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Abstract—The risk of severe illness andmortality fromCOVID-
19 significantly increases with age. As a result, age-stratified
modeling for COVID-19 dynamics is the key to study how to
reduce hospitalizations and mortality from COVID-19. By taking
advantage of network theory, we develop an age-stratified
epidemic model for COVID-19 in complex contact networks.
Specifically, we present an extension of standard SEIR
(susceptible-exposed-infectious-removed) compartmental model,
called age-stratified SEAHIR (susceptible-exposed-asymptomatic-
hospitalized-infectious-removed) model, to capture the spread of
COVID-19 over multitype random networks with general degree
distributions. We derive several key epidemiological metrics and
then propose an age-stratified vaccination strategy to decrease the
mortality and hospitalizations. Through extensive study, we
discover that the outcome of vaccination prioritization depends
on the reproduction number R0. Specifically, the elderly should
be prioritized only when R0 is relatively high. If ongoing
intervention policies, such as universal masking, could suppress
R0 at a relatively low level, prioritizing the high-transmission age
group (i.e., adults aged 20-39) is most effective to reduce both
mortality and hospitalizations. These conclusions provide useful
recommendations for age-based vaccination prioritization for
COVID-19.

Index Terms—COVID-19, epidemic modeling, random net-
work, vaccination.

I. INTRODUCTION

BETWEEN January 2020 and November 30, 2020, about

1.47 million deaths from the novel coronavirus disease

(COVID-19) are reported worldwide [1]. On the one hand,

COVID-19 is much more deadly than most strains of flu. On

the other hand, many people infected with the coronavirus do

not develop symptoms, and hence they can transmit the virus

to others without being aware of it [2], which makes the pan-

demic extremely difficult to contain.

To live with the COVID-19 pandemic, governments and

healthcare systems are always struggling to save lives and

“flatten the curve,” i.e., reducing the mortality and the peak of

hospitalizations. Since severity and mortality rates of COVID-

19 greatly vary across age-groups and increase dramatically

for the elderly [3], [4], effective intervention policies to

achieve these two goals must prevent elderly, who are at high-

risk for severe clinical outcomes, from infections. For this rea-

son, age-stratified modeling for COVID-19 dynamics indeed

serves as the basis of accurately assessing the effectiveness of

control policies in decreasing illness severity and mortality. In

this respect, some age-stratified mathematical models have

already been proposed to analyze the spread of COVID-19 for

different purposes [5]–[8]. However, these models are based

on an oversimplified assumption that people are fully mixing,

i.e., everyone contracting and spreading the virus to every

other with equal probability, within each age group, which

clearly fail to incorporate enough details in real-life contact

networks. In reality, people in the same age group still differ

greatly in the way of spreading the disease. As a consequence

of this heterogeneity, it is found that epidemic outcomes in

complex networks could deviate greatly from the results

obtained from fully mixing epidemiological models [9], [10].

Motivated by the aforementioned observations, in this

paper, we present a unified yet simple mathematical model for

COVID-19 spread analysis by accounting for both the age-spe-

cific risk and the heterogeneity in contact patterns within and

across age groups. We take advantage of random network the-

ory to analyze the spread of COVID-19 in contact networks

with general degree distributions. More specifically, we pres-

ent an extension of standard SEIR (susceptible-exposed-

infectious-removed) compartmental model, called age-strati-

fied SEAHIR (susceptible-exposed-asymptomatic-hospital-

ized-infectious-removed) model to describe the disease

progression for infected individuals, and study the epidemic

spreading process in multitype random networks where each

type of nodes is treated as an age group. Some key epidemio-

logical metrics, such as time-dependent dynamics, steady-state

epidemic size (which will be termed as epidemic size
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throughout this paper), epidemic probability, and reproduction

number, are derived, allowing us to analyze the epidemics and

the impact of control policies in a thorough and effective man-

ner. Due to the consideration of stochasticity and network

structure, the proposed model is capable of offering some use-

ful epidemic results that the existing fully mixing age-stratified

models are unable to provide, like assessing the impact of pref-

erential isolation of nodes (e.g., immunizing essential workers

first). Given that many contagious diseases, including influ-

enza, also exhibit distinct characteristics for different groups

of people [11], the proposed model can be easily generalized

to modeling many other infectious diseases.

While non-pharmaceutical intervention (NPI) policies, such

as masking and social distancing, are effective in reducing the

transmissions and mitigating the healthcare burden, it has

become increasingly clear that vaccination is the only way to

eliminate the pandemic worldwide. Unfortunately, vaccine

availability will be highly constrained for general population

during at least the first several months of the vaccine distribu-

tion campaign. Therefore, vaccination prioritization decision

will play a pivotal role in reducing the effects of COVID-19

during such a period [13], [14]. Under our proposed frame-

work, we present an age-stratified vaccination strategy for the

considered multitype network. In simulations, we focus on

answering the following question: with limited doses avail-

able, who should be vaccinated first to reduce mortality and

hospitalizations as much as possible? Our simulation results

show that the answer depends on the value of reproduction

number R0. The reason behind is that, the epidemic size (i.e.,

the fraction of population eventually getting infected)

increases slowly in large R0 region, while increasing steeply

in small R0 region. As a result, vaccinating the high-transmis-

sion group (adults aged 20–39) is highly effective in blocking

COVID-19 transmissions in small R0 region, which thus pro-

tects the high-risk group (the elderly) indirectly. In contrast, in

large R0 region, even if high-transmission group is prioritized,

it will have little impact on epidemic size as long as the vac-

cine supply is limited. Consequently, directly vaccinating the

high-risk group becomes the preferable strategy. We illustrate

this phenomenon in Fig. 1, where prioritizing young people

aged 20-39 is preferable when R0 < 1:36, whereas prioritiz-
ing the elderly is the better choice only when R0 > 1:36.
Although most studies estimate that R0 for COVID-19 is

between 2-3.5 under pre-intervention scenarios [15], it cer-

tainly can be pushed to a relatively low level, e.g., below 1.36,

via NPI policies or even natural immunity (the latter only

meaningful for highly infected places [16]). Thus, our finding

indicates that vaccination prioritization should be customized

for different places by considering the ongoing NPI policies

and other effects that could suppress R0. The key contribu-

tions of this paper are summarized as follows.

� We employ multitype random network theory to deve-

lop an age-stratified epidemic model for COVID-19.

We derive the time-dependent epidemic dynamics,

where each individual could belong to one of six com-

partments, i.e., susceptible, exposed, asymptomatic,

hospitalized, infectious and removed.

� To analyze the stochastic property and final state of

the epidemic, we derive other critical epidemiologi-

cal metrics, such as epidemic size, epidemic proba-

bility, and reproduction number for the considered

networks.

� We present an age-stratified vaccination strategy based

on the proposed model. The simulation results indicate

that high-risk age group should be vaccinated first to

diminish mortality and hospitalizations in large R0

region. Conversely, when R0 is suppressed at a low

level, prioritizing the high-transmission age group

becomes the most effective strategy.

The reminder of this paper is organized as follows. In

Section II, we describe the related work. In Section III, we

introduce the network model, and derive the time-dependent

epidemic dynamics and other key epidemiological metrics.

In Section IV, we devise an vaccination strategy for the con-

sidered networks. In Section V, we conduct simulations to

compare different age-specific vaccination prioritization strat-

egies. In Section VI, we draw our conclusions.

II. RELATED WORK

Some mathematical models for COVID-19 have been pre-

sented to account for the age-varying risks for mortality and

severe illness. In [5], Singh et al. use an age-stratified SIR

(susceptible-infective-removed) model to study the impact of

social distancing measures, including workplace non-atten-

dance, school closure, and lockdown, on the course of the

COVID-19 pandemic. In [6], Balabdaoui et al. propose an

age-stratified discrete compartmental model to describe the

day-by-day progression of an infected individual in modern

healthcare systems, e.g., in intensive care unit (ICU), with the

objective of precisely projecting the occupancy of health care

resources. In [7], Tuite et al. develop an age-stratified

COVID-19 model to identify intervention strategies that keep

the number of projected severe cases lower than the capacity

of local health care systems. The aforementioned models

Fig. 1. Mortality (the ultimate death toll over the whole population) versus
reproduction number R0 with 10% vaccination coverage. Here, R0 denotes
the reproduction number prior to vaccination, where we control the level of
NPIs to vary R0 (the details are given in Section V-A). “20–39 prioritized” or
“60+ prioritized” means that these vaccine doses (enough to vaccinate 10%
population) are uniformly given to the adults aged 20–39 or aged 60+. The
simulation is based on real-world age-stratified contact matrix for the United
States [12].
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make full-mixing assumption within each age group, which

hence fail to capture enough details of population hetero-

geneity. In [17], Chang et al. propose an agent-based model to

predict the infected number in Australia by considering the

age-dependent effects. While agent-based models incorporate

more realistic factors, they demand computationally intensive

simulations, and generally offer limited insights into epidemic

outcomes.

Random network theory allows us to model epidemics by

taking heterogeneous contact network structure into account

while bypassing computationally complicated simulations.

Epidemic propagation in networks can be exactly interpreted

as a bond percolation process, which hence can be analyzed

by well-understood physics models, such as percolation [18].

Although several works have applied percolation theory to

analyze the spread of COVID-19 [10], [19], [20], they have

not taken the age-varying effects into consideration. On the

other hand, given that an age-stratified population can be

characterized as a multitype random network in which each

type of vertices correspond to an age group, one possible

direction is to directly map the epidemic spread to bond per-

colation in multitype random graphs [21], [22]. Unfortu-

nately, percolation theory is mostly limited to analysis of

final state of networks, and cannot predict time-dependent

transient dynamics. In [23], Miller et al. propose an edge-

based SIR compartmental model to describe the time-depen-

dent epidemic dynamics in complex networks. Inspired by

their approach, we solve the time-dependent dynamics for

COVID-19 in multitype random networks, and then derive

the expressions for epidemic size, epidemic probability, and

reproduction number by performing analysis on the final state

of the considered networks.

The design of vaccination prioritization strategies for

COVID-19 has also attracted some research attention.

Nonetheless, most of works draw the conclusion that

vaccinating the older groups first is the robust strategy to

minimize mortality or hospitalizations during a vaccine

shortage [24]–[26]. This perhaps is because they fail to

identify the underlying relationship between the priority

population and the reproduction number R0. Our finding

coincides with these works only when R0 is great. Recently,

Jentsch et al. show that prioritizing the high-transmission

group will reduce the death toll from COVID-19 most if

vaccines become available late next year for Ontario,

because high level of natural immunity may be already

achieved in Ontario at that time [8]. Their conclusion essen-

tially shares the same observation with ours as higher natu-

ral immunity leads to a lower R0. Different from their

work, by taking advantage of our epidemic model, we also

study the impact of vaccination prioritization strategies on

hospitalizations, and the effectiveness of immunizing people

with high activity, i.e., the essential workers. Furthermore,

our simulation results show that vaccinating high-transmis-

sion group is highly effective as long as R0 is small, which

applies to areas that are either hit hard as in [8] or only

have few infections but with relatively strict NPI policies,

e.g., masking mandate.

III. EPIDEMIC ANALYSIS

A. Network and Compartmental Model

Let us consider a multitype network which consists of M
types of nodes, each corresponding to an age group in a popu-

lation. We use wi to represent the fraction of the nodes of type

i 2 ½1;M�. The contact from a type-i node to others follows

degree distribution piðk1; k2; . . .; kMÞ , piðkkÞ, describing the

joint probability for type-i node to be connected with k1 type-
1 node, k2 type-2 node, . . . , and kM type-M node, where kk ¼
ðk1; k2; . . . ; kMÞ. The considered network can be generated by

the following procedure: 1) generate stubs for every node fol-

lowing degree distribution piðkkÞ, where each stub contains the

information about which type of node it reaches. 2) randomly

wire two matching stubs together to create an edge and repeat

this process until no stubs left.

Susceptible-Infected-Removed (SIR) and Susceptible-

Exposed-Infected-Removed (SEIR) compartmental models

are widely used for epidemic modeling. In SEIR compartmen-

tal model, each individual can be in one of the four states, i.e.,

Susceptible, Exposed, Infected, or Removed. Here, to capture

the salient features of COVID-19, we present a novel compart-

mental model, i.e., SEAHIR model, which adds two additional

compartments, i.e., asymptomatic and hospitalized, to the

classic SEIR model. In SEAHIR model, each individual can

be in one of the six states: susceptible (S), exposed (E), symp-

tomatic and infectious (I), asymptomatic and infectious (A),

hospitalized (H), and removed (R). Both new compartments

are paramount to describe the dynamics of COVID-19: the

number of people in H state indicates the hospitalizations,

which must be kept lower than health care capacity; patients

in A state have different level of infectivity compared with

symptomatic ones [27]. We assume that individuals in E state

is not infectious because of low virus load, and individuals in

H state are properly isolated. Individuals in I and A states are

assumed to be infectious to others, where the infection rate

from a type-i source node to a type-j node is �I
i;j or �

A
i;j given

the source node belongs to I or A state. For conciseness, we

do not distinguish recovery and death in R state, but assume

that an age-dependent fraction of infected people will die. Fur-

thermore, given the fact that the cases of reinfection with

COVID-19 are still extremely rare, we do not consider the

transition from R state to S state. For type-i nodes, the transi-
tions among the compartments are illustrated in Fig. 2, where

the symbols on the arrows denote the corresponding transition

rates from one to another, which are all dependent on node

type i to account for the age-dependent effects.

Fig. 2. SEAHIR compartmental model for nodes of type i.
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B. Time-Dependent Dynamics

Disease propagates from infectious nodes to its neighbors,

leading to an epidemic if the epidemic size is comparable to the

whole population. We employ the edge-based compartmental

method to solve the equations of dynamics governing the epi-

demic spread over random graph [23]. The core idea of the

edge-based method is to shift our attention from an individual

node to the status of its neighbor reached by an edge. To study

the impact of vaccination or natural immunity, we consider that

a fraction of population may be already immune at the begin-

ning of analysis: Siðkk; 0Þ represents the fraction of type-i nodes
with degree kk that are initially susceptible. Besides, we use

ujiðtÞ to denote the probability that a type-j neighbor has not
transmitted the disease to a type-i node by time t given that the
type-i node is susceptible at time 0. ujiðtÞ can be interpreted as
a state of a type-j neighbor of an initially susceptible type-i
node. It is noted that ujið0Þ ¼ 1 according to the definition.

Based on Fig. 2, we can construct the following equations to

characterize the time-dependent epidemic process.

SiðtÞ ¼
X
kk

Siðkk; 0ÞpiðkkÞ
YM
l¼1

u
kl
li ðtÞ; (1Þ

_AiðtÞ ¼ biEiðtÞ � gA
i AiðtÞ; (2Þ

_IiðtÞ ¼ diEiðtÞ � hiIiðtÞ � gI
i IiðtÞ; (3Þ

_HiðtÞ ¼ hiIiðtÞ � gH
i HiðtÞ; (4Þ

_RiðtÞ ¼ gAi AiðtÞ þ gIi IiðtÞ þ gHi HiðtÞ; (5Þ
EiðtÞ ¼ 1� SiðtÞ � AiðtÞ � IiðtÞ �HiðtÞ �RiðtÞ; (6Þ

where SiðtÞ, AiðtÞ, IiðtÞ, HiðtÞ, RiðtÞ, and EiðtÞ represent the
proportions of type-i nodes in the corresponding states at time

t, respectively. From Markov chain theory, when the network

size is sufficiently large, the fraction of nodes in Ai, Ii, Hi,

and Ri states can be described well by the differential equa-

tions (2)–(5) due to the flow diagram in Fig. 2. Moreover, ð6Þ
is obtained from SiðtÞ þAiðtÞ þ IiðtÞ þHiðtÞ þRiðtÞ þ
EiðtÞ ¼ 1. For the initial conditions, we assume Aið0Þ ¼
Iið0Þ ¼ Hið0Þ ¼ Eið0Þ ¼ 0 and Rið0Þ ¼ 1� Sið0Þ. Obvi-

ously, one can solve the above equations as long as the key

probability, i.e., ujiðtÞ, is derived. To calculate ujiðtÞ, follow-
ing the approach in [23], we break it into six parts, i.e., �SjiðtÞ,
�EjiðtÞ, �AjiðtÞ, �IjiðtÞ, �Hji ðtÞ, and �RjiðtÞ. Specifically, �SjiðtÞ,
�EjiðtÞ, �AjiðtÞ, �IjiðtÞ, �Hji ðtÞ, or �RjiðtÞ represents the probability

that the considered type-j neighbor is in S, E, A, I, H, or R
state, respectively, and has not transmitted the disease to the

initially susceptible type-i node by time t, satisfying

ujiðtÞ ¼ �SjiðtÞ þ �EjiðtÞ þ �AjiðtÞ þ �Hji ðtÞ þ �IjiðtÞ þ �RjiðtÞ: (7)

A type-j neighbor in S state cannot infect the type-i node,
and hence �SjiðtÞ is simply equal to the probability that the con-

sidered type-j neighbor is susceptible. The degree distribution

of the considered type-j neighbor is given by
kipjðkkÞ
kji

, where

kji ¼
P

kk kipjðkkÞ is the average degree leaving from type-j
node to type-i node, which normalizes the probability

distribution. This quantity is proportional to kipjðkkÞ because

type-j nodes with more edges incident to type-i nodes are more

likely to become the neighbors of type-i nodes [21]. We can

obtain �SjiðtÞ by computing the probability that the type-j neigh-
bor is initially susceptible and has not been infected by any of

its neighbors, except the considered type-i node, by time t, i.e.,

�SjiðtÞ ¼
X
kk

kiSjðkk; 0ÞpjðkkÞ
kji

YM
l¼1

u
kl�dil
lj ðtÞ; (8)

where dil is the Kronecker delta operator, with dil ¼ 1 only

when i ¼ l, and dil ¼ 0 otherwise.
As mentioned before, two states in our compartmental

model, i.e., I and A states, are infectious. Thus, the decrease

in uji comes from two joint events: 1) the type-j neighbor is A
or I state, and 2) it transmits the disease to the type-i node
with infection rate �A

ji or �
I
ji, i.e.,

� _ujiðtÞ ¼ �A
ji�

A
jiðtÞ þ �I

ji�
I
jiðtÞ

� �
: (9)

One can also interpret (9) in this way: there is a state 1�
ujiðtÞ (which corresponds to that the type-j neighbor has trans-
mitted the disease to the initially susceptible type-i node by

time t) receiving the flows from both �AjiðtÞ and �IjiðtÞ.
If staying in A, I or H state, the type-j neighbor transits to

R state with rate gA
i , g

I
i or g

H
i , which means

_�RjiðtÞ ¼ gAj �
A
jiðtÞ þ gI

j �
I
jiðtÞ þ gH

j �
H
ji ðtÞ: (10)

The type-j neighbor progresses from I state to H state with

rate hj, leading to

_�Hji ðtÞ ¼ hj�
I
jiðtÞ � gH

j �
H
ji ðtÞ: (11)

States �AjiðtÞ and �IjiðtÞ receive the flows from state �EjiðtÞ.
Besides, �AjiðtÞ progresses to state 1� ujiðtÞ and �RjiðtÞ, while
�IjiðtÞ progresses to state 1� ujiðtÞ, �RjiðtÞ, and �Hji ðtÞ, yielding

_�AjiðtÞ ¼ bj�
E
jiðtÞ � gA

j �
A
jiðtÞ � �A

ji�
A
jiðtÞ; (12Þ

_�IjiðtÞ ¼ dj�
E
jiðtÞ � gI

j �
I
jiðtÞ � hj�

I
jiðtÞ � �I

ji�
I
jiðtÞ: (13Þ

In summary, one can solve ujiðtÞ from the following equa-

tions.

�SjiðtÞ ¼
P

kk
kiSjðkk;0ÞpjðkkÞ

kji

QM
l¼1 u

kl�dil
lj ðtÞ;

_ujiðtÞ ¼ � �A
ji�

A
jiðtÞ þ �I

ji�
I
jiðtÞ

� �
;

_�AjiðtÞ ¼ bj�
E
jiðtÞ � gA

j �
A
jiðtÞ � �A

ji�
A
jiðtÞ;

_�IjiðtÞ ¼ dj�
E
jiðtÞ � gI

j �
I
jiðtÞ � hj�

I
jiðtÞ � �I

ji�
I
jiðtÞ;

_�Hji ðtÞ ¼ hj�
I
jiðtÞ � gH

j �
H
ji ðtÞ;

_�RjiðtÞ ¼ gA
j �

A
jiðtÞ þ gI

j �
I
jiðtÞ þ gH

j �
H
ji ðtÞ;

�EjiðtÞ ¼ ujiðtÞ � �SjiðtÞ � �AjiðtÞ � �Hji ðtÞ � �IjiðtÞ
��RjiðtÞ;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(14)
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where �Rjið0Þ ¼ 1�Pkk
kiSjðkk;0ÞpjðkkÞ

kji
, ujið0Þ ¼ 1, and �Ajið0Þ ¼

�Ijið0Þ ¼ �Hji ð0Þ ¼ 0. By plugging ujiðtÞ into (1), we can obtain

the fraction of type-i nodes in each compartment at given time

from (1)–(6). As a result, the desired age-stratified epidemic

dynamics can be obtained by solving OðM2Þ equations, where
M is the number of age groups. One can see that (1)–(6) and

(14) account for considerably more population structure than a

fully mixing model by only introducing marginally more

complexity.

C. Epidemic Size and Epidemic Probability

Epidemic size measures the fraction of people eventually

getting infected, and epidemic probability is defined as the like-

lihood that the first infected patient sparks an epidemic [9].

SEAHIR model contains more compartments than traditional

SIR or SEIR models, which complicates the derivations of

these two key metrics. Fortunately, both metrics only depend

on final state of networks. From Fig. 2, it is intuitive to see that

the network progresses to an equilibrium when t ! 1, where

Eið1Þ ¼ Aið1Þ ¼ Iið1Þ ¼ Hið1Þ ¼ 0. By using this fact,

we use a single compartment I to replace all the infected states,

i.e., E, A, I, H states in the original SEAHIR compartmental

model. Here is our trick: although SIRmodel cannot be used to

capture the temporal dynamics of SEAHIRmodel, it can be cal-

ibrated appropriately to share the same final network state, i.e.,

Sið1Þ and Rið1Þ, with SEAHIR model. Let Tji 2 ½0; 1�
denote the probability that an infected type-j node ultimately

transmits the disease to an initially susceptible adjacent type-i
node. We assume that the SIR model is with infection rate �̂ji

from type-j node to type-i node and transition rate ĝji from I

state to R state for a type-j neighbor of a type-i node. Since Tji

for the SIR model is
�̂ji

�̂jiþĝji
, the SIR model has exactly the

same final network state as the SEAHIR model as long as
�̂ji

�̂jiþĝji
is set to the Tji in the SEAHIR model.

Let us first calculate Tji in the SEAHIR model, and then

derive the desired metrics based on the SIR model. An

infected type-j node may enter one of two infectious states,

i.e., I state or A state, with probability
dj

bjþdj
or

bj
bjþdj

. Given

that the type-j node in I or A state, suppose that there are two

stages that it will progress to, i.e., “infecting the adjacent type-

i node” and “leaving current state,” with rates �I
ji (or �

A
ji) and

hj þ gI
j (or gA

j ), respectively. Tji is the probability that the

considered node enters the first stage, which equals
�I
ji

�I
ji
þðhjþgI

j
Þ

if the type-j node is in I state, and equals
�Aji

�A
ji
þgA

j

if it is in A
state, yielding

Tji ¼ dj

bj þ dj

�I
ji

�I
ji þ ðhj þ gIj Þ

þ bj

bj þ dj

�A
ji

�A
ji þ gAj

: (15)

In SIR model, we use �̂SjiðtÞ, �̂IjiðtÞ, or �̂RjiðtÞ to represent the

probability that a type-j neighbor of an initially susceptible

type-i node is in S, I, or R state and meanwhile has not

infected this type-i node by time t, and use ûjiðtÞ to denote the
probability that the type-j neighbor has not infected the

initially susceptible type-i node by time t, satisfying ûjiðtÞ ¼
�̂SjiðtÞ þ �̂IjiðtÞ þ �̂RjiðtÞ. Notice that ûjiðtÞ ¼ ujiðtÞ only when

t ¼ 1, because SEAHIR and SIR model share the same final

network state while having different temporal dynamics. By

analogy with the preceding subsection, we can obtain

�̂SjiðtÞ ¼
X
kk

Sjðkk; 0Þ kipjðkkÞ
kji

YM
l¼1

û
kl�dil
lj ðtÞ; (16Þ

�̂RjiðtÞ ¼
ð1� ûjiðtÞÞĝji

�̂ji

þ �̂Rjið0Þ; (17Þ

_̂
ujiðtÞ ¼ ��̂ji�̂

I
jiðtÞ; (18Þ

�̂IjiðtÞ ¼ ûjiðtÞ � �̂SjiðtÞ � �̂RjiðtÞ

¼ ûjiðtÞ �
X
kk

Sjðkk; 0Þ kipjðkkÞ
kji

YM
l¼1

û
kl�dil
lj ðtÞ

� ð1� ûjiðtÞÞĝji

�̂ji

� �̂Rjið0Þ; (19Þ

where �̂Rjið0Þ ¼ 1�Pkk
kiSjðkk;0ÞpjðkkÞ

kji
is the probability that the

type-j neighbor is initially removed (immune), and ûjið0Þ ¼ 1.
The derivation of (16) and (18) is similar to that of (8) and (9).

Analogous to the preceding subsection, probability 1� ûjiðtÞ
corresponds to that the type-j neighbor has transmitted the dis-

ease to the initially susceptible type-i node by time t. State
�̂IjiðtÞ transits to state 1� ûjiðtÞ with rate �̂ji while transiting to

state �̂RjiðtÞ with rate ĝji, leading to the relationship between

�̂RjiðtÞ and 1� ûjiðtÞ in (17).
Clearly, the epidemic dynamics are governed by (18) and

(19). By taking (19) into (18), we have

_̂
ujiðtÞ ¼ �̂ji�̂

R
jið0Þ þ �̂ji

X
kk

Sjðkk; 0Þ kipjðkkÞ
kji

YM
l¼1

û
kl�dil
lj ðtÞ

þ ð1� ûjiðtÞÞĝji � �̂jiûjiðtÞ: (20)

Now the advantage of using SIR compartmental model

becomes clearer: we arrive at (20) which is only related to

ûjiðtÞ. Since the population is closed, the epidemic will even-

tually go extinct, implying �̂Ijið1Þ ¼ 0. Given that
_̂
ujið1Þ ¼

��̂ji�̂
I
jið1Þ ¼ 0 and ujið1Þ ¼ ûjið1Þ, and recall that

�̂ji

�̂jiþĝji
¼ Tji, we can go back to the original SEAHIR model

and obtain

ujið1Þ ¼ Tji 1�
X
kk

Sjðkk; 0Þ kipjðkkÞ
kji

1�
YM
l¼1

u
kl�dil
lj ð1Þ

 ! !

þ 1� Tji; (21)

where Tji can be calculated from (15). One can solve ujið1Þ
from the above equation. In fact, (21) can be explained in an

intuitive way: a type-i node has not been infected by a type-j
neighbor since t ¼ 0 either because it cannot be reached from

its neighbor with probability 1� Tji, or it can be reached from

its neighbor with probability Tji but the neighbor has not been
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infected since t ¼ 0. Thus, as t ! 1, the fraction of type-i
nodes that have been infected since t ¼ 0 is given by

Rið1Þ � Rið0Þ, i.e.,

Rið1Þ � Rið0Þ ¼ 1�
X
kk

Siðkk; 0ÞpiðkkÞ
YM
l¼1

u
kl
li ð1Þ

 !

� 1�
X
kk

Siðkk; 0ÞpiðkkÞ
 !

¼
X
kk

Siðkk; 0ÞpiðkkÞ 1�
YM
l¼1

u
kl
li ð1Þ

 !
: (22)

The epidemic size is therefore expressed as

R ¼
XM
i¼1

wi

X
kk

Siðkk; 0ÞpiðkkÞ 1�
YM
l¼1

u
kl
li ð1Þ

 ! !
: (23)

It is noted that when the population is fully susceptible, i.e.,

Siðkk; 0Þ ¼ 1 for all j and kk,R solved from (21) and (23) is the

size of giant component in multitype networks obtained by

percolation theory [21], [22]. We can compute epidemic prob-

ability in a similar way. Let mijð1Þ denote the probability

that a type-i node (which is assumed to be infected) does not

spark an epidemic via a type-j neighbor. Analogous to (21),

the following argument is true: a type-i node does not ignite

an epidemic via a type-j node either because it cannot infect

its type-j neighbor, or it can infect its type-j neighbor but the
latter cannot spark an epidemic, which means

mijð1Þ ¼ Tij 1�
X
kk

Sjðkk; 0Þ kipjðkkÞ
kji

1�
YM
l¼1

m
kl�dil
jl ð1Þ

 ! !

þ 1� Tij: (24)

As a result, the probability that an infected type-i node

ignites an epidemic is given by

Pi ¼ 1�
X
kk

piðkkÞ
YM
l¼1

m
kl
il ð1Þ: (25)

By randomly choosing a susceptible node to infect, we

define the likelihood that it starts an epidemic as the epidemic

probability:

P ¼
XM
i¼1

wiPi; (26)

where wi ¼
P

kk
wiSiðkk;0ÞP

i

P
kk
wiSiðkk;0Þ

is the probability that the ran-

domly chosen susceptible node is of type i, which reduces to

wi in a fully susceptible population.

D. Reproduction Number

One of the fundamental parameters for an epidemic is its

reproduction number, i.e., the average number of secondary

cases caused by an infected individual. Again, since this met-

ric is unrelated to temporal dynamics, we can derive it from

SIR model to simplify our calculation. According to the semi-

nal work [28], the reproduction number is equivalent to the

spectral radius of the next generation matrix FV �1, where the

ðm;nÞ element of matrix F is the rate of new infections enter-

ing infected statem caused by infected state n, and ðm;nÞ ele-
ment of matrix V is the rate at which infected statem transfers

to infected state n, assuming that the population remains near

the disease-free equilibrium. In our edge-based SIR model

(18) and (19), �̂Iji can be treated as the infected state. There-

fore, we have M2 infected states in total. Recall that there

should be
�̂ji

�̂jiþĝji
¼ Tji, where Tji is calculated from (15). To

simplify the derivations below, we further assume that �̂ji þ
ĝji ¼ 1 (one can derive the same R0 in (30) without this

assumption, because R0 is only related to
�̂ji

�̂jiþĝji
). By differen-

tiating (19) and taking (18) into it, we have

_̂
�
I

jiðtÞ ¼ ��̂IjiðtÞ

þ
XM
l¼1

X
kk

Sjðkk; 0Þ kiðkl � dilÞpjðkkÞ
kji

Tlj�̂
I
ljðtÞ

Y
x2½1;M�

û
kx�dix�dxl
xj ðtÞ:

(27)

To obtain the linearized subsystem for infected states about

the disease-free equilibrium, we linearize (27) at the origin

(�̂IjiðtÞ ¼ 0 and ûjiðtÞ ¼ 1):

_̂
�
I

jiðtÞ ¼ ��̂IjiðtÞ þ
XM
l¼1

X
kk

Sjðkk; 0Þ kiðkl � dilÞpjðkkÞ
kji

Tlj�̂
I
ljðtÞ:

(28)

Then, we can construct F as an M2 �M2 matrix, with

ððj� 1ÞM þ i; ðl� 1ÞM þ jÞ element equal to

X
kk

Sjðkk; 0Þ kiðkl � dilÞpjðkkÞ
kji

Tlj; 8i; j; l 2 ½1;M�; (29)

and construct V as anM2 �M2 identity matrix. Reproduction

number R0 is therefore given by

R0 ¼ rðFV �1Þ ¼ rðF Þ; (30)

where rð�Þ represents spectral radius. From Theorem 2

in [28], R0 ¼ 1 marks the epidemic threshold in the sense

that the disease-free equilibrium is asymptotically stable if

R0 < 1, and is unstable if R0 > 1. In particular, in the

case of Sjðkk; 0Þ ¼ 1 for all j and kk, R0 becomes the basic

reproduction number, i.e., the average number of second-

ary cases caused by an infected individual in a completely

susceptible population. In this special case, the epidemic

threshold R0 ¼ 1 is also in agreement with the threshold

for multitype random network obtained by percolation

theory [21], [22].

IV. AGE-STRATIFIED VACCINATION

Under our proposed analytical framework, in this section,

we present an age-stratified vaccination scheme and study its

impact on epidemic outcomes. Considering a network with N

CHEN et al.: AGE-STRATIFIED COVID-19 SPREAD ANALYSIS AND VACCINATION: A MULTITYPE RANDOM NETWORK APPROACH 1867



nodes of type i, we use the following function to characterize

the immunization strategy for type-i nodes [29], [30]:

Fið~knÞ ¼
~kanPN

n¼1
~kan

;�1 < a < þ1; (31)

where Fið~knÞ is the probability that a susceptible node n of

type i with ~kn-degree is chosen to be immunized, and a is an

exponent quantifying the immunization preference towards

nodes with high degree. We use the tilde operator on k to rep-

resent the total degree of a node. A greater a indicates that

nodes with higher degree (e.g., essential workers) are more

likely to be immunized. In particular, a ¼ 1 represents a

node immunization process in an entire descending order, i.e.,

from the highest degree to the lowest degree. In contrast,

when a ¼ 0, we have Fið~knÞ ¼ 1
N , implying a uniform immu-

nization strategy for nodes of type i. Notice that since the full
knowledge of a contact network is generally unavailable,

immunizing nodes in a descending order is rather unrealistic.

The value of a depends on the strategy and knowledge of a

vaccine distributor.

Recall that Siðkk; 0Þ denotes the fraction of type-i nodes with
degree kk that are initially susceptible. In our model, studying

the impact of the immunization strategy in (31) only requires

solving new initial conditions Sf
i ðkk; 0Þ, i.e., the fraction of

type-i nodes with degree kk that are still susceptible when only

f fraction of type-i nodes remain susceptible after implement-

ing the immunization strategy, where f ¼ Sið0Þ � v, with v
being the fraction of type-i nodes immunized by vaccination.

Let Pið~kÞ be the probability that a type-i node is with degree
~k, Sf

i ð~k; 0Þ and Af
i ð~kÞ be the fraction and the number of type-i

nodes with ~k degree that are still susceptible when only f frac-

tion of type-i nodes remain susceptible, respectively. Due to

the fact that (31) only depends on total node degree ~k, the sub-
sequent development is only related to ~k instead of the vector

of node degree kk. According to the definitions, we have the

relationship

Pið~kÞSf
i ð~k; 0Þ ¼

Af
i ð~kÞ
N

: (32)

After one susceptible node is immunized according to (31),

Af
i ð~kÞ becomes

A
f� 1

N
i ð~kÞ ¼ Af

i ð~kÞ �
Pið~kÞSf

i ð~k; 0Þ~ka
~kaðfÞ

; (33)

where

~kaðfÞ �
X
~k

Pið~kÞSf
i ð~k; 0Þ~ka: (34)

In the limit of N ! 1, (33) can be expressed as

dAf
i ð~kÞ
df

¼ N
Pið~kÞSf

i ð~k; 0Þ~ka
~kaðfÞ

: (35)

Differentiating (32) in terms of f and plugging it into (35),

we obtain

dSf
i ð~k; 0Þ
df

¼ Sf
i ð~k; 0Þ~ka
~kaðfÞ

: (36)

In the spirit of [29], we define a new function GaðxÞ ¼P
~k Pið~kÞSið~k; 0Þx~ka and introduce a new variable t �

G�1
a ðfÞ in order to solve (36), where Sið~k; 0Þ in GaðxÞ is the

fraction of type-i nodes with degree ~k that are susceptible

before implementing the immunization strategy. One can

find that

Sf
i ð~k; 0Þ ¼ t

~kaSið~k; 0Þ; (37)

exactly satisfies (36), which hence is the solution to (36).

Equivalently, considering the vector of node degree ~kk with ~k
as the total degree, we have

Sf
i ð~kk; 0Þ ¼ t

~kaSið~kk; 0Þ; (38)

By simply replacing Sið~kk; 0Þ with the new initial conditions

Sf
i ð~kk; 0Þ, we can obtain the various epidemic outcomes in the

preceding section by taking the age-stratified immunization

into account.

V. SIMULATIONS

A. Parameter Settings

We now study the impact of control policies, particularly

age-specific vaccination strategies, for the COVID-19 pan-

demic. We use the estimated social contact data by age groups

for the United States to conduct our simulations, where C ¼
½cij� represents the contact matrix by age, with cij being the

average number of contacts that a node of type i has with

nodes of type j [12]. Notice, however, that the conclusions

drawn from our simulations are also generalizable to many

other countries, because age-stratified contact exhibits similar

patterns in most countries [12], [31]. The population is parti-

tioned into M ¼ 6 age groups, i.e., populations of ½0; 4�,
½5; 19�, ½20; 39�, ½40; 49�, ½50; 59� and 60þ years old.

Following [32], we assume that the susceptibility to infec-

tion for adults over 20 years is identical, and the susceptibility

to infection for individuals under 20 years old is half of that

for adults over 20 years old. Specifically, we set transmission

rate �I
ij ¼ � for all i 2 ½1; 6� and j 2 ½3; 6�, and �I

ij ¼ 1
2� for

all i 2 ½1; 6� and j 2 ½1; 2�. We set �A
ij ¼ 2

3�
I
ij to account for

the fact that asymptomatic people are less infectious than

symptomatic ones.1 The course of an epidemic is primarily

governed by the basic reproduction number. Being consistent

with [15], we assume that the basic reproduction number is

R0 ¼ 2:5, and derive the transmission rate � from (30) accord-

ingly. Given that young people develop milder symptoms or

no symptoms more frequently than the elderly, the symptom-

atic probabilities are set to 20%, 20%, 30%, 40%, 50%, and

60%, and the probabilities of needing to be hospitalized for

symptomatic cases are set to 0.10%, 0.23%, 2.19%, 4.90%,

10.20%, and 20.82% from young age groups to old age

1 It is commonly recognized that symptomatic patients are more infectious
than asymptomatic ones because cough and sneeze could help spread the
virus.
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groups [3]. Furthermore, the infection fatality ratios are set to

0.003%, 0.01%, 0.06%, 0.16%, 0.60%, and 3.64% from the

young to the elderly, respectively [3]. We set the average time

from the exposure to the onset of being infected (i.e., A or I

states) to 5 days, the average infection period to 7 days if not

admitted to hospital, and the average time stay in hospitals to

10 days [33]. To compare the effectiveness of vaccination pri-

oritization strategies, we consider a completely susceptible

population before vaccination. Later, this assumption is

relaxed in Fig. 8 to demonstrate the consistency of our conclu-

sion by considering a population with a high level of natural

immunity.

1) Modeling of Universal Masking: At the early stage of

vaccine distribution campaign, masking and/or social distanc-

ing measures are still needed. Thus, assessing the effective-

ness of an vaccination prioritization strategy requires the

considerations of ongoing NPI policies. We denote the popula-

tion contact matrix as C ¼ Ch þ Cw þ Cs þ Co, where Ch,

Cw, Cs and Co are the age-stratified contact matrices for

home, workplace, school, and other locations, respec-

tively [12]. For instance, the ði; jÞ-th element in Ch, denoted

by chij, is the average degree from a node of type i to nodes of

type j at home. By considering the NPIs, we modify the popu-

lation contact matrix C as follows.

C ¼ Ch þ g Cw þ Cs þ Coð Þ; (39)

where g 2 ½0; 1� is the scaling factor accounting for the change
in transmission rate per contact due to the presence of NPIs.

We assume that widespread face masking in public (i.e., work-

place, school, and other locations) are recommended. Since

reducing the transmission rate for an edge (contact) by 1� g
is equivalent to removing this edge with probability 1� g for

the spread of epidemic [9], we directly scale the contact matri-

ces Cw, Cs, and Co to reflect the reduction in transmission

rates in these places. The value of g can be estimated from

mask coverage (the fraction of population wearing masks) and

mask efficacy (the fraction of effective transmissions blocked

by masking) [34]. In what follows, we assume g ¼ 0:3 for

illustrative purpose. By this scaling, reproduction number R0

is pushed from 2.5 to 1.16. We will compare different vaccina-

tion prioritization strategies under no-masking scenario with

g ¼ 1 and masking scenario with g ¼ 0:3. To demonstrate that

our parameter g ¼ 0:3 is realistic, we refer the readers to the

reference [34]. According to Ref. [34], when the product of

mask coverage and mask efficacy is 0.6, e.g., mask coverage

is 0.75 and mask efficacy is 0.8, the relative transmission rate

of COVID-19, i.e., g, reduces to 0.3 compared with the no-

masking case. In the real world, the efficacy of surgical masks

is estimated to be about 0.8 [34]. Therefore, three quarters of

population wearing surgical masks may lead to g ¼ 0:3.
2) Impact of Population Structure Heterogeneity: Even

with the same R0 and contact matrix C (containing average

contact number cij across age groups), the epidemic may still

spread differently in networks because of the assumption on

degree distributions. Fig. 3 sheds light on the effects of struc-

tural heterogeneity on epidemic outcome. Based on the same

contact matrix, we examine two types of degree distributions:

Poisson distribution and power law distribution with the law’s

exponent equal to 2.5 [9]. Compared to Poisson distributions,

Power law distributions contain many nodes with fewer con-

tacts, and a handful of “superspreaders” with very high degree.

As illustrated in Fig. 3, power law network shrinks the epi-

demic size compared with Poisson network, which clearly

reveals that the same R0 and matrix of average contact number

are still not enough to accurately forecast epidemic dynamics.

In fact, the assumption that contact networks follow Poisson

distributions, as made in [12], is rather ideal, as it fails to cap-

ture the superspreader events that may greatly drive the trans-

missions of COVID-19 [16]. An estimate of degree

distributions of real-world contact networks is still needed in

the future research to improve the precision of projected epi-

demic results. However, noting that our mission in this section

is to seek the effective vaccination prioritization policies

rather than providing the exact or even best estimate of epi-

demic dynamics, we assume that the contact network follows

Poisson distributions, being consistent with [12].

B. Effectiveness of Vaccination Prioritization Strategies

We intend to compare the effectiveness of age-specfic vac-

cination prioritization strategies under two scenarios: no-

masking scenario and masking scenario. Unless specified oth-

erwise, we consider uniform vaccination within the same age

group by setting a ¼ 0 in (38). Although we conduct simula-

tions by assuming the basic reproduction number R0 ¼ 2:5,
our conclusions below also hold for other reasonable esti-

mated R0 values for COVID-19, such as from 2 to 3.5. We

assume that the vaccine efficacy for individuals below 65

years old is 95.6%, and for individuals over 65 years old is

86.4% according to the Moderna’s clinical trial data [35]. In

fact, our findings below also hold for Pfizer’s vaccine effi-

cacy, which is about 95% for all age groups [36]. Since the

elderly aged 60+ has the lowest average contact number but

the highest mortality and illness severity, while the adults

aged 20–39 have a high average contact rate and low mortal-

ity and illness severity, we call the adults aged 20–39 as the

high-transmission group, and the elderly aged 60+ as the

high-risk group. We remark that, even though the children

aged 5–19 have the highest average contact number among

Fig. 3. Epidemic size versus reproduction number R0.
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the population [12], they are assumed to be less susceptible

to the infection as mentioned before, thus contributing less to

the COVID-19 transmissions than the adults aged 20–39

In Fig. 4, we compare the epidemic size under different vac-

cination prioritization strategies by varying the fraction of

the whole population being vaccinated. In the figure, we use

“20–39 prioritized” (or other age ranges) to represent that the

vaccine doses are all given to the population aged 20–39. In

particular, since the children aged 0–4 only constitute about

6% of the whole population, the remaining vaccines, if all the

children aged 0–4 get vaccinated (i.e., in the case where 8% or

10% population is vaccinated in the figure), are uniformly

allocated to other age groups. As shown in the figure, prioriti-

zation of the adults aged 20–39 is most effective in blocking

the transmissions and reducing the infections under both no-

masking and masking scenarios. However, we should notice

the difference: the reduction in epidemic size achieved by pri-

oritization of the high-transmission group under masking sce-

nario is much more significant than that of no-masking

scenario. As illustrated in Fig. 3, when around R0 ¼ 2:5, i.e.,
under no-masking scenario, epidemic size decreases slowly

with R0. As a result, no matter which vaccination strategy is

implemented, it will not affect the epidemic size much, as

observed from Fig. 4(a). In contrast, under masking scenario

with R0 ¼ 1:16, epidemic size shrinks fast as R0 reduces. For

this reason, prioritizing the high-transmission group reduces

the epidemic size significantly as shown in Fig. 4(b).

In Fig. 5, we investigate which age-specific vaccination priori-

tization strategy reduces the mortality (the death toll over the

whole population) most. This metric is calculated from the epi-

demic size and the age-dependent mortality ratios. As shown in

Fig. 5(a), prioritizing the elderly achieves the lowest mortality

under no-masking scenario. This is due to two facts: 1) no matter

which prioritization strategy is implemented, limited vaccine

doses will not decrease the epidemic size much whenR0 is great.

2) The elderly people have remarkably higher mortality risk than

the remaining population. Consequently, protecting the elderly

directly is a wise method in such a case. Nonetheless, under

masking scenario, inoculating the adults aged 20–39 becomes

the most effective strategy to reduce the mortality as illustrated

in Fig. 5(b). This is because prioritization of high-transmission

groups substantially blocks COVID-19 transmissions in small

R0 region as aforementioned, thereby in turn protecting the

elderly even though they have not been vaccinated. There exist

some related simulation studies in the literature. It is shown

in [8] that vaccinating high-transmission group is the best strat-

egy to minimize the death from COVID-19 when the NPIs (for

Ontario) is combined with high level of natural immunity. Our

results further illustrate that relatively strong NPI strategies, even

without natural immunity, could lead to the same conclusion.

In [24], the researchers show that high-transmission group should

be prioritized to minimize death only when the vaccination cov-

ers a large proportion of the population (e.g., over 40% coverage

when the vaccine efficacy is 100%). This finding may be due to

that they have not combined vaccination with NPIs. As a conse-

quence of this difference, our results instead indicate that the

high-transmission group should be prioritized under the presence

of relatively strong NPIs, even if the vaccine coverage is very

limited, say, 2%, as shown in Fig. 5(b).

In Fig. 6, we evaluate how different vaccination prioritiza-

tion strategies affect hospitalizations. Similar to the results for

mortality, vaccinating high-transmission group first is still

more effective under masking scenario, as shown in Fig. 6(b).

On the other hand, while both severity and mortality risks

increase with age, the disparity in severity ratio between the

elderly and younger groups is not as significant as the disparity

in the mortality ratio. As a result, under no-masking scenario,

vaccinating the adults aged 20–39 or 50–59 first even slightly

outperforms vaccinating the elderly first in terms of reducing

hospitalizations from COVID-19 as depicted in Fig. 6(a),

because the former age groups have much higher average con-

tact rates than the elderly people.

Fig. 7 evaluates the performance of different age-specific

vaccination strategies versus a. (38) with a > 0 corresponds to
a vaccine plan targeting at people with high activity level (e.g.,

essential workers) in that age group. Thus, it is not surprising to

see that the vaccination strategies with a ¼ 5 outperform the

Fig. 4. Epidemic size versus different immunization prioritization strategies.

Fig. 5. Mortality versus different immunization prioritization strategies.

Fig. 6. Hospitalizations versus different immunization prioritization
strategies.
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corresponding vaccination strategies with a ¼ 0 in both no-

masking and masking scenarios. The effect of changing a is

more significant in Fig. 7(b) than Fig. 7(a), as the epidemic

results in small R0 region are more sensitive to the limited vac-

cination. In real world, a reflects the vaccine allocation plan

and the knowledge of the vaccine distributor towards the popu-

lation structure, which must be taken into account to forecast

the effectiveness of certain immunization strategies. This pref-

erential immunization for human networks with general degree

distributions, however, cannot be evaluated based on traditional

age-stratified homogeneous-mixing models.

Fig. 8 examines the consistency of our conclusions under a

hard-hitting scenario with 20% population naturally immune

before vaccination. To obtain the initial conditions Siðkk; 0Þ for
this case, we simulate the disease spread according to the time-

dependent dynamics in (1)–(6) until when around 20% people

get infected. Due to the natural immunity, R0 reduces from 2.5

to 1.78 under the no-masking scenario. To sustain R0 above 1,

we set g ¼ 0:5, which corresponds to a looser masking mea-

sure, resulting in R0 ¼ 1:1 under the masking scenario. As can

be observed from Fig. 8, vaccinating the elderly still reduces

the mortality from COVID-19 most in the no-masking case,

and vaccinating adults aged 20�39 still decreases the mortality

most in the masking scenario. This phenomenon demonstrates

that our conclusion still holds when a high level of natural

immunity has already been achieved.

C. Epidemic Probability

The proposed epidemic model is capable of capturing the sto-

chastic property of epidemics. For countries or areas that have

no active cases inside, it is useful to estimate the probability that

a new import case, if not quarantined properly, sparks an

epidemic. In Fig. 9, we study how universal masking could sup-

press the epidemic probability under both no-masking and

masking scenarios. Recall that the epidemic probability is the

likelihood that a zero patient randomly chosen from the popula-

tion starts an epidemic. Under the no-masking scenario, it is

shown that the epidemic probability is about 0.8 when R0 ¼
2:5, implying that most new cases, if not isolated, will give rise

to an epidemic. Conversely, face mask wearing effectively sup-

presses the epidemic probability to about 0.25. As reported in

China, imported cold-chain food contamination is even a source

for COVID-19 resurgence, and therefore it is nearly impossible

to isolate all new (or import) cases properly. Consequently, tak-

ing some low-cost control policies, such as universal masking,

is still important for disease-free areas to reduce or eliminate

the risk of COVID-19 outbreak or resurgence.

VI. CONCLUSION

To combat the COVID-19 pandemic, one of the most

important research tasks is to find out how to effectively

decrease mortality and severe illness from COVID-19. To

achieve this goal, we present a unified analytical framework

for COVID-19 by considering both age-dependent risks and

heterogeneity in contact networks within and across age

groups. Under this framework, we use a novel age-stratified

SEAHIR compartmental model to account for the distinct

dynamics in a micro-state level, and employ the multitype ran-

dom network approach to characterize the spread of epidem-

ics. Several critical epidemiological metrics, including time-

dependent dynamics, epidemic size, epidemic probability, and

reproduction number are rigorously derived to capture essen-

tial features to be used to manage the pandemic.

Based on our proposed epidemic model, we have also stud-

ied the vaccination problem. It turns out that what is the best

vaccination prioritization strategy to decrease mortality and

hospitalizations depends on the reproduction number R0. In

other words, the effective strategies may vary across different

areas, and heavily depends on the level of local NPI policies,

such as masking, that suppress COVID-19 transmissions. We

conclude that vaccinating the high-risk group is only effective

in reducing mortality when R0 is relatively high, e.g., under

the no-masking scenario, whereas vaccinating the high-

Fig. 7. Mortality versus different immunization prioritization strategies with
different a.

Fig. 8. Mortality versus different immunization prioritization strategies with
20% population naturally immune before vaccination.

Fig. 9. Epidemic probability versus transmission rate � under either no-
masking or masking case. The vertical line marks the value of � corresponding
to R0 ¼ 2:5 under no-masking scenario.
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transmission group turns out to be the wise strategy if inter-

vention policies have already suppressed R0 at a low level.

Although there are many social considerations in vaccination

allocation, our results provide the rationale for vaccination pri-

oritization at early stage of vaccination campaign.

There are several promising directions for future research.

First, the COVID-19 reinfection can be incorporated into the

epidemic model. In this paper, we assume that once a person

becomes immune (either via getting infected or vaccinated), the

person will never contract the disease. In a relatively short term

(e.g., several months), this assumption may be reasonable given

the rare reports of reinfection and the current understanding of

the vaccination. However, how long the protective antibodies

last remains an open problem. To take the possible reinfection

into account, we need to break the state R into recovery, vacci-

nated and death states, and consider the transition from the

recovery and vaccinated states to state S. Under this case, we
can still obtain the time-dependent epidemic dynamics by using

the proposed approach in Section III-B. Nevertheless, since the

final state of the network may not be disease-free due to the

existence of reinfection, other fundamental epidemic metrics,

such as epidemic size and reproduction number, cannot be cal-

culated via the proposed approach, which is worth studying in

the future. Second, it is useful to evaluate many other NPIs

based on our proposed model. For instance, what is the impact

of limiting some gatherings or events, such as mass gatherings

in bars, gyms, and churches, on the epidemic spread? To answer

these kinds of questions, one can simulate a realistic contact

network (e.g., with households, schools, bars, gyms, and

churches), as in [9], to discover the impact of different gather-

ings or events on the network structure, and then perform the

epidemic analysis using our mathematical framework by

removing the edges contributed by these gatherings.
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