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Abstract—This paper investigates the distributed optimal state consensus problem for an electronic system with a group of circuit
units. The dynamics of each unit is modeled by a Chua'’s circuit in the presence of disturbance generated by an external system. By
means of the internal model approach and feedback control, a compensator-based continuous-time algorithm is proposed to minimize
the sum of all cost functions associated with each individual unit in a cooperative manner. Supported by convex analysis, graph theory
and Lyapunov theory, it is proved that the proposed algorithm is exponentially convergent. Compared with the centralized algorithms,
the proposed protocol possesses remarkable superiority in improving scalability and reliability of multiple circuit systems. Moreover, we
also study the distributed uncertain optimal state consensus problem and a linear regret bound is obtained in this case. Finally, a state
synchronization example is provided to validate the effectiveness of the proposed algorithms.

Index Terms—Distributed optimization, consensus control, disturbance rejection, internal model (IM), regret bound.

1 INTRODUCTION

ISTRIBUTED coordination for large-scale networked
Dsystems with many units has attracted increasing at-
tentions owing to its extensive applications. In these sys-
tems, units can interact with each other via a communication
network to perform complex tasks, e.g., consensus, forma-
tion control, resource allocation and optimization [1]-[4].

Consensus is an important issue for dynamical net-
works. Its objective is to develop an appropriate control
law making use of local information for each unit such
that states of all units converge to a common value [5]. For
example, [6]-[8] studied the state consensus problem of a
nonlinear circuit network by using feedback control method.
In [9], [10], the authors proposed novel driving approaches
to compelling that the states of Chua’s circuit system achieve
consensus. With the help of matrix theory and Lyapunov
methods, some consensus criteria were obtained to guar-
antee that the states of a coupled nonlinear circuit system
achieve consensus in [11]. Zhang and Feng [12] studied
the distributed output regulation problem of piecewise
discrete-time systems via an error feedback method, and
the obtained results were further applied to the consensus
problem of multiple circuit networks. Angelo et al. [13]
studied the consensus problem of nonlinear periodic circuits
via a small-signal analysis method. In addition, distributed
consensus for multi-agent systems with uncertainties has
been studied in the past several years. For example, Wen et
al. [14] proposed an adaptive consensus-based algorithm for
solving the economic dispatch problem of smart grids sub-
ject to communication uncertainties. Diwadkar and Vaidya
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[15] considered the consensus problem for a large-scale non-
linear system in the presence of uncertain communication
links, and some consensus conditions were also derived
with the aid of a random version of Positive Real Lemma.

When the consistent state is required to minimize the
sum of a group of convex cost functions known by each
individual unit, then the consensus problem evolves into
a distributed optimization problem in [16]. For such a col-
laborative problem, we here call it the distributed optimal
state consensus problem (DOSCP). To solve such a problem,
many results have been reported, see [17]-[24]. Some re-
sults about discrete-time algorithms have been developed to
solve the DOSCP. For example, the DOSCP was first studied
in [17]. A primal-dual subgradient method was developed
to solve the online optimization problem in [24]. There is
also growing interest to explore more suitable continuous-
time algorithms to solve the DOSCP. For instance, the sem-
inal work [19] provided a class of novel algorithms to deal
with the DOSCP from a control viewpoint, and the class of
continuous-time algorithms was further improved to solve
the DOSCP in [20]. The DOSCP for nonlinear systems was
considered in [21]. In [22], the DOSCP for nonlinear systems
was solved by gradient-based algorithms. A time-varying
distributed optimization problem for a single/double inte-
grator system was illustrated in [23].

The dynamics of some networked systems are described
as integral-type systems, such as [17]-[20], [23]. However,
in many applications, the dynamics of physical systems
are more complex such as mechanical systems, power sys-
tems, circuit systems, etc. Solving the DOSCP for more
complex systems is more challenging and demanding. The
cost function is time-invariant in the aforementioned dis-
tributed optimization works [17]-[22]. The time-varying
cost function is considered in [23], [24]. However, although
they have demonstrated some positive results, there are
still many topics to be solved such as online optimization
and trajectory optimization. In addition, when the circuit
units operate, they are often affected by various distur-



bances resulting from communication or environment [21].
Disturbance rejection becomes an urgent problem to be
solved. Many published results can only guarantee that the
system’s final state converges to a small neighborhood of
the consensus point under the existence of disturbances
[25], [26], but can not achieve the consensus with more
accuracy. An effective approach to disturbance rejection has
been developed based on the internal model principle from
the viewpoint of output regulation in [27]. With regard to
distributed optimization, an internal model-based control
law was designed to solve the DOSCP with disturbance
rejection in [21]. However, to the best of our knowledge,
there are very few results related to the DOSCP for nonlinear
circuit systems with higher relative degree and disturbance
rejection, which motivates the present exploration.

Our goal in this paper is to further study the DOCSP
for nonlinear circuit systems with disturbance rejection. It
is worth noting that, compared with the existing results,
the distributed optimal state consensus problem under con-
sideration is quite comprehensive. Specifically, we consider
the DOSCP with not only the deterministic cost function
but also the uncertain cost function. The main contributions
of this paper are emphasized as follows: (i) We formulate
a DOSCP for a nonlinear electronic system to illustrate
how a group of circuit units cooperatively demonstrate
their performance on state consensus. The consistent state is
subject to the minimum value of the cost function of entire
system. Furthermore, this formulation can be regarded as an
extension of some well-known problems such as the DOP in
[19], [20]. We focus on the nonlinear dynamics with high
relative degree under the consideration of external distur-
bance, which is different from the existing integral-type and
linear systems in the design of continuous-time controllers
[17]-[20]. (ii) A novel algorithm based on feedback control
and internal model techniques is developed to tackle the
technical challenges brought by external disturbances and
nonlinear dynamics. With the help of graph theory, convex
analysis and Lyapunov theory, it is shown that the proposed
algorithm converges exponentially to the optimal solution
of the considered problem. (iii) The distributed uncertain
optimal state consensus problem with inaccurate gradients
is illustrated and a linear regret bound is obtained in this
case as well.

Organization. In Section 2, notations and some prelimi-
naries are given, followed by problem formulation. In Sec-
tion 3, the DOSCP with disturbance rejection is studied.
Then the uncertain DOSCP with disturbance rejection is
illustrated in Section 4. An example is provided to demon-
strate the effectiveness of the proposed algorithms in Section
5. Section 6 summarises the investigation.

Notations. Throughout this paper, Q@ and QT denote
a real matrix and its transpose, respectively. R and R"
denote the set of the real numbers and the space of the
real vectors with n dimension, respectively. R* denotes the
set of the positive integers. 1,, is a n-dimensional vector
with all elements 1. I,, is the identity matrix of n dimen-
sion. diag {x1, 2, ...,x,} denotes a diagonal matrix with

entries z;, i = 1,2,...,n. Denote by col (x1, 2, ...,2,) =
T .

[, 2], ..., 2] the column vector stacked with vectors

X1, T2, ..., Tn. ||| denotes the standard Euclidean norm.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Convex Analysis

A nonempty set S € R" is convex if bz + (1 —b)z; € 5,
Vz, z7 € S and b € [0,1]. A function f : S — R
is convex over the convex set S if f(bz+ (1 —b)z1) <
bf(z) + (1 =0b) f(z1), Vb € [0,1] and z, z, € S. A dif-
ferentiable function f : S — R is strongly convex over S if
(z—2)" (Vf(2) = VS (21)) > 0|z — 1| with a positive
constant w, Vz, 21 € S. Moreover, its gradient V f is Lips-
chitz over S'if |V f (2) =V f(z2)| <7z — 2], Yz, 21 €
S, where r is the Lipschitz constant, see [28].

2.2 Problem Formulation

We consider a state consensus problem for an electronic
system consisting of n circuit units. Suppose that each unit
is equipped with a sensor for exchanging information with
its neighbor units to complete a complex task, and it has the
ability to perform independent computation. All units col-
laboratively find an unknown agreement value that enables
the state of the entire system to be consensus. The circuit
unit to be considered is shown in Fig. 1. It is called a Chua’s
circuit in [29], [30] disturbed by external disturbances that
can be regarded as the effect of the working environment
on the system’s performance. Furthermore, the new circuit
model can be described by the following differentiable
equations:

Cl'[)li(t) ZM —f (Uh‘(t)) + CICB;OGui(t)
+ CICB;OGei(t%
02’021(15) 71]11( )Rv%(t) - wi(t)u
L (t) =v9;(t) — Row; (1), (1)

where w; (t) denotes the current across the inductor L.vy;(t)
and vg;(t) are the voltages through the capacitors C; and
C, respectively. u;(t) is the current from the external power
source as active control action of unit ¢ to compel w;(t),
v1;(t) and v;(t) for achieving consensus. R and R, are
linear resistors, G = 1/R, f(v1;(t)) is the v — i property
of the nonlinear conductor N, as shown in Fig. 2 with a
slope G, in the inner region and G}, in the outer region. The
breakdown voltage By of Chua’s diode, i.e., f(vy;(t)) =

vau(t) — 05(Ga — Gb)(|’l)12(t) + Bo| — |’l}1i(t) — Bo|) and
Vai R Vi
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Fig. 1. The circuit structure of each unit.
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Fig. 2. The v — i property of the nonlinear conductor N,..

6; is a local disturbance generated by the following au-
tonomous system

vy = Fuy, 1;(0) € Vy, )

where v; is the state, V; is a fixed compact set, F' is a known
matrix and its all eigenvalues are located on the imaginary
axis of the complex plane [27],7 =1, 2, ..., n.

For the convenience of analysis, let ;1 = 5%, T2 =
i v _ C _ G, _ _
%cg’ % = B, din = &, dip = G, diz = G, dia =
oz dis = 'ngo, t = %’ thus the dynamical behavior (1)

of unit 7 can be simplified to the following form

Gi = — di5qi + diazin,
Ti1 =Tiz — il — Gi,
Big =d;1 [-0.5 (diz — diz) (|ziz + 1] — |22 — 1])
51 — (14 diz) 2i2] + ui + 0;. 3)

Furthermore, let y; = x;1, ©; = T2 — ;1 — ¢, h; =
col(d;1,dia, d;i3, dia, d;5), then system (3) can be equivalently
described by the following uncertain nonlinear state space
equation with local disturbances

lj'i = Vi1 (ql) Yi, hi) )
Ui = X,
& = via (Gis Yi, i, hy) + ui + 05, 4)

where v (g3, Yi, b)) = —dis@s + diayi, vio (€5, Yi, i, ) =
—0.5d;1(diz — diz)(Jwi +yi + @i + 1] — |z +yi + ¢ — 1]) +
din(1 + dis)(zi + vi + @) + dayi — 2 — disqi + diays.
(¢i,xi,y;)) € R x R X R are also viewed as states of
unit 7 under new coordinates, i = 1,2,...,n. h. € R® is
an uncertain constant parameter in a fixed compact set
W € R®. vi1 (gi,yi, h}) and via (i, yi, 24, h}) are Lipschitz
and sufficiently smooth functions. It is worth noting that,
in real applications, the disturbance is inevitable due to the
uncertainty of the working environment. Hence, the state v;
of (2) is not directly obtained. Although 0; in (4) denotes a
local disturbance, it is uncertain. In this paper we see that
0; can be defined as the output of (2), ie, 0; := o(v;, h}),
which is measurable by some specific equipments or in-
strument. Moreover, 6; := o (v;, h}) is a polynomial in v;
with coefficients depending on the uncertain parameter h/.
A system with the dynamics of (4) represents a class of
minimum-phase uncertain nonlinear systems with second
relative degree that can model many physical systems such
as Chua’s circuit [22] and synchronous generators with an
infinite bus [31] in the presence of external disturbance.

3

Since each unit has different states, it requires to move to
a common point under the drive of the developed controller.
In this process, each circuit unit needs to consume energy.
The energy expenditure is modeled by a convex function
related to its own partial state, ie., f; (y;) : y; — R, which
can represent the cost resulting from the energy consumed
by each unit, and it is only known by this unit. Thus, the
state consensus problem can be formulated as searching for
a rendezvous point as estimate of the unknown consistent
state by minimizing the cost function with an equality
constraint. The cost function is the sum of all the local cost
functions associated with each unit, i.e.,

min f (y) = fi (v:), ®)
=1
subject to |y; —y;|l =0,

where y = [y1, Y2, - yn]T. Hence, the state consensus prob-
lem for the electronic system with n circuit units can be
treated as finding the minimizer of the cost function subject
to an equality constraint. The optimal solution is viewed as
estimate of the consistent state for the entire system. Here
suppose that the optimal solution set Y* of (5) is nonempty.

2.3 Network Model

The communication between units is described by a graph
G (V, ), named communication graph in [32], where V is the
set of circuit units and £ is the set of edges. In this paper,
only simple graphs are considered, namely, the communica-
tion topology contains neither self-loops nor multiple edges
between any two distinct circuit units. A graph is connected
if there exists a path consisting of a sequence of distinct
edges from a circuit unit to any other circuit unit, otherwise
disconnected. In order to describe the relationship among
circuit units, the adjacency matrix A = [a;;] € R™*™ is used,
where a;; = 11if (¢,j) € € and a;; = 0, otherwise. Unit j
is called a neighbor of unit 4 if units ¢ and j are directly
connected. The notation N; = {j]| (4, j) € £} denotes the set
of neighbors of unit i. The degree of unit i is D; = _7_; ai;.
Thus, the Laplacian matrix of G is defined as £L = D — A
with D = diag {D1, D, ..., D, }.

The assumptions about the communication topology
and the local cost function are provided below.

Assumption 1. The communication topology between circuit
units is an undirected and connected graph.

Lemma 1 ( [33]). 1) Under Assumption 1, the Laplacian
matrix £ of the graph G is symmetric and positive semi-
definite, which satisfies 125 =0and £L1,, =0.

2) 0 is a simple eigenvalue of £ and other eigenvalues
are positive.
3) There is a non-zero vector £ € R" satisfying
% = mi 'Lz .
> 113%120 T’

NG
where ;\2 and Sm is the minimal non-zero and maximal
eigenvalues of L, respectively.

Assumption 2. The local cost function f; (y;) is m;-strongly
convex and its gradient is p;-Lipschitz, respectively.



Remark 1. Assumption 2 is a basic condition in existing
results [19], [20]. fi(y;) is strongly convex, so is the global
cost function f(y), which can guarantee that the optimal
solution of problem (5) is unique. It is further derived
that Y* is a single set.

To proceed further, we introduce the following assump-
tions for nonlinear system (4).

Assumption 3. Given the point y* € Y™, there exists a
unique ¢}, ¢ = 1,2, ...,n, such that v;; (¢}, y*,h) = 0.

Define
G=q—4G, V=Y —Y, Ti=1z; — 1], )
then, system (4) is transformed into the following form

4; = i (@G> Ui, hy)
:'ji = T,
T = Uio (@i, Ui Ty M) + u; — €5 + 0, (8)

where 0, = 0, + vi2 (¢, y*, x}, h}) + e, U (@, Gis h}) =
vit (G + @i, Ui + i, b)) — van (@7, y™, ), iz (Gis s Ty by) =
Vio (@i + Gis Ui + Yi, Ti + x4, hi) —via (qF , y*, w7, hi), e* is the
steady state of the dynamic compensator e;, which will
be designed in the latter part, and it plays the role of
eliminating the effect of the nonlinear term v;2 (¢, ¥, zi, h})
on the optimal solution y*, i.e., vi2 (¢}, y*, z}, h) + e* = 0.
Assumption 4. There is a continuously differentiable func-
tion V3, (G;) that has lower and upper bounds by a1 (g;)
and a2 (q;), ¢ € V, respectively, where a4 (-) and as (+)
are two class-K, functions. Moreover, its time deriva-
tive along the solution ¢; = v;1 (q;, ¥s, h}) satisfies

S _ 2 _ 2
Ve (@) < =Bill@ll” + xallwll”, vhi € W, )
where f3; and x; are positive constants.

Remark 2. Assumption 3 is a necessary condition for ob-
taining the accurate optimal solution of DOSCP (5). This
means that the state y; converges to y* if ¢; converges to
q;,1=1,2,...,n. Assumption 4 describes the property of
a minimum-phase nonlinear system, which can ensure
the effectiveness of feedback control ( see Remark 3.10
in [27]). Since the transformed system (8) contains un-
modeled dynamic part ¢; = v;1 (@, Ui, 1), we first need
Assumption 4 to guarantee that it is stable at the origin,
then a distributed robust controller is designed such that
the remaining parts of system (8) is stable at the origin.
It is worth pointing out that this assumption is often
used in the analysis and control of nonlinear systems.
Therefore, Assumption 4 is a common and standard
condition in the existing literatures, see [21], [22], [31].

3 DISTRIBUTED OPTIMAL STATE CONSENSUS

In view of existence of external disturbance, we need to
design a robust control protocol to achieve the exact op-
timization rather than the solution of DOSCP (5) being
converged into a bounded neighborhood of the optimal
solution. Reviewing the description of external disturbance
0; := o(v;,h}), we know its form instead of its specific
characteristics like eigenvalues. In what follows, we need to

reconstruct the generator of external disturbance 6; with lin-
ear observability. Specifically, the disturbance 8; := o (v, h;)
is polynomial in v;, so is 0;, according to Proposition 6.14
in [27], 0; = 0; + viz (¢}, y*, 2, h) + e* has the following
minimal zeroing polynomial in v;

pi(N) =N+ p N At ., (10)

for some real numbers p1, pa, ..., Pz, —1, Pz, i € Wand z; €
R+. Define w; = [wﬂ,(:uig,...,wizi] with w;1 = 0;, wipe =

0 ..., Wiz, = dzi:fii, i € V, a generator of external
disturbance 0; is established as
Wi = Nw;, 0; = Tiw; (11)
with
0 ‘ I, 4
A, = Zi , Ii=1 1| 01xz—1 |-
’ —P1 ‘ —P2y s TPz ! [ ‘ Pzl ]

Since the pair (I';, A;) is observable, there exists a matrix
M; such that the matrix H; = A; + M,;T"; is Hurwitz. Then
the linear dynamic compensator

ni = Hini + Miui, 1;(0) =0 (12)
is an internal model of (4), and 7); is its state.
Define new coordinate and input transformation
M =ni —w; — M;Zi, 4; = u; + i — €7, (13)
and using (7) again on system (4) leads to
qLi = Vi1 (qivgia h;) )
:’ji = fi?
T = Via (Gi, Ui, Ti, hy) + 1w — L, (14)

where
iz (Gis Ui, Tiy hy) = HiM;Z; — Mvia (@i, Uiy Tiy hy)
Vi (@i, Ui, Tiy ) = =T M, Z; + Vi (Gs, Ui, Tiy BY)

With the help of coordinate transformations (7) and
(13), it is observed from (14) that we can transform the
distributed optimal state consensus problem (5) into a dis-
tributed stability problem with the internal model design.
Thus we only need to design a distributed robust controller
such that the converted problem is stabilizable at the origin.
In turn, we can deduce that the original problem is solv-
able, and the optimal solution of the considered problem is
further obtained.

For solving the distributed stabilization problem of sys-
tem (14), the control protocol @, in (14) to unit ¢ is designed
as

Ui = = kT — ¢gi (7:) + € + Ti = i,

Gi= o Wi w) D (=),

€ =— & — &; — U2 (G, Ui T4, hy) + iy, (15)
where k and ¢ are positive constants to be determined, ¢;
and e; are the intermediate variables, g; (§;) = Vf; (y;) —
Vfi (y*): Vi 723‘61\11- (i — ?j)j‘ >jen, (Ti— @) +
ZjeNi (%‘ —@j), O = Qi — Y5, & = ¢ — e —T; o]
is the steady state of ¢;, Vf; (y;) is the gradient of f; at
yi, the term > v (Ui — U5) + 2 en, (Ti — T;5) is to realize



consensus Z; = I;, —¢g; (¥;) is the negative gradient term
to drive the deviation ¥; converging to 0, which implies
that y; converges to the optimal solution y* of problem (5),
> jen; (@i — ;) is to eliminate the error of the consensus
term.

Combining (14) with (15) leads to the closed-loop system

4; = U1 (@i, Ui, 1)

Y; = s,

n; = Hilli + Uiz (@, i, T4, hy)

T = 02 (Gi, Ui, Tiy hy) — kTy —
+e +x; — Vi,

¢i_zg€N — Y +Z JEN: xz 37]7

€ = —€ —Ti — V2 (Qza Yiy T, h’z) + 1.

#9: (9:) — Timi

(16)

Lemma 2. Under Assumptions 1 and 3, the equilibrium
point of (16) is the origin (0,0,0,0,0,0) for any i € V.
Proof: Let (g7,99,70,29,5?,€?) is the equilibrium
point of (16), which satisfies

0 vu (@5 hi) (17a)
0 —x (17b)
0 Hml + B2 (), 57,0, 1), (17¢)
0 =02 (G, 950, hi) — bgs (57) — Tatly =% +&  (17d)
0=>" _\ @1 (17¢)
0=—& — i (20,70,0,h%) + Tun?, 17f)

where 5 = Yen, (50 = 39) + Syen, (20— #2), 92 (),
032 (+), and g; (+) are defined in (14) and (15), respectively.
According to Assumption 3, it is derived from (17a) that
g = 0 and g0 = 0. It follows from (17c) that 777 = 0 since
the matrix H; is Hurwitz. It is further derived from (17f)
that &) = 0. Then, for (17d), we give

0=0g: (5) = D, aiy (9! = &).

Furthermore, g; (ﬂ?) = g; (0) = 0, it follows from (18) and
Assumption 1 that g9 = aﬁ?, which implies that @) = cﬁ? =
0,7 # j = 1,2,...,n. After the above analysis, it is known
that the equilibrium point of (16) is the origin. The proof is
complete. O

Before performing subsequent analysis, let us check the
structure of the distributed controller u; in system (4), which
is designed as

(18)

u; = —kxy — ¢V fi (yi) —vi — Limi + e,
Pi :ZjeNf, (yi —y;) + ZjeNi (zi — ),

é; = — kx; — ¢V fi (yi) — i,

n; =H;n; + Miug, 1;(0) =0, i€V, (19)
where ; djen, Wi —yi) + Yien, (@i —x5) +
djen: (pi —@4), k, ¢, ¢; and e; are the same as those

in (15), e; is an offset term to eliminate the effect of the
nonlinear term v;2 (¢;, ¥, i, b)) on the first-order optimal
condition, i.e., e* + v (¢F,y*,xF,h;) = 0, and —T;n; is
an internal model term to compensate for an external dis-
turbance. Concretely, (19) and (11) are plugged into (4)
obtaining the closed-loop system under original coordinates

in which —T'; (n; — w;) converges to zero over time in the
dynamics of x;, only in this way, the trajectories of nonlinear
system (4) converge accurately to the optimal solution of
problem (5), and other terms play the same role as those in
(15).

It is known from Lemma 3 that the equilibrium point
of (16) is the origin. In what follows, our task is to find
the appropriate parameters ¢ and k to ensure the globally
asymptotic stability of system (17) at the origin.

System (16) can be rewritten in a compact form

qL:771 (67 Y, h);

y =z,

ﬁ:Hﬁ—i_ﬂQ (67?37‘%7]1))

T =05(q, 9,7, h) — kT — ¢g(y) —T'n+e+z,

- LEZ+9+7Y),

¢ =L(p+71),

é:—é—ﬁg(fj,ﬂ,i’,h)—f-’-l—‘?% (20)
where (j = col (lea "'7671)/ g? ja T_]a 957 év g (g)a U1 (qag7h)7

02 (4,9, T, h) and U2 (q,7, T, h) are defined in the same way;

H = dzag {Hl, HQ, veny Hn} and ' = dwg {Fl, HQ, ceny Hn}
Define the following new coordinate transformations
o=E"y, 9=E"z, y =E"¢, e=E"e, (21)

where E = [ Ey E, | is an orthogonal matrix with
B = %ln € R" and E, € R»*(n—1) satisfying BT LE =

. <5\ are
0 =

diag{ﬂl,}%...,x } of which 0 = A; < A <

elgenvalues of £ in an ascendmg order, o = [01,07 }

[191,195} = Wlﬂl)z} ,E= [51,55]T, o1, U1, ¥y, €1 €
R and o2, 92, 12, €2 € R""1. Thus, system (20) is decom-
posed into

q=01(q,7,h), 1 =0, 61 =01, G3="1s,

77 Hﬁ"_ 2( 7_7_1 )v
Oy =E (62(q,9,2,h) = T0) — kty — $EL g (§) + V1 + €1,
o =E3 (02 (3, §:2,h) = ) — k2 — $E5 g (§) + Va2 + &3

— EYLEypy — EI LEy00 — EX LE0,,

o =ET LEy0s + ET LEy09,

€1 =—e1— E{02(q,9,2,h) — V1 + E{ T,

gy =—¢e9— E302(q,9,%, h) — V2 + EITH. (22)

Due to B, = ﬁln, 11 = 0 holds. Hence, we only need to
analyze the stability of other variables in (22). The remaining
variables are divided into three subparts, i.e. (0,9,9,¢), ¢
and 7 to analyze stability as follows.

First, for (o, v, 12, ), construct the function
k 1 k
Vl 150'{(71 =+ 5’0?191 + 0',111’191 —+ 50’;(72

1 1 1
+ 5195192 +oF s + 5%%2 + §ET6. (23)



Clearly, when k£ > 1, Vj is positive.
Taking the time derivative of (23) along the solutions of (22)
leads to

Vi <= (k=2) [0]” = Aal|92lf* — Azflo2])?
+ (Eo + E9)" (62 (3,9, %, h) — ') — ()" g (7)
— 203 B3 LEy05 — ¢(EY) g (9) — le]|* + o0
+0Te — (Be) 0 (q, 9,2, h) + (Ee) T, (24)
where 5\21'”_1 < E;ﬁEQ < S\nIn_l is used with 5\2 and 5\n

defined in Lemma 1, and ETE = EET =1I,,.
According to Assumption 2, we have

(Ea) g (5) = 6779 (§) > ¢ml|o]?,

— ¢(EV) g (5) = —62"g (y) < op 19| |lo]
<o o (L + 1) 1017 + 2o 25)
where m = min {my, ..., m, } and p = max {p1, ..., pn }-

In light of Lemma 7.8 in [27] and (21), the following inequal-
ity holds

(EU+E19) U (g,
— (Be)"d

(02 (7.9, 7,h) — T7) + (Ee) ' Tj
2 (3,7, %, h)

B _ 1
<l ||g|1? + lallol® + L]0 + Lall7]* + ZIIEII2 (26)

for positive scalars Iy, I3, I3 and I4.
Combining (24), (25) with (26) yields

. . « 5
Vi <= (k= 3) 91" = Aalldall” = Aslloz ] + -
4(;5m

2
i

+ ¢poll9|® -

—llo I+ X 12| ol

+11Hf1||2+12|\0|\ + 13|97 + Ll _§\|g||2, (27)

where pg = p (
Letting

= +1).

Vo= (0 +2)" W2 +452), 9)

taking the time derivative of (28) along the solutions of (22)
gives rise to

Vo =(Ex¥2 + Exte)" (82 (49,7, h) — I') — k|92
— $(E292)" g (§) — 03 B LEytby — k03 by
— p(Batp2)" g (§) — Aalll®
<d||qlf* + dzlo||” + dsIIﬁIIQ +dal7]* - kHﬁsz

1 2 2
+ 12|l +p2¢2||0|| A2||¢2|| ——— || I”

"Wﬂ 29)
where di, dz, ds and d4 are positive constants, the last
inequality is obtained by using Young’s Inequality, Lemma
7.8 in [27] and the second term of (25).

Second, we consider q. The matrix H; is Hurwitz, so is
the matrix H, then, there exists a symmetric and positive-
definite matrix © such that ©H + HTO© = —2I. Select the
function

Vs =qnlen, (30)

and its time derivative along the solutions of (22) leads to
V3 = 2”77”2 =+ 2ﬁT662 (q_a ga '1_“7 h)

—[17]1* + 1102 (g, 7. 7, h)|*. @31
According to Lemma 7.8 in [27], we have
O 2 2 _12 —2
1002 (¢, 5,2, h)||” <c1llgl]” + c2lly]” + sz
=c1)|qlf* + callo|| + eall9)*,  (32)
for positive constants c;, c2 and c3.
Thus
_ 2 _2 2 2
Vs < —[17ll” + eillgll” + czllo)” +eall9fI”. (33)
Third, consider q. Let
Vi=Vz(a), (34)

according to Assumption 4, and its time derivative along
the solution of (22) yields

Vi=Ve@ <Y (<Billall’ +xilzl?)
:—MMF+MWW
= —Blal* + x|, (35)
where 8 = Y1, 8, x = Y1, x; and |7 = || Eo| = ||
Finally ietZ — ({01 [0al ol [val - gl I |7

For the whole system (22), take the Lyapunov function
candidate

V =Vi +bVs + sVs + 6V, (36)

where
ll +018+bd1+1
B

and b is a positive constant to be determined.
Let

s=1ly+bdy+1, 0=

¢ =

p+4m (5
3m?2 (1
X (p+4m)
38m?2
Combining (27), (29), (33) with (35) leads to
V<—[lloall ol IN[ ozl (1920 1" = llal®
— ((k =3 —1I3 — ¢po — lacs — c3) — bbo) [0

o 1g 1
— llal* - Zkzllwll2 — (1= bbo) |92 ~ §||6||2

¢m? 2
- (5 oo )

S 1h,
< , N =k—4— —l3—l4c3—c3,
5 N 1 ¢po—l3—licz—cs

bo=d3+%+i;\%+d403+i—k>0,b1 =dy +p?P* +
p;¢2 + cody + % (Cld4 + dl) and by = d3 + c3dy.
Tafdng

k> max{l,kl,kg},

+ o+ coly + CQ)

+ (ll + (l4 + 1) + 1) . (37)

(38)

where N =

)\2
k‘1=4+¢p(ﬁ+1)+l4c3+03+K,
2

koo =3+¢p(%+1) + 13 + Lz + cs,
ds +csds bo by (p+4m) |’

O<b<min{



it follows that N; in (38) is nonnegative. According to Schur
Complement Lemma, the matrix N is also nonnegative

definite. It is further derived from (38) that
v<-zT0oz (40)

with

0= dz’ag {kl — bbg, 1-— bbo,
p+4m

$m? bAo 1

n bb1, 1 ,1,1,2}.

Under (39), the matrix O is symmetric and positive-definite.

It is derived from (40) that V is negative semi-definite. By

virtue of the invariance principle (see Corollary 4.2 in [31]),

it is concluded that system (22) is globally asymptotically

stable at the origin. Furthermore, the variables g, o, 1,

¥, € and 7 converge asymptotically to the origin, so are

z, Y, P q, 1, €
Therefore, the following theorem is obtained.

Theorem 1. Under Assumptions 1-4, given n(0) = 0, algo-
rithm (19) with the parameters ¢ and k being respec-
tively chosen as those in (37) and (39) solves the DOSCP
5).

Proof: With the help of the above analysis, it is
proved that system (20) is globally asymptotically stable at
the origin. Finally, it is obtained from Lemma 2 that the
trajectories of system (4) converges to the optimal solution
of the DOSCP (5) by the proposed algorithm (19) with the
parameters ¢ and k being chosen as those in (37) and (39),
respectively. The proof is complete. O

The lower and upper bounds of the function Vg, (g;) in
Assumption 4 are two class-K functions. Here its lower
and upper bounds with respect to ¢; is further assumed
by a positive-definite quadratic function, respectively. Thus,
the selected Lyapunov function candidate V' in (36) also has
lower and upper bounds by a; | Z||* and a,||Z||* with 0 <
a1 < ag, respectively. It follows that the closed-loop system
(22) converges exponentially to the origin. Therefore, we get
an important result under the following assumption.

Assumption 5. There is a continuously differentiable func-
tion Vg, (¢:) satisfying r1[@|” < Vg (@) < mlal®
0 < r1 < ro, and its derivative Vg, (¢;) along q; =
i1 (@i, Ui, h) also satisfies the inequality (9).

Corollary 1. Under Assumptions 1-3 and 5, given n(0) = 0,
algorithm (19) with the parameters ¢ and k being re-
spectively selected according to (37) and (39) solves the
DOSCP (5). Moreover, the convergence to the optimal
solution y* is exponential.

Proof: Here, we only give a framework of the proof
because its proof is very simple. First, select the Lyapunov
candidate function (36), under Assumption 5, it is derived
from Remark 3 that

ar|| Z]* <V < a0 2| 41)

Second, similar to the proof of Theorem 1, taking the
time derivative of (36) along the solutions of (22) yields
(40), and selecting ¢ and k according to (37) and (39),
respectively, then under (39), combining (41) with (40)
leads to || Z (t)|| < v/az2/a1 || Z (0)]| e~ Amin(0)t/(202) jn which
Amin (O) is the minimum eigenvalue of the positive-definite

matrix O. Third, it follows that the equilibrium point of
system (22) is exponentially stable. Finally, it is obtained
from Lemma 2 that the trajectories of system (4) driving
by (19) converges exponentially to the optimal solution y*,
which implies that the convergence to the optimal solution
y* is exponential. The proof is complete. O

Remark 3. In [17]-[20], the dynamics of units are described
by integral-type and linear systems, which are ideal sys-
tems. This means that the developed protocol may not
be directly applied to the actual systems. The dynamics
(4) of circuit units in this paper have practical physical
models such as Chua’s circuits and synchronous gen-
erators in the presence of external disturbances. There
are few existing results on the optimal state consensus
problems of such systems, and our results just fill this
gap. Our proposed distributed optimization algorithm
with a dynamic compensator (19) is used to offset the
effect of the nonlinear term on the optimal solution of the
problem. It can ensure that the trajectory of the algorithm
converges to the optimal solution of the problem.

Remark 4. The disturbance is ubiquitous owing to the
uncertainty and complexity of the working environment.
The designed controllers in [17]-[20], [22] have no anti-
disturbance effect. As a result, the considered problem
can not obtain an exactly optimal solution when an
external disturbance exists. In contrast, the developed
controller (19) in this paper has the accurately optimal
solution to the problem (5) for system (4) with distur-
bance rejection due to the use of the internal model
technology and gradient method.

Remark 5. Compared with the existing works [21], [34], this
paper has no explicit restrictions on the initial states of
the intermediate variables in the controller (19). How-
ever, in ( (17) in [21] and (21) in [34] ), they are required
that the sum of the initial states of some variables are
zero, i.e. Y ;16 (0)=0in [21] and } ;" ; v; (0) =0 in
[34].

Remark 6. We study the optimal state consensus problem
of a multi-circuit system, where the system consid-
ered contains a small number of circuit units, and the
information transmitted between neighbors is limited.
This implies that the communication channels between
neighbors should be sufficient for perfect information
transmission. That is, there are no delay and congestion
in the transmission of information. However, as the size
of system increases, throughout and time-delay will have
a serious impact on the exchange of information over
the communication topology such as formation control
of large-scale UAV systems and the economic dispatch
problem of smart grids. This will be a research direction
of our future work.

4 DISTRIBUTED UNCERTAIN OPTIMAL STATE CON-
SENSUS

In Section 3, all units collaboratively solve the DOSCP
with the fixed cost function (5). However, for many real

cooperation problems [34], [35], the gradient of the local
cost function cannot be accurately measured due to some



unanticipated factors such as errors in measurements and
stochastic noises from a vibration environment [34]. The
class of distributed optimal state consensus problems has
been widely studied such as online optimization [36], trajec-
tory optimization [37], and so on. Particularly, the local cost
function involves an uncertain term, namely,

= Zj:l fl(yla t)

subject to ||ly; — yy” =0,

(42)

where f; (yi,t) = fi (y;) + Ai (t), fi (y;) is the actual cost
function, A;(t) is the uncertain term generated by the
evolution of (4), which is a bounded time-varying function.
There is a significant difference between problems (5) and
(42) that the cost function of (42) has a time-varying term
A; (t). This will induce some challenges for carrying out the
global coordination tasks such as distributed algorithm de-
sign and construction of evaluation criteria for the optimal
solutions. The regret function has become a performance
evaluation criterion for developing algorithms in [38], [39],
which has received wide attention. Its definition is the
average difference between the real total cost and the ideal
total cost resulting from the final state y* over a given time
interval [0,7] and T > 0, i.e.

/ Z (yit

To solve problem (42), the protocol u; in (19) is modified

as

u; = — kx; — ¢V, FI7 (yi,t) — vi + €; — Dimi,

$i = Zjezvi (i — y5) + (wi — ;)]

& = — kai — oVy ;" (yirt) — i,
where V,, fi"® (y;,t) is the inaccurate gradient of f;(y;,t)
(fi (yirt) = fi (i) + A; (¢)), the parameters ¢ and k also
satisfy (37) and (39), respectively.

Remark 7. In the distributed uncertain optimal state consen-
sus problem (42), the uncertain term A; (¢) is a bounded
time-varying function. Define w; = V,, fi"? (y;,t) —
Vfi(y;) as the gradient error, where Vf; (y;) is the
accurate gradient. We assume that the inexact gradient
still satisfies Assumption 2 and its error is bounded. That
is, there exist two positive constants p; and < such that
|92y 7% (s51.8) = Vo i (s2,6)]| < i |1 — 5] and
loil| <w,i=1,2,...,n

Note that the control protocols (19) and (44) are the same
except u; and the dynamic compensator e; owing to the
inexact gradient. Hence, the difference between the closed-
loop systems in Sections 3 and 4 is the equation related to
the gradient term. After the similar analysis and coordinate
transformations as those in Section 3, and define @ = ETw
with @ = [@1, szT] and w = col (w1, ..., wy, ), the different
parts of the closed-loop system in this section are given here

in a decomposed form, and the same parts are omitted for
simplicity (for details, please see (22))

191 :E? (’[)2 (q_aga ‘7_“7 h) -
+ 91 + &1,

Vo =E3 (b2 (q, 9,2, h) — T') — ks — ¢(E g (§) + @2)
— EY LBy — EYLE 00 4 05 + 5. (45)

I'n) — kv — ¢(ET g (§) + @1)

Theorem 2. Under Assumptions 1-3 and 5, given 1(0) = 0,
solutions y; of the uncertain DOSCP (42) converge expo-
nentially to the optimal solution y* with a regret bound
R (0,T) by algorithm (44) with the parameters ¢ and
k being respectively chosen according to (37) and (39).
Moreover, there exists a constant ey > 0 satisfying

6+/negasz

0 Jag | - O
o T)\mln (O) ay
3 N
n az npegww
ai )\min (O)
with the matrix O defined in (40) and the initial error z°
= 3im1 (@i (O] + |yi (0)] + |2 (0)] + [0i (0)] + les (0)))

Proof: Like the proof of Theorem 1, select the Lya-
punov function candidate (36). Thus, we have

R(0,T) <

(46)

V < =i (0) 1211 + 26 1 2]l |Ioo (47)

where ¢ is the same as (37).
Owing to the boundedness of the error of the local gra-
dient, it follows from (47) that V < — % Amin (0) |2 &

holds for ||Z|| > 3Vné® It is derived from Theo-

>\nun( ) .
7 A 2
- ( 2 H a(())” ? 7) —|— K (@)

for t > 0, where J(Ji,J2) = Ji exp{%“}?o)} and
k(k*) = 2 /\iﬁg) K* in virtue of the proof of Lemma
4.4 and Theorem 4.9 in [31]. Therefore, we get ||Z (t)|| <

Amin (©)
1Z (0)[ \/q2e  ©e2 ‘4 w2 3:::?8,% > 0, which implies

muwaww—imzuwﬁgﬁ)Wemﬂ

0. According to Assumption 2, there is a positive constant
eo > 0, ¢ € V such that

| fi (wirt) = fi (W, 0)|| < eollyi —y*|, vt € [0,T].

Hence, combining (6) with (48) leads to R(0,7) <
@ foT || Z (t)]| dt, which implies (46). Thus, the algorithm
(45) solves the distributed uncertain state optimal consensus
problem (42), and a linear regret bound is achieved. The
proof is complete. O

Remark 8. For the regret bound R (0,7') in (46), its value is
closely related to the initial error 2°, the gradient error’s
bound % and the length of the integration interval T'. If
20 and @& are smaller, and T is large enough, R (0,7)
will be smaller. In addition, the regret bound is also
investigated in [38] and [39] for discrete-time systems
with the inaccurate gradient, where the regret bounds
are O*(y/n//T) in [38] and O* (v/T(log T)?) with d > 1
in [39]. It can be seen that the regret bounds are nonlinear
caused by vanishing of step-size. However, in this paper,

rem 4.18 in [31] that ||Z (t)| <

(48)
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Fig. 3. The simulator of Chua’s circuit 4.

we obtain a linear regret bound O*(y/n/T) for the dis-
tributed uncertain optimal consensus problem when the
distributed algorithm with the fixed gains is employed.

Remark 9. The parameters on the upper bound of the regret
bound R(0,T) in (46) can be divided into parameters
that are easy to determine and those that are difficult
to determine. Specifically, the known parameters are
the number of circuit units n, the initial error z° and
the length of online time 7. When the dynamics and
the local cost function with uncertain term are given,
and the optimal solution of the DOSCP is obtained, the
parameters ¢, eg and < are easily determined. However,
the parameters a1, az and Ayiy (O) are difficult to be de-
termined since the parameter b related to the Lyapunov
function candidate (36) is not easily selected. Therefore,
the upper bound of the regret bound R(0,7T) in real
applications is not easily calculated. In this work, we
know that the regret bound R(0, T') is linear, which is an
important result for determining the parameters in real
applications.

Remark 10. Although the state consensus problem of non-
linear circuit systems has been studied in [6], [7], [9]-
[11], [13], [15] using different methods, the energy con-
sumption in each circuit unit is not taken into con-
sideration in their consensus algorithms. Instead, this
paper considers the minimization problem of energy
consumption (modelled as the local cost function) when
solving the state consensus problem for all the circuit
units. Also the impact of external disturbances on the
system performance is ignored in their works, but this
paper takes it into consideration. Moreover, we prove
that the proposed algorithm converges exponentially to
the optimal solution of the problem under consideration
with the help of some existing analysis methods, while
the works mentioned above only proved that the states
of circuits driven by the developed controller are con-

sistent but its convergence rate is unknown. In addition,
the distributed uncertain version is studied in this paper,
and a linear regret bound induced by an inaccurate
gradient of the local cost function is obtained..

5 SIMULATION

In this section, a state synchronization example is pro-
vided to verify the effectiveness of the proposed algorithms.
The simulation study is performed in an electronic system
consisting of 10 circuit units in the presence of external
disturbances. The dynamics of each unit is modeled by
(1). In experiments, we use the Multisim 10.0 software to
build Chua’s circuit. Suppose that there is no inductor
that can be used, so a series of analog circuit components
(resistors, operational amplifiers and capacitors) are used
to construct an inductor equivalently. Moreover, the non-
linear part of Chua’s circuit also needs to be equivalent.
Specifically, the simulator of Chua’s circuit ¢ is shown in
Fig. 3. Note that, in the process of constructing the inductor
and the nonlinear part of Chua’s circuit, the value of the
inductor parasitic resistance is negligible. In the case study,
the parameters of each circuit unit are chosen as follows:
Ry 169, L = L., = 18.68mH, G, = —0.41mS,
Gy = —0.75mS, C; = 10nF, Cy = 100nF, R = 175012 and
BO = 1V, which 1mp1y dil = 10, dig = —07175, dig =
—1.3125, djy = 16.3945 and d;s = 0.1499. The com-
munication topology among circuit units is described by
an undirected and connected graph G, in Fig. 4, which
implies that Assumption 1 is satisfied, and let the weight
of each edge be 1. As described in problem formulation
of Section 2-B, all the circuit units need to find an agree-
ment point as the estimate of known synchronized state
by solving the optimal state consensus problem (5), where
the local cost functions are fi (y1) = (y1 +1)%, fa (y2) =
2y3 + 3yo — 4 fs(ys) = 309, fy(ya) = 0.5*¥4 + Tyy,

f5 (ys) = \;%‘f‘y%, fo (y6) = 3yg +0.5e?¥ +2, f7 (y7) =




Fig. 4. The communication topology among ten circuit units.

5

0 50 100 150 200 250 300

0 50 100 150 200 250 300
time/s

Fig. 5. Trajectories of z;; and z;2 over G1,: = 1,2, ..., 10.

4y + 6yr — 10, fs(ys) = 2¢%%% + dyg, fo(yo) = 2u5
and f10(y10) = y%, + 4y10 — 10. Each local function f;(y;)
is strongly convex, which implies that Assumption 2 is
satisfied.

The external disturbance is set to be 6; = A; sin (ot + 7)
with 4; = Yiand 4 = I, i = 1,2,..,10. Clearly, 0; is
bounded. Let ¢y = 2, it follows that the parameter matrices
in (11) and (12) are obtained as A; = [0,2;—-2,0], H; =
[7572; 737O]ﬂ r; = [130]3 M; = [75,71} Let 771(0) =0
and the initial states of other variables are arbitrarily chosen,
1 =1,...,10. The gains k = 30 and ¢ = 10 are chosen in (19).
It is observed from Fig. 5 that the states z;; and x;5 of unit ¢
converge to zj; = —0.9175 and =z}, = —101.23, respectively.
Fig. 6 shows that the trajectories of ¢; and e; of circuit unit
1 converge to constant ¢ = —102.1475 and e* = —227.76,
respectively. In turn, let y; = x41, ©; = —2i1 + Ti2 — ¢
and h} = col(di1,d;z2, dis, dia, d;s), thus the problem (5) for
nonlinear system (3) is transfomated into the DOSCP (5) for
uncertain nonlinear state space equation (4). Then, we have
y* = —0.9175, which is the optimal solution of problem (5).
It is observed from Fig. 7 that the state x; also converges
to #* = 0. Based on the above analysis, it is demonstrated
that the proposed algorithm (19) with an IM can solve the
state synchronization problem for an electronic system with
disturbance rejection.

In order to illustrate that the results we obtained are
also applicable to the state synchronization problem of an
electronic system whose communication topology is one
of any undirected connected graphs, the following three
cases are analyzed. Then we change the parameters k& and
¢ of the algorithm (19) to obtain some simulation results

50 100 150 200 250 300

0 50 100 150 200 250 300
time/s

Fig. 6. Trajectories of ¢; and e; over G1,: = 1,2, ..., 10.
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100 150 200 250 300

0 50
time/s

Fig. 7. Trajectories of z; and y; over G1,: = 1,2, ...,10.

for statistical analysis to confirm the effectiveness of our
proposed algorithm. Case 1): The communication topology
is changed from G to G in Fig. 4. Compared with the
network G, the weight of each edge in G is unidentical,
and the weight is less than 1; Case 2): The communication
topology is changed from (1 to G5 in Fig. 4 in which the
weight of each edge is the same and large than 1; and Case
3): The communication topology is changed from G to G4
in Fig. 4, where the graph G, adds the communication
edges between units 1 and 4, 6 and 8, but removes the
communication edges between units 2 and 3, 2 and 7, 2 and
9,3 and 6, 7 and 8, and the weight of each edge is the same
and equal to 1. Due to the limited space, the simulation
results are simply presented in Table 1. The trajectories of
states x;; and x;2 of circuit ¢ over time are similar to Fig. 5,
and they can converge to their optimal states respectively.
Some conclusions can be drawn from Table 1: (a) If the
electronic system has the same network structure, and the
weights of the communication edges between units are the
same, the states will converge to the optimal value more
quickly when the weight of each edge becomes larger; (b)
If the communication topology of the electronic system is
inconsistent, but the weight of each edge is the same, the
states will be synchronised more rapidly when the network
has more connections; (c) No matter how the weights of the
edges between units and the connectivity of the network
change, as long as the communication topology of the
electronic system is undirected and connected, the states
can be synchronized; (d) When the parameter ¢ and the
communication topology are unchanged, the states will be
synchronised quickly with the decrease of the parameter £;



TABLE 1
The relationship between synchronization time and algorithm
parameters and communication topologies

k ¢  Communication topology  Synchronization time (s)
30 10 G1 332
30 10 Go 872
30 10 G3 205
30 10 Gy 1403
20 10 G1 236
20 10 Go 491
20 10 Gs 173
20 10 Gy 834
40 10 G1 412
40 10 Go 925
40 10 G 309
40 10 Gy 1512
30 15 G1 475
30 15 Go 1160
30 15 Gs 268
30 15 Gy 1813
30 5 G1 238
30 5 G2 571
30 5 G 142
30 5 Gy 706

50 100 150

0 50 100 150
time/s

Fig. 8. Trajectories of ;1 and z;2 over G1,i = 1,2, ...,10.

(e) When the parameter k£ and the communication topology
are unchanged, the states will be synchronised quickly with
the decrease of the parameter ¢.

Next, consider an uncertain state synchronization prob-
lem example. The dynamics of each unit, the communica-
tion topology, the external disturbance, the parameters k
and ¢, the local cost function f;(y;) and the initial states
of variables are the same as those in the accurate state
synchronization problem. The uncertain term is A; (t) =
V2sin (t+ %), 4 = 1,2,...,8. Figs. 8 and 9 show that z;;,
22, ¢; and e; converge to a regret bounded domains of 7},
27y, qf and e*, respectively. Similarly, under the coordinate
transformations, it is observed from Fig. 10 that z; and y;
also converge to a regret bounded neighborhoods of their
respective optimal solutions.

Comparison: Here a comparison is provided to show the
advantages of our algorithm. Specifically, the consensus
problem of multiple Chua’s circuit networks was studied
in an ideal environment in [10], where the communication
topology among the circuits is G; and the control protocol

0 50 100 150
500 : :
s 0 %
-500 ; '
0 50 100 150
time/s

Fig. 9. Trajectories of ¢; and e; over G1,i = 1,2, ..., 10.
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Fig. 10. Trajectories of x; and y; over G1,7 = 1,2, ..., 10.

of each circuit 7 is as follows

uip = _ZjeNi (v = w5) - ZjeNi (i = 25)-

It can be observed from Fig. 11 that the states x;; and
240 of circuit ¢ converge to the origin. Let y; = x;; and
T, = —%i1 + T2 — ¢, then it can be seen from Fig. 12
that z; and ¥; also converge to the origin. Furthermore,
when considering the impact of the external environment
on the system performance, the evolution curves of the
states x;; and x;2 of circuit ¢ over time are depicted in
Fig. 13. Similarly, under the coordinate transformations, the
trajectories of x; and y; are shown in Fig. 14, where the states
converge to a neighborhood of the origin and the size of this
neighborhood depends on the magnitude of the external
disturbance. This implies that the algorithm in [10] is not
robust. On the contrary, z;1, x;2, z; and y; in this paper
converge to zj; = —0.9175, zj, = —101.23, 2* = 0 and
y* = —0.9175 respectively rather than the origin because
we not only need to achieve the state consistency but also
ensure that the entire circuit system consumes minimal
energy, that is, the consistent state is required to minimize
the sum of a group of local cost functions. In addition, the
proposed algorithm is robust to the external disturbance
with a guaranteed convergence to the optimal solution.

6 CONCLUSION

In this paper, a novel continuous-time algorithm was pro-
posed to cooperatively find the optimal solution of the
distributed state consensus problem with disturbance rejec-
tion. It was proved that the proposed algorithms had the
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Fig. 14. Trajectories of z; and y; in [10], i = 1,2, ..., 10.

ability to guarantee that the trajectory of the considered
system achieved consensus with a globally minimum cost.
Numerical results indicated that our proposed algorithm
can not only optimize the cost function but also reject
external disturbance. Moreover, a linear regret bound was
also obtained for the distributed uncertain optimal state
consensus problem with the inexact gradient. Since the
phase diagram of the Chua?s circuit has a double vortex
structure, it can be applied to chaotic secure communication
systems or spread spectrum communication systems. The
proposed method can ensure that the states of the Chua?s
circuit are not affected by the external environment, thus
the proposed strategy provides a theoretical guarantee for
the communication quality. When agents in a multi-agent
system have the same dynamics as the Chua?s circuit, the
proposed algorithm can also be applied to formation con-
trol problems of the multi-agent systems with disturbance
rejection. Future work will continue to focus on the analysis
and design of distributed methods for the optimal state con-
sensus problem of multiple circuit systems over directed or
time-vary graphs and will consider the distributed consen-
sus problem subject to limited communication bandwidth
or communication uncertainties.
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