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Abstract—To quantitatively measure the connectedness
robustness of a complex network, a sequence of values that
record the remaining connectedness of the network after a
sequence of node- or edge-removal attacks can be used. However,
it is computationally time-consuming to measure the network
connectedness robustness by attack simulations for large-scale
networked systems. In the present paper, an efficient method
based on convolutional neural network (CNN) is proposed to
train for estimating the network connectedness robustness. The
new approach is motivated by the facts that 1) the adjacency
matrix of a network can be converted to a gray-scale image and
CNN is very powerful for image processing, and 2) CNN has
proved very effective in predicting the controllability robustness
of complex networks. Extensive experimental studies on directed
and undirected, as well as synthetic and real-world networks
suggest that: 1) the proposed CNN-based methodology performs
excellently in the prediction of the connectedness robustness of
complex networks as a process; 2) it performs fairly well as the
indicator for the connectedness robustness, compared to other
predictive measures.

Index Terms—Complex network, convolutional neural network,
connectedness, robustness, prediction.

I. INTRODUCTION

MANY real-world systems can be modeled as complex

networks. The study of various complex networks is

currently pervading all kinds of sciences, reaching out to engi-

neering and technology in interdisciplinary fields. This subject

attracts increasing interest and attention from research commu-

nities in computer science, statistical physics, systems engi-

neering, applied mathematics, and biological as well as social

sciences [1]–[4].

For a complex network, its connectedness is guaranteed by a

sufficient number of edges that properly connect the nodes. The

connectedness is necessary for the network to perform its funda-

mental tasks such as controllability and synchronizability,

although the specific measures of these functions are mostly dif-

ferent. Since random failures and malicious attacks are indis-

pensable in real-world applications, which typically destroy the

connectedness of the network, it has becoming a major con-

cerned issue to strengthen the network connectedness against

such destructive failures and attacks [5]–[10]. Typically, destruc-

tive failures and attacks take place in the form of node- or edge-

removals, which cause significant consequences to the network

functioning or even lead to complete network crashing. In these

scenarios, the ability of a network to maintain its connectedness

against failures or attacks is referred to as the connectedness

robustness, or simply the robustness, in this paper.

Network attacks can be classified as random and targeted

attacks, which can be modeled and analyzed in computer simu-

lations. Targeted attacks aim at removing some intentionally

selected objects (e.g., a node that has the largest degree), while

random attacks do such removals at random. Here, for targeted

attacks it is presumed that a targeted node or edge ismore crucial

than other nodes or edges in maintaining the connectedness.

However, evaluating the importance of nodes or edges is com-

putationally intensive, and often practically intractable espe-

cially for large-scale networks. Conceptually, this requires to

quantify the importance by some centrality measures, such as

degree, betweenness, closeness, and eigenvector [11]. A

selected centrality measure is used as the indicator of (nodal or

edge) importance in an attack or defence strategy. Among the

existing centrality measures, degree and betweenness are the

most frequently used two [12], [13]. Besides centrality, other

commonly-used measures of importance include neighborhood

similarity [14], branch weighting [15], and structural holes [16].

From an attacker’s point of view, the module-based attack

strategy [17], [18] is particularly effective, which selectively

attacks the inter-community nodes and edges, which are dem-

onstrated important to maintain the connectedness among

communities. Also, the damage-based attack strategy [19]
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uses a measure of damage to describe the destruction level of

an attack, where the damage is defined as the change of the

largest connected component (LCC) size before and after the

attack. Along this line, the (normalized) size of LCC is widely

used as a measure for connectedness robustness [7]. Further-

more, it is observed that the attack-and-defend iteration process

can enhance the network robustness in an evolutionmanner [20].

It is commonly known that onion-like structured heterogeneous

networks are robust against attacks [7], [21]–[23]. In this

research direction, there are extensive studies on various issues

regarding network robustness, including the robustness of other

types of networks such as a network of networks [24], [25] and

multiplex networks [26], which found some encouraging real-

world applications in e.g. power grids [27], [28].

Given fixed numbers of nodes and edges, the network

robustness against various attacks can be improved by rewir-

ing [21], [27], [29]–[33]. If there is no restriction on the num-

ber of edges, quite intuitively adding extra edges properly can

enhance the robustness [34]. Spectral measures offer easy-to-

access indicators for detecting the network robustness, with

which meta-heuristic algorithms can be applied to optimizing

the robustness [33], [35]–[39].

Regarding robustness optimization, deep neural networks

provides a useful tool, which has shown powerful capability

in image processing. Successful applications of deep learning

techniques include network controllability robustness predic-

tion [40]–[42] and critical node identification [43]. As a kind

of effective deep neural networks [44], convolutional neural

network (CNN) is able to automatically analyze inner features

of a dataset and output desirable results with respect to classi-

fication or regression, without human interference.

Traditionally, the network robustness is evaluated by attack

simulations, which however are extremely computationally

time-consuming, especially for large-scale complex networks.

The major computational cost includes: 1) searching for the

node to attack, e.g., the node with maximum betweenness; 2)

calculating the connectedness measure, e.g., the LCC. Both

have to be calculated iteratively therefore consuming a large

amount of computing resources and time. To deal with such

technical problems so as to improve the computational effi-

ciency, in this paper a CNN-based robustness predictor (CNN-

RP) is proposed. The CNN-RP is used to predict the network

robustness through the entire process of attacks, by computing

and visualizing the size curve of (normalized) LCC against

node-removal attacks, However, edge-removal attacks are

very different in nature therefore will be studied elsewhere.

The design of CNN-RP is motivated by the following obser-

vations: 1) although some features and indicators (e.g., spectral

measures) are reliable to describe the overall robustness, they

cannot reflect the sequential details throughout the entire attack

process; 2) the detailed robustness information about the pro-

cess against sequential attacks may be obtained via attack simu-

lations, which however are very time-consuming and even

infeasible; 3) complex networks can be equivalently converted

to gray-scale images, and CNN techniques have proved efficient

in processing such images. Here, the designed CNN-RP follows

the same CNN structure used in the controllability robustness

predictor [40], [42], but with different objectives and functions.

Compared to the controllability robustness prediction, it is more

challenging to predict the connectedness robustness, since the

variation of the connectedness could be higher than that of the

controllability. Thus, an additional filter will be designed and

used, as detailed in Subsection III-B. Extensive experimental

studies demonstrate that 1) the designed CNN-RP can well pre-

dict the evolving size curves of LCC against sequential node-

removals for both directed and undirected, synthetic and real-

world networks, with a good generalization ability; 2) the

CNN-RP not only approximates the entire attack process, but

also provides a good (or even better) predictive measure com-

pared with the classical spectral measures.

The reminder of this paper is organized as follows:

Section II reviews the measure of network connectedness

robustness against destructive attacks. Section III introduces

the new CNN-RP. In Section IV, experimental results are pre-

sented with analysis and comparison. Finally, Section V con-

cludes the investigation.

II. NETWORK ROBUSTNESS

In this paper, the network connectedness robustness is mea-

sured by the normalized LCC [7]. The LCC of a directed net-

work is the largest weakly connected subnetwork, where a

directed graph is weakly connected if it remains to be con-

nected after all the directed edges are changed to be undi-

rected. Two LCC-based robustness measures are used, one for

the attacking process and the other for the resultant network.

The former is represented by a real vector (a normalized LCC

curve) while the later is represented by a real value.

Specifically, the measure of the network robustness in terms

of a normalized LCC curve (NLC) is calculated by

sðiÞ ¼ NLCCðiÞ
N � i

; i ¼ 0; 1; . . . ; N � 1 ; (1)

whereNLCCðiÞ represents the number of nodes in the LCC, and

sðiÞ is its normalized value (NLC) obtained after a total number

of i nodes have been removed from the network;N is the origi-

nal number of nodes in the network before being attacked.

The overall measure of the network robustness is then cal-

culated by

�s ¼ 1

N

XN�1

i¼0

sðiÞ : (2)

With the above measure, for two given complex networks

under the same sequential attacks, the one with a larger �s value
is considered having better connectedness robustness.

Now, given two NLCs, s1 ¼ ½s1ð0Þ; s1ð1Þ; . . . ; s1ðN � 1Þ�
and s2 ¼ ½s2ð0Þ; s2ð1Þ; . . . ; s2ðN � 1Þ�, the difference between
the two curves is calculated by

�� ¼ js1 � s2j ; (3)

where �� ¼ ½�ð0Þ; �ð1Þ; . . . ; �ðN � 1Þ� represents the sequential
differences (or errors) between the two curves, where ��ðiÞ ¼
js1ðiÞ � s2ðiÞj.
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Finally, the average error �� is calculated by

�� ¼ 1

N

XN�1

i¼0

�ðiÞ : (4)

Thus, the vector �� can be used to measure the errors of the

NLC predictions throughout the attack process; while the sca-

lar �� measures the overall error of the NLC prediction.

III. NETWORK ROBUSTNESS PREDICTOR

Different from the predictors for the network controllability

robustness against destructive attacks [40], [42], in this paper

CNN is used to predict the connectedness robustness, which

turned out to have a greater variation than the controllability

robustness. An illustrative example of the connectedness

robustness and controllability robustness will be given later in

Subsection IV-D. To deal with the large variation in the pre-

diction, a filter is useful, which is installed in CNN-RP follow-

ing the CNN output, as detailed below.

A. Convolutional Neural Network

The general framework of the proposed CNN-RP is shown

in Fig. 1, where a CNN is trained for network robustness pre-

diction. As can be seen from Fig. 2, the framework of this

CNN-RP is relatively simple, which consists of several groups

of convolutional layer, rectified linear units (ReLUs) and max

pooling layer, where ReLU is the activation function.

The structure of the CNN-RP is shown in Fig. 2. The detailed

parameter settings are given in Table I. The VGG architec-

ture [45] is employed, which incorporates a greater network

depth and a smaller kernel size. The 7 feature map (FM) proc-

essing layers are denoted as FM 1 to FM 7 respectively.

In simulations, for input of size around 1000� 1000 as in

the experiments reported below, the number of FM groups is

set to 7, which should be set to be greater for input of larger

sizes. Each FM consists of a convolutional layer, a ReLU, and

a max-pooling layer. Convolutional layers are adopted here

because of their efficiency in dealing with large-sized images.

ReLU (with fðxÞ ¼ maxf0; xg) is a widely-used activation

function for 2D data [46]. The pooling layers reduce the

dimensions from the input to the next layer. Since the interest

of images in this work is only in the lighter pixels, max pool-

ing is used, which works well especially when the image back-

ground is dark. Following the 7 FMs, two fully-connected

layers are configurated to process the output.

The mean-squared error between the predicted NLC and the

true NLC is employed as the loss function, as follows:

L ¼ 1

N

XN�1

i¼0

jjŝðiÞ � sðiÞjj ; (5)

where ŝðiÞ is the i-th value of the predicted NLC, and sðiÞ is
the i-th value of the true NLC by simulation; jj � jj represents
the Euclidean norm. The training process for CNN-RP aims to

minimize Eq. (5).

B. Filter for LCC-Curves

Due to the nature of data-driven algorithms, it is possible that

CNN outputs some logically unreasonable data. For instance,

the number of nodes of LCC in a network under attacks must

be monotonically non-increasing, but the output of CNN-RP

may violate this principle. To regulate the output of CNN-RP, a

filter is used, which is designed based on existing prior knowl-

edge. In configuration, the upper and lower bounds of the LCC

size are imposed onto the output of CNN-RP, and logically

unreasonable data are replaced by interpolated values. The fil-

ter consists of two parts, the first part limits the upper and lower

bounds while the second regulates the monotonic non-increase

feature, as formulated by Eqs. (6) and (7), respectively.

After each attack, the number of nodes in LCC of the

reminder network will be greater than or equal to 1, but less

than or equal to the current (temporal) network size. Thus, each

LCC value must be constrained by the following conditions:

NLCCðiÞ ¼
N � i; if NLCCðiÞ > N � i;
1; if NLCCðiÞ < 1;
NLCCðiÞ; otherwise;

8<
: (6)

where NLCCðiÞ represents the number of nodes in LCC, as in

Eq. (1).

Regarding the local increase in the size of LCC, if there is any

position in the LCC curve, returned by CNN-RP, where the

value is greater than its preceding value (local increase), then an

interpolation formulated by Eq. (7) is applied. Specifically, sup-

pose that it is detected as NLCCðkÞ > NLCCðiÞ (k � iþ 1),
which violates the monotonically non-increasing condition. In

this situation, the algorithm will continue to search along j ¼
kþ 1; kþ 2; . . . , until NLCCðjÞ < NLCCðiÞ is detected. To

that end, an interpolation is applied as follows:

NLCCðkÞ ¼ NLCCðiÞ þ k� i

i� j
� ðNLCCðiÞ �NLCCðjÞÞ ; (7)

where the integers i, j, and k satisfy k � iþ 1, k � j� 1, and
i � j� 2. An example of interpolation is shown in Fig. 3.

Note that 1) the filter does not check the correctness of the

predicted data, but only deals with the logically unreasonable

data; for example, it does not check whether NLCCðkÞ in

Fig. 3 is overestimated or underestimated, since the true values

are unknown to the filter. 2) Only the size of LCC is monoton-

ically non-increasing during sequential attacks, but the nor-

malized LCC curve, as shown in Eq. (1), is not so.

Fig. 1. The framework using CNN to predict network robustness. The input is
an adjacency matrix converted image; the output is the predicted NLC curve.
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IV. EXPERIMENTAL STUDIES

The performance of CNN-RP is demonstrated by extensive

numerical experiments.

Four representative synthetic (directed and undirected) net-

work models are simulated: the Erd€os–R�enyi (ER) random-

graph [47], generic scale-free (SF) [48]–[50], q-snapback

(QS) [51], and Newman–Watts (SW) small-world [52] net-

works. The detailed generation methods for these network

models can be found in [40] and [42], respectively. CNN-RP

is trained for predicting the network robustness using the data

collected form these synthetic networks, and then tested on

the same or different distributed synthetic network data, as

well as on 12 real-world networks.

Specifically, for directed networks, the following four cases

are studied: 1) both training and testing data are drawn from

the same dataset. 2) The testing data are the training samples

(with different average degrees) from a different dataset. 3)

The CNN-RP trained by synthetic network data is tested on 12

real-world network data, for which the study of the first case is

also extended to undirected networks. 4) CNN-RP is com-

pared to the spectral measure in predicting the overall network

robustness under same attacks.

In experiments, the network size is set to 1000 for synthetic

networks, while it is real data size for any real-world network.

The training data are drawn from a set of randomly-generated

network instances, where the average degree hki is set to 5, 8,

and 10, respectively. The total number of training samples is

9600 ¼ 4� 3� 800, which contain 4 topologies, 3 degrees,

and 800 random instances for each configuration. There is

another set of instances, where the average degree hki is set to
4, 7, and 9 respectively, which are used for the case that the

training and testing data are taken from different distributions,

respectively.

For the real-world networks used, their basic information is

summarized in Table II.

Three node-removal attack strategies are simulated, namely

the random attack (RA), and targeted betweenness-based (TB)

and targeted degree-based (TD) attacks. RA removes ran-

domly-selected nodes, while TB and TD remove nodes with

maximum betweenness and maximum degree, respectively.

For TB and TD, if two or more nodes have the same maximum

value (either betweenness or degree), one of them is randomly

selected to remove by the attack.

The experiments are performed using a PC Intel (R) Core

i7-8750H CPU @ 2.20 GHz, with memory (RAM) 16 GB,

running Windows 10 Home 64-bit Operating System.

A. Directed Synthetic Networks

1) Training and Testing Data are Both From the Same

Dataset: Figs. 4–7 show the results when the average degree

hki is set to 5, 8, and 10, respectively, for both training

and testing data. In each figure, pv represents the CNN-RP

Fig. 2. The structure of the CNN-RP. FM represents for feature map and FC for fully connected. The input is the adjacency matrix converted image; the output
is a 1�N vector that represents the predicted LCC curve. The data sizeNi ¼ dN=ðiþ 1Þe, i ¼ 1; 2; . . . ; 7. The concatenation layer reshapes the matrix to a vec-
tor, from FM 7 to FC 1, i.e.,NFC1 ¼ N7 �N7 � 512.NFC2 is a hyperparameter andNFC2 2 ðNFC1; NÞ. Always setNFC2 ¼ 4096 for the networks of sizesN ¼
1000 in this paper.

Fig. 3. An example of interpolation. Since CNN-RP returned value
NLCCðkÞ > NLCCðiÞ, it is replaced by the interpolated value N 0

LCCðkÞ (red
circle) obtained from Eq. (7).

TABLE I
PARAMETERS IN SEVEN GROUPS OF CONVOLUTIONAL LAYERS
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predicted curve; tv represents the true curve obtained by

attack simulations; � represents the prediction error that can

be calculated by Eq. (3); and s represents the standard devia-

tion of the testing data that are randomly collected. The

shadow in the same color represents the range of standard

deviation. These figures show that CNN-RP can predict

NLCs well for ER, SF, SW, and QS networks, not only in the

general shapes but also in details such as the curve turning

points. The prediction error is small, but slightly higher than

the standard deviation of the testing data. In addition, com-

pared to attack simulations, CNN-RP can return the network

connectedness robustness performance within a run of signif-

icantly shorter run time. For example, for ER networks with

N ¼ 1000 and hki ¼ 5 under random attacks, the average

run time for attack simulation is 11.65 seconds, while it is

only 0.12 second by CNN-RP.

Compared to Figs. 4, 6 and 7, which show that ER, SW, and

QS networks can maintain good robustness against random

and targeted attacks, Fig. 5 shows that SF networks are more

fragile than the other three, when the network sizes are the

same. Nevertheless, in all the cases, CNN-RP can well predict

the NLCs. The overall prediction error is small, but relatively

large in the period when the network become drastically dis-

connected (the curve drops abruptly).

2) Training and Testing Data are From Different Distribu-

tions: Fig. 9 shows the results of CNN-RP predicting the

NLCs of the networks with average degree hki ¼ 4, 7, and 9,

respectively, under random attacks. Table III shows the pre-

diction error �� and standard deviation �s of the testing data.

Together with Fig. 8, the overall errors and standard deviation

values are mostly of the same order in magnitude of about

10�2. For SF networks, the obtained prediction errors are

TABLE II
BASIC INFORMATION OF 12 REAL-WORLD NETWORKS [53]

Fig. 4. [color online] Results of CNN-RP NLC prediction for ER networks
under RA, TD, and TB, respectively. d represents the proportion of removed
nodes; sðdÞ represents the ratio of LCC versus the current network size, as
shown in Eq. (1).

Fig. 5. [color online] Results of CNN-RP NLC prediction for SF networks
under RA, TD, and TB, respectively. d represents the proportion of removed
nodes; sðdÞ represents the ratio of LCC versus the current network size, as
shown in Eq. (1).
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slightly lower than the standard deviations, while for ER, SW,

and QS networks, the prediction errors are slightly higher than

the standard deviations.

B. Undirected and Real-World Networks

Fig. 10 shows the results of CNN-RP predicting the robust-

ness performance for 12 undirected networks under RA.

Again, CNN-RP shows a competitive performance with a low

error level. Here, the CNN-RP is newly trained using a set of

undirected networks as the training data.

Fig. 11 shows the results of CNN-RP predicting the robust-

ness performance for 12 real-world networks under RA. The

CNN-RP trained using the synthetic networks as shown in Sub-

section IV-A. Since the sizes of some real-world networks are

slightly larger than 1000, as shown in Table II, resizing is per-

formed on the graph-converted images, i.e., a pair of rows and

columns is randomly picked and removed until it reaches N ¼
1000. For each network, the random resizing is repeated 20

times, and the prediction results and errors are then averaged.

It shows that CNN-RP can predict the rough contour, while

the details of the NLCs are not well revealed. This implies

that there is a lack of real-world data in the training data.

However, choosing the representative real-world data for the

training data is also a non-trivial problem.

C. Compared to Spectral Measures

Spectral measures are commonly used to predict or quantify

the network robustness regarding connectedness. Here, 6 typi-

cal spectral measures are compared in predicting the network

robustness. They are spectral radius (SR), spectral gap (SG),

natural connectivity (NC), algebraic connectivity (AC), effec-

tive resistance (ERe), and spanning tree count (STC). Details

(definitions and calculations) for these spectral measures can

be found in, e.g., [32]. In the above-discussed comparisons,

CNN-RP is used to predict the entire NLC, which can be con-

verted to a scalar by taking the mean value using Eq. (4).

In this work, the above prediction measures (namely, SR, SG,

NC, AC, ERe, STC, and CNN-RP) are used to predict the ordi-

nal ranks of network robustness. As mentioned, there are 4 net-

work types (namely, ER, SF, SW, and QS). For each type of

network, there are 5 average degrees (namely, hki ¼ 5; 7; 8;
9; 10). For each network type and each average degree, there are
100 randomly-generated instances. Thus, there are totally 4�
5� 100 ¼ 2000 networks. The predicted ranks of network

Fig. 7. [color online] Results of CNN-RP NLC prediction for QS networks
under RA, TD, and TB, respectively. d represents the proportion of removed
nodes; sðdÞ represents the ratio of LCC versus the current network size, as
shown in Eq. (1).

Fig. 6. [color online] Results of CNN-RP NLC prediction for SW networks
under RA, TD, and TB, respectively. d represents the proportion of removed
nodes; sðdÞ represents the ratio of LCC versus the current network size, as
shown in Eq. (1).
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robustness are obtained using the above-mentioned prediction

measures, where each measure returns a predicted rank-list of

2000 values. As a benchmark, the true ranks are obtained from

simulations. Then, the 7 predicted rank-lists are compared to the

true rank-list. The rank error sr is calculated by

sr ¼ jr̂l� rlj ; (8)

where r̂l represents the predicted rank-list (by either a spectral

measure or CNN-RP), and rl represents the true rank-list

obtained from simulations.

The resultant rank error information is summarized in

Table IV. For example, given two predicted rank-lists, r̂l1 ¼
½1; 4; 5; 3; 2� and r̂l2 ¼ ½5; 1; 2; 4; 3�, and a true rank-list, rlt ¼
½2; 1; 5; 4; 3�, the rank errors are obtained as sr1 ¼ ½1; 3; 0; 1; 1�
and sr2 ¼ ½3; 0; 3; 0; 0�, respectively. The numbers of ‘0’ in

sr1 and sr2 are counted as the ‘correct rank’ in the table. The

‘average rank error,’ ‘max rank error,’ and ‘min rank error’

are calculated accordingly. Moreover, the number of network

instances, which are predicted to be within top 10% (ordinal

ranks in terms of connectedness robustness) and also con-

firmed to be within top 10% by simulation, is counted and

included in the ‘top 10%’ column. The numbers in the ‘bottom

10%’ column are similarly calculated.

As shown in Table IV, AC receives the minimum ‘average

rank error’ 190.72, followed by CNN-RP with an average

rank error 272.44. AC obtains the smallest ‘max rank error,’

followed by CNN-RP. Only AC, ERe and CNN-RP receive a

‘min rank error’ 0, implying that these measures predict at

least once that is exactly the same as the true rank. CNN-RP

predicts 3 ranks correctly. STC, AC and CNN-RP predict a

number of correct top 10% and bottom 10% networks, whose

robustness values are truly top 10% and bottom 10% accord-

ing to the simulation results. The test dataset contains 2000

networks, giving 200 networks ranked as top 10% and bottom

10%, respectively.

The predictive measures AC and STC, as well as the pro-

posed CNN-RP, return good prediction results, better than

other spectral measures. More importantly, CNN-RP returns

not only the predictive results, but also predictive values

throughout the entire LCC changing process; while the spec-

tral measures return only a single quantitative value. However,

CNN-RP requires a substantial amount of training data, while

the spectral measures do not.

TABLE III
THE MEAN PREDICTION ERROR VERSUS THE STANDARD DEVIATION

OF THE TESTING DATA. THE AVERAGE DEGREE FOR TRAINING DATA

IS SET TO hki ¼ 5, 8, AND 10, RESPECTIVELY; WHILE FOR TESTING
DATA IS SET TO hki ¼ 4, 7, AND 9, RESPECTIVELY

Fig. 8. [color online] Comparison of the mean prediction error (��) versus the
standard deviation (�s) of the testing data. The average degree for both training
and testing data is set to hki ¼ 5, 8, and 10, respectively.

Fig. 9. [color online] Results of CNN-RP NLC prediction for synthetic net-
works under RA, where the testing data (hki ¼ 4; 7; 9) are different from the
training data (hki ¼ 5; 8; 10). d represents the proportion of removed nodes; sðdÞ
represents the ratio of LCC versus the current network size, as shown in Eq. (1).
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D. Compared to Predictor for Controllability Robustness

CNN-RP uses the same CNN structure as that in the predic-

tor for controllability robustness (PCR) [40]. The computa-

tional complexity of CNN-RP is similar to PCR. Both CNN-

RP and PCR use a single CNN to perform the regression tasks

for all the networks, but the task for CNN-RP is more difficult

than that for PCR, since the variation of LCC is greater.

Fig. 12 shows an example of the comparison between the

connectedness robustness and the controllability robustness.

In Fig. 12(a), it requires a proportion 4=6 of driver nodes and

there is a proportion 6=6 in the LCC; but in Fig. 12(b), it

requires a proportion 5=5 of driver nodes and there is a propor-
tion of 1=5 in the LCC. The change of “controllability” is from
0.667 to 1, not as drastic as the change of “connectedness”

from 1 to 0.2. Removing a node will increase the number of

driver nodes at most by 1 regarding the controllability, but it

may reduce the number of nodes by a number as high as N
regarding the LCC. The installed filter helps relieve the varia-

tion burden in the connectedness robustness prediction. Note

that PCR obtains an average error rate clearly lower than the

standard deviation of the testing data, while CNN-RP obtains

an average error rate that is slightly higher than the standard

deviation on the testing dataset.

The conventional spectral measures have been developed to

predict the connectedness robustness for a long time, while

there is no evidence that these spectra are suitable for predict-

ing the controllability robustness. On the other hand, CNNs

are effective and efficient in predicting many general features

and performances of networked systems that have no analyti-

cal solutions. As a matter of fact, in the comparison discussed

in [42], the CNN methods outperform the spectral measures in

predicting the controllability robustness. However, in the pres-

ent work, CNN-RP receives the overall rank-2 performance,

following the algebraic connectivity, yet nevertheless it per-

forms better than other measures including spectral measures.

Therefore, the results obtained in Subsection IV-C are truly

satisfactory and indeed quite encouraging.

E. Utilities of the Filter

The utility of the installed filter is to filter out the unrea-

sonable data predicted by CNN. Fig. 13(a) shows the LCC

predictions with and without a filter, respectively. It is clear

Fig. 10. [color online] Results of CNN-RP NLC prediction for synthetic
undirected networks under RA, where the average degrees are set to hki ¼ 5,
8, and 10, respectively. d represents the proportion of removed nodes; sðdÞ rep-
resents the ratio of LCC versus the current network size, as shown in Eq. (1).

Fig. 11. [color online] Results of CNN-RP NLC prediction for real-world
networks under RA, where d represents the proportion of removed nodes; sðdÞ
represents the ratio of LCC versus the current network size, as shown in
Eq. (1). Basic information of these networks are presented in Table II.

TABLE IV
COMPARISON OF THE PREDICTION ERROR INFORMATION FOR THE

7 PREDICTIVE MEASURES. BOLD NUMBERS ARE RESULTS FROM
THE BEST PERFORMING PREDICTION MEASURES
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that without the filter, the blue curve violates the nature that

the number of nodes of LCC in a network under attacks

must be monotonically non-increasing. In contrast, the green

curve filters out these unreasonable data, becoming closer to

the true curve. It is worthy mentioning that although the

number of nodes of LCC is monotonically non-increasing,

the NLC curve is not, as illustrated in Fig. 13(b), as d is

approaching 1.

Although precision check is not the utility of the filter, it is

observed that the prediction precision can be improved after

installing the filter. Table V shows a comparison of the CNN-

RP prediction, where �� (see Eq. (4)) represents the average

error of the prediction and D�� represents the average error

reduction by the filter. A consistent error reduction can be

observed when the filter is installed.

F. Shuffling on the Converted Images

As shown in Fig. 14, the generation mechanism of synthetic

networks may impose some visible features to the adjacency

matrix converted images. For example, for SF network, due to

the preferential attachment mechanism, the ‘old’ nodes (with

smaller node indices) have higher degrees, and thus there is a

spark in the upper-left corner as shown in Fig. 14(a). These

features can be filtered out by performing random shuffling

as shown in Fig. 14(b)., which means to randomly exchange

the rows and columns of the adjacency matrices. The simula-

tion results in [42] show that the existence of these visible

features does not affect the CNN performance in both net-

work classification and controllability robustness prediction.

Note that exchanging the rows and columns of an adjacency

matrix will only affect the image, but not the network

topology.

In the following experiment, the CNN-RP performance is

investigated when the training data are unshuffled, while the

testing data are shuffled. Let nsh be the number of random

shuffles; and nsh ¼ 1 means that there is a pair of randomly

selected nodes exchanging their indices (namely, exchanging

their rows and columns in the adjacency matrix).

Table VI shows that the average error of the prediction,

which can be calculated by Eq. (4), is generally not sensitive to

the shuffling of adjacency matrices. Specifically, for SF net-

works, the prediction error becomes larger only when nsh ¼
500; as for QS networks, the prediction result is degraded when

the input is the transpose of the original image. As can be seen

from Fig. 14(e), the QS transpose image is significantly differ-

ent from the QS unshuffled image (although the network topol-

ogy remains the same). In contrast, the SF transpose image is

Fig. 12. An example of the difference between connectedness robustness and
controllability robustness: (a) given a weakly connected network that has 6
nodes and requires 4 driver nodes; (b) after the hub node is removed, it
becomes a network with 5 isolated nodes that requires 5 driver nodes.

Fig. 13. Comparison of the predictions with and without the filter: (a) LCC
prediction and (b) NLC prediction. It is an ER with hki ¼ 8, under random
attacks.

TABLE V
COMPARISON OF THE AVERAGE ERRORS WITH AND WITHOUT THE FILTER,

FOR ER WITH hki ¼ 8, UNDER RANDOM ATTACKS

Fig. 14. Example of SF and QS networks: (a), (d) unshuffled; (b), (e) trans-
pose; and (c), (f) shuffled with nsh ¼ 500, where network size N ¼ 200 and
average degree hki ¼ 5:14.

TABLE VI
AVERAGE ERROR (��) OF THE CNN-RP PREDICTION, AS THE NUMBER

OF RANDOM SHUFFLES nsh CHANGES. THE NETWORKS HAVE

AVERAGE DEGREE hki ¼ 8, UNDER RANDOM ATTACKS
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not significantly different from the SF unshuffled image. The

degraded performance is likely caused by this significant image

difference. However, although the images are clearly different

after shuffling, CNN-RP can still perform well on processing

these shuffled images, while the number of shuffles generally

does not affect the prediction error.

V. CONCLUSIONS

This paper proposes a fast and effective approach to pre-

dicting the connectedness robustness of complex networks

against node-removal attacks. Conventionally, the network

robustness is determined by attack simulations, from which a

sequence of measure values are collected to record the con-

nectedness of the remaining network after a sequence of

attacks, which is computationally very time-consuming if

the network size is large. In this paper, CNN-RP is proposed

to predict the connectedness robustness of various complex

networks, based on the successful applications of CNNs for

image processing and network controllability robustness pre-

diction. Extensive numerical experiments on directed and

undirected, synthetic and real-world networks have been per-

formed, demonstrating the effectiveness of CNN-RP in pre-

diction performances: 1) CNN-RP can predict the network

connectedness robustness with a low average error, which is

in the same order in magnitude as the standard deviation of

the testing dataset. 2) The CNN-based predictor provides a

good and even better predictive measure than the traditional

powerful spectral measures. This paper demonstrates once

again that the CNN-based prediction technique has a good

potential for generalization with a wide range of applications

to complex networks.
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