that
vy —pp + A > 0. From (32), z 1. Now, from (I),
ny, —mj =€ > 0. Thus, (I],p]) is not SP1’s best response
to SPr’s choices (I},p}), which is a contradiction. Hence,
pr—pp+A=0.

Step 2. We prove that p}, > c.

From (1), 7} = p} —c+sl2—yI2. If p} < ¢, then7} <
sI32 —~I;2 < sI32 — 62, Consider a unilateral deviation by
which Iy, = 6,pr = ¢, then 7z, sI? — 4462, which is
beneficial for SP;,. Thus, p7 > c.

Step 3. We prove that I, =0 and 7} = 0.

For any SPNE (I}, p}), we have 75 > 0. Otherwise,
assume 7p < 0, we consider a unilateral deviation Ip = 0
and pr = ¢, then mp = 0, which is beneficial for SPp. If
nyp = 0, then 7} 81}3220:>I}3=0,7r}:0.

Based on Step 3, since I7. = 0, then

Lte

th= "t

Step 4. If A < 1,then py < c+ 1.
If A <1,let pj > c—+ 1. Thus,

Pp=pi —A>c—A (52)

Recall that =, = 1+ A+ p} — p; , then consider a unilateral
deviation by which pr = p} —A—e > ¢+1—A. Now, by (32),
xo < 1, and hence np > 0. Now, from @), np > 0 = 7.
Thus, (I}, p}) is not SPr’s best response to SP’s choices
(I7,p}), which is a contradiction. Hence, p} < ¢+ 1.

Now consider another unilateral deviation of SPy,, p’L =
p; + €, where 0 < € < 1, with all the rest the same, then

np=xy=1p +A+pp—pL=1-c
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Then

! *k ! / *
my, — 7 =np(pL —c) —(pL, —¢)
=—€(p], —c)+ (1 —e)e
=e(—p} +c+1—¢).

The last inequality follows because we can choose 0 < € <
1 such that p; = pj + € < ¢+ 1. Thus, we arrive at a
contradiction. O

Theorem 28. If A —1, then the unique corner SPNE
strategy is: I} = I \/175 p;, =pp+A -1, c+1<

pp<c—A-landnj =0,n} =1.

<

Proof. Step 1. We prove that p}, < c— A —t}.

Suppose pj. > c—A—t%, then from Step 1 in Lemma@],
P} = pp + A+t — 1t > c. Now consider a unilateral
deviation of SPy, p;, = p} — €, where 0 < € < 1, with the
rest keeping original, then

np=z9=tp+A+pp—pL==c
Thus,
7w, — 75 =np(pL —c) = €elpr, —c¢) > 0.

The last inequality holds because we can choose 0 < € < 1
such that p;, = p} —€ > ¢. So p > ¢ — A can not be a
SPNE.

Step 2. We prove that p, > c+ 1.

Suppose p7 < ¢+ 1, consider a unilateral deviation of
SPr, pr = pj + €, where 0 < € < 1, with the rest keeping
original, then

np =9 =tp +A+pp—pr=c
npzl—anl—E.
Thus,
mp—Tp=np(pr—c¢) —pp+c
=e(l—e—pp+c)>0.

The last inequality holds because we can choose 0 < € < 1
such that p}. + € < 14 c. So pj, < ¢+ 1 can not be a SPNE.

Therefore from Steps 1, 2, note that t}, = 1—I5/I}, so
c+1>c—A—t5 when ﬁ—F < 2+ A, thus no corner SPNE
L

Ik > 91 AL

exists in this range. Then we consider 7% >
L

Step 3. We prove that no unilateral deviation is beneficial for
both SPs when ¢+ 1 < ph <c— A —t}.

Consider a unilateral deviation of SPj, p’L = pl — €
where 0 < € < 1, with the rest keeping original, then

np =y =tp + A+ pp —p =€
Since pj = pj + A +t5, then p} € [c+1+ A +1t}, ], then
mp =7 =n(py —¢) <0,

which implies no unilateral deviation is beneficial for SPy.

25

Consider another unilateral deviation of SPf, p’F =pp+
€, where 0 < e < 1, with the rest keeping original, then
np =1y =tp + A+pp—p =e¢
np=1-np=1-ec

Note that c+1 < p} <c— A —t},
Tp = mp = np(Pp —¢) —pp +c
=e(—ppt+ct+l—e) < —€2<0.
which implies no unilateral deviation is beneficial for SPy .
Step 5. Find I7.

Note that pj is independent of Ij.. Substituting p7
py — A — 5 into @), I} is the solution of the following
optimization problem,

Ir

max 7wp(Ip) = —sI% +
Iy

—A+p;—c—1

wr(IF) is a concave function, and the symmetric axis is Fy =
L_ > 0. From Lemma [3[ (2),

2SIL
= Fy when Fy < I,
F7)I1, when F>1I,
which is equivalent to
1 1
when —— <1
" 2517, \V2s L
1}7 = 1
I when [I; < —
L L= /25

Since I is the unique maximum of 7, thus no unilateral
deviation is beneficial to SPg.

Step 6. Find I7.

Substituting Iy from Step 5 into (I), the optimum
investment level of SPy,, I}, is a solution of the following
optimization problem,

max wp(Ip;I5) = st}2 - ’yI%
I (53)

s.t (SSIL

then I I;, thus the

A). If 6 < I < 7
optimization (53) is equivalent to

max 71 =(s— 7)]%
Ir

Ners

Note that s > -y, then 7, ; is an increasing function of I,
1

thus I7 = Iy = 35 Denote
T = (G =
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B). If - < I, < M, then Iy, = ﬁ thus the
optimization @ is equivalent to
1
= — —~J?
H}?X L2 45[% L
t 1 <I
st — .
\V2s o
mr,2 is a decreasing function of I, note that v < s, denote
1 1
= 7(1 - l) > 07

Tp2 = WLQ(\/E) ) s

so o T 71'272 as Iy, | \/%, which means SPy, always wants
to make a deviation to get a higher payoff by decreasing the
investment level (I, | é). No negative-corner equilibria I}
in this case. From (A) and (B), 7r271 = 71'2,2 > 72, thus

B |
Iy =1Ip= ort
From Sub-cases 1, 2, we can obtain the desired results.

O

Theorem 29. If A > 1, then the unique negative-corner SPNE
strategy is: I} =90, I, = 0, pf = p}. — A, c+1 < p} < c+A,
ny =1 np=0.

Proof. Step 1. We prove that c+ 1 < pj <c+ A.

From Steps 1, 3 in Lemma It =0, t% =1 and
pp =pp — A

Suppose pj > c+ A, ph = p; — A > c. Now consider

a unilateral deviation of SPr, pr = pj —¢€, where 0 < e < 1,
with the rest keeping original, then

np=x0=tp+A+pr—p;=1—c¢
ng=1—ng =e.
Thus,
mF — T = €(pr —¢) >0,

the last inequality holds because we can choose 0 < € < 1
such that pp — € > c. Thus, pj > ¢+ A can not be a SPNE.

Suppose p7 < ¢+ 1, consider a unilateral deviation of
SPy,, pr = p} + €, where 0 < € < 1, with the rest keeping
original, then

np=x0=tp+A+pr—p;=1—c
Thus,
mp, — 7y, =€(—pl, +c+1—¢€) >0,

the last inequality follows because we can choose 0 < € < 1
such that p;, = p7, + € < c+ 1. Thus, p} < c+ 1 can not be
a SPNE.

In addition, we prove that no unilateral deviation is
beneficial for both SPs when ¢+ 1 < pj < ¢+ A. Consider
another unilateral deviation of SPr, pf» = p} — €, where
0 < e < 1, with the rest keeping original, then

np=ag=tp +A+pp—pL=1—c¢

ne=1-n} =e

Since p}. = p} — A, then p}. € [c — A +1,¢], then
T =T = (P — ) <0,
which implies no unilateral deviation is beneficial for SPf.

Consider another unilateral deviation of SP., p;, = p} +
€, where 0 < € < 1, with the rest keeping original, then

np=xzy=tp+A+pp—pL=1—c
Thus, note that c+ 1 < pj <c+ A,
Ty =7y =ng(pL —¢) —pp +c
=e(—pp +ctl—e) <€ <0.
which implies no unilateral deviation is beneficial for SPy..
Step 2. Find I} = 0. From Lemma@], T > 0,50 I}, = 0.
Step 3. Find I7 = 4.

Since pj is independent of I;, then from (1)), 71, = p} —
¢ — I} is a decreasing function of I;. Note that I, > 6,
therefore I7 = 0. Since I; = ¢ is the unique maximum of
7, So no unilateral deviation is beneficial for SPy,.

O

APPENDIX E
EUs wiTH OUTSIDE OPTION: SPNE ANALYSIS

Note that ¢ is small, so let § < 3.

Stage 3: We consider interior NE strategies, i.e., 0 <

np,nr < 1. Using Definition 3| @), (1) and (3), note that

vl =o', the payoffs of SPs are:

mr =a(ty +k+pr — 2pr + blr)(pr — ¢) — sIz
7L =a(tr + k+ pr — 2pr + bl — bIr)(pL — ¢)
+sIi —~I7

(54)

We characterize the NE of access fees as follows,

Theorem 30. For given I and I}, the NE strategies of access
fees are unique, and are:

1 2 k tgp b 4b
(A e I Nt Sy SO R
PL=15 3 T3t 5 — 5t
(55)
*-i.&.% ﬁ+t£+£]’ _|_é_[
F=95 "3 "3"5 "15F "5
if and only if I;, satisfies:
4
IL<5. (56)

Proof. In this case, every NE by which 0 < zy < 1, should
satisfy the first order condition. Thus p} and p} should be

such that

d7TL d’]TF

—p* = U, —|p=* :0’
dpr, i dpp '*F
note that ¢;, + ¢r = 1, then

1 2 k tp b Ab
L LR IR L I
L=t g Tyt g T 5irt i

1 2 k t, b b
LI A S
Pr=ig gty Tty Tl tglr

26
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Take the second derivative of 7 with respect to pr,

d’ry, g

d(p;)?  dlpp)?

then p7 and p}. are the unique maximal solutions of 77, and
T, respectively.

=—4a <0,

Thus, p% and p7, are the unique interior NE strategies if
and only if 0 < ¢ < 1. Substituting , ty, = Ip/I, and
tp = (I, — Ip)/I;, into @) yields:

4 b 2b 3
= -_—— —I [ —
=55t (G -5y
Once Iy, is fixed, ¥(Ir) would be a linear function of Ip.
Thus, 0 < ¥(Ir) < 1 for any values of Ir such that 0 <
Ir < Iy, if and only if

Mr £ U(Ip).

0<P(0)<1
O<\I’(IL)<1.

Thus,

V(I) =

b
+ gIL € (0,1)

¥(0) =

O] s Ot =

b
— =I5 €(0,1
5L (7)

if and only if 0 < I, < 7. O

Stage 2: Based on the NE strategies of access fees, we obtain
the optimum investment level of the MVNO.
Definition 4. g(I1,) = % I+%—5+%5 f(IL) = 5=+ >0
Theorem 31. If np(Ir;I1) > 0, and denote

0 —20/(0all)
T 2af (1) -5

Then, the unique optimal investment level of SPp, Iy, is:

1 c

1% if Ip €{s>20af>*(I)+2af(I)g(IL)/IL,
g(IL) >0}
I if Ip€{2af*(I1) < s <2af?(IL)

+2af(Ir)g(Ir)/In,9(IL) > 0} oD

U{2af?(IL) +4af(Ir)g(IL) /I > s,
2af2(IL) > s}
Proof. First, we give the following the lemma
Lemma 11. The optimum investment level I}, is obtained by
max g = af?(Ir) = )17 +4af(IL)g(IL)IF + 2a9%(IL)
F

st 0<Ip<Ip.

(58)

Proof. Substituting (53) into 7 in (54), we get the objective
function. The constraints come from the model assumptions
directly. O

We consider different cases. First, we consider the case
that 2a.f2(I,) — s = 0 (Step (i)). Then, we consider the case
that 2a.f2(I;) — s # 0 and 7F is a quadratic function of Ir
(Step (ii)). In Step (iii), we prove that I}, # 0. Combining the
steps yields the result of the theorem.

27

Step (i): If 2af?(Iz) — s = 0, 7 is linear function of I,
ie, mp =4af(IL)g(IL)IF + 2ag®(I1) Thus,

{1;:0 it g(Ip) <0

Ip=1Ip if g(IL)>0"
Step (ii): Now, consider the case that 2af2(I1,) — s # 0 and
7w is a quadratic function of /r. We characterize the optimum
answer in two cases: (a) if 2af2(Iz) — s > 0, and (b) if
20f2(I1) — s < 0, mp(Ip; I1).

For the case that 7 is a quadratic function, we use the
solution to the first order condition (I%),

—2af(I1)g(IL)
20f2(I) —s

_ 0 _
dIF|Ig*0:‘IF*

Case (ii-a): If 2af%(I1) —s > 0, then 75 is convex function.
From Lemma [3] (1),

1% — %L <0 if 2alpf2(Ip)+4af(Ip)g(IL) —Ips >0
% — %L >0 if 2alpf2(Ip)+4af(IL)g(IL) —Ips <0 7
thus
Ip =1, if2alpf(I1) +4af(IL)g(IL) — Irs >0
Ih=0  if2alpf2(Ip) +4af(I)g(Ip) —Ips <0

Case (ii-b): If 2af?(Iz) — s < 0, then 7F is a concave
function. Thus, from Lemma [3] (2),

I%-0<0 if g(Ip) <0
0<1% <1y if 2alpf?(IL) +2af(I5)g(IL) — ILs <0,
g(IL) =0 )
>1p it 2alpf2(Ip) + 2af(Ip)g(IL) — Ips > 0,
g(IL) >0
Thus,
Ih=0 it g(IL) <0
I =19 if 2l f2(IL) +20f (I1)g(IL) — ILs <0,
g(Ir) >0 .
I =1Ip if 2alpf2(IL) +2af(IL)g(IL) — Irs > 0,
gIr) >0

Step (iii): We now prove I}, # 0. From Case (ii-a), if I}, =0,
then
200y f2(I1) + 4af(Ip)g(IL) — Ins < 0,

ie.,
s > 20f*(Ir) + 4o f (I)g(IL) /1L,

which implies g(I1) < 0 since 2cf?(I1,) — s > 0. Thus from

Step (i), and Cases (ii-a) and (ii-b), if I = 0, then g(I1,) < 0.
Since t7 = 0 and ¢}, = 1, when I}, = 0, then

1 c n k

15 3 3

For an equilibrium solution p%., py > ¢, otherwise

*
pp—c¢

b

—I; =qg(l .
+15L g(I) <0
m; =iy (pr —¢) — s(I})* < 0.

Hence I, = 0 can not be an equilibrium solution for SPf.
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Combining Steps (i), (ii), and (iii), we obtain the desired
results. O

Stage 1: Finally, we characterize the optimum investment level
of SP Ls I

Theorem 32. The unique optimum investment level of SPy,
17, a solution of the following optimization problem:

b 1 »
max wr(lr) =2a(zlr + ¢ +9(L) - FUL)IE)?
L
+s(Iy)? —~I7 (59)
st 6 S [L
I < 4/b.

Proof. Substituting (53) into 7, in (54)), we get the objective
function. The constraints come from the model assumptions
directly. O

We define functions f(Iy,),
L5 as follows:

g(IL), 7.(Ip) and sets Ly,

b 1 b
)= 1, +—~-¢ — 42
9UL) = 33 +15 3+ 5 100 = 5, 5
b 1
0(y) = 20211 + £ +9(IL) — FIL)Y)? + sy® — 12,

Ly ={s > 2af*(IL) + 20 f(I1)g(IL) /1L, g(IL) >
§ < 1Ip, I <4/b},

07

={0 < Iy, Ip < 4/6} 0 ({g(1n) > 0,
20f2(I1) < s < 2af2(I1) + 2af (IL)g(IL)/IL}
U{2af2(I1) +4af(IL)g(IL)/ Tz, > s, 2af?(IL) > s}).

Collecting results in Stages 1~4, we have

Corollary 5. The interior SPNE strategies are:

(1) Iy is characterized in

. _ —2of(IL)g(L)
Iy = arg]rzlax (IangHi W%[ﬂlgﬁ( 9(IL))
(2) Iy is characterized in
—2af(IL)g(L) .
Ip = { 2as2(I) —s D IHEM
Iy, if It, € Lo
3) pz=%+k+ﬁ+ﬁ;ﬁ —Mp+ B pr =%+
2c b *
T 3 +5[*+15IL IF-
@) 7t = IL 35 +pp — 25 + k+ b1} = bl iy = 7+
I — 2pF +k+bly

APPENDIX F
PROOF OF COROLLARY 1

Stage 4: Similar with Definition 2} up(xo) = v—t(2m —x0) —
pr =v —txg — pr, = ur(xo), thus,
Pr —PL

To =T Ty

(60)

28

Since EUs are distributed uniformly along [0, 27], the fraction
of EUs with each SP is:

0, if o < 0
np =1 x9, If 0<zo<27m,np =21 —np, (61)
2w, if x> 27

where zg is defined in (60) and np = 27 — ny.

Only “interior” strategies may be SPNE, as:

Theorem 33. In the SPNE it must be that 0 < xg < 2m.

Proof. Let (p},p5, I5,I}) be a corner SPNE strategy. Thus,
1) g > 2m, or 2) zg < 0. We arrive at a contradiction for 1)
Step 1 and 2) in Step 2 respectively.

Lemma 12. 7. > 0. If ny. > 0, pp. > c.

Proof. Let w3 < 0. Consider a unilateral deviation in which
Ir =0,pr > c. From ([Z]), wp > 0, leading to a contradiction.
Now, let nz > 0 and p% < c. Thus, 73 < 0 which is a
contradiction. O

Step 1. Let x§ > 2. Clearly, n3, = 0 and n} = 27. From
@, 73 sI3?. From Lemma It = 0. Thus, 7} = 0.
From (60), 27 < afy = m + 2£-LL. Thus, p} > p} + 2nt.

From (), 7; = 2n(p; — ¢) — vI;2. If p} < c, then
73 < —v82 < 0 since I} > §. Consider a unilateral deviation
by which I, = 6, pr, = c, then 77, = —~62, which is beneficial
for SPy,. Thus, p7 > c.

Now, let p7, > c. Thus, pj, > pj, + 2wt > ¢+ 27t > c.
Recall that 2, = 7 + L £ tp L. Consider a unilateral deviation
by which pr = p} + 27t — e. Now, by (60), xo < 27, and
hence np > 0. Now, from (), 7 > 0 = 7. Thus, (I}, p})
is not SPy’s best response to SPp’s choices (I7,p} ), which
is a contradiction. Hence, p}, = c.

Now consider another unilateral deviation of SPy, p’L =
Py — 2mt + ¢, where 0 < € < min(1,¢), with all the rest the
same. Since pj < pj —t, pf > p} =c.

€

= (27 — 5;)(pf

57 —c¢)>0.

The last inequality follows because p; > c and € < min(1,¢).
Thus, we again arrive at a contradiction.

Step 2. Let 27, < 0. Clearly, n, = 2m,n} = 0. Since nj, > 0,
by Lemma P > c. From @), o = m+ 22-PL < 0. Thus,
Py > ph + 2nt. Now, from (),

y, = sl —yI;° (62)
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Consider a unilateral deviation by SPy,, by which p}; = 2mt +

Py — € 0 < e <min(l,t). Then

Pr—PL

== =->0
T 2t
Therefore, by (62),
" €, .
T —TL :nL(plL_C) = —(pp — €+ 27t —¢)

2t
Since pj > ¢, and € < min(1,¢). Then, 7}, — 7} > 0. We
again arrive at a contradiction. [

By Theorem proved above henceforth we only con-
sider interior SPNE in which 0 < z§ < 2. O
Stage 3: SP;, and SPr determine their access fees for EUs,

pr, and pr, respectively, to maximize their payoffs.

Lemma 13. The payoffs of SPs are:

1
T :—(27rt +pr —pL)(pL —c) + 5[12; — fyI%
1 (63)
TF = 2t(27ﬂf +pL —pr)(pr — ) — sli,
Proof. From and substltute (ng, nF) = (7 +
BESEE, 2m — lntO i and , and get O

We next obtain the SPNE p%. and p7 which maximize
the payoffs 7y, and 7 of the SPs respectively.

Theorem 34. The SPNE pricing strategies are:

p] =c+2nt, pp=c+2nt (64)
Proof. py and p} must satisfy the first order condition, i.e.,
Z;? = 0 and % = 0. Thus, py = p} = c+ 2nt. p} and
pj, are the unique SPNE strategies if they yield 0 < zp < 27
and no unilateral deviation is profitable for SPs. We establish

these respectively in Parts A and B.

Part A. From || To = T+ % = 7 € (0,2m) since
P} =Dy =2t +c.

Part B. Since dd;F <0, dd TL < (), a local maxima is also a

global maximum, and any sofutlon to the first order conditions
maximize the payoffs when 0 < z¢ < 27, and no unilateral
deviation by which 0 < zp < 1 would be profitable for
the SPs. Now, we show that unilateral deviations of the SPs
leading to ny, = 0,nrp = 27 and n;, = 27,nFp = 0 is not
profitable. Note that the payoffs of the SPs, (I) and (2)), are
continuous as nz, }. 0, and ny, T 27 (which subsequently yields
np 1 27 and ng | 0, respectively). Thus, the payoffs of both
SPs when selecting pr, and pr as the solutions of the first
order conditions are greater than or equal to the payoffs when
ny = 0 and n;, = 2m. Thus, the unilateral deviations under
consideration are not profitable for the SPs. O

Stage 2: SPr decides on the amount of spectrum to be leased
from SPy, Ir, with the condition that 0 < Ip < I, to
maximize 7g.

29

Theorem 35. The SPNE spectrum acquired by SPr is: Iy =
0.

Proof. Substituting pr and pr from (64) into (63), SPr’s
payoff becomes,

np(Ip; 1) = 21t — sI%. (65)

Since mg(Ip; I1,) is a decreasing function of Iy and 0 < I <
Iy, s0 I, = 0. O

Stage 1: SP; chooses the amount of spectrum I; to lease
from the regulator, to maximize 7y,.

Theorem 36. The SPNE spectrum acquired by SPy, is: I7 = 6.

Proof. Substituting p;, and pp from (64) into (63), SPL’s
payoff becomes:

np(Ip; Ip) = 2m2t — ~I7. (66)

since from Theorem [35] I}, = 0. Note that 7, is a decreasing
function of Iy, and § < I, < M, so I} = 0. O

Collecting all SPNE from Stages 1~4, the unique SPNE
strategies are:

I} =6, I5 =0, p} =pp =2tn+c¢, np=n} =m.

APPENDIX G
LIMITED SPECTRUM: SPNE ANALYSIS

Proof of Theorem

Proof. The proofs of in Stage 2 (finding [7.), Stage 3 (finding
p1,pr) and Stage 4 (finding n7,n¥%) are the same as proofs
of Theorems respectively. Now we only consider
Stage 1 (finding I7). Similar with the proof of Theorem 22]
substituting 77 in (1)) into (#0), the optimal investment
level of SPy, I7, is a solution of the following optimization
problem,

Ik

24D Lo
max m(IL) = (= 3 SIL) +s(Ip)” —~If €N
s.t SSILSM
If M < ./2%5 T ,fromin Theorem I, = I, thus
is equivalent to
1+ A)?
max 7TL<IL):Q+(S—’Y>I%
I 9
§<I,<M

Since s > =, then 7y, (I,) is an increasing function of Iy, thus
It = M. In this case, I}, = M, and from @ (@3) and (3J),

_A+1 —
ny =p; —c= and Ny = pp —c =

3

If M > /%2

Theorem 221

, the proof are the same with that of

O



This paper has been accepted by IEEE Transactions on Network Science and Engineering

Proof of Theorem {1l

Proof. The proofs of in Stage 3 (finding p} , p}.) are the same
as proofs of Lemmas [9|[I0] and Theorems [28] and 29] Now we
only consider Stages 1, 2 (finding I}, I}).

(A) We consider A < —1. Similar with the proof of
Theorem [28} substituting I3 from Step 5 in Theorem [28] into
, the optimum investment level of SPy, I7, is a solution of
the following optimization problem,

max ap(Ip; 1) = sIp? — 17
L

(68)
Then, we consider two sub-cases: 6 < M < \/% and M >
1 S
V2s®
IfégMg\/%, SinceILgng/%,thenI;:IL,

thus the optimization is equivalent to
max 7y = (s — )}
Ir,
st 0 S IL § M.

Note that s > +, then 7, is an increasing function of I, thus
I =1, = M. If % < M, the proof is the same as the

proof in Theorem

(B) We consider A > 1. The proof is the same as the
proof in Theorem [29]

O
Proof of Theorem

Proof. The proofs of in Stage 2 (finding [;.), Stage 3 (finding
p1,pr) and Stage 4 (finding n},n¥%) are the same as proofs
of Theorems and Now we only consider Stage 1
(finding I7 ). Similar with the proof of Theorem[I7, each MNO
chooses its I, as the solution of the following maximization:
ﬁ ( Iy, — Iy
18 21y,

The objective function follows by substituting (23) into (7).
The constraint follows from the modeling assumption.

max mr(IL) = V2 4 sI2 — I3
L

(69)

If M < g,/é, from 1i I}, = Iy, thus the objective

. . 2 . . . .
function of is % + (s — y)I2. This is an increasing
function of Iy, since s > ~y. Thus the optimum solution in this

range is M.
It M > g./é, the proof is the same as that of
Theorem thm: 3p-payoff-L-sectionA. O
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