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Abstract—Identifying key structures from social networks that
aims to discover hidden patterns and extract valuable information
is an essential task in the network analysis realm. These different
structure detection tasks can be integrated naturally owing to the
topological nature of key structures. However, identifying key
network structures in most studies has been performed indepen-
dently, leading to huge computational overheads. To address this
challenge, this paper proposes a novel approach for handling key
structures identification tasks simultaneously under the unified
Formal Concept Analysis (FCA) framework. Specifically, we first
implement the FCA-based representation of a social network and
then generate the fine-grained knowledge representation, namely
concept. Then, an efficient concept interestingness calculation
algorithm suitable for social network scenarios is proposed. Next,
we then leverage concept interestingness to quantify the hidden
relations between concepts and network structures. Finally,
an efficient algorithm for jointly key structures detection is
developed based on constructed mapping relations. Extensive
experiments conducted on real-world networks demonstrate that
the efficiency and effectiveness of our proposed approach.

Index Terms—Social Networks, Structure Identification, For-
mal Concept Analysis, Concept Interestingness

I. INTRODUCTION

HE rapid development of the Internet and the popularity

of smart terminals in recent years promote the prolif-
eration of Online Social Networks (OSNs). In particular, the
emerging social media represented by short video platform at-
tracts an increasing number of users, which generates massive
social media data and results in a more complicated network
structure. OSNs are considered complex networks with non-
trivial topological properties because the link patterns between
nodes is not random or purely regular [1]. As a result, key
structures identification is essential to discovering unobserved
patterns and understanding structural characteristics. And it
also plays an important role in various application domains,
such as social recommendation [2], information diffusion
analysis [3] and privacy protection [4].

The term of key structures in this paper refers to cohesive
structures including maximal clique, isolated maximal clique
and community, and bridging structures including bridge and
structure hole spanner. Cohesive subgraph detection is one
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of the flourishing issue in understanding the characteristics
of real-world networks. Maximal clique is one of the most
fundamental cohesive subgraph models in network analysis,
which requires each pair of vertices to have an edge and
cannot be extended by including one more adjacent vertex
[5] [6]. A maximal clique is considered isolated if it has no
edges connecting it to the rest of the graph [7]. Although the
definition of community structure is ambiguity, the community
is generally a cohesive subgraph in which nodes are more
likely to be connected due to sharing common attributes or
characteristics [8]. Besides, identifying bridging structures is
helpful to analyze information diffusion between communities
and then better serve social networking applications. This
is because bridges or bridging nodes commonly located in
the borders of communities are able to enable information
exchange among different communities [9]. Specifically, the
bridge represents the essential structure of a social networking
scenario where users join different OSNs even though they
are not familiar with each other but still can interact. In
sociology, bridging nodes, known as structural hole spanners
in structural hole theory [10], perform similar functions in
ensuring communication between different communities.

Due to the topology properties of cohesive structures and
bridging structures, these key structures are generally inter-
dependent, and their identification tasks are naturally tangled
with each other. In the literature, considerable approaches have
been proposed for independently discovering key structures
in the complex graph, which will be elaborated in related
work. However, some researchers [11]-[13] have noticed the
possibility of jointly solving these detection tasks and try
to tackle them simultaneously. For example, Shen ef al [11]
studied exploring intrinsic structural regularities in networks
using a general stochastic block model. However, this model
focuses on dividing nodes into cohesive groups while ignoring
the bridging structures, and the number of cohesive group
needs to be specified. To jointly detect communities and
structural hole spanners, He et al [13] proposed a harmonic
modularity method using the topological structure of the social
network. From a practical point of view, this model fails
to have high flexibility when the detection task needs to be
changed.

In this paper, we adopt Formal Concept Analysis (FCA)
[14] to analyze and tackle key structures detection simulta-
neously under the unified and flexible framework. FCA, a
powerful theory for knowledge discovery, provides techniques
to effectively discover the fine-grained knowledge (namely
formal concept) from binary relations and then organize them
in a lattice-based structure, namely concept lattice [14]. The



general graph characterizes the relationship between nodes
or entities as a binary relation, which provides the potential
for FCA to identify hidden patterns in social networks. A
great deal of recent research has focused on using FCA-
related technologies for social network analysis [15]-[17]. In
practice, when the concept generated from the formal context
(binary relation) of a social network, how to interpret the
implicit association between the concept and the network
structure becomes crucial. As more FCA-related technologies
such as concept interestingness are applied to learn this hidden
relationships, this model’s high flexibility makes it possible to
discover key structures or other structures in social networks.

In practice, we adopt concept interestingness measures
including stability and separation to select interesting con-
cepts and quantify the correlation between concepts and key
structure. More concretely, the stability and separation are
introduced to construct the mapping relations between concept
and key structure, and then the quantified mapping relation is
used to identify multiple key structures simultaneously. The
reasons for picking stability and separation are as follows: (1)
the combining stability and separation is suitable for quan-
tifying the characteristics of key structures, that is, internal
entities are cohesive and separated from external entities; (2)
the existing experiments have proved that combining these
methods is promising to handle noisy data and improve the
readability of concept lattice [18]. While the primary challenge
we encountered in practice is stability calculation which has
been proved NP-complete [19]. Most previous works calcu-
late stability values using approximate calculations. Although
recent work [20] can handle accurate stability calculation, it
does not make full use of the relationship between concepts
and is not suitable for social network scenarios. Therefore,
considering the uniqueness of social networks, we advance a
concept interestingness calculation algorithm CICal suitable
for social network scenarios.

In this paper, we propose a novel approach to identify key
structures simultaneously under the unified FCA framework.
The main contributions of this paper are summarized as
follows:

o A Concept Interestingness Calculation Algorithm suit-
able for Social Network Scenario: Considering the
uniqueness of social network and the knowledge hidden
in generated concept lattice, we propose a concept in-
terestingness calculation algorithm (CICal) suitable for
bridging the gap in how to leverage concept-cognitive
learning technologies for social network analysis effi-
ciently. The experimental results show that our algorithm
can effectively handle concept interesting calculations of
formal concepts generated from social networks.

o Mapping Relations between Concepts and Key Struc-
tures of a Social Network: In concept-cognitive learning,
we introduce stability and separation to interpret the
hidden association between the concept and the key
structures. Specifically, we have proved the mapping
relations between particular concepts and key structures
and learned a mapping relation table, paving the way for
the subsequent identification approach.

o FCA-based Key Structures Detection Approach: Based

on the quantified mapping relations between concepts and
key structures, we devise a key structures identification
approach under a unified FCA framework to detect max-
imal cliques, bridges, structural holes, isolated maximal
cliques and communities.

« Evaluation: Furthermore, we conduct extensive experi-
ments to evaluate the proposed identification method on
four real-network datasets. Experimental results show that
our approach has a higher NMI value and Fl-measure
score than other approaches. It demonstrates that our pro-
posed approach can accomplish multiple key structures
identification tasks in a unified FCA framework.

The outline of this paper is organized as follows: Section
Il overviews the related work. The preliminary knowledge
is provided in Section III. Section IV defines the problem
and then presents a solution framework. Section V thoroughly
describes the approach for identifying key structures from a
social network. Section VI reports the experimental results and
analysis. Finally, Section VII concludes this paper and presents
future work.

II. RELATED WORK

In this section, we conduct an in-depth review of key struc-
tures detection in social network analysis, concept cognition
and concept interesting measures.

A. Key Structures Detection

There have been a lot of state-of-art studies on key structures
detection in network analysis.

In the literature, a large number of algorithms have been
proposed for maximal clique enumeration, although it is NP-
hard theoretically. Lu et al [5] devised a randomized algorithm
for discovering the maximum clique which employs a binary
search and a novel iterative method to determine the maximum
clique. Dutta et al [6] proposed a heuristic method to signif-
icance prune search space and accurately identify candidate
regions containing a maximum clique in dense graphs. Hao et
al [17] studied the diversified top-k maximal clique detection
problem based on FCA.

Generally, community detection focuses on discovering
clusters in which nodes inside are tightly connected and
separate from external nodes. Traditional community detec-
tion algorithms can be divided into the following categories:
agglomeration [21] [22], division [23] [24], label propagation
[25] and optimization [26]. In recent years, deep learning
has been demonstrated to have great power on community
detection. Compared with traditional community detection
approaches, deep learning-based methods aim to identify com-
munity structures by creating more powerful representations
of node attributes and community structures [27]. Concretely,
depending on the used learning strategies, deep learning-based
methods for finite and infinite community detection fall into
five main categories: convolutional neural network (CNN)-
based [28], auto-encoder-based [29], generative adversarial
network-based [30], graph embedding-based [31] [32] and
graph neural network (GNN)-based [33] [34]. Comprehensive



surveys [27] [35] of community detection approaches are
referred.

For detecting bridging structures, a great deal of recent
approaches [9], [36]-[38] have been proposed. For example,
Buccafurri e al [9] have deeply studied bridges are the most
basic structure of a social networking scenario and argued that
most understanding of structural characteristics of networks is
based on the adequate knowledge of bridges. Zhang et al [38]
proposed a novel algorithm to identify structural hole spanner
in large social netwoeks based on community forest model
and diminishing marginal utility.

However, identifying key structures from social networks
in most studies have been performed independently, leading
to huge computational overheads. Some literature [11]-[13]
studies the possibility of jointly solving these detection tasks
and trying to tackle them simultaneously. For example, Shen
et al [11] studied exploring intrinsic structural regularities in
networks using a general stochastic block model. However,
this model is restricted to dividing network nodes into cohesive
groups such that the members of each group have similar
patterns of connections to other groups, and the group number
needs to be specified. To jointly detect communities and
structural hole spanners, He et al [13] proposed a harmonic
modularity method using only the topological structure of the
network. But, this model fails to have high flexibility when
the detection task needs to be changed in practice. In this
paper, based on our previous work [15] [17], we propose an
efficient approach to identify cohesive structures and bridging
structures simultaneously by learning concept interestingness
measure under a unified and flexible FCA framework.

B. Concept Cognition and Concept Interestingness Measures

Formal concept analysis, a powerful computational intelli-
gence methodology, is playing an important role in concept-
cognitive learning [39], [40]. A concept is a cognitive unit,
generally comprising its extent and intent parts, used to iden-
tify a real-world concrete entity or model a perceived-world
abstract subject [41]. Basic fundamentals of FCA are shown
in Section III-A. Because FCA only supports binary decision-
making that considers accepting and rejecting two options,
three-way concept analysis (3WCA) [42] combing FCA with
three-way decisions has recently attracted many researchers.
And many recent literature studies emerging three-way con-
cept and its application in knowledge discovery [43] and
cognitive learning [41], [44]. However, the existence of noisy
concepts [18] decreases the quality of concept cognition, hence
a crucial task is to improve concept readability or select useful
concepts. Therefore, various concept interestingness measures,
such as stability, separation and robustness, have been studied
to tackle this task [45]. Among these measures, stability has
been verified to be the more prominent in assessing the con-
cept quality. Additionally, the stability of three-way concept
was recently been proposed [46] and its potential applicability
in natural language generation was also demonstrated.

A great deal of recent studies [20], [47]-[51] has focused
on stability computation which has been proved NP-complete.
To overcome such an computation task, Babin and Kuznetsov

[47] utilized random Monte Carlo Sampling to develop an
approximate algorithm of stability calculation. Subsequently,
Buzmakov et al [48] provided the upper and lower bounds of
stable values through the existing structure of concept lattice.
Recently, Ibrahim and Rokia [49] explored variance reduction
techniques including leverage stratification, low-discrepancy
and hybridization, and then introduced an approach for esti-
mating stability. For calculating accurate value of stability, Jay
et al [50] presented that accurate stability can be accumulated
by already calculated results of all sub-concepts. Recently,
Mouakher et al [20] pioneered an algorithm called DFSP
that calculate stability by pruning the search space as much
as possible and smartly counting generators. However, DFSP
does not fully consider the hidden knowledge between con-
cepts, such as the equivalence relation between the maximal
non-generators and its lower neighbor concepts. Therefore,
on the basis of optimizing this algorithm, we also consider
the uniqueness of social networks, and propose a concept
interestingness calculation algorithm called CICal that is more
suitable for social network scenarios.

III. PRELIMINARY

In this section, we briefly review the basic notions involving
formal concept analysis and key structures of a social network.
The major notations used throughout this paper are listed in
Table I.

TABLE 1
THE MAIN NOTATIONS USED THROUGHOUT THIS PAPER.

Notation Descriptions
K(O, M, ) the fqrmal conttj,xt K with object set O, attribute set M
and binary relation set [
f(A) the common attributes set of all objects of A
g(B) the object set with all attributes from B
(A, B) the formal concept with the extent set A and the intent set B
L the concept lattice
o(A,B) the stability of a concept (A, B)
&(A, B) the separation of a concept (A, B)
G(V,E) the graph G with vertex set V' and edge set E

C the set of all maximal cliques in a graph
Ic the set of all isolated maximal cliques in a graph
B the set of all bridges in a graph

H the set of all structural hole spanners in a graph
C the set of all communities in a graph
M

the modified adjacency matrix

A. Basics of Formal Concept Analysis

Formal concept analysis, a powerful mathematical theory
for data analysis and visualization [14], utilizes a formal
context as input to extract concepts organized in a hierarchi-
cal, lattice-based structure, namely concept lattice. A formal
context is a triple K = (O, M, I), where O denotes a set of
objects, M represents a set of attributes, and I C O x M is a
binary relation. Each pair (z,m) € I is described as follows:
the object x € O contains the attribute m € M. Given a
subset of objects A C O and a subset of attributes B C M,



the following derivation operators are defined:

f@) = {meM|(z,m)el},

g(m) = {z€O|(z,m) eI},

flA) = {meMNzeA (z,m)el}= ﬂ f(x),
z€A

g(B) = {zxe€O|Vme B,(x,m)e I} = m g(m).
meB

where f(A) is the common attributes set of all objects of A
and g(B) is the set of objects with all attributes from B.

A formal concept is a pair (A, B), where AC O, BC M
and f(A) = B, g(B) = A. The sets A and B are called the
extent and the intent of the concept (A, B). In other words,
a concept is defined as a maximal set of objects sharing a
maximal set of attributes. In a concept lattice, a partial order
relation exists between two concepts (A, B) < (C, D) if A C
C(D C B), a pair (A, B) is a subconcept of (C, D) which
is a superconcept of (A, B). If (A, B) < (C, D) and there is
no (X,Y) satisfies (4,B) < (X,Y) < (C,D), (A,B) is a
lower neighbor of (C, D) and (C, D) is an upper neighbor of
(A, B).

Example 1 Table II shows a formal context K with O =
{1,2,3,4} and M = {a,b,c,d,e}, in which “x” indicates
that there is a binary relation between the object and the
attribute. Since the objects 1,2 and 3 share the common
attributes {a,b} and the attributes a and b have the com-
mon objects {1,2,3}. Thus, ({1,2,3},{a,b}) is a concept.
{1,2,3} is the extent of the concept, {a,b} is the intent of
the concept. The corresponding concept lattice L is shown
in Figure 1. Each blue node represents a concept. The upper
label of the node represents the intent of the concept, and the
lower label represents the extent of the concept.

TABLE 11
EXAMPLE FORMAL CONTEXT K.

K a b c d e
1 X X X
2 X X X
3 X X X

4 X X X

In practice, the noise contained in the dataset favours the
existence of many similar but distinct concepts, which may
excessively impair concept readability and concept cognitive
learning. Next, we will introduce two interestingness measures
used in this paper, namely stability and separation, used to
select the most useful and interesting concepts.

Definition 1 (Generator) Let K = (O,M,I) be a formal
context. Given a formal concept (A, B) of K, if there exists a
subset P C A which satisfies f(P) = B, then P is a generator
of A.

Definition 2 [18] (Concept Stability) Let K = (O, M, I) be

a formal context. Given a formal concept (A, B) of K, the

intentional stability index o of (A, B) is defined as follows:
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Fig. 1. The Concept Lattice L of K.

where |Genl| is the total number of generators of A.

The stability describes the proportion of subsets of extent
whose closure is equal to the intent [18]. In brief, given a
formal concept (A, B), if some objects are removed from A,
would the B remain the same? This measure quantifies the
intentional degree of dependence on particular objects of the
extent.

Definition 3 [/8] (Separation) Let K = (O,M,I) be a
Sformal context. Given a formal concept (A, B) of K, the
separation index £ of (A, B) is defined as follows:

AllB|
Laealf @)+ 2epl9(0)] = [A] Bl

The separation index is defined as the ratio between the
area covered by a formal concept and the total area covered
by its objects and attributes. It estimates the specificity of the
object-attribute relation of a concept with respect to the formal
context [45].

§(A,B) = )

Example 2 Continue the Example 1, the stability value of
({123}, {ab}) is equal to 3/8. Note that 8 stands for the
cardinality of the power set of {123} and the number of
generators is 3. The separation value of ({123}, {ab}) is equal
to 6/9. This is because the ratio between the area covered by
({123}, {ab}) and the total area covered by its objects and
attributes is 6/9. Note that 6 is the area of the gray part of
the table II, and 9 is the area of the grey part plus pink part.

B. Key Structures of a Social Network

Definition 4 A clique in an undirected graph G = (V, E) is
a subset of the vertices, such that every two distinct vertices
are adjacent. A maximal clique is a clique that cannot be
extended by including one more adjacent vertex. An isolated
maximal clique is a special maximal clique in which no edge
connects an object in it to any object outside of it.

Definition 5 A community is generally a cohesive subgraph
in which nodes are more likely to be connected due to sharing
common attributes or characteristics.



Definition 6 A bridge is an edge (v;,v;) of an undirected
graph G = (V,E), s.t, v; and vj are included in different
connected components. Equivalently, an edge is a bridge if
and only if it is not contained in any cycle (a cycle refers to
a non-empty trail in which the only repeated vertices are the
first and last vertices). A structural hole spanner is a bridging
node between multiple connected components.

D

Fig. 2. A simple social network.

Example 3 We use Figure 2 to clarify the definition of key
structure more clearly. Note that the network structure is
represented through a set of nodes without reference to the
edge. Obviously, {1,2} is a 2-clique in Figure 2, but it is not
a maximal clique. Because {1,2} is a subgraph of {1,2,3}.
Since {1,2,3} does not exist exclusively within the vertex set of
a larger clique, it is a maximal clique. In addition, {3,4,5} and
{4,5,6} share 2 vertices, i.e., 4 and 5, thus {3,4,5,6} forms a
3-clique community. There are two bridge edges (6,7), (7, 10)
and three structural hole spanner 3, 6 and 7.

IV. PROBLEM STATEMENT AND SOLUTION FRAMEWORK

In this section, we first formulate the problem of key struc-
tures identification from a social network. Then, the solution
framework of utilizing concept interestingness measures is
elaborated.

Problem Statement: Given a social network G = (V, E),
joint key structures identification aims to extract all maximal
cliques C, isolated maximal cliques ZC, bridges B, structural
hole spanners H and communities C from G simultaneously.

Solution Framework: Figure 3 depicts a concept interest-
ingness learning framework for identifying key structures from
social networks. The framework is divided into four layers,
namely, representation layer, concept layer, cognitive layer and
application layer. The functions of each layer are as follows:

The representation layer is in charge of representing a social
network with FCA’s input, that is, the formal context. The
concept layer generates a concept lattice from the formal
context of a social network. In this step, network structures
are represented as the concept form. The cognitive layer is
responsible for learning the hidden knowledge of concepts for
subsequent application. The center of the concept-cognitive
circle is some intuitive knowledge, such as the extent and
the intent. And the surroundings are some advanced concept-
cognitive technologies, such as concept interestingness and
other methods. The application layer applies the concept-
cognitive results to various application fields, such as structural
identification, social recommendation, etc.

Specifically, in this paper, in order to jointly identify key
structures, a social network is first represented as the formal
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Fig. 3. Solution framework.

context that is the input of FCA. Then, the corresponding
concept lattice is generated, and the topological structure is
expressed in the concept form. Subsequently, concept inter-
estingness, including stability and separation, are adopted to
quantify the mapping relations between concepts and key
structures. Finally, the required structures are identified from a
social network according to the constructed mapping relations.
In the next section, the proposed approach for identifying
key structures from a social network by learning concept
interestingness is presented in detail.

V. IDENTIFYING KEY STRUCTURES FROM A SOCIAL
NETWORK

A. Constructing a Formal Context for a Social Network and
Generating corresponding Concept Lattice

A social network is represented as a graph G = (V, E)
where the vertex set V' represents individuals and the edge
set Iv denotes the relationship between individuals. In Section
IIILA, we mentioned that the formal context K = (O, M, 1)
is the input of FCA, which is very similar to the adjacency
matrix of the graph representation. Each vertex v in G can be
viewed as the object and attribute of the constructed formal
context K. Hence, the formal context of a given social network
can be formalized as K = (V,V, I) by the following modified
adjacency matrix, in which [ is the binary relationship between
vertices.

Definition 7 (Modified Adjacency Matrix) [15] Let G =
(V, E) be a graph with vertices vy to vy,. The n X n matrix



M’ is called a modified adjacency matrix, in which
l'f (Uz‘, ’Uj) ekl
ifi=j 3)

a;j = 0  otherwise

aij:1
M =

Cli]‘:1

Here, K = (V,V,I) is equivalent to the modified adjacency
matrix M . After the construction of formal context, we adopt
our previous work [52] to generate the corresponding concept
lattice, which is an incremental concept generation algorithm.

Example 4 Figure 2 shows a social network composed of 10
users and their relationships. And the formal context of G and
corresponding concept lattice is shown in Table Il and Figure
4.

TABLE III
A FORMAL CONTEXT K OF G.

an NP-complete problem [19]. Most previous studies [47]-
[49] focus on the approximate calculation to overcome such
a computation task. However, we expect to compute accurate
stability values to improve structure detection accuracy, which
is verified to be right in later experimental results. It is
noted that Mouakher et al [20] recent pioneered the exact
stability calculation algorithm DFSP by pruning the search
space as much as possible and fast counting generators.
Specifically, DFSP mainly calculates the stability of (A, B)
by pruning the maximal non-generators F' and locating the
minimal generators from A— F'. The time complexity of DFSP
is O(TMaxNonG + TMinG), where ThaeNona and Thring
represent the time complexity of maximal non-generator and
minimal generator exploration, respectively. Thanks to DFSP
providing the possibility to establish accurate relations be-
tween concepts and key structures, we naturally adopt DFESP
and propose a Baseline algorithm (Algorithm 1) to calculate
interestingness measures.

Algorithm 1: Baseline(L)

G 1 2 3 4 5 6 7 8 9 10
1 X X X

2 X X X

3 X X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X X
8 X X X

9 X X X

10 X X

l11n23456739
N\ [6

. [789
. 789
11023456789

Fig. 4. The Concept Lattice of K.

B. Calculating Concept Interestingness for Social Network
Scenarios

After generating all concepts, how to interpret network
structures with concepts is becoming critical. In this paper,
we adopt concept interestingness measures, namely stability
and separation, to quantify hidden relations between concepts
and key structures. This section introduces how to calculate
concept interestingness efficiently, and the mapping relations
between concepts and key structures are explored in the next
section.

Although the separation of a concept (A, B) can be easily
calculated according to Definition 3, stability computation is

Require:
The concept lattice L
Ensure:
The stability and separation for each concept
: begin
: for each concept € L do
calculate separation according to Definition 3
calculate stability by DFSP [20]
return the stability and separation for each concept
end

A A T o

Although Baseline can accomplish the task of accurately
calculating concept interestingness, it has two drawbacks:

o Memory consumption. Baseline has to store all concepts
in memory. The number of formal concepts could be
exponential to the number of entities (vertices), which
makes Baseline cause memory consumption.

« Efficiency. Considering DFSP only process one concept
at a time, and the number of concepts generated from
social networks is generally large, Baseline is time-
consuming and inefficient for social network scenario.

Revisiting Baseline, the root leading to its drawbacks dis-
cussed above is that it directly utilizes DFSP algorithms
designed for the traditional formal context and does not take
account of the uniqueness of social networks. Therefore, we
need to develop new optimization strategies to overcome the
drawbacks mentioned above.

Pre-Calculation Optimization: Based on Theorem 1, only
about half of the number of generated concepts are required
to calculate concept interestingness, thus the memory con-
sumption will be reduced by around 50%. For example, in
Figure 4, there is a concept ({3}, {1,2,3,4,5}) in the upper
half-part of the concept lattice, so there must be a concept
({1,2,3,4,5},{3}) in the lower half-part of the concept
lattice. Therefore, only 10 out of 16 concepts are actually
required to calculate concept interestingness.



Theorem 1 Given a formal context K = (V,V,I) of a social
network and its corresponding concept lattice L, if a concept
(A, B) € L, there exists a concept (B, A) € L.

Proof It has been proved in [53]. [ |

In-Calculation Optimization: We first present the definition
of maximal non-generator. Next, in Theorem 2, we prove the
equivalence between the lower neighbor concepts of a concept
and its maximal non-generators. This means the maximal non-
generators can be directly obtained by the lower neighbor
concepts, and the time for detecting maximal non-generators
can be saved. Based on Theorem 2, we advanced the procedure
DFSP* which is presented in lines 7-11 of Algorithm 2 . The
time complexity of DFSP* is O(Thsing)-

Definition 8 (Maximal Non-generator) Let K = (O, M, 1)
be a formal context. Given a formal concept (A, B) of K,
if there exists a subset P C A which satisfies f(P) # B,
then P will be a maximal non-generator if there does not exist
P, C Aand P C Py such that f(Py) # B.

Theorem 2 Let K = (O, M, ) be a formal context. Given a
Sformal concept (A, B) of K, the maximal non-generators of
(A, B) is equivalent to the lower neighbor concepts of (A, B).

Proof In order to prove the equivalence of lower neighbor
concept and maximal non-generator, we need to prove from
two directions: (1) suppose X is a maximal non-generator of
A, then it can form a lower neighbor concept (X, f(X)) of
(A, B); (2) if (X,Y) is a lower neighbor concept of (A, B),
then X is a maximal non-generator of A.

(1) Since X is a maximal non-generator of A, then X C
A= f(A) C f(X) = g(f(X)) C A In addition, X C
g(f (X)), thus we can get X C g(f(X)) C A. Consider X is
a maximal non-generator, thus X = g(f(X)). It means that
there exists a lower neighbor concept (X, f(X)) of (A, B).

(2) Since (X,Y) is a lower neighbor concept of (A, B),
then B CY,X C A, f(X) =Y. So X is a non-generator
of A. Suppose X is not maximal, there exists a maximal non-
generator XoX of A. Based on Theorem 1, there should
exist a concept (X, f(X)). This conclusion contradicts the
initial conditions. Thus, X is a maximal non-generator of A.

|

With the above optimization strategies, a concept interest-
ingness calculation algorithm (CICal) is developed as shown
in Algorithm 2. According to Theorem 1, only the upper half-
part of concept lattice L is the input of CICal. Besides, DFSP*
is adopted to calculate concept stability based on Theorem 2.
As the pseudocode is self-explained, we omit the description.

C. Exploring the Mapping Relationships between Concepts
and Key Structures of a Social Network

In this section, the relations between concepts and key
structures quantified using stability and separation are elab-
orated. Once network structures are represented in concept
form, the combination of stability and separation is suitable
for quantifying the strength of the connection between vertices
in topology and the weakness of the connection between
internal vertices and other remaining external vertices. For a

Algorithm 2: CICal(L)

Require:

The upper half part of concept lattice L

Ensure:

The stability and separation for each concept
: begin
. for each concept (A, B) € L do
calculate separation according to Definition 3
calculate stability by DFSP* [20]
return the stability and separation for each concept
end
Procedure DFSP* (A, B)

7: obtain the maximal non-generators directly from the
lower neighbor concepts (Theorem 2) and store into the
set I

8: search the minimal generator from A — F

9: count generator N by minimal generator prefix

10: 0 = N/24l
11: return o

A > e

concept (A, B), its stability captures the noise of a concept by
estimating how its objects depend on removing each object,
and its separation describes how these objects are strongly
connected with other objects outside the concept [18]. So
generally speaking, the higher the stability value of a concept,
the more cohesive the structure corresponding to this concept;
the higher the separation value, the less it connects with other
objects outside.

Definition 9 (Equiconcept) [15] A formal concept ¢ =
(A, B) is called an equiconcept if A = B, i.e., its extent and
intent are the same.

In the following, we use & denoting an equiconcept (A, B). In
addition, given a social graph G and its corresponding concept
lattice L, it is obvious that for any equiconcept &= (A, B) € L,
we have |A| = |B|.

Proposition 1 Let G = (V, E) be a social graph.

1) If A C V is a clique, then Vv € A, A C f(v) and
ACg(v);
2) If A C V is a maximal clique, then (A, A) is an
equiconcept of G
3) If A C V is an isolated maximal clique, then (A, A)
is an equiconcept of G. Moreover, its stability o and
separation & satisfy the following constraints:
2lal —1
U(AvA) = W7
E(AA) = L

4)
(&)

Proof According to Definitions 4 and 7,

1) A cligue A C 'V means that Yv € A and any v' € A,
(v,v") € E and (v',v) € E, hence v' € f(v) and v' € g(v),
ie, AC f(v) and A C g(v).

2) It has been proved in [15].

3) An isolated maximal cligue A C 'V means that (A, A)
is an equiconcept of G. Suppose that there exists v' € A and



f(') # A, then there exists vi € f(V') and vi ¢ A, ie,
(v1,v") € E and vi ¢ A, this contradicts with “no edge
connects an object in the isolated maximal cligue A C 'V to
any object outside it”. Hence for any v € A, f(v) = A and
g(v) = A ie, Yv € A, v is a generator of A. According
to Definition 2, |Gen| = 2141 — 1,3 _ | f(v)| = |A|* and
S oen lo(v)] = [P, hence

|Gen| 2141 —1
214l 2lAl 7
|AJA]
DvealFW+ 2 ealg(v)] = [A[lA]
A2

= =1.
[A]2 + A2 = |AP

o(AA) =

§(A7 A) =

Proposition 2 Let G be a social graph and 1L be its corre-
sponding concept lattice, an equiconcept concept é= (A, B) €
L with A = B = {v1,v2} represents a bridge of G iff ¢
respectively has the following stability and separation:

0.25 dy>2,dy>2
o(A,B) = oo 6)
0.5 di >2,dy =1
where dy,ds respectively denote the degree of v1 and v,.
0.5 dy>2,dy>2
€A By <<, T e (7)
2 4 >2,dy=1

Proof We need to prove that: (1) the bridge is denoted by
an equiconcept with its extent and intent contained by only
two objects; (2) the stability and separation values of this
equiconcept satisfy Eq.(6) and Eq.(7).

(1) Let an edge {vi,vo} be a bridge. Assuming that there
exist edges {v1,v3} and {vo,vs}, that is, v1 and vy have a
common attribute vs, so there will be a cycle vi — v9 — v3 —
v1. However, it contradicts Definition 6, an edge {vi,vs}
is a bridge if and only if it is not contained in any cycle.
Thus, v1 and vy have the common attributes only {v1,vs}.
In other words, there is no node adjacent to nodes of v and
vy except themselves. From the definition of formal concept
and Definition 7, it can be represented by an equiconcept
({v1, v2}, {v1, v2}).

(2) The powerset of ¢ is {0, {v1},{va}, {v1,v2}}. When the
degree of v1 and vs are greater than or equal to 2, denoted
by di > 2,dy > 2, only one subset {vi,va} satisfies the
stability condition in Eq.(1). This implies that the stability of
the equiconcept ¢ is i. For the calculation of separation, |A| =
Bl =2,|f(v1)] = |g(v1)] = dv + L, | f(v2)| = |g(v2)| = d2 +
1, thus the separation of ¢ is ﬁ. Further, the separation
of ¢ is less than or equal to % Similarly, when dy > 2 and
dy = 1, it is easily derived that f(vy) = B, f(v1,v2) = B.
Therefore, the stability of the equiconcept ¢ is 0.5 and the
separation is equal to ﬁ. Further, the separation of ¢ is

less than or equal to % ]

Proposition 3 Let G be a social graph and 1L be its corre-
sponding concept lattice, a concept ¢ = (A,B) € L with

|A| = 1 represents a structural hole of G iff ¢ respectively
has the following stability and separation:
o(A,B) = 0.5 ()
{(A4,B) < 05 ©))

Proof We need to prove that: (1) the structural hole is
represented by a concept with its extent contained by only one
object; (2) the stability and separation values of this concept
satisfy Eq.(8) and Eq.(9), respectively.

(1) Let node h be a structural hole between two non-
overlapping subgraph parts Py and P> of G s.t. h € Py Ah €
P, A Py N Py = (. From Definition 6, two subparts are only
indirectly connected through the node h. In this case, at least
one node n; € Py, no € Py in each part is connected to
h. Due to h € PL Ah € P, NP, NPy, = 0, the common
object of {ny1,na,h} is h only, so there exists a concept
c= ({h}’ {nh n2, h})

(2) From Definition 2, it depicts a proportion of the subsets
of A whose closure is equal to B. Since |A| = 1, thus
©(A) = {A,0}. That is, all subsets of A have only the empty
set and itself. Due to f(A) = B and f(0) = 0, only one
subset A satisfies the stability condition in Definition 2. So,
the stability of (A, B) is equal to 0.5. For the calculation of
separation, |A| = 1,|f(A)| = | B|, so the separation & is equal
to m, from the Definition 7, Vb € B,|g(b)| > 2 =
> e 19(0)| = 2|B|. Thus, the separation of (A, B) is less
than or equal to 0.5. |

D. Key Structures Identification Algorithm

Based on the above propositions, we obtain the mapping
relations between key structures and concepts as shown in
Table IV.

TABLE IV
THE MAPPING RELATIONAL TABLE.

Proposition Key Structure Concept (A, B)

A=B

Proposition 1  maximal clique

Proposition 1 isolated maximal clique A = B,o = %,g =1

A=DB,0c=0.25¢£<05
A=B,0=056<2/3

|[A|=1,0=05£6<05

Proposition 2 bridge

Proposition 3 structural hole

For detecting communities, an equiconcept with high sta-
bility and separation is likely to represent an independent
community or the core part of a potential community. For
example, the equiconcept on behalf of an isolated maximal
clique has high stability (satisfy %) and high separation
(equal to 1). Therefore, we first select equiconcepts that
represent cliques and sort them in descending order by the
product of stability and separation o - £&. Then, we percolate
the remaining cliques to get the final predicted communities.

Based on the above discussions, a key structures identifica-
tion algorithm is presented in Algorithm 3. The input is the
upper half part of concept lattice L. The algorithm starts by
initializing the set of key structures to () (line 1). The goal of



Algorithm 3: Key Structures Identification Algorithm

Input: The upper half part of concept lattice L
Output: Set of maximal cliques C, isolated maximal
cliques ZC, bridges B, structural holes H and
communities C
1 Initialize C, ZC, B, H, C «+ (;
2 foreach concept (A, B) € L do

3 0,& < compute stability, separation by invoking
CICal;

4 if A = B then

5 C+ CU{(A,B),o-&);

6 1fa:1—1/2\A\Ag:1then

7 LIC<—ICU(A,B);

8 if |[A|=2A0=0.25A¢& <0.5 then

9 L B+ BU(A,B);

10 if |[A|=2A0=05A&< 2 then

1 | B+~ BU(A,B);

12 if|[A|=1A0=05A&<0.5 then
13 | H+—HU(A B);

1 C « Sort(C) ;

15 for C; = (A;, B;), C; = (4;,B;) € Cdo
16 if |A; ﬁA|>mn(|A\ |A;]) — 1 then
17 Cij + (A; U A, B; U By);

18 (Ce(C\{Cl,C}

19 C <+ Culy;

20 return C, ZC, B, H, C

the for loop (lines 2-13) is to detect maximal cliques, isolated
maximal cliques, bridges, structural holes and store them in
the set. First, the stability and separation of each concept are
calculated by invoking CICal (line 3). Then, lines 4-5 identify
maximal cliques and store them into the set C (c.f. Proposition
1). Lines 6-7 detect isolated maximal cliques and store them
in the set ZC (c.f. Proposition 1). Line 8-9 identify bridges
and stored them into the set B (c.f. Proposition 2). At last, the
structural holes are detected and stored into the set H (lines
12-13, c.f. Proposition 3). The for loop (lines 14-19) aims to
detect communities by aggregating maximal cliques. First, it
sorts all maximal cliques in descending order by the value
of o - ¢ and stores them into C (line 14). Next, it detects
communities by iteratively merging every two neighboring
cliques once they satisfy the aggregate constraint (lines 15-
19). At last, the algorithm return the set of detected maximal
cliques C, isolated maximal cliques ZC, bridges B, structural
holes H and communities C (line 20).

VI. EXPERIMENTS

In this section, we conduct comprehensive experiments to
evaluate the performance of the proposed concept interest-
ingness calculation algorithm and key structures identification
algorithm. Experiment 1 evaluates the effectiveness of CICal
algorithm, and Experiment 2 assesses the identification perfor-
mance of our proposed key structures identification algorithm.

All experiments are conducted on PC with Inter Core i7-
8565U 1.80GHz 1.99GHz CPUs and 16GB RAM. All the data
sets and source codes are publicly available online'.

A. Experiment 1 - Concept Interestingness Computational
Performance Evaluation

DataSets. In this experiments, we adopt three available net-
work datasets, namely Football?, Neural> and Email®. The
critical statistics of the datasets are presented in Table V
including the number of vertices, the number of edges and
the number of generated concepts.

TABLE V
STATISTICS OF DATASETS.

Dataset  |V| |E| |C| Description

Network of relations between

Football 115 613 3271 football players
Neural 297 2148 17442  Neural network of C.Elegans
Email 1133 5451 23153 Email communication network

of University Rovira i Virgili

Comparison Algorithms.

o Jay [50] is a stability calculation algorithm that requires
browsing the entire concept lattice to calculate stability.
« Baseline is the baseline solution of concept interesting-
ness calculation shown in Algorithm 1 that directly adopts
DFSP [20] to calculate stability.
o Baseline* is an optimization algorithm of Baseline with
in-calculation optimization only.
e CICal is our proposed Algorithm 2 with both pre-
calculation optimization and in-calculation optimization.
For the sake of fairness, we only counted the time for
each algorithm to calculate stability values. The difference
between the last three algorithms is that Baseline directly
uses DFSP [20] to calculate stability, while Baseline* uses
in-calculation optimization to optimize Baseline and CICal
adopts pre-calculation and in-calculation optimization.
Experimental results. Table VI reports the running time of
the above four algorithms on the tested datasets.

TABLE VI
THE RUNNING TIME OF COMPARISON ALGORITHMS ON DATASETS.

Dataset Jay(s) Baseline(s) Baseline*(s) CICal(s)

Football 129.14 15.94 11.50 6.38
Neural 375.97 157.42 112.19 62.96
Email 549.01 190.56 130.39 76.22

As shown in Table VI, Jay algorithm consumes the most
time among four algorithms on all datasets, since it needs
to browse the entire concept lattice to calculate the stability
value of each concept. It is noted that Baseline is faster than
Jay algorithm on all datasets because it directly invoke the
most efficient DFSP algorithm to calculate stability. Baseline*

Uhttps://github.com/jiegao1 9/FCA4SNA
Zhttp://www-personal.umich.edu/~mejn/netdata/
3http://konect.cc/networks/



is further faster than Baseline on all datasets since it adopts
an advanced DFSP* which leverages potential knowledge in
concept lattice to speed up stability calculation. This reveals
the effectiveness of our proposed in-calculation optimization
strategy. Obviously, our CICal algorithm is about 7 times faster
than Jay, 2.5 times faster than Baseline on Email datasets and
is the most efficient on all datasets. Since all optimization
strategies (pre-calculation optimization and in-calculation opti-
mization) are adopted in our CICal algorithm, the search space
has been significantly pruned, and the potential knowledge
in the concept lattice has been fully considered. The experi-
mental results demonstrate the effectiveness of pre-calculation
optimization strategy and in-calculation optimization strategy.

B. Experiment 2 - Key Structures Identification Performance
Evaluation

DataSets. We evaluate the performance of our algorithm
on four real-network datasets in this experiments. Terrorist,
Residence, Elegans and Email are publicly available at the
following URL®. Engineering is a large benchmark dataset
recently released in [34] for overlapping community detection.
Table VII briefly summarizes the statistics of these datasets.

TABLE VII
DATASET STATISTICS. K STANDS FOR 1000.

Dataset V| |E| Description

Relation Network between suspected

Terrorist 64 243 .
terrorists

Friendship network between students

Residence 217 2672 at a residence hall

Begns 4 ass M vk o e undvom
Bl LK s G o
Engineering 149K 493K Co-authorship network in Engineering

constructed from Microsoft Academic

Comparison Algorithms.

e« CPM |[21] detects the communities by percolating k-
cliques if they share k-1 object nodes.

e GN [24] is a decomposition algorithm that gradually
removes the edges between communities and obtains a
relatively cohesive community structure .

o COIN [16] adopts FCA’s stability to identify and remove
noisy bridges, and then detect communities by percolat-
ing the remaining cliques.

o« NOCD [34] is a graph neural network model for over-
lapping community detection.

To ensure a fair comparison, we re-run all algorithms 20
times and report the average result. Besides, we used the
authors released code for NOCD*, and adopted the adjacency
matrix as input of NOCD and their suggested setting for our
experiments.

Evaluation measures. In this experiment, we use Normalized
Mutual Information (NMI) [54] and Fl-measures to evaluate

“https://github.com/shchur/overlapping-community-detection

the quality of the detected communities and bridge structures,
respectively.

NMI is widely used to measure the accuracy of community
detection by estimating the similarity between the ground-truth
communities and the predicted communities [55]. Given the
ground-truth communities C* and the predicted communities
C, NMI is defined as:

2« MI(C,C*)
H(C)+ H(C")

where M1 and H represent the mutual information and
entropy, respectively [54]. The larger the NMI value, the
more similar the detected communities are to the ground-
truth communities. The NMI equals 1 if and only if they are
identical, whereas it has an expected value of O if they are
independent.

F1-measure is defined as follows:

NMI =

Pl 2 x precision x recall

precision + recall

in which precision is the ratio of the number of correctly
detected to the total number of detection results, and recall
is the ratio of the number of correctly detected to the total
number of ground-truth structures. Clearly, the larger the F1
value, the more accurate the predicted bridges.
Experimental Results. Table VIII shows the NMI values
of the community detection algorithms on the experimental
datasets.

TABLE VIII
COMPARISON OF NMI VALUES (IN %) OF THE COMMUNITY DETECTION
ALGORITHMS ON THE TESTED SOCIAL NETWORKS.

Dataset CPM GN COIN NOCD Our Approach
Terrorist 28.2 34.7 40.2 48.2 52.5
Residence Hall  28.8  29.6 34.3 37.4 40.9
Elegans 226 239 31.0 34.8 37.2
Email 17.5 13.8 29.4 353 36.8
Engineering 7.8 9.4 14.5 17.9 17.7

Obviously, our approach has achieved the highest score
in the first four datasets, and its score on the Engineering
dataset is slightly lower than NOCD. That is because the FCA-
based approach detects communities based on the concepts
that are the fine-grained knowledge representation of structure
topology. It is worth noting that, as shown in Figure 5, our
algorithm has a higher NMI value compared with another
FCA-based COIN algorithm, especially with about +12% on
Terrorist. This is because we leverage CICal to calculate
accurate concept interestingness for improving structure de-
tection accuracy, verifying that it is right to devise an accurate
calculation algorithm tailored for social network scenarios.

For bridge structures detection, Figure 6 presents the per-
formance of comparison algorithms on the tested datasets.
Obviously, our approach outperforms the comparison algo-
rithm in term of Fl-measure. This is because of two reasons:
(1) we invoke our proposed CICal to calculate the stability
accurately. However, COIN adopts an approximate calculation
algorithm, which will inevitably cause calculation errors and
further reduce the accuracy of structure identification; (2)
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Fig. 6. Fl-measure value of bridge detection algorithms on the tested datasets.

besides, we combine separation and stability to quantify the
mapping relations between concept and bridge. This can weak-
en each measure’s drawbacks, perfect the mapping relations
and further improve the accuracy of structure detection.

C. Case Study

In this section, a case study conducted on a real network
is introduced to illustrate the potential applications of the
identified key structures.

Terrorist® is an undirected network that describes the or-
ganizational relationships between the 64 suspected terrorists
involved in the Madrid train bombing on March 11, 2004.
The dataset consists of 64 nodes and 243 edges, in which each
node represents a terrorist and an edge represents a connection
between two terrorists.

With our proposed algorithm, we detected 49 maximal
cliques, 21 bridges, 23 structural hole spanners and 4 com-

Fig. 7. The Detected Communities of Terrorists Network by Our Approach.

munities from this terrorist network. The visualization of
detected communities of the terrorist network by our approach
is shown in Figure 7. For example, <24, 49>, <45, 46>, <16,
33> are the bridges and 8, 17, 30, 34, 49 are the structural
hole spanners bridging different communities. These bridging
nodes, structural hole spanners in sociology, can better control
the information spread among communities [13]. It implies
that these individuals are most likely to be the senior leaders of
the terrorist network. If the connections between these points
can be cut off in time, the entire terrorist network can be split
into several relatively independent small networks. This has
guiding significance for combating terrorism and protecting
public safety.

VII. CONCLUSIONS

In this paper, we propose an efficient approach to identify
multiple key structures simultaneously under the unified FCA
framework. We first implement the FCA-based representa-
tion of a social network and then generate concepts that
characterize network structures. Then, an efficient concept
interestingness calculation algorithm suitable for the social
network scenarios is developed. Next, we adopt interestingness
measures including stability and separation to discover hidden
relations between particular concepts and key structures and
further propose an algorithm for key structures identification
from social networks. Experiments conducted on real social
networks demonstrated that the efficiency and effectiveness of
our proposed approach. The work for further exploration is
as follows: (1) design an approach that simultaneously solves
the problem of generating a concept lattice and calculating
concept stability value; (2) conduct more practical applications
of key structures identification, such as influence maximiza-
tion, social recommendation and so forth; (3) explore the
relationship between the stability of three-way concept and
key structures in complex networks, such as balanced structure
mining in signed network.
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