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An Efficient Formal Modeling Framework for
Hybrid Cloud-fog Systems

Xiao Chen, Jie Ding, Zhenyu Lu and Tianming Zhan

Abstract—Advanced communication technologies (e.g., 5G) probably elicit a complete change of network and its applications. For
example, a growing number of services begin shifting from central clouds to vast mobile devices, as the hybrid use of cloud and fog
computing technologies can provide enhanced quality of service and efficient utilization of resources. However, to design such complex
hybrid cloud-fog (HCF) systems, it remains a challenge to implement time-consuming modeling and inefficient evaluation in its early
design stage based on the conventional simulation or practical experimentation. Therefore, how to reduce design cost and improve
development efficiency becomes a crucial issue in the process of designing large-scale HCF systems. To address the issue, this paper
proposes a novel modeling framework for large-scale HCF systems based on a high-level formal language, i.e. performance evaluation
process algebra (PEPA). Toward the key components of an HCF system, the proposed framework includes three crucial model
prototypes: compositional architecture model, abstract communication model and scheduling model. Moreover, the scheduling model
is designed with a novel smart scheduling scheme that integrates two atomic scheduling algorithms and a decision module to make an
efficient algorithm selection. The smart scheduling algorithm can well adapt the HCF systems by yielding stable and fast response to
end-users, particularly under dynamical system conditions. Finally, the framework is the first research achieving the full potential of
formal methods to implement industry-level modeling and evaluation.

Index Terms—Formal Modeling, Hybrid Cloud-fog Systems, Scheduling, PEPA, Fluid Flow Approximaton.

F

1 INTRODUCTION

S INCE 2019, 5G communication networks have begun
to be commercially deployed for mobile services. In

the near future, not only mobile devices but also other
appliances, such as vehicles or industrial equipment, will
join the 5G network for more convenient and extensive
services. Taking Internet of vehicles for example, with 5G
or even future 6G connections [1], the vehicles can provide
a greater variety of services through the networks [2]. As
most smart vehicles integrate more powerful devices such
as high-performance CPUs, massive storage and various
sensors (e.g., video cameras), they can behave as not only
service consumers but also producers. Therefore, many
conventional service providers, particularly cloud-service
merchants, might consider new solutions to combine their
services with a mobile platform such as the vehicular cloud
[20] and vehicular fog [4] platforms. In fact, fog computing
technologies have been developed to offload data and com-
putation from central clouds to a group of virtual servers
formed by mobile devices [5], [6]. The fog computing offers
supplemented physical resources (e.g., computation, net-
work, and storage) closer to end users for better services [7].
The conventional cloud service providers have to face the
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challenge of new fog computing-based service platforms.
As a result, a growing number of applications will be
built on such a hybrid platform by merging cloud and fog
systems, i.e., the hybrid cloud-fog (HCF) system. Our recent
research [8] proposed a blockchain-based trust management
system that conducts trust evaluation and preserves trust
data based on all distributed participating nodes. Com-
paring to the conventional cloud-centralised system, the
blockchain-based system needs to join all distributed end
nodes together to perform trust evaluation and blockchain
consensus operations by aggregating nodes’ resources into
a virtual fog server [9]. This design relies on an HCF sys-
tem framework that provides efficient and scalable services
without a cost increase of central cloud resources.

To shift services away from clouds, new systems need
be designed in terms of specific application requirements.
The large-scale system design usually suffers from a time-
consuming process for the preliminary design, as well as
design evaluation and several rounds of design refinement.
To facilitate system design work, this paper presents a
reasonable solution for the key issue, i.e., how to generate
efficient modeling and reliable evaluation to facilitate the
preliminary design. To address these issues, we propose a
novel modeling framework to efficiently build models and
generate performance analysis for the HCF-based systems.

The framework uses a novel formal modeling language,
i.e., performance evaluation process algebra (PEPA) [10],
to model all system designs. PEPA is a high-level formal
modeling language for stochastic models, which describes
a concurrent system as an interaction of the components
engaging in activities. In contrast to the conventional pro-
cess algebras, the activity duration of PEPA is assumed to
be exponentially distributed. The PEPA language has a few
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combinators, and its structured operational semantics can
be represented as:

S ::= (α, r).S | S + S | CS ,
P ::= P ./

L
P | P/L | C.

where S denotes a sequential component and P denotes a
model component that executes in parallel. Here, C stands
for a constant that denotes either a sequential component
or a model component as introduced by a definition and
CS stands for constants that denote sequential components.
The effect of this syntactic separation between these types
of constants is to constrain legal PEPA components to be
cooperations of sequential processes. More details of PEPA
syntax can be obtained in [10].

PEPA is selected as our main tool due to its key features,
which are not available in other well-known performance
modeling paradigms (e.g., stochastic Petri-nets, queueing
theory and discrete event simulation). The most important
features of PEPA are: compositionality, the ability to effi-
ciently model the system as the interaction of subsystems
or components which clearly defines the architecture of a
comprehensive system as well as the interactive system
behaviors; formality, defining all terms in the PEPA language
with precise meaning, which can yield accurate formal
model specification of the system; abstraction, the ability to
build up complex system models from detailed components
and to separate the details into a set of submodels that can
be combined with the abstract model for analysis. These
features allow PEPA to efficient build models for large-
scale systems and yield reliable numerical analysis based
on stochastic simulation and fluid-flow approximation [11],
compared to time-consuming discrete event simulation [18],
[19], [24] and practical experiments [28]. The high-efficiency
modeling and analysis process based on PEPA models can
reduce the cost and time span of the preliminary design.

With the PEPA language, we propose the modeling
framework for HCF systems by considering three detailed
HCF-design issues. First, to generate a complete model
of a specific HCF system, we need to define the system
architecture that consists of all subsystems/components and
their internal behaviors or external interactions. Based on
the feature of compositionality, PEPA can effectively define
the compositional structure of these components, including
their behaviors and interactions. In this research, we adopt
the Openstack cloud platform for the top cloud-layer of
the HCF system. A compositional model is developed to
demonstrate how a cloud-layer system model is efficiently
built in PEPA language. This compositional model can be
considered a universal prototype for various HCF-based
systems which integrate an Openstack-like cloud platform.
In addition, we also introduce stochastic analysis based on
PEPA models, in which all parameters are observed directly
from running an Openstack platform.

Second, with a multicomponent design, most HCF-based
systems usually adopt different communication protocols
between their subsystems (e.g., cloud and fog subsystems)
or among components of the same subsystem [29]. Thus,
it is inefficient to include all protocol-based communication
behaviors in a single model, which makes the model overly
complicated to define and maintain. Therefore, this research

uses abstraction modeling to demonstrate a communication
model prototype that defines the offloading process of the
HCP system. The abstraction communication model moves
protocol behaviors from a high-level offloading model to
several submodels that can be analyzed together with the
high-level model. The abstraction modeling can enable effi-
cient model construction and maintenance without compro-
mising its correctness.

Third, to obtain better offloading performance, HCF sys-
tems usually use a smart scheduling mechanism to adapt to
changing system conditions. The smart scheduling scheme
is proposed by using multidynamic scheduling algorithms
and a decision model to achieve the optimal selection of
scheduling algorithm. The scheduling algorithms and deci-
sion model are usually investigated with simulation tools
due to their complex operations. To improve the model-
ing ability of formal language, this part aims to build a
prototype for scheduling models and the corresponding
decision model. Finally, we demonstrate this scheduling
model prototype and prove its correctness by comparing its
analysis results with those of equivalent simulation analysis.
The main contributions can be highlighted as follows:

• The critical contribution of this work is to demon-
strate an efficient modeling framework using a novel
formal language (i.e. PEPA) to achieve comprehen-
sive performance modeling and analysis towards
complex systems (e.g., HCF systems). The frame-
work includes three core model prototypes. The first
one is the compositional model prototype represent-
ing the compositionality feature of PEPA language,
which can be efficiently used to define system com-
ponents and their interactions in a clear and layered
structure.

• The second prototype is the abstraction model that is
usually used to aggregate unobserved system com-
ponents and behaviors for efficient model creation
without losing analysis accuracy, which indicates the
abstraction feature of PEPA models. To introduce
this model prototype, we use PEPA to model system
communication of offloading process based on an
HCF system scenario and also introduce an efficient
numerical analysis method (i.e. fluid flow analysis)
through presenting a group of results.

• The last scheduling model presents a novel design
of the smart scheduling scheme by integrating two
atomic scheduling algorithms to adapt to changing
system conditions. This design combines a novel
time-preemptive scheduling algorithm with the clas-
sic queue-preemptive algorithm and provides a
smart decision support module to aid the selection
of two atomic scheduling algorithms by observing
the changing system environments to improve sys-
tem performance and quality of service. Besides, we
present a PEPA prototype for modeling scheduling
algorithm and the related numerical analysis, which
can be considered an alternative method of per-
formance modeling and evaluation besides conven-
tional simulation approaches.

To the best of our knowledge, this is the first research
that investigates a universal framework based on the formal
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TABLE 1
Summary of Related Work

Ref. No. Issue Domain Model Techniques Formality/Composition Diverse Conditions

[14] Architecture SPN Yes / No No
[15] Architecture SRN Yes / No No

[16], [17] Architecture Queueing No / Yes No
[5], [6], [18], [19] Offloading Simulation No / No No

[20], [21], [22], [23] Offloading Queueing No / Yes No
[24], [25], [26], [27] Scheduling Simulation No / Yes No

This Work All Issues PEPA Yes / Yes Yes

modeling method which can effectively promote the use
of formal modeling in industry-level design, since the pro-
posed framework is able to meet more complex modeling
demands with those basic model prototypes. The rest of
this paper will provide the details of those three model
prototypes and related performance analysis approaches.

2 RELATED WORK

Cloud architecture modeling has been implemented
through various techniques, such as stochastic Petri nets
(SPNs) and stochastic reward nets (SRNs). Silva [14] and
Ghosh [15] apply SPNs and SRNs to model mobile cloud
and cloud computing systems, respectively. SPNs/SRNs
support a formal representation of system architecture and
behaviors; nevertheless, their syntax confines the represen-
tation for compositional system architectures, which entails
an inferior compositionality in model representation. In
addition, another modeling technique, i.e., queueing theory,
can be used for similar performance modeling and analysis.
Chang [16] developed a novel approximate analytical model
to conduct performance evaluation in IaaS clouds with a
queueing model, and Li [17] also uses the M/M/c/r queue-
ing system to propose an approximate analytical model
for cloud computing centers by representing the render-
ing service platform as a multistation, multiserver system.
These queueing models can efficiently represent a compo-
sitional architecture; however, they present the drawback
of providing such compositional models using a formalized
definition. In contrast to these modeling techniques, PEPA
can provide both formality and compositionality in terms of
its features stated in Section 1.

Regarding the communication models, Su’s research [18]
presents a device-to-device-based communication frame-
work that is used for content delivery by employing re-
sources of parked vehicles. Moreover, Chen [19] proposes a
novel hybrid task offloading framework in fog computing
so that end users have the flexibility of selecting among
multiple options for task execution, including local mobile
execution, device-to-device (D2D) offloading, and cloud of-
floading. Both Su and Chen use simulation for performance
evaluation. Most related research (e.g., [5], [6]) also utilizes
simulation as the main tool for performance modeling and
numerical analysis, though the simulation is informal and
quite time-consuming, particularly for large-scale models.
To improve modeling efficiency, some other researchers [20]
have explored an offloading solution by enabling it for real-
time traffic management in fog-based Internet of Vehicles

(IoV). In this research, parked and moving vehicle-based
fog nodes are modeled as an M/M/1 queue. Similarly, Wu
[23] builds partial and full offloading models based on a
modulated M/M/1 queue in a two-phase (fast and slow)
Markov random environment. Moreover, Mehmeti [21] pro-
posed a queueing analytic model for delayed offloading to
analyze mean delay, offloading efficiency, and other metrics
of interest, and Cheng [22] investigates WiFi offloading
performance by establishing an explicit relation between
offloading effectiveness and average service delay with an
M/G/l/K queueing model in order to minimize the trade-
off between those two aspects. As we noted before, a queue-
ing model can represent the compositional architectures of
systems but cannot formalize the model definition. Thus,
this work defines the proposed D2D offloading scheme in
a formal high-level PEPA model to achieve both formality
and compositionality and adopts fluid-flow approximation
to generate numerical analysis.

The scheduling efficiency is an important issue in
cloud/fog-based systems, which has been explored in many
recent research endeavors. Tan [24] has studied the approach
of minimizing the total weighted response time for all
tasks by constructing a general model, where the tasks are
generated in arbitrary order and times at the mobile devices
and are offloaded to servers with delays. In the research,
the scheduling issue is investigated in a steady condition
without considering its diversity. Other researchers [25]
have had a similar goal of minimizing task completion
time by designing an efficient task scheduling and resource
management strategy through extensive simulation-based
studies. However, these researchers neglect the diverse sys-
tem conditions while using nonformal simulation tools for
performance evaluation. Moreover, some other researchers,
such as [26] and [27], also overlook the influence on the
performance of proposed schemes caused by the changing
system conditions. To address this issue, we will focus on
developing a novel smart dynamic scheduling scheme to
adapt this changeable system environment, which can be
integrated with HCF systems to obtain higher performance.
Moreover, we have had some initial research (seeing [35])
to model the Join-the-shortest-queue scheduling algorithm,
which help us get some experience of modeling scheduling
algorithm under fog computing environments. This research
will explore a new PEPA-based modeling framework and a
novel smart scheduling algorithm for HCF systems.

In summary, the most recent research commonly utilizes
either noncompositional (e.g., SPNs and SRNs) or nonfor-
mal techniques (e.g., queueing models and simulations) to
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construct system models; meanwhile, none of them has
considered the realistic system environment (i.e., the sys-
tem with changing conditions) that can cause unexpected
influence on the performance of offloading or scheduling
scheme. All related literature is summarized in Table 1 in
order to compare key features. Hence, this research aims to
facilitate modeling work in system design and proposes a
novel formal modeling framework to address several key
issues of HCF-based systems by considering a more realistic
system environment.

3 COMPOSITIONAL MODEL OF CLOUD SYSTEMS

This section introduces a PEPA-based compositional model
prototype that is suitable for modeling systems with multi-
ple components and layered structure due to PEPA’s key
feature, i.e., compositionality. The benefit of compositional
modeling will be demonstrated by modeling a central cloud
architecture on the basis of Openstack.

Generally, a central cloud system is joined with a hybrid
cloud-fog system, providing powerful computing and huge
storage services for mobile users. In an HCF system, the
cloud system can be considered a subsystem connecting to
a fog-based subsystem and end users. Thus, it is important
to accurately model the cloud system to investigate the per-
formance of the entire HCF system. Hence, a PEPA-based
compositional architecture model is developed to build
cloud system models and generate performance analysis.

3.1 Cloud Model Scenario
To illustrate PEPA-based compositional modeling under a
real-world cloud scenario, we use the Openstack platform as
our basic scenario to generate the system architecture model
and observe running figures as model parameters.

Openstack is a free and open-source cloud computing
platform that controls large pools of computation, storage,
and networking resources throughout a data center and is
managed through a dashboard or via the Openstack API.
The architecture of Openstack, shown in Fig. 1, is logically
organized as four key nodes (i.e., Controller, Compute, Net-
work, and Storage). Controller, i.e., Horizon, is the Openstack
Dashboard which provides administrators and users with
access to the cloud resources. Compute, i.e., Nova, provides
a way to provision compute instances and supports the
creation of virtual machines (VMs). Network, i.e., Neutron,
manages all networking facets for the Virtual Networking
Infrastructure (VNI) and the access layer aspects of the
physical networking infrastructure (PNI) in the Openstack
environment. Storage includes Cinder for Openstack Block
Storage service, providing volumes to Nova virtual ma-
chines, Ironic bare metal hosts, containers and more and
Swift for Openstack Object Storage, offering scalable storage
for users to store and retrieve large amounts of data with a
simple API.

The scenario shown in Fig.1 presents the conceptual
architecture of Openstack to demonstrate the compositional
architecture modeling technique. Some detailed compo-
nents and their connections are simplified in the scenario.
If they are required in the specific research, all of these com-
ponents and their behaviors can be modeled by following
our proposed model prototype.

Public Network

Router
Firewall

Controller 
Node

Storage 
Node

Compute 
Node

Network 
Node

Manage 
Network

Storage NetworkData Network

Fig. 1. Physical Architecture of Cloud Deployment

3.2 Cloud-side Architecture Modelling

This subsection will introduce the compositional architec-
ture modeling through defining the VM creation process
based on the Openstack scenario.

According to Fig. 2, the User component only has inter-
actions with the Controller; however, the Controller coopera-
tively interacts with all other nodes (i.e., Network, Compute,
and Storage). Moreover, the inner components of each node
(e.g., Bandwidth, VM, Volume) usually have limited interac-
tions with other components. For example, Bandwidth and
Volume only interact with VM and Storage, respectively; and
VM cooperatively interacts with both Bandwidth and Com-
pute. It is worthy of mention that volumes in Openstack are
block storage devices which are attached to instances (VMs)
to enable persistent storage; volumes can be attached to or
detached from a running instance or be attached to another
instance at any time. Based on these interaction features,
the whole system can be modeled in a layered architecture,
which is shown in Fig. 3. In the figure, the arrows indicate
interactions between components in different layers.

As the Controller manages all other key components, its
modeling process is used as an example to illustrate the
compositional architecture modeling with PEPA language.
According to the activity flow of the Controller in Fig. 2, the
VM generation process can be formally defined with PEPA:

CTN
def
= (cre vm, rcre vm).CTNreq1;

CTNreq1
def
= (req11, rreq11).CTNschd1

+ (req12, rreq12).CTN ;

CTNschd1
def
= (schd1, rschd1).CTNrpc cVM ;

CTNrpc cVM
def
= (rpc cVM, rrpc cVM ).CTNcre net;

CTNcre net
def
= (cre net, rcre net).CTNrpc ip;

CTNrpc ip
def
= (rpc ip, rrpc ip).CTNimage;

CTNimage
def
= (image1, rimage1).CTNimg file

+ (image2, rimage2).CTNvif plug;

CTNimg file
def
= (img file, rimg file).CTNvif plug;

CTNvif plug
def
= (vif plug, rvif plug).CTNup state1;

CTNup state1
def
= (up state1, rup state1).CTNreturn1;

· · ·

CTNreturn3
def
= (return3, rreturn3).CTN.
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Fig. 2. Virtual Machine Generation Process on the Cloud Layer

The controller component (CTN ) performs its first ac-
tion create vm once it accepts a VM generation request
from a user. Then, a choice req1 is made to validate the
request and examine the available resources. Action schd1
represents the behavior of selecting a suitable Compute node
to create a VM. The follow-up action is rpc cVM , which
cooperates with the Compute node to spawn a new VM in
the hypervisor. Thereafter, the CTN awaits the response
of the logic-network creating action (cre net), and thereby
notifies the Network node about this change through another
action rpc ip. Thereafter, the CTN decides the execution of
img file action by an image1 action, and then transmits
image files (represented as image file) by cooperating with
the Compute node; otherwise, it skips this transmitting action
(image file) and proceeds with the following vif plug
action until the completion of network deployment based on
the preceding logic-network. Finally, the CTN performs the
up state1 action to obtain the response from the Compute
node and notifies the user by the return1 action. The initial
VM creation is thus finished, and the following process aims
to create an extension of VM storage, which is omitted in the
model definition.

As the definitions of other components, such as network
node (NWN ), compute node (CPN ) and storage node
(STN ), have similar formulations, their model details are
omitted. The whole system can be defined as the coopera-
tion of these components in a layered structure:

Sys = User[m] ./
S1

{CTN [n]︸ ︷︷ ︸
Layer 1

./
S2

[(Network[k1] || Compute[k2] ./
S3

Storage[k3]︸ ︷︷ ︸
Layer 2

)

./
S4

(BandWidth[p1] ./
S5

VM [p2] || V olume[p3]︸ ︷︷ ︸
Layer 3

)]}.

The Sys component represents the formal definition of
a complete cloud system by joining all components and
specifying their cooperative actions in the sets (S1,··· ,5).

According to Fig. 3, the three-layer architecture of the
cloud system is clearly depicted by the Sys component
of PEPA models. Moreover, a set of components and their

  Layer 3 : 

  Layer 2 : 

  Layer 1 : Controller

ComputeNetwork Storage

VMBandwidth Volume

User

Fig. 3. Layered Architecture of Cloud Deployment

interactions, shown in Fig. 2, are specified in other model
components (e.g., CTN). In comparison with graph-based
modeling languages (e.g., SPN or Queueing Model), the
PEPA-based model exhibits its superior compositionality in
representing system architecture without generating over-
complicated and indistinguishable model representation.
Hence, it is particularly suitable to model large-scale sys-
tems with multiple components and complex interactions
(e.g., HCF systems).

3.3 Performance Evaluation with Stochastic Analysis

PEPA models include information about the duration of
activities and their relative probabilities through a racing
policy. It is possible to generate a corresponding continu-
ous time Markov chain (CTMC) by elaborating the model
against the structured operational semantics of the PEPA
language, and it also supports the related analysis technique
based on CTMCs. In this subsection, PEPA-based stochastic
simulation will be demonstrated with performance analysis
on PEPA-based compositional architecture models. Experi-
mental parameters are observed from running a small-scale
Openstack cloud platform on cluster servers. All figures
are observed from timestamping each operation defined
in the model. Performance analysis is conducted through
evaluating the response time and resource utilization, which
are obtained from stochastic simulation on CTMCs derived
from PEPA models.

The stochastic simulation is an optional analysis tech-
nique supported by PEPA in which realizations of the ran-
dom variables are generated and inserted into a model of
the system. Outputs of the model are recorded, and then
the process is repeated with a new set of random values.
These steps are repeated until a sufficient amount of data is
gathered. In the end, the distribution of the outputs shows
the most likely estimates, as well as a frame of expectations
regarding what ranges of values the variables are more or
less likely to fall within. This section presents the analysis
results based on a given stochastic simulation algorithm, i.e.,
the Gillespie algorithm.

Figs. 4 and 5 indicate the completion probability of
creating VMs based on the two types of conditions (varying
number of users or CTNs). In Fig. 4, with the growth of
users from 80 to 120, the probability of completing users’
requests is reduced from 100% to approximately 50%. This
means that the current capacity of the platform can provide
a rapid response to nearly half of users if the user number is
120. This analysis can predict the probability of completing
different numbers of users based on the current server
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resources (e.g., a fixed number of CTN resources). Similarly,
we can also consider changing the number of CTN resources
for a fixed number of users. Taking Fig. 5 for example, all
users can be fully served (i.e., the probability is 100%) with
2 CTNs, and 100% probability remains when we change two
CTNs to only one. This means that adequate CTN resources
are provided to users. In other words, in comparison with
the changing of CTNs, varying the number of users can gen-
erate more serious performance change. Hence, the analysis
of completion probability can help achieve both prediction
of user-request completion and elucidation of the dominant
factor for performance variation.

Figs. 6, 7, 8, and 9 indicate the utilization of a specific
type of physical resource under different numbers and
amounts of VMs, bandwidth, volume and users, which aims
to represent the trade-off among these four factors. In the
figures, the decrease of utilization indicates the loss of per-
formance, and so the inflection point of utilization indicates
the maximum number of users than can be served with high
quality of service (QoS) under given system resources (e.g.,
the numbers of VMs, volumes and amount of bandwidth).
Furthermore, by comparing these figures, we can observe
which factor can exert more influence upon the resource
utilization. For example, Fig. 6 indicates that the maximum
number of users is approximately 80 before a decrease in uti-
lization under the given resources (i.e., 80 VMs, bandwidth
of 40 and 50 volumes) in the component Userreset1. While
changing one of the given resources, respectively, such as
increasing VMs from Fig. 6 to 7, increasing bandwidth from
Fig. 6 to 8 and increasing volumes from Fig. 6 to 9, we can
find that the maximum number of users increases from 80
to 90 by comparing Fig. 6 and 7. Hence, the number of VMs
yields more influence on the resource utilization with the
growth of users.

In conclusion, PEPA-based models can provide effective
compositional modeling and support stochastic simulation-
based analysis. This section demonstrates the method of
building compositional system models in PEPA and yield-
ing performance analysis with stochastic simulation.

4 ABSTRACTION MODEL OF COMMUNICATION
NETWORK

As the communication network is a crucial part of HCF, this
section aims to develop a prototype HCF communication
network with the PEPA-based abstraction modeling. The
abstraction communication model is built to represent mes-
sage passing during offloading operations in a high-level
PEPA model by aggregating some protocol-level details.
The abstraction modeling allows us to focus on the core
behaviors that need to be observed, rather than those irrele-
vant model details, which can improve modeling efficiency
without sacrificing accuracy. The aggregated details can
be decomposed when they are required for observation.
Since PEPA provides effective support of abstraction and
decomposition modeling, the following sections will intro-
duce how the abstraction modeling is used to represent the
offloading-based communication network.

4.1 Communication Model Scenario
The network architecture of an HCF system is represented
in a layered architecture as shown in Fig. 10. The top cloud-
layer users often suffer from extra and high communication
cost via the interlayer due to the increasing amount of
service on the mobile clients. Therefore, fog-side computing
service is applied to address this problem by offloading
some message communications from base stations to mobile
nodes with direct device-to-device (D2D) connections.
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In this section, a vehicular fog computing scenario is con-
sidered due to its mobility feature. D2D communication is
applied between two nearby vehicles, which can support the
offloading of message exchange from passing base stations
to direct D2D exchange. Fig. 11 depicts this process based
on a vehicular fog scenario. Fig. 11 indicates a high-level
communication model between a root vehicle and other
vehicles in different areas. N1,2,3,4 represents a group of
vehicles near the root vehicle, which can create D2D data
transmission instead of cellular communication; I1,2 and
O1,2,3 are vehicles located in the root base-station coverage
and its neighbor, respectively, but they all move out of the
D2D coverage. Thus, the communication to the root vehicle
requires the support of base stations. E1,2,3 vehicles operate
jointly to generate beamforming to enhance communication
signals from the edge of cellular coverage. In this situation,
the vehicles in Group E are required to share their data to
be sent with other vehicles to form a data sequence through
D2D; thereafter, they send the data sequence cooperatively
in the manner of beamforming.

4.2 Fog-side Communication Modeling
In this section, a formal communication model is defined
with PEPA; moreover, a novel fluid-flow approximation
is applied for model analysis to address the state-space
explosion problem in solving its underlying CTMCs. Based
on Fig. 11, the D2D-offloading model can be defined as:

Network Model 1: Offloading Model

VN
def
= (req N, rreqN ).(v encrypt, rvenc).VN′ ;

VN′
def
= (txD2D, rD2D).(s decrypt, τ).(process, τ).VN ;

VE
def
= (req E, rreqE).(v encrypt, rvenc).VE′ ;

VE′
def
= (txD2D, rD2D).(txD2D, rD2D).VE′′ ;

VE′′
def
= (tx cell root, τ).(s decrypt, τ).(process, τ).VE ;

VI
def
= (req I, rreqI).(v encrypt, rvenc).(tx cell root, τ).VI′ ;

VI′
def
= (s decrypt, τ).(process, τ).VI ;

VO
def
= (req O, rreqO).(v encrypt, rvenc).(tx cell neig, τ).VO′ ;

VO′
def
= (tx cell root, τ)(s decrypt, τ).(process, τ).VO;

Root
def
= (tx cell root, rtxcr).Root;

Neig
def
= (tx cell neig, rtxcn).Neig;

Server
def
= (process, rpros).Server

+ (s encrypt, rsenc).Server + (s decrypt, rsdec).Server.

The above PEPA model defines communicating behaviors
of each group of vehicles. Server component represents the
root vehicle behaving as a data receiver and processor. VN
defines the behaviours of vehicles near a root vehicle, which
include data encryption and data transmission through a
D2D channel modeled with an action txD2D. After that,
servers decrypt and process the data, which is modeled
as two shared actions (i.e. s decrypt and process) between
components VN and Server. Vehicles, defined as VE , take
similar actions to encrypt and transmit data via two rounds
of D2D communication and then utilize a beamforming
channel to connect the root base station (modeled with
an action tx cell root) before sending the data to servers.
Furthermore, vehicles, located far from the root vehicle,
entirely depend on the relay of base stations, either one-
hop cellular transmission (e.g., VI ) or multihop (e.g., VO),
which can be modeled as a series of transmitting actions
(e.g., tx cell root or tx cell neig) at base stations before
arriving the server vehicle for data processing.

Root and Neig define two different base stations based
on the model scheme in Fig. 11. Finally, the entire fog-side
communication system can be represented as the cooper-
ation of these components by specifying their cooperative
actions. The system model can be formalized as follows:

Sys
def
= (Root[troot] ./

{tx cell root}
(VN [n]||VE [m]||VI [k]||VO[s])

./
{tx cell neig}

Neig[tneig]) ./
{s decrypt,process}

Server[tserver].

Additionally, a nonoffloading scheme is defined for com-
parison with the previous offloading scheme. The nonof-
floading scheme is modeled by replacing all D2D com-
munications between vehicles with cellular network com-
munications. As the D2D communication is only used for
vehicles near (VN ) and those located on the edge (VE),
the nonoffloading model only needs to change all D2D
(txD2D) to cellular communications either through the root
base station (tx cell root) or both types of base stations
(tx cell root and tx cell neig). This is represented by a
Choice operator in PEPA the Network Model 2. All other
components are consistent with the offloading model. Thus,
the nonoffloading model can be altered as:

Network Model 2: Nonoffloading Model

VN
def
= (req N, rreqN ).(v encrypt, rvenc).VN′ ;

VN′
def
= (tx cell root, τ).(s decrypt, τ).(process, τ).VN ;

VE
def
= (req E, rreqE).(v encrypt, rvenc).VE′ ;
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VE′
def
= (tx cell root, τ).(s decrypt, τ).(process, τ).VE

+ (tx cell neig, τ).(tx cell root, τ).VE′′ ;

VE′′
def
= (s decrypt, τ).(process, τ).VE .

Similar to the offloading model, the above PEPA model
defines vehicle behaviors of data encryption, transmission
and processing via base stations, in which the D2D-based
transmission is not performed in terms of the non-offloading
scheme. Similar to the offloading model, the above PEPA
model defines vehicle behaviors of data encryption, trans-
mission and processing via base stations, in which the D2D-
based transmission is not performed in terms of the non-
offloading scheme. Regarding the abstraction modeling,
since we do not observe protocol behaviors, the details of the
protocol are abstracted within a single action, i.e., txD2D or
tx cell root, and the action rate is calculated from all rates
of detailed actions in the protocol. For a high-level model,
protocol actions are hidden from abstraction; however, these
hidden actions can be obtained by decomposing the abstract
actions (e.g., txD2D and tx cell root), once they are re-
quired to be observed.

The following subsection demonstrates a novel analysis
approach, i.e., the fluid-flow analysis based on the abstrac-
tion model. All action rates are specified in a parameter
table, i.e., Table 2.

4.3 Performance Evaluation with Fluid-flow Analysis

PEPA language offers a compositional function for creating
models of large-scale systems. Meanwhile, a novel per-
formance analysis technique, fluid-flow approximation, is
provided for large-scale models using PEPA [11]. The fluid-
flow approximation avoids the state space explosion issue
while solving the underlying Markov chain of PEPA models.

The fluid-flow analysis is conducted on the basis of vec-
tor form. The system is inherently discrete, with the entries
within the numerical vector form always being nonnegative.
With a change in the system state, the numerical vector form
is incremented or decremented in steps of one. When each
component type in the model is replicated a large number
of times, these steps are relatively small. Thus, we can
approximate the movement between states as continuous,
rather than occurring in discontinuous jumps. The objective
of the fluid-flow approximation is to replace the derivative
graph of the PEPA model with a continuous model using a
set of ordinary differential equations (ODEs).

In the fluid-flow approximation, we need to specify the
exit activity and entry activity of the local derivative of a
sequential component. An activity (α, r) is an exit activity

of D if D enables (α, r), such as D
(α,r)−−−→ D′. The set of

exit activities of D is denoted by Ex(D). The set of local
derivatives for an exit activity (α, r) is denoted by Ex(α, r).
Similarly, an activity (β, s) is an entry activity if a derivative

D′ enables (β, s), such as D′
(β,s)−−−→ D. En(D) denotes the

set of entry activities of D.
After specifying the concepts of the exit activity and

entry activity, the movements of the numerical state vector
of the PEPA model are represented with these concepts.
Here, we define vij (t) = N(Cij , t) for the jth entry of the
ith subvector at time t; N(Cij , t) denotes the number of

TABLE 2
Related Parameters in 5G Environments

Notations Values Comments (Assumed as 100 Mhz BW)

Rdown ≥ 1.0 Gbps Downstream (70%) rate of 5G bases.
Rup ≥ 200 Mbps Upstream (30%) rate of 5G bases.
Rd2d ≥ 400 Mbps Duplex D2D (50% Rx/Tx) rate.
Dd2d [0.5, 1.0] Km D2D communication range.
Dbase [1.0, 2.0] Km 5G base station coverage radius.

instances of the jth local derivative of sequential component
Ci. In a very short time interval δt, the change of the vector
entry vij (t) can be expressed as:

N(Cij , t+ δt)−N(Cij , t) =

−
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl , t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl , t))

︸ ︷︷ ︸
entry activities

δt;

(1)

dN(Cij , t)

dt
= lim
δt→0

N(Cij , t+ δt)−N(Cij , t)

δt
=

−
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl , t))

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl , t)).

(2)

In Eq. 1, the first block represents the impact of exit
activities, and the second block records the impact of the
entry activities. Now, we can divide Eq. 1 by δt and take a
limit. If δt → 0, we obtain Eq. 2. In the following analysis,
a set of ODEs can be obtained from the PEPA model based
on Eq. 2. The quantitative analysis is conducted through
solving the ODEs.

According to above PEPA models and the associated
ODE equations, numerical analysis is generated by observ-
ing average throughput and response time at base stations,
which can help analyse the communication overhead of
base stations and evaluate the performance of the offloading
scheme. Fig. 12 depicts the average throughput of root and
neighbour base stations (shown in Fig. 11) by comparing the
D2D-based offloading scheme to the non-offloading scheme.
It is clear that Surf 2 & 4, on behalf of the D2D offloading
scheme, represent lower-level throughput in contrast to
Surf 1 & 3 for non-offloading scheme. This indicates the
communication overhead of base stations are offloaded to
D2D communications. With the increase of communication
traffic, the difference between the two schemes grows until
the full capacity of communication channels. In addition,
Fig. 13 represents the average response time from the root
base station. The offloading scheme (Surf 2) generates a
faster response to vehicle requests in contrast to the non-
offloading scheme (Surf 1) at the root base station due to the
reduced communication overhead.

In conclusion, PEPA languages can generate simplified
abstraction models by aggregating model details that are
not observed in analysis. The abstraction modeling and
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Fig. 12. Average Throughput of Root/Neighbour Base Stations Varying
against Number of Vehicles and Request Rates.

Fig. 13. Average Response Time from Root Base Stations Varying
against Number of Vehicles and Request Rates.

fluid-flow approximation allow PEPA to generate efficient
performance modeling and analysis, particularly for large-
scale modeling systems.

5 MODELING OF SMART SCHEDULING SCHEME

With enhanced communication and computation technolo-
gies, edge equipment can be utilized as a supplement to
central cloud services, which is known as ”Fog Computing
Service”. However, a key target is to guarantee the QoS of
such fog services. This section aims to explore an efficient
smart scheduling scheme to fit the diversity of a fog com-
puting environment. The smart scheduling scheme (SSS) is
developed by including two proposed dynamic scheduling
algorithms and a decision function for algorithm selection
based on changing conditions of the system. To evaluate the
performance of the SSS, this section also presents a PEPA-
based model prototype to demonstrate how the formal mod-
eling and fluid-flow analysis are used for complex algorithm
modeling and analysis, particularly in a large-scale system
such as the HCF system.

5.1 Scheduling Model Scenario
According to the scenario mentioned in previous sections,
some services can be shifted from conventional cloud
servers to more flexible fog-side servers, i.e., service offload-
ing. To generate efficient offloading, scheduling is a crucial
issue being investigated in much research. However, most
previous research aims to improve the scheduling process
through refining an individual scheduling policy (e.g., R-
JSQ scheduling [31], Dynamic Task Offloading and Schedul-
ing [32], Dynamic Switching Algorithm [33] and Energy-
aware Task Allocation [34]). These research approaches usu-
ally provide a more powerful but complex algorithm design,
which might not be readily employed for industrial deploy-
ment. However, our solution aims to develop a novel smart
scheduling scheme with hybrid scheduling algorithms that
are designed on the basis of classic scheduling policies.
These classic scheduling policies usually benefit from high
reliability and usability in practice.

Fig. 14 depicts a vehicular fog environment, in which
a group of vehicles can be organized to perform as a

Vehicular Fog Server (VFS) by sharing their available phys-
ical resources. In each VFS group, these vehicle nodes
can be either static nodes (parking vehicles) or mobile
nodes (moving vehicles) according to their mobility feature.
Therefore, VFSs usually suffer from unstable capability in
computation caused by the changing physical resources of
vehicular nodes. For this reason, this section proposes a
novel smart scheduling scheme (SSS) that can adaptively
conduct scheduling operations based on the real-time VFS
conditions. In the scheme, a novel time-preemptive schedul-
ing (TS) algorithm is developed for the unstable VFS
groups, along with a smart scheduling scheme with both
TS and a queue-preemptive scheduling (QS) algorithm
that is derived from the classic join-the-shortest-queue (JSQ)
algorithm [30]. In addition, a decision module is designed to
perform selection of scheduling algorithm (TS orQS) along
with real-time VFS conditions.

The main goal of smart scheduling scheme is to combine
two atomic scheduling algorithms (i.e. TS and QS) to a
hybrid scheme and apply the optimal algorithm along with
a changing system environment. Such a design can take
full advantage of each scheduling algorithm based on the
system condition and improve the adaptivity of the schedul-
ing scheme, particularly in diverse system conditions. As a
result, the end-users can have improved quality of service
such as faster system response.

5.2 Definition of Smart Scheduling

With the aim of improving resource utilization and QoS, a
smart scheduling scheme is proposed for such a diverse fog
environment. Thus, the scheduling scheme can be formally
represented as a 4-tuple M in Definition 1:

Definition 1. Smart Scheduling Scheme

M =< S, F, D(f), q0 >;

S : is a scheduling algorithm set;

F : is a transiant fog server status;

D(f) : f → s, f ∈ F, s ∈ S; is a decision function;

q0 : is the system environment.

In the smart scheduling scheme, the algorithm set S
includes different atomic scheduling algorithms that can be
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Fig. 14. Smart Scheduling Framework in Fog Computing

selected by the scheme. Join-the-Shortest-Queue (JSQ) is a
classic scheduling algorithm that assigns a new arrival to a
queue with the least number of unfinished jobs. However, in
the fog computing environment, both incoming task stream
and server capability encounter unstable situations, and
thus it is difficult to determine whether the classic JSQ
policy still performs well in such a diverse fog environment.
Meanwhile, the recent task stream has an obvious heavy-tail
distributed feature. A larger number of waiting jobs in the
queue does not represent longer waiting time, as a large-
sized job may consume much more time than many other
small-sized tasks. In the situation, the classic JSQ algorithm
maybe not the most efficient solution in scheduling. Thus,
the smart scheduling scheme aims to combine the classic
JSQ algorithm with a new time-preemptive algorithm to
improve scheduling adaptivity by selecting the optimal
scheduling algorithm based on the system environment
through a decision function D(f). The D(f) takes the status
of current servers (f ∈ F ) as input and makes a decision to
select a scheduling algorithm (s ∈ S) that is considered as
the output of function D(f).

With this in mind, the classic JSQ algorithm is formalised
to a Queue-preemptive Scheduling algorithm - i.e. QS al-
gorithm. Meanwhile, a new scheduling algorithm is built
based on the predicted response time of jobs in the queue,
which is named the Time-preemptive Scheduling algorithm -
i.e. TS algorithm. The decision function, D(f), is designed
to select the optimal algorithm from QS and TS on the
basis of server status (F ), which indicates a real-time system
environment.

First, the definitions of QS and TS must be specified,
and the performance of each scheduling algorithm needs to
be evaluated in various system conditions to confirm the
best operating conditions.

Definition 2. Queue-preemptive Scheduling (QS)

CFQS =
1

Ltrans(t)
· C. (3)

Generally, the queue-preemptive scheduling (QS) algo-
rithm means that the task scheduling is conducted on the
basis of queue length. In other words, the server with the
shortest waiting queue will receive the next scheduled task.

In Definition 2, the value of the QS algorithm is de-
fined to be a controlling factor, CFQS . The CFQS value is
governed by the transient queue length (Ltrans(t)) of the
VFS group. Longer queue length means a smaller value of

CFQS , which indicates the rate of sending tasks to a target
server. Moreover, C is specified as a constant value used
for adjusting the sending rate. The value of CFQS can be
directly obtained by solving a PEPA model in which the QS
process is defined.

Definition 3. Time-preemptive Scheduling (TS)

CFTS =
Ravg(N)

Rtrans(t)
· C. (4)

The time-preemptive scheduling (TS) algorithm controls
task scheduling based on the response time, which means
that if the transient response time (i.e., Rtrans(t)) of a
server increases, the rate of scheduling tasks (i.e., CFTS)
to the server must be reduced. To control the rate of task
scheduling, the TS algorithm designs a controlling factor
represented in Definition 3, which is formed by a ratio of
average response time (i.e.,Ravg(N)) and transient response
time (i.e., Rtrans(t)) of a server. As a controlling factor, the
ratio quantifies the variation of specific transient response
time of a task at the server compared to the average response
time at the server. Usually, the average response time is a
fixed but predicted value for each server, while the transient
response time can be directly calculated from the system
observation. The following section will introduce how to
obtain the transient response time and predict the average
response time.

In Definition 3, the transient response time Rtrans(t)
represents the value of response time based on the tasks
in a server queue, which can be obtained by calculating the
summation of transient waiting time (Wtans(t)) of all tasks
in the queue and the transient service time (Strans(t)) of
the task in the server. In other words, Rtrans(t) indicates
the duration for a task to wait before gaining access to the
server.

As the value of Rtrans(t) can be easily calculated with
Ltrans(t), we have the formula of calculating Rtrans(t) as:

Rtrans(t) = Wtans(t) + Strans(t)

=
l

µ
+

1

µ
= (l + 1) · ω(t),

(5)

in which l = Ltrans(t) and µ is the average service rate of
a fog server (ω(t) = 1/µ).

However, the average response time Ravg(N) is defined
as an average value for all tasks in a server system with N
users. Actually, it is impossible to obtain the accurate value
of Ravg(N) before completing all tasks. Thus, an approxi-
mation will be considered to estimate the value of Ravg(N).
The fog server system can be theoretically considered as a
closed M |M |1||K terminal model, in which system users
can be thought of as sitting behind their terminals, and
their sending tasks queue for the server system. These users
send their task requests in every thinking timeslot t that
is exponentially distributed with a mean φ(t) = 1/λ. The
more users in the thinking state, the higher the effective
completion rate of the thinkers. In this situation, we can
consider that the actual arrival rate in the system must be
proportional to the number of thinking users. Hence, in such
a system model, users are represented as infinite servers
with each user configured with its own server. Once the user
submits a task request, it only needs to wait for a response.
The task can be completed within a mean time ω(t) = 1/µ.
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Fig. 15. State Diagram of Smart Scheduling Framework

According to the terminal model, every task has its own
server in an infinite-server queueing station; thus, there will
be no queueing or waiting. As a result, the average response
time at terminals (R̄ter) equals φ(t), which is independent
of the number of users (N ). However, the average response
time of the server system (R̄ser = Ravg(N)) depends on the
number of users (N ). Hence, the Ravg(N) can be obtained
by calculating the average circle time, which is defined as:

C̄(N) = R̄ter + R̄ser = φ(t) +Ravg(N). (6)

Hence, C̄(N) represents the mean time of a customer going
through the cycle of terminal-server once. The throughput
T (N) can be represented as N/C̄(N). Based on the above
two equations, we can obtain:

T (N) =
N

C̄(N)
=

N

φ(t) +Ravg(N)
. (7)

Thereafter, from Eq. (7), the average response time of the
server system can be represented as:

Ravg(N) =
N

T (N)
− φ(t). (8)

As we known, the throughput T (N) can be represented
with the product of the server-busy probability and the
system service rate, which is formulated as:

T (N) = (1− p0) · µ =
1− p0
ω(t)

, (9)

in which p0 is the probability of the server being in the
idle state. As the value of p0 changes against N , p0 can be
considered a function of N , namely, p(N). Therefore, Eq. (8)
can be converted to a new expression:

Ravg(N) =
N · ω(t)

1− p(N)
− φ(t). (10)

In a large-scale system, the value of N is set with a large
value, which means that the probability of server-idle state
is quite small. As a result, 1 − p(N) in Eq. (10) can be
approximated as 1. Therefore, Eq. (10) is now approximated
to the following expression:

Ravg(N) ≈ N · ω(t)− φ(t). (11)

Finally, according to Eqs. (5) and (11), the TS algorithm in
Definition 3 (CFTS) can be represented as:

CFTS =
Ravg(N)

Rtrans(t)
· C =

N · ω(t)− φ(t)

(l + 1) · ω(t)
· C. (12)

In Eq. (12), all parameters have been attained except the
transient queue length l = Ltrans(t) that is measured from
real-time model operation.

Lastly, for the decision function D(f), it is designed
to select an atomic scheduling algorithm (either QS or
TS) through comparing the dispersion of the probability
distributions representing varying arrivals and server capa-
bilities. In the D(f), the coefficient of variation (i.e. CV) is
used to estimate the dispersion of probability distributions,
which equals the ratio of the standard deviation to its
absolute mean value. The D(f) first calculates the CVs of
both parameters - i.e. arrival rates (i.e. CVλ) and service
rates (i.e. CVµ) representing the dynamical arrivals and
servers; then compares the two CV values to determine
which one is larger. The parameter with larger CV value
can make a greater impact on the system changing. Thus,
the selection of an algorithm is based on the comparison
results, which will be confirmed after introducing the first
stage of performance evaluation in Section 5.4.

5.3 PEPA-based Scheduling Model

In this subsection, PEPA language is used to model QS
and TS algorithms in order to evaluate their performances
in various system conditions. As described in Section 7.1,
a diverse fog computing environment is supposed with
respect to the following three conditions: varying arrival
condition that indicates the unstable incoming task stream
with varying arrival rates defined as λ = f(t); varying
service condition that indicates the unstable fog server ca-
pability with a varying service rate µ = g(t); varying both
arrival and service rates.

A general scheduling framework is modeled as shown in
Fig. 15. In the model, the system is defined with two types
of serving activities which are specified as Sev1 and Sev2,
representing serving activities of two VFS groups previously
shown in Fig. 14. According to the serving types, user tasks
can be specified in three groups: Tk′S , indicating a simple-
task group that needs Sev1 service only, Tk′′S , indicating
another simple-task group that needs Sev2 service only,
and TKM , a complex task requiring both Sev1 and Sev2.
The scheduling process can be considered as the selection
operation on candidate fog servers. For TKM , the serving
action flow determined by the scheduling algorithm is either
in the order Sev1 → Sev2 or Sev2 → Sev1. Thereafter, the
framework will be defined in PEPA as follows:

Step 1: Task generation is achieved by a branching
process with a given probability p ∈< p0, p1, p2 >. Thus,
the PEPA model of the task-generation is specified with a
sending action and its corresponding rate λ multiplied by
an associated probability p, and then behaves as different
types of tasks in their initial idle states, such as Tk Midle,
Tk S′idle, and Tk S′′idle, respectively.

Tkall
def
= (sending, p0 · λ).Tk Midle

+ (sending, p1 · λ).Tk S′
idle + (sending, p2 · λ).Tk S′′

idle.

Step 2: VFS groups are defined as two components:

FSgrp 1
def
= (Sev1, µ1).FSgrp 1;

FSgrp 2
def
= (Sev2, µ2).FSgrp 2,
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Fig. 16. Queue Length of Servers Based on Three Scheduling Algorithms under Three Different System Conditions
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Fig. 17. Queue Length of Servers Based on Two Dynamic Scheduling Algorithms under Three Different System Conditions

in which Sev1 and Sev2 are defined to be cooperatively
used by both server components (FSgrp 1 and FSgrp 2) and
the task component (Tkall).

Step 3: With the state diagram Fig. 15, the task serving
process can be modeled as the cooperative interaction be-
tween the task component and the fog server component.

Simple-task Group Serving Model:

Tk S′
idle

def
= (Sev1, µ1).Tk S′

end;

Tk S′′
idle

def
= (Sev2, µ2).Tk S′′

end.

Each simple-task reaches its end state (Tk S′end or
Tk S′′end) after a server processing action (Sev1 or Sev2).

Complex-task Group Serving Model:

Tk Midle
def
= (Sev1, µ1).(Sev2, µ2).Tk Mend

+ (Sev2, µ2).(Sev1, µ1).Tk Mend.

Each complex-task completes its processing on fog servers
in either action sequence Sev1 → Sev2 or Sev2 → Sev1.

Step 4: For the complex-tasks, a scheduling decision is
made to select the first VFS-group to determine its process-
ing action sequence. Thus, the scheduling algorithm needs
to be formally represented as the following expression:

P = H (s) ◦D (c), (13)

in which the function D indicates the decision function
for selecting an optimal scheduling algorithm based on the
current server conditions (c), and the function H is a com-
posite scheduling function based on the selected scheduling
algorithm s = D(c). Finally, Eq. (13) outputs the selected
server for the current task given a probabilistic value P .

Step 5: To model a scheduling process, we need to design
a separate scheduler component (SCH) in the PEPA model,
which can be represented as:

SCH
def
= (Sch QS , p QS).SCH + (Sch TS , p TS).SCH,

in which Sch QS is for the execution of queue-preemptive
scheduling (QS) and Sch TS is to implement time-
preemptive scheduling (TS). p QS and p TS are the rates
of scheduling processes that are obtained from Eq. (13) for
QS and TS algorithms, respectively.

Hence, the previous complex-task serving model should
be cooperatively implemented with the scheduler compo-
nent SCH . Thus, the defined Tk Midle component needs
to be updated by adding a new scheduling action:

Tk Midle
def
= (Sch QS , p QS).(Sev1, µ1).(Sev2, µ2).Tk Mend

+ (Sch QS , p QS).(Sev2, µ2).(Sev1, µ1).Tk Mend,

which implements the QS algorithm; however, an alterna-
tive Tk Midle using the TS algorithm is denoted as:

Tk Midle
def
= (Sch TS , p TS).(Sev1, µ1).(Sev2, µ2).Tk Mend

+ (Sch TS , p TS).(Sev2, µ2).(Sev1, µ1).Tk Mend.

Step 6: Finally, a complete scheduling model based on a
VFS system can be represented by joining these components
as Sys, which is represented as:

Sys
def
= Tkall[n] ./

L
(FSgrp 1[k1]‖FSgrp 2[k2] ‖SCH[m])

L = {pros1, pros2, Sch QD, Sch TD},

in which < n,m, k1, k2 > denotes the number of instances
of each component.

5.4 Performance Evaluation with Scheduling Model

In performance analysis, to clear the advantages of two
atomic scheduling algorithms, we first compare the pro-
posed time-preemptive scheduling algorithm to the conven-
tional JSQ algorithm - i.e. the formulated queue-preemptive
scheduling given in Definition 2. As per the general service-
level agreement between customers and service providers,
the total resolution time (TRT) becomes a primary concern
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Fig. 19. Response Time Comparison Against Arrival Rate or Job Size

in representing the quality of service. In performance engi-
neering, TRT is similar to the response time that defines the
amount of time between when a client sends a request and
when the request is answered. Hence, the following analysis
is based on the performance metric - i.e. response time.

To conduct prformance evaluation, a set of parameters
needs to be specified under the defined PEPA model defined
in the previous section. Each task is modelled as a text mes-
sage, and the workload is represented by the message size
(e.g. megabytes). The performance metric - i.e. response time
is defined by the sum of transmission delay and processing
delay that are measured by altering workload and task
arrival rates. Thereafter, the number of task senders is set
to 4,000 for each fog server unit. As there are three types of
task senders (i.e., Tk S′idle, Tk S′′idle and Tk Midle) defined
in the model, 1,000 sender instances are set for each simple-
task component, i.e., Tk S′idle and Tk S′′idle, respectively,
with 2,000 senders for the complex-task component, i.e.,
Tk Midle. The system assumes that there are two indepen-
dent server groups (i.e., FSgrp 1 and FSgrp 2) in the model,
and the number of server instances based on each group is
set to one. The arrival rates of all types of tasks are set to the
same value of 400 (tasks/time unit). The service rates are
set to 120 and 80 for FSgrp 1 (µ1) or FSgrp 2 (µ2), respec-
tively. Furthermore, to achieve the diverse system condi-
tions, trigonometric functions (e.g., sin and cos) are used to
govern the varying means of arrival rates and service rates.
Three sets of experiments are conducted against different
system conditions: 1). varying task arrivals only, 2). varying
server capability only, and 3). a comprehensive condition
with both varying task arrivals and server capability. In
addition, a classic random scheduling algorithm is applied
for comparison with QS and TS algorithms.

Figs. 16(a) and 17(a) represent the average queue length
of three scheduling algorithms. As shown in the figures,
both QS and TS exhibit substantially better performance
than the random algorithms due to their shorter waiting-
queue length. In detail, the QS algorithm generates more
stable and shorter queue length in contrast to TS. Hence,
this means that the QS is a better choice under the above
system condition 1).

Figs. 16(b) and 17(b) depict the performances of three
scheduling algorithms under varying service capability con-
ditions. It is clear that the random algorithm has inferior
performance due to the large movement of queue length;
furthermore, the TS algorithm has better performance than

QS with a more stable and shorter queue length. It is
concluded that the TS algorithm becomes better under
system condition 2).

To validate these conclusions, a complex system con-
dition 3) is used to observe the scheduling performance.
Figs.16(c) and 17(c) represent the performance under a com-
plex condition with varying arrival rates and service rates,
in which the varying arrival rates dominate the influence to
a greater extent than service rates. In this case, the QS is
better than the TS with both shorter average queue length
and reduced fluctuation of queue length. Conversely, when
the service rates vary larger than the arrival rates, as shown
in Fig. 16(d) and Fig. 17(d), the TS algorithm becomes
superior to the QS.

Based on the above analysis, we find that the QS al-
gorithm performs better under an intensive varying-arrival
environment; however, the TS algorithm is more suitable
for the intensive change of server condition. Therefore,
if we combine two basic scheduling algorithms to a hy-
brid scheduling algorithm and apply a decision component
to support the selection of two algorithms, such smart
scheduling scheme should gain improved performance un-
der dynamic environments with both varying arrivals and
servers. According to the design principles of D(f) and
the analysis conclusion, if CVλ > CVµ representing an
intensive varying-arrival environment, the D(f) selects the
QS algorithm; conversely, it selects the TS algorithm.

Next, to verify the performance of the smart scheduling
scheme, we will compare it to two randomized join-the-
shortest-queue scheduling algorithms defined in [31], which
are SQ(2) and HSQ(2) schemes. In the SQ(2) scheme, a
subset of two servers is selected from the set of N servers
uniformly at random at each arrival instant. The job is
scheduled to the server with the least number of unfinished
jobs among the two chosen servers. The SQ(2) assigns jobs to
any of the two servers with equal probability. Nevertheless,
the HSQ(2) first choose a capacity value Cj with a probabil-
ity pj upon arrival of a new job. Then two servers having
the selected value of capacity are chosen uniformly from a
set of available servers having that capacity. Finally, the job
is assigned to the server with the least number of unfinished
jobs among the two chosen servers. Comparing to the con-
ventional JSQ algorithm, these two schemes do not need to
observe all servers to select that with the shortest waiting
queue, which can reduce the observation cost, particularly
for systems with large node sets. In this experiment, we
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will compare our smart scheduling scheme with the two
randomized JSQ schemes under a heterogeneous system
environment (i.e., varying rates of arriving tasks and VFS
capability). All scheduling schemes are modeled in PEPA
and analyzed with fluid-flow approximation. Moreover, to
verify the results of fluid-flow approximation, we also build
equivalent simulation models to enable a comparison.

Fig. 18 shows that our smart scheduling scheme yields
less response delay than both SQ(2) and HSQ(2); moreover,
under the complex system environment, the smart schedul-
ing scheme has stable performance in response time, which
is caused by the joint use of two algorithms - i.e.QS and TS.
This hybrid scheme allows the scheduling algorithm to be
altered with the changing system environment, which can
minimize the influence on system performance. However,
both SQ(2) and HSQ(2) algorithms are affected by the vary-
ing environment, which causes a fluctuation of response
time, as shown in Fig. 18. To build a simulation-based
analysis, a Java-based modeling tool, named SimJava [36], is
applied to generate a discrete event simulation model that
is equivalent to the PEPA model design. In the simulation
model, system components/behaviors and action rates are
defined along with the PEPA model, such as the number
of instances for request senders and servers as well as their
rates (e.g. arrival rates and service rates) are sent the same
to that used in PEPA models - i.e. as stated before 4000 task
senders per server including three types, one instance for
each fog server group, 400 task arrival rates, and 120 and 80
service rates for each server group. Moreover, the network
parameter is also consistent with PEPA parameters: 10 and
5 (simulation time units) mean delays from scheduling node
to senders and fog servers, respectively; 1 Gbps bandwidth
and zero packet loss rate.

Fig. 19 presents the mean response time of three schedul-
ing algorithms against varying arrival rate and job size. In
the experiment, both arrival rate and job size are set from
0.1 to 1.0 with step size 0.1, and the service is also set to
fluctuated values as stated before. The left side sub-figure
shows the change of mean response time with varying
arrival rate while setting the job size to 0.1. Comparing to
SQ(2) and HSQ(2), the line representing the smart schedul-
ing algorithm indicates a smoother and low-level change
of mean response time with the growth of arrival rates.
The right side sub-figure indicates the mean response time
with varying job size while the arrival rate is 0.1. Similarly,
the smart scheduling scheme presents a relatively more
stable change and slower increase of response time with the
growth of job size. These analysis results demonstrate the
better performance of our smart scheduling scheme under a
complex system environment.

In summary, this section illustrates a scheduling model
prototype based on a proposed smart scheduling scheme
and indicates that PEPA exhibits a powerful model speci-
fication capability and accurate performance analysis pre-
cision, which can be applied to support the performance
evaluation of large-scale and complex systems.

6 CONCLUSION

This paper proposed a novel modeling framework for HCF
systems based on a formal modeling technique, i.e., per-

formance evaluation process algebra. We developed the
framework with the aim of providing a cost-effective formal
modeling solution for supporting the design of large-scale
systems such as HCF systems. In comparison with con-
ventional simulation and other modeling techniques (e.g.,
queueing modeling and Petri-net), the PEPA-based frame-
work offers the following crucial advantages: 1). strong ca-
pability in compositional and abstract modeling, which help
to quickly build models from an elaborate design scheme;
2). various approaches (e.g., stochastic simulation and fluid-
flow analysis) that can support performance evaluation by
quickly yielding reliable analysis results. In detail, this work
presented how to use the proposed framework by introduc-
ing three core model prototypes, in which the compositional
model illustrated how to build models of system structures
and components as well as system behaviors; the second
abstraction model introduced how to aggregate model details
in order to focus on the components and behaviors that
need be observed. Finally, we proposed a scheduling model
that defined a novel smart scheduling scheme. The scheme
integrated two atomic scheduling algorithms and used a
decision support module to select the right algorithm on
the basis of changing system environments. This design
can improve scheduling performance and service quality
by making scheduler smarter. Furthermore, this model also
demonstrated how to achieve algorithm modeling based on
the PEPA model framework. In our future work, we will
apply this framework to more modeling and analyzing mis-
sions and explore other techniques to make the framework
more adaptable.

ACKNOWLEDGMENTS

The research is supported by the National Natural Sci-
ence Foundation of China (NSFC) under Grants 61702233,
61472343, 61773220 and 61976117, and State Key Labora-
tory of Software Development Environment under Grant
SKLSDE-2017KF-03, and the National Science Founda-
tion of Jiangsu Province under Grants BK20191409 and
19KJA360001.

REFERENCES

[1] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan and M. Zorzi,
Toward 6G Networks: Use Cases and Technologies, IEEE Commun.
Mag., vol.58, no.3, pp.55-61, Mar. 2020.

[2] L. Chettri and R. Bera, A Comprehensive Survey on Internet of Things
(IoT) Toward 5G Wireless Systems, IEEE Internet Things J., vol.7,
no.1, pp.16-32, Jan. 2020.

[3] X. Wang and Y. Li, Content Retrieval Based on Vehicular Cloud in
Internet of Vehicles, IEEE Trans. Comput. Social Syst., vol.6, no.3,
pp.582-591, Jun. 2019.

[4] Y. Yao, X. Chang, J. Misic and V. Misic, Reliable and Secure Vehicular
Fog Service Provision, IEEE Internet Things J., vol.6, no.1, pp.734-
743, Feb. 2019.

[5] Z. Zhao et al., On the Design of Computation Offloading in Fog Radio
Access Networks, IEEE Trans. Veh. Technol., vol.68, no.7, pp.7136-
7149, Jul. 2019.

[6] T. T. Nguyen, V. N. Ha, L. B. Le and R. Schober, Joint Data
Compression and Computation Offloading in Hierarchical Fog-Cloud
Systems, IEEE Trans. Wireless Commun., vol.19, no.1, pp.293-309,
Jan. 2020.

[7] N. Choi, D. Kim, S. J. Lee, and Y. Yi, A Fog Operating System for
User-oriented IoT Services: Challenges and Research Directions, IEEE
Commun. Mag., vol.55, no.8, pp.44-51, 2017.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[8] X. Chen, J. Ding, and Z. Lu, A Decentralized Trust Management Sys-
tem for Intelligent Transportation Environments, IEEE Trans. Intell.
Transp. Syst., 2020, Accepted.

[9] Y. Jiao, P. Wang, D. Niyato and K. Suankaewmanee, Auction
Mechanisms in Cloud/Fog Computing Resource Allocation for Public
Blockchain Networks, in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 9, pp. 1975-1989, 1 Sept. 2019.

[10] J. Hillston, A compositional approach to performance modelling, Cam-
bridge University Press, 1996.

[11] J. Hillston, Fluid Flow Approximation of PEPA Models, in Proc. of
QEST’05, Torino, Italy, 2005, pp.33-42.

[12] R. Yu, G. Xue, and X. Zhang, Application Provisioning in Fog
Computing-enabled Internet-of-Things: A network Perspective, in
Prof. of INFOCOM’18, Honolulu, HI, USA, 2018.

[13] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou and Y. Zhang, Multitier
Fog Computing With Large-Scale IoT Data Analytics for Smart Cities,
IEEE Internet Things J., vol.5, no.2, pp.677-686, Apr. 2018.

[14] F. A. Silva et al., Mobile Cloud Performance Evaluation Using
Stochastic Models, IEEE Trans. Mobile Comput., vol.17, no.5,
pp.1134-1147, May 2018.

[15] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi,
Scalable Analytics for IaaS Cloud Availability, IEEE Trans. on Cloud
Comput., vol.2, no.1, pp. 57-70, 2014.

[16] X. Chang, B. Wang, J. K. Muppala, and J. Liu, Modeling Active
Virtual Machines on IaaS Clouds Using an M/G/m/m+K Queue, IEEE
Trans. on Serv. Comput., vol.9, no.3, pp.408-420, 2016.

[17] X. Li, L. Pan, J. Huang, S. Liu, Y. Shi, L. Cui, and C. Pu,
Performance Analysis of Cloud Computing Centers Serving Paralleliz-
able Rendering Jobs Using M/M/c/r Queuing Systems, in Proc. of
ICDCS’17, Atlanta, GA, 2017, pp. 1378-1388.

[18] Z. Su, Y. Hui, and S. Guo, D2D-based Content Delivery with Parked
Vehicles in Vehicular Social Networks, IEEE Wireless Commun.,
vol.23, no.4, pp.90-95, 2016.

[19] X. Chen, and J. Zhang, When D2D Meets Cloud: Hybrid Mobile Task
Offloadings in Fog Computing, in Proc. of ICC’17, Paris, France,
2017, pp.1-6.

[20] X. Wang, Z. Ning and L. Wang, Offloading in Internet of Vehicles: A
Fog-Enabled Real-Time Traffic Management System, IEEE Trans. Ind.
Informat., vol.14, no.10, pp.4568-4578, Oct. 2018.

[21] F. Mehmeti, and T. Spyropoulos, Performance Modeling, Analysis,
and Optimization of Delayed Mobile Data Offloading for Mobile Users,
IEEE/ACM Trans. on Netw., vol.25, no.1, pp.550-564, 2017.

[22] N. Cheng, N. Lu, N. Zhang, X. S. Shen and J. W. Mark, Opportunis-
tic WiFi Offloading in Vehicular Environment: A Queueing Analysis,
in Proc. of IEEE GLOBECOM’14, Austin, TX, 2014, pp.211-216.

[23] H. Wu and K. Wolter, Stochastic Analysis of Delayed Mobile Of-
floading in Heterogeneous Networks, IEEE Trans. Mobile Comput.,
vol.17, no.2, pp.461-474, Feb. 2018.

[24] H. Tan, Z. Han, X. Y. Li, and F. C. M. Lau, Online Job Dispatching
and Scheduling in Edge-clouds, in Proc. INFOCOM’17, Atlanta, GA,
2017, pp.1557-1566.

[25] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, Joint Optimization
of Task Scheduling and Image Placement in Fog Computing Sup-
ported Software-defined Embedded Systems, IEEE Trans. on Comput.,
vol.65, no.12, pp.3702-3712, 2016.

[26] J. Wan, B. Chen, S. Wang, M. Xia, D. Li and C. Liu, Fog Computing
for Energy-Aware Load Balancing and Scheduling in Smart Factory,
IEEE Trans. Ind. Informat., vol.14, no.10, pp.4548-4556, Oct. 2018.

[27] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M.
Parashar, Mobility-aware Application Scheduling in Fog Computing,
IEEE Cloud Comput., vol.4, no.2, pp.26-35, 2017.

[28] T. Wang, L. Qiu, A. K. Sangaiah, G. Xu and A. Liu, Energy-
Efficient and Trustworthy Data Collection Protocol Based on Mobile
Fog Computing in Internet of Things, IEEE Trans. Ind. Informat.,
vol.16, no.5, pp.3531-3539, May 2020.

[29] S. Zeadally, J. Guerrero and J. Contreras, A Tutorial Survey
on Vehicle-to-vehicle Communications, Telecommunication Systems,
vol.73, pp.469-489, 2020.

[30] Hwa-Chun Lin and C. S. Raghavendra, An Approximate Analysis
of the Join the Shortest Queue (JSQ) Policy, IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 3, pp. 301-307, 1996.

[31] A. Mukhopadhyay and R. R. Mazumdar, Analysis of Random-
ized Join-the-Shortest-Queue (JSQ) Schemes in Large Heterogeneous
Processor-Sharing Systems, IEEE Trans. Control Netw. Syst, vol.3,
no.2, pp.116-126, Jun. 2016.

[32] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi and
C. Assi, Dynamic Task Offloading and Scheduling for Low-Latency

IoT Services in Multi-Access Edge Computing, in IEEE Journal on
Selected Areas in Communications, vol. 37, no. 3, pp. 668-682,
March 2019.

[33] T. Wang et al., ”An Intelligent Dynamic Offloading from
Cloud to Edge for Smart IoT Systems with Big Data,” in
IEEE Transactions on Network Science and Engineering, doi:
10.1109/TNSE.2020.2988052.

[34] T. Liu, J. Li, F. Shu and Z. Han, Optimal Task Allocation in Vehic-
ular Fog Networks Requiring URLLC: An Energy-Aware Perspective,
in IEEE Transactions on Network Science and Engineering,doi:
10.1109/TNSE.2019.2955474.

[35] X. Chen and L. Wang, Exploring Fog Computing-Based Adaptive
Vehicular Data Scheduling Policies Through a Compositional Formal
Method—PEPA, in IEEE Communications Letters, vol. 21, no. 4,
pp. 745-748, April 2017.

[36] SimJava Tutorial: http://www.dcs.ed.ac.uk/home/simjava

XIAO CHEN received the M.Sc. and Ph.D. de-
grees in computing science from Newcastle Uni-
versity in 2009 and 2013, respectively. He is
currently a research fellow (Marie Sklodowska-
Curie) at School of Informatics in the Univer-
sity of Edinburgh, UK. His research interests
include performance evaluation and stochas-
tic optimization for large-scale/distributed sys-
tems, e.g., IoT systems, cloud/fog systems, and
Blockchain systems.

JIE DING received the B.S. degree in math-
ematical education from Yangzhou University,
Yangzhou, China, in 2001, the M.S. degree in
mathematical statistics from Southeast Univer-
sity, Nanjing, China, in 2004, and the Ph.D. de-
gree in communication from The Edinburgh Uni-
versity, U.K., in 2010. He is currently a professor
of Shanghai Maritime University. His research in-
terests include performance modelling for com-
munication and computer systems.

ZHENYU LU received the B.Sc. degree in elec-
tricity and the M.Sc. degree in information and
communication from the Nanjing Institute of Me-
teorology, Nanjing, China, in 1999 and 2002,
respectively, and the Ph.D. degree in optics en-
gineering from the Nanjing University of Science
and Technology, Nanjing, in 2008. He was a Re-
search Associate with the Department of Mathe-
matics and Statistics, university of Strathclyde,
Glasgow, U.K., from 2012 to 2013. He is cur-
rently a Professor with the School of AI, Nanjing

University of Information Science and Technology. He has published
seven international journal papers. His current research interests in-
clude neural networks, stochastic control, and artificial intelligence.

TIANMING ZHAN received the Ph.D. degree
in Pattern Recognition and Intelligence System
from Nanjing University of Science and Technol-
ogy (NUST), Nanjing, Jiangsu, China, in 2013.
He is currently an Associate Professor at the
School of Information and Engineering of Nan-
jing Audit University (NAU). His current research
interests include image processing and data
analysis.


