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Abstract—Virtual network embedding (VNE) algorithm is al-
ways the key problem in network virtualization (NV) technology.
At present, the research in this field still has the following
problems. The traditional way to solve VNE problem is to
use heuristic algorithm. However, this method relies on manual
embedding rules, which does not accord with the actual situation
of VNE. In addition, as the use of intelligent learning algorithm
to solve the problem of VNE has become a trend, this method
is gradually outdated. At the same time, there are some security
problems in VNE. However, there is no intelligent algorithm to
solve the security problem of VNE. For this reason, this paper
proposes a security-aware VNE algorithm based on reinforce-
ment learning (RL). In the training phase, we use a policy
network as a learning agent and take the extracted attributes
of the substrate nodes to form a feature matrix as input. The
learning agent is trained in this environment to get the mapping
probability of each substrate node. In the test phase, we map
nodes according to the mapping probability and use the breadth-
first strategy (BFS) to map links. For the security problem, we
add security requirements level constraint for each virtual node
and security level constraint for each substrate node. Virtual
nodes can only be embedded on substrate nodes that are not
lower than the level of security requirements. Experimental
results show that the proposed algorithm is superior to other
typical algorithms in terms of long-term average return, long-
term revenue consumption ratio and virtual network request
(VNR) acceptance rate.

Index Terms—Virtual network embedding, Network virtual-
ization, Intelligent learning algorithm, Network security.

I. INTRODUCTION

With the rapid development of social economy, the number
of network end users shows a blowout growth trend, which
is expected to reach 40 billion in the near future [1], [2].
A large number of terminal resource requests bring great
pressure to the underlying network. Because the Internet only
provides ”best effort” resource delivery, it cannot allocate the
underlying resources reasonably and efficiently, so it gradually
becomes rigid [3]. In recent years, NV has gradually come
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into people’s vision. It is considered to be an efficient and
dynamic network framework for managing network resources.
The virtual network consists of several virtual nodes (such
as virtual router and virtual server), which are connected by
several virtual links. The problem of VNE is to map virtual
network to shared substrate network and provide sufficient
computing and bandwidth resources for requests [4], [5].
Radio network resource management faces severe challenges,
including storage, spectrum, computing resource allocation,
and joint allocation of multiple resources [6], [7]. With the
rapid development of communication networks, the integrated
space-ground network has also become a key research object
[8].

It cannot be ignored that NV brings flexibility to network
architecture, but also brings some new security problems.
In the NV environment, some VNRs require high security.
For example, in recent years, online payment and online
shopping, which are closely related to money, have become
more and more popular. Some VNRs have relatively low
security requirements, such as online chat and online video [9].
Because a large number of terminal devices need to request
network resources, when the network is in a ”busy” state, it
is easy to ignore the security issues. At this time, the network
may be attacked by some malicious software or cause the
leakage of important information. Therefore, it is necessary
to consider the security problem in virtual network mapping
[10], [11].

The problem of VNE has been proven to be NP-hard. Most
of the traditional solutions are heuristic algorithms. By making
a series of rules and constraints, they embed every VNR
manually. In addition, most heuristic algorithms divide the
VNE process into two stages: node mapping and link mapping
[12]. However, the relationship between these two stages is not
fully considered. In this way, the mapping results may fall into
the local optimal solution. Due to the rich network features,
resource constraints and location constraints are usually used
to represent nodes, bandwidth constraints and delay constraints
are used to represent links, which is not perfect.

In recent years, with the rise of cloud computing, artificial
intelligence, machine learning (ML) and other emerging fields,
using intelligent learning algorithm to solve the problem of
VNE has become a trend [13], [14]. ML algorithms process a
large amount of data collected over a period of time, automati-
cally learn the required information from the data, then classify
or predict [15]–[17]. As an excellent representative of ML, RL
can be used to solve the problem of VNE. We incorporate
the RL algorithm with the VNE algorithm with security
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awareness. The RL agent is trained and tested by reasonably
extracting the attributes of the substrate nodes. Considering
the security requirements of VNRs, we set the security level
attribute for substrate nodes and the security requirement level
attribute for virtual nodes. Finally, the experimental results
show that our algorithm has achieved good results.

As far as we know, there is no research on the combination
of security of VNE and intelligent learning algorithm to
address the VNE problem. The main contributions of this
article are as follows.

(1) This paper proposes a security aware VNE algorithm
based on RL. Under the condition that the basic virtual
network is embedded (the computational resource constraint
and link bandwidth constraint of the node), the security
requirement level constraint is bounded to each virtual node.
Security level constraint is bounded to each substrate node.
Virtual nodes can only be embedded in substrate nodes no
lower than the security requirement level. This can ensure the
security of VNE algorithm.

(2) We mainly apply RL algorithm to node embedding stage.
Specifically, the whole algorithm is divided into training stage
and testing stage. In the training phase, we use the policy
network to train the learning agent. We take the five features
of the substrate nodes as the input of the policy network. The
result is to deduce the probability of each substrate node and
map the virtual nodes according to the probability. The shortest
path algorithm based on BFS is used for link mapping. In the
test phase, the training results are directly utilized to complete
the embedding of VNR.

(3) We compare our algorithm with other representative
algorithms in terms of long-term average revenue, long-term
revenue consumption ratio and VNR acceptance rate. The
experimental results show that the algorithm based on RL is
better than other algorithms. The security level constraint can
also be applied to the VNE problem, therefore, it has some
practical significance.

The rest of this article is organized as follows. The second
part describes the related work of the VNE algorithms. The
third part models security aware virtual network embedding
process and proposes evaluation metrics. The fourth part
introduces the RL algorithm based on policy network in
detail. The fifth part introduces and analyzes the simulation
experiments and experimental results. Finally, the whole article
is summarized and prospected.

II. RELATED WORK

A. Virtual Network Embedding Related Algorithms

The traditional heuristic algorithm can be divided into
single-stage mapping algorithm and two-stage mapping al-
gorithm according to the application of the model in the
mapping stage. The difference is whether the node map and
the link map are mapped simultaneously. In reference [18],
a mixed integer regularization algorithm is proposed. In this
algorithm, node mapping process and link mapping process are
considered to be a whole. Two mapping algorithms of certainty
and randomness are obtained by relaxing integer constraints.
After the virtual node mapping process, the multi commodity

flow algorithm is used to complete the link mapping process.
Vhub linear programming method is adopted in reference [19].
The VNE problem is treated as mixed integer programming
problem using the p-hub median method. The best location
of VNE can be determined after the location problem of hub
is solved. Reference [20] proposes a two-stage VNE algo-
rithm for path separation and migration. The algorithm fully
measures the capability of the underlying network and fully
considers the embeddability of the virtual network. Then the
strategy of path segmentation and path migration is proposed.
It effectively utilizes the substrate bandwidth and improves the
robustness of the mapping strategy.

The security aware VNE algorithm based on RL also divides
the VNE problem into two stages: node mapping and link
mapping. Therefore, it belongs to two-stage VNE algorithm.
Different from the above algorithm, the algorithm proposed in
this paper does not use heuristic method to solve the problem
of VNE. With the rapid development of intelligent learning
algorithm in recent years, RL algorithm has been proven to
be an efficient way to solve practical problems. Therefore, this
paper uses RL to solve the problem of VNE.

B. Security-Aware Virtual Network Embedding Algorithms

At present, some researches have discussed the security
problems of VNE. Liu et al [21] proposed a security VNE
algorithm based on multi-attribute evaluation and path opti-
mization. He modeled the mapping process of security virtual
network as a multi-objective mixed integer linear programming
model, and completed the embedding of virtual network
by establishing node mapping function and link mapping
function. However, his algorithm does not fully consider the
security performance of each virtual node and physical node,
but gives the security level to the entire VNR, which is not
rigorous. Gong et al [22] proposed a trust aware security VNE
algorithm. He introduced trust relationship and trust degree
into virtual network resource allocation, and quantitatively an-
alyzed the security problems in NV environment. The method
of approaching ideal ordering is used to rank the importance
of multi-attribute nodes. However, the algorithm makes the
rules of VNE manually, which is not in line with the reality.

The security aware VNE algorithm based on RL and the
above two algorithms also pay attention to the security of
VNE. The main solution is to add security attributes to the
virtual network and the substrate network. Different from the
above algorithm, we set the security requirement level for
each virtual node and set the security level for each substrate
node, rather than setting the security attributes for the entire
VNR. In addition, the above algorithm uses heuristic method
to solve the problem of VNE. We adopt RL strategy to solve
this practical problem. Practice shows that RL algorithm is a
more efficient method.

C. Machine Learning based Virtual Network Embedding Al-
gorithms

The above heuristic methods to solve the VNE problem
cannot fully reflect the real situation of the network in re-
ality. Most of them are based on artificial rules and cannot
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automatically optimize network parameters, which may lead
to local optimization of embedding results. At present, a large
number of scholars have used ML algorithms to solve the
problem of VNE. Reference [23] proposed monte carlo search
tree algorithm. The algorithm considers the node mapping
process as a Markov decision process (MDP). When the VNR
arrives, the monte carlo search tree is used to embed the node.
Then the shortest path algorithm or multi-commodity flow
algorithm is used for link mapping. Reference [24] introduced
the neural network algorithm into the VNE problem. This
algorithm proposes an autonomous system based on artificial
neural network to improve the mapping efficiency of virtual
network. In reference [25], Q-learning algorithm in reinforce-
ment learning is used to solve the VNE problem by using the
optimal mapping mechanism of reward mechanism learning.
Reference [26] proposes to use the Policy Gradient algorithm
in the RL algorithm and gradually learn the optimal mapping
mechanism by using the RL agent. The algorithm applies the
Policy Gradient method to the VNE domain and mainly to
the node embedding stage. This model explores how to strike
a balance between exploring better solutions and developing
existing models.

Our algorithm also uses a policy network as a learning
agent to derive the probability of each substrate node. It
should be noted that our work is different from the above
research. It is the first time to combine the security attribute
with the intelligent learning algorithm to study the problem
of VNE. Secondly, we extract five important node attributes
to train learning agents, including the key security attributes.
More importantly, the overall performance of the algorithm is
kept at a good level when the node attributes are extracted
reasonably. More feature extraction allows the agent to learn
more about the substrate network, making the VNE algorithm
more practical. In addition, the above algorithms do not
pay attention to the impact of security factors on the VNE
algorithm. Our algorithm adds security attributes to nodes,
which can well meet the security requirements of VNE.

III. NETWORK MODELS AND EVALUATION INDICATORS

A. Network Models

The substrate network can be modeled as an undirected
weighted graph GS = {NS , LS}. Where NS represents the
set of all substrate nodes and LS represents the set of all
substrate links. Substrate node ns ∈ NS , whose attributes are
represented by computing power CPU(ns) and security level
sl(ns). The security level of substrate node is an important
embodiment of substrate network security. The higher the
level, the more secure the proof maps to the substrate node,
and the less vulnerable it is to security issues. Substrate
link ls ∈ LS , whose attributes are expressed as bandwidth
capability BW (ls). (c) in Figure 1 represents a substrate
network.

The same undirected weighted graph GV = {NV , LV }
is used to model the virtual network. Where NV represents
the set of all virtual nodes and LV represents the set of all
virtual links. Virtual node nv ∈ NV , whose attributes are
represented by calculated resource requirement CPU(nv) and

TABLE I: Symbol summary

Symbol Description

GS substrate network

GV virtual network

NS set of all substrate nodes

LS set of all substrate links

CPU(ns) the computational power of a substrate node

BW (ls) The amount of bandwidth resources of a substrate link

sl(ns) substrate node security level

NV set of all virtual nodes

LV set of all virtual links

CPU(nv) compute resource requirements for a virtual node

BW (lv) bandwidth resource requirements for a virtual link

sr(nv) security level requirements for a virtual node

security requirement level sr(nv). The security requirement
level of virtual node represents the security requirement of
VNR. In order to ensure the security of VNRs, virtual nodes
can only be mapped to substrate nodes no less than their
security requirements. Virtual link lv ∈ LV , whose attributes
are represented by bandwidth resource requirement BW (lv).
The (a) and (b) in Figure 1 represent two virtual networks.

We summarize all the symbols in TABLE I.
The VNE problem can be expressed as GV (NV , LV ) →

GS(NSi , LSi), where NSi ∈ NS , LSi ∈ LS . The above
process needs to meet the following constraints:

|NV |∑
i=1

(nv, nvi ) 6= 0. (1)

|NS |∑
j=1

(ns, nsj) 6= 0. (2)

Formulas (1) and (2) indicate that neither a virtual node nv

nor a substrate node ns exist independently. There must be
other nodes connected to it.

|NS |∑
j=1

(nvi → nsj) = 1. (3)

Formula (3) indicates that a virtual node nvi can only be
embedded into a physical node nsj , where nvi ∈ NV , nsj ∈ NS .

∀nvi ∈ V NRk,

|Ns|∑
ns
j∈NS

nvsij ≤ 1. (4)

Formula (4) indicates that the virtual node nvi in the same
VNR cannot be mapped to the same substrate node nsj .

|LS |∑
j=1

(lvi → lsj) ≥ 1. (5)

Formula (5) indicates that a virtual link lvi can be embedded
into one or more substrate links lsj , where lvi ∈ LV , lsj ∈ LS .
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nvsij CPU(nvi ) ≤ nvsij CPU(nsj). (6)

In formula (6), CPU(nvi ) represents the computing resource
demand of the virtual node nvi . CPU(nsj) represents the
computing resource available from the substrate node nsj .

lvsij BW (lvi ) ≤ lvsij BW (lsj). (7)

In formula (7), BW (lvi ) represents the bandwidth demand
of virtual link lvi . BW (lsj) represents the bandwidth resources
available for the substrate link lsj .

sl(ns) ≥ sr(nv). (8)

In formula (8), sl(ns) represents the security level of
the substrate node. sr(nv) represents the level of security
requirements for the virtual node.

Figure 1 shows two virtual networks embedded in a sub-
strate network. For two virtual networks, the first number in
parentheses next to the node represents the calculated resource
requirements of the node. The second number represents the
level of security requirements for the node. The number on
a virtual link represents the bandwidth requirements for that
link. For the substrate network, the first number in parentheses
next to the node represents the computing resources that the
node can provide. The second number represents the security
level of the node. The number on a substrate link represents
the amount of bandwidth resources that the link can provide.
Figure 1 shows the successful embedding of two VNRs into
the base network. The corresponding relation of specific nodes
is: a→ A, b→ E, c→ C, d→ D, e→ G, f → H .

a b

c

e f

d
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c d
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(60,0) (80,1) (66,3)

(67,2) (92,3) (70,2)

Figure 1: Schematic diagram of virtual network embedding
substrate network.

B. Evaluation Indicators

We evaluate the security aware VNE algorithm based on
RL from three aspects: long-term average revenue, long-term
revenue consumption ratio and VNR acceptance rate.

The VNE revenue is represented by Re(GV , t, tp), where
tp represents the duration of the VNR to arrive. Specifically, it
is calculated based on node computing resource consumption
CPU(nv) and link bandwidth resource consumption BW (lv).
The expression method is shown in formula (9):

Re(GV , t, tp) = tp · [
∑

nv∈NV

CPU(nv) +
∑

lv∈LV

BW (lv)].

(9)
The VNE consumption is expressed as Co(GV , t, tp).

Specifically, it is calculated according to the calculated re-
source consumption CPU(nv) of the node and the total
bandwidth resource consumption BW (lsv) of the embedded
multiple substrate links. As shown in formula (10):

Co(GV , t, tp) = tp · [
∑

nv∈NV

CPU(nv) +
∑

lv∈LV

∑
ls∈LS

BW (lsv)].

(10)
The long-term average revenue is shown in formula (11):

Avg Re = lim
Time→∞

∑Time
t=0 R(GV , t, tp)

Time
, (11)

where Time is the elapsed time.
Long-term revenue consumption is shown in formula (12):

RC = lim
Time→∞

∑Time
t=0 Re(GV , t, tp)∑Time
t=0 Co(GV , t, tp)

. (12)

The VNR acceptance rate can be expressed as follows:

Acp = lim
Time→∞

∑Time
t=0 Accept(GV , t, tp)∑Time
t=0 Arrive(GV , t, tp)

, (13)

where Accept(GV , t, tp) represents the number of successful
VNRs mapped in the time range tp. Arrive(GV , t, tp) rep-
resents the total number of VNRs that arrive within the time
range tp.

IV. INTRODUCTION OF REINFORCEMENT LEARNING
ALGORITHM BASED ON POLICY NETWORK

A. Extraction of Substrate Node Attributes

We need to train RL agents in a substrate network as close
to reality as possible, so we need to create a more ”real”
environment for agents. Because there are many properties
of the substrate nodes, it will increase the computational
complexity to represent them. We extract the following five
attributes to represent the substrate nodes as input to the policy
network.

(1) Computing capacity (CPU) : Computing capacity is
one of the most important attributes to represent a node. The
stronger the computing power of the node, the greater the
probability that the substrate node receives the virtual node.
The CPU can be represented as follows:
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CPU(ns)r = CPU(ns)−
∑

nv→ns

CPU(ns), (14)

where CPU(ns)r represents the remaining computing power
of the substrate node. CPU(ns) represents the initial com-
puting power of the substrate node.

∑
nv→ns CPU(ns) rep-

resents the sum of computational resources consumed by all
VNRs for virtual nodes embedded in ns.

(2) Degree (DEG) : The number of substrate links connected
to the substrate node is called degree. The greater the degree
of a node, the more nodes it is connected to. DEG can be
expressed as:

DEG(ns) =
∑

ns
i∈NS

Link(ns, nsi ), (15)

if ns is connected to nsi , Link(ns, nsi ) = 1; if not, it is 0.
(3) Sum of bandwidth (SUM BW) : The sum of the

bandwidth of all the links connected to a substrate node. The
larger the node bandwidth and the larger the virtual node
that is mapped to the substrate node will have more link
options, resulting in a better mapping effect. SUM BW can
be expressed as:

SUM BW =
∑

ls∈LS
n

BW (ls), (16)

where LS
n represents the substrate link connected to node ns.

ls is one of LS
n .

(4) Average distance from mapped node to this node
(AVG DIS) : This property is considered for the link-mapping
phase. The above attributes take into account the local im-
portance of the node, which takes into account the global
importance of the node. This property depicts the average
distance to the mapped node, so the smaller the attribute, the
greater the probability of the node being mapped. Finally, the
shortest path algorithm based on BFS is used to map the link.
AVG DIS can be expressed as:

AV G DIS =

∑
Ns

v∈NS DIS(ns, nsv)

count+ 1
, (17)

where DIS(ns, nsv) represents the distance from ns to the
mapped node. count is the number of nodes that have been
mapped, plus 1 is to prevent the denominator from being 0.

(5) Security level (SL) : The higher the security level of
the substrate node, the safer the mapping to the node. Virtual
nodes can only be mapped to substrate nodes with a higher
level of security requirements.

We characterize the above properties of the i-th substrate
node as a 5-dimensional vector, as follows:

vi = (CPU(nsi ), DEG(n
s
i ), SUM BW (nsi )

, AV G DST (nsi ), SL(n
s
i )).

(18)

The attribute vectors of all the substrate nodes are put into
a feature matrix FM , which is taken as the input of the policy
network.

FM = (v1, v2...vn)
T . (19)

The feature matrix is expressed as follows:[
CPU(ns

1) DEG(ns
1) SUM BW (ns

1) AVG DIS(ns
1) SL(ns

1)
CPU(ns

2) DEG(ns
2) SUM BW (ns

2) AVG DIS(ns
2) SL(ns

2)
... ... ... ... ...

CPU(ns
k) DEG(ns

k) SUM BW (ns
k) AVG DIS(ns

k) SL(ns
k)

]
.

(20)

B. Policy Network

We use a policy network as a learning agent, which is
essentially a convolutional neural network commonly used in
ML [27], [28]. Taking the policy matrix as input, the mapping
probability of each substrate node is output by training the
learning agent. The greater the probability, the more likely the
substrate node is to be mapped. The policy network consists
of an input layer, a convolution layer, a softmax layer and a
node selector, as shown in Figure 2.
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v1

 

...

available 
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vector

available 
resource 

vector

available 
resource 

vector
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c2
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Figure 2: Policy network.

As the input of the policy network, the feature matrix is
transferred from the input layer to the convolution layer. The
main function of convolution layer is to convolute the feature
matrix. Convolution operation originally refers to the operation
of generating the third function from two functions. Here, the
feature vector of each node can be obtained after convolution
of the feature matrix. We call it the available resource vector,
which is specifically expressed as:

arvi = ω · vi + d, (21)

where arvi is the i-th output of the convolution layer, ω is the
weight vector of the convolution kernel and d is the deviation.

The vector is then transferred to the softmax layer and the
softmax function of logistic regression is used to generate a
probability for each node [26]. The higher the probability, the
more likely the virtual node is to map to that node. Some
substrate nodes may not be able to map part of the virtual
nodes due to insufficient computing power or security level,
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so the probability of this part of substrate nodes being mapped
cannot be deduced. We add a node selector to select a group
of candidate nodes with enough computing power and security
level.

C. Training and Testing

We use the policy network as a learning agent. First, the
policy network is initialized to the unlearned state. After
the feature matrix is input, we take the feature matrix as
the learning environment of the agent. By fully learning
each node attribute in the feature matrix, the agent selects
those substrate nodes that satisfy both the computational
resource requirements of the virtual node and the security
performance requirements. The final policy network outputs
a set of available substrate nodes and the probabilities that the
virtual nodes map to them. After obtaining the probability of
each substrate node, we use the probability distribution model
to generate a sample from the substrate network set, from
which a substrate node is selected as the node to be mapped.
Because the initialization of the policy network is random,
the node with the highest probability does not mean that it
can be mapped to the optimal result. This process is repeated
until all virtual nodes are allocated or VNE is terminated due
to insufficient resources of the substrate node. If all virtual
node mappings are successful, the link mapping continues.
The training process can be represented as Figure 3.

randomly 
initialized 

parameters

reinforcement learning agent

substrate 
network

FM

available nodes 
and their 

probabilities
input

extract

output

train

choose reward

policy network

policy network

policy network

FM

Iteration...

policy network

Figure 3: Training process diagram.

In RL, learning effect is determined by the action taken by
learning agent, so we need to set a reward standard for learning
agent. If the agent’s current behavior can make the algorithm
achieve greater benefits or better results, then the agent should
be encouraged to continue to take the current action to obtain
the cumulative reward. If the result of the agent’s current action
is small or harmful, the reward signal will become small or
even disappear. The agent will stop the current action and
take a new action instead. So an appropriate reward signal
is very important. In the problem of VNE, we use the long-
term revenue consumption ratio as a reward signal. This index
reflects the utilization of the substrate resources, especially
the link bandwidth resources. If the agent’s current action can
produce a higher revenue consumption ratio, then the agent
will receive a larger reward signal, and continue to explore
the action that produces a greater revenue consumption ratio.
On the contrary, the agent stops its action and then takes a
new action.

In the training process, we set a target symbol for each
virtual node in the VNRs. This symbol represents the substrate
node to which the virtual node is embedded. Assuming that
the target symbol of virtual node nvi is j, it means that the j-
th dimension of the feature vector corresponding to substrate
node nsj is 1, and other dimensions are 0. It is expressed as
follows:

nsj = (01, 02, ...1j ..., 0k)
T . (22)

The next step is to output the error between the target vector
vsj and nsj , that is, the cross entropy loss:

Loss(nsj , v
s
j ) = −

∑
j

nsj log(v
s
j ). (23)

Then we use gradient descent algorithm to calculate the loss
of gradient gf :

gl = gf · α · reward. (24)

Where reward is the reward signal and α is the learning
rate.

The learning rate α control calculates the size of the
gradient. If the gradient is too large, the learning agent’s action
adjustment direction will be too large, may miss some of the
more expensive action. Therefore, no amount of training can
achieve better results. If the gradient is too small, the training
of the agent will be extremely slow and waste a lot of time.
Therefore, the learning rate should be carefully adjusted. We
adopt batch gradient descent algorithm to update the strategy
network, which not only improves the convergence speed of
the agent training, but also guarantees the stability of the
network [29].

The training process is shown in algorithm 1.
The input parameter epoch indicates that all training data

will be sent to the policy network to complete a forward
calculation and back propagation process. In each epoch, we
input all VNRs for training. Line 5 of the algorithm indicates
that the feature matrix is obtained. Line 6 is the probability
distribution of the substrate nodes. Lines 7-10 represent the
node mapping. Line 13 shows the link mapping. Lines 15-21
Compute the rewards obtained after the nodes and links are
successfully embedded.

In the test phase, we select the node with the highest
probability as the mapping node directly. The test process is
shown in algorithm 2. Where line 5 represents the node map
and line 8 represents the link map using BFS. Ends if all
virtual nodes and virtual links are mapped successfully.

D. Algorithm Complexity Analysis
The algorithm complexity of our proposed security-aware

VNE algorithm based on RL is O(CV NR(Cns ·d+Cnv+Clv )).
Where CV NR represents the number of incoming VNRs. Cns

represents the number of substrate nodes. d is the dimension
of the feature matrix. Cnv and Clv represent the number of
successfully embedded virtual nodes and the number of virtual
links, respectively.

The specific derivation of algorithm complexity is shown in
TABLE II.
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Algorithm 1 Training phase algorithm

Input: number of epoches, epoch; learning rate, α;
trainingset;

Output: parameters of the policy network;
1: while iteration < epoch do
2: for request ∈ trainingset do
3: counter = 0;
4: for v node ∈ request do
5: FM = getFeatureMatrix();
6: dis = getOutPut(FM);
7: if sn.cpu ≥ vn.cpu and sl ≥ sr then
8: c = sample(dis);
9: getGradient(c);

10: end if
11: end for
12: if isMapped(∀ v node∈request) then
13: BFSLinkMap(request);
14: end if
15: if isMapped(∀ v node∈request) then
16: if (∀ v link∈request) then
17: reward = revenue(request);
18: else
19: stacking gradient = 0;
20: end if
21: end if
22: counter ++;
23: if counter == batch size then
24: counter = 0;
25: end if
26: end for
27: iteration++;
28: end while
29: return parameters;

Algorithm 2 Test phase algorithm

Input: test set;
Output: long termaverage revenue, acceptance rate,

long termrevenue consumption ratio;
1: Initialize the policy network;
2: for request ∈ test set do
3: for v node ∈ request do
4: FM = getFeatureMatrix();
5: candi node = getProbability(c);
6: end for
7: if isMapped(∀ v node∈request) then
8: BFSLinkMap(request);
9: end if

10: if isMapped(∀ v node ∈ request,∀ v link ∈
request) then

11: return (success);
12: end if
13: end for

TABLE II: Algorithm complexity analysis

Algorithm steps Algorithm complexity

complexity of computing feature matrix for
every VNR

O(Cns · d)

the embedded complexity of every VNR
computing node

Cnv

the embedded complexity of every VNR
computing link

Clv

complexity of successful embedding of ev-
ery VNR

O(Cns · d+Cnv +Clv )

complexity of successful embedding of all
VNRs

O(CV NR(Cns · d +
Cnv + Clv ))

TABLE III: Parameter setting

Parameter names Parameter values

number of substrate nodes 100

number of substrate links 570

substrate node resource U[50, 100]

substrate link resource U[20, 50]

security level U[0, 3]

number of nodes per VNR U[2, 10]

virtual node computing resource
requirements

U[0, 50]

virtual link bandwidth resource re-
quirements

U[0, 50]

virtual node connection probability 50%

safety requirements level U[0, 3]

V. EXPERIMENTAL SETUP AND RESULT ANALYSIS

A. Experimental Setup

The substrate topology is generated by GT-ITM tool, which
is commonly adopted in virtual network mapping algorithm
[30], [31], to form a substrate network with 100 nodes and
570 links. We set the computing resource and security level for
each substrate node. The computing resource of each substrate
node is evenly distributed between 50 and 100 units. The
security level of each substrate node is evenly distributed
between 0 and 3. In addition, we set the bandwidth resource
of each substrate link to a range from 20 to 50.

Similarly, we generate 2000 VNRs, 1000 of which are
used as training set and another 1000 as test set. Each of
these requests has between 2 and 10 virtual nodes at random.
The computing resource requirements of virtual nodes are
uniformly distributed between 0 and 50 units. The security
requirements of virtual nodes are evenly distributed between
0 and 3. The bandwidth resource requirements of the virtual
link are evenly distributed between 0 and 50. Virtual nodes
are connected with each other with a probability of 50%.
The arrival of virtual network request simulates the Poisson
process. The summary of parameters is shown in TABLE III.

The experimental platform uses PyCharm and Python lan-
guage to write experimental code. The training results and test
results are shown in the diagram by Origin 8.5 . We used
TensorFlow to build the policy network. TensorFlow is an
open source software library for high-performance numerical
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calculations. With its flexible architecture, computing can be
easily deployed to a variety of platforms [32]. Firstly, the four-
tier structure of the policy network is constructed according
to the description in section 4.2. The flexibility and ease of
use of TensorFlow makes it easier to construct the four-tier
structure. We initialize the policy network with parameters
that conform to normal distribution. Set the learning rate of
the learning agent to 0.005. We trained 100 epoch agents by
gradient descent method.

B. Training Results and Analysis

Figure 4, Figure 5 and Figure 6 show the changes in long-
term average revenue, long-term revenue consumption ratio
and VNR acceptance rate over 100 epochs, respectively.
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Figure 4: Long-term average revenue on training.
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Figure 5: Long-term revenue consumption ratio on training.

As can be seen from the figures, the training process of RL
is difficult to converge. Because RL agents need to constantly
be aware of the state of the environment as they interact with
it. We extract five attributes of the substrate node to form the
feature matrix, which is used as the learning environment of
the agent. The agent should fully learn how each feature might
affect the final result. The agent is rewarded for making the
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Figure 6: VNR acceptance rate on training.

decision. The training difficulty of RL agents, especially in
NP-hard problems such as VNE, takes longer to converge.

In the early stage of training (0<epoch<30), the perfor-
mance of the three evaluation indexes was very unstable.
Because the parameters of the policy network are initialized
randomly, the learning agent is completely unfamiliar with
the current environment and can only take random actions,
so the process does not converge. In the middle of train-
ing (30<epoch<80), the three evaluation indexes began to
stabilize. In the process of training, agents begin to explore
the substrate nodes with high probability. When choosing a
substrate node with high probability, the agent will get rich
rewards. So the agent will remember the benefits of this
decision and make similar decisions in the future. For those
agents who have not yet achieved better revenue, they will
gradually choose to make their own actions more profitable. At
the later stage of training (80<epoch<100), the three training
indexes began to be more stable. This is because the model
is still exploring substrate nodes with higher probability and
most agents have been able to take actions to make their own
profits. At this time, the training results can be considered as
convergent.

C. Test Results and Analysis

In the test phase, we compared the security perception VNE
algorithm based on RL (SA-RL-VNE) proposed in this paper
with the RLVNE algorithm proposed in reference [26], the
BaseLine algorithm proposed in reference [20] and the NodeR-
ank algorithm proposed in reference [33] in three aspects of
long-term average revenue, long-term revenue consumption
ratio and VNR acceptance rate. Because these three algorithms
are based on BFS strategy to carry out link mapping, but they
use different algorithms in the node mapping phase. RLVNE
algorithm also trains the policy-network as a learning agent,
but it does not pay attention to security factors. Similarly, the
other two algorithms do not consider the security performance.
Figure 7, Figure 8 and Figure 9 shows the test results on the
test set.
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Figure 7: Long-term average revenue.
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Figure 8: Long-term revenue consumption ratio.

0 5 1 0 1 5 2 0 2 5 3 0

0 . 7 0

0 . 7 2

0 . 7 4

0 . 7 6

0 . 7 8

0 . 8 0

0 . 8 2

VN
R a

cce
pta

nc
e r

ate
(%

)

t i m e ( u n i t )

 S A - R L - V N E
 N o d e R a n k
 B a s e L i n e
 R L V N E

Figure 9: VNR acceptance rate.

TABLE IV: The average running time of the algorithm

The algorithm name The run time(s)

SA-RL-VNE 2780

RLVNE 2610

NodeRank 460

BaseLine 302

It can be seen from Figure 7 that before 10 time units, the
long-term average returns of the four algorithms are relatively
high and decline rapidly. This is because in the early network
of the substrate resources are relatively rich, almost all VNRs
can be satisfied. The reason for the fast decline is that a
large number of VNRs consume a large amount of resources
and later VNRs will not all be satisfied. The index began
to stabilize in the middle and late period. The situation is
similar in Figure 9. In the early stage, due to the rich substrate
resources can meet more virtual network requirements, so the
acceptance rate is high. With the continuous consumption of
the substrate resources, the index began to decrease gradually
in the later period. The SA-RL-VNE algorithm is superior to
the other three algorithms in terms of long-term average return
and VNR acceptance rate. The reason is that in the training
phase, the agent of SA-RL-VNE algorithm can better learn
the relationship between the substrate network nodes, which
is more in line with the actual VNE situation. Therefore, the
results on the test set are good.

It can be seen Figure 8 that the revenue consumption ratio
is relatively stable in the whole process. Because this indicator
has nothing to do with the number of substrate resources. This
index depends on the efficiency of the algorithm. Generally
speaking, the revenue consumption ratio of SA-RL-VNE al-
gorithm is slightly higher than that of RLVNE. This is because
the learning agent of SA-RL-VNE algorithm is trained in the
environment with more characteristics of the substrate nodes,
and has achieved better results. It shows that our algorithm not
only meets the demand of VNR resources, but also considers
the impact of security on VNR. Only the substrate nodes that
meet the security level requirements can accept the embedding
of virtual nodes, which improves the acceptance rate and
ensures the security of the network.

In addition, we compare the average running time of these
algorithms, as shown in TABLE 4. Because our policy network
training needs a long time, plus the time required in the test
phase. So the overall time is relatively long.

In order to highlight the SA-RL-VNE algorithm’s efficiency
is still better while considering security performance. We
compare this algorithm with three typical VNE algorithms
that consider security performance in terms of revenue con-
sumption ratio. They are NP-SVNE algorithm proposed in
[21], TA-SVNE algorithm and G-SVNE algorithm in [22].
They are all based on heuristic secure VNE algorithms. The
NP-SVNE algorithm sets the security attributes requested by
the virtual network to different security requirement levels
and security levels, instead of setting each virtual node to
a different security requirement level and security level. The
TA-SVNE algorithm and G-SVNE algorithm abstract the
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security attributes of virtual nodes and substrate nodes into
security requirement levels and security levels. The algorithm
established a security VNE mixed integer linear programming
model. However, these two algorithms do not consider the
impact of the node’s security attributes on the embedding
revenue consumption ratio. The comparison results are shown
in Figure 10.
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Figure 10: Revenue consumption ratio.

The result shows the advantages of the intelligent learn-
ing algorithm. Because NP-SVNE is a heuristic algorithm,
it cannot learn the characteristics of the substrate network
through agents as intelligent algorithm. The overall efficiency
of heuristic algorithm is not as high as intelligent algorithm.
It can be seen that the SA-RL-VNE algorithm has better
performance when security performance is considered, so
using intelligent algorithm to solve the problem of VNE
has important practical significance and will have a broader
prospect.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a method of embedding security-aware
virtual network based on RL. RL is mainly applied to virtual
node embedding. Five attributes of the substrate node are
extracted to form the feature matrix in order to provide a more
real training environment for the RL agent. The VNE decision
is entirely determined by the return to the agent, so there is
no need to rely on any hand-written rules. This paper focuses
on the security problem in the VNE. The virtual nodes can
only be mapped to the substrate nodes that meet their security
requirements. It is of great significance for network business
with high security requirement in reality. Simulation results
demonstrate that the performance of this algorithm is more
preferable than other algorithms.

In the future work, we will explore to extract more rea-
sonable features for each substrate node and create a more
real network environment for the agent. In addition, we will
further investigate how to train the agent better without using
the feature matrix as input.
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