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ABSTRACT
Clustering a group of vertices in networks facilitates applications
across different domains, such as social computing and Internet of
Things. However, challenges arises for clustering networks with in-
creased scale. This paper proposes a solution which consists of two
motif clustering techniques: standard acceleration CHIEF-ST and
approximate acceleration CHIEF-AP. Both algorithms first find the
maximal𝑘-edge-connected subgraphs within the target networks to
lower the network scale, then employ higher-order motifs in cluster-
ing. In the first procedure, we propose to lower the network scale by
optimizing the network structure with maximal 𝑘-edge-connected
subgraphs. For CHIEF-ST, we illustrate that all target motifs will
be kept after this procedure when the minimum node degree of the
target motif is equal or greater than 𝑘 . For CHIEF-AP, we prove that
the eigenvalues of the adjacency matrix and the Laplacian matrix
are relatively stable after this step. That is, CHIEF-ST has no in-
fluence on motif clustering, whereas CHIEF-AP introduces limited
yet acceptable impact. In the second procedure, we employ higher-
order motifs, i.e., heterogeneous four-node motifs clustering in
higher-order dense networks. The contributions of CHIEF are two-
fold: (1) improved efficiency of motif clustering for big networks;
(2) verification of higher-order motif significance. The proposed
solutions are found to outperform baseline approaches according to
experiments on real and synthetic networks, which demonstrates
CHIEF’s strength in large network analysis. Meanwhile, higher-
order motifs are proved to perform better than traditional triangle
motifs in clustering.

KEYWORDS
Higher-order motifs, social networks, motif clustering, big net-
works.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Feng Xia, Shuo Yu, Chengfei Liu, Jianxin Li, and Ivan Lee. 2022. CHIEF:
Clustering with Higher-order Motifs in Big Networks. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Networks are everywhere. As an effective way to represent complex
connections among entities, networks are widely used in various
domains such as social computing, Internet of Things, transporta-
tion, and bioinformatics. In particular, networks have become an
indispensible approach to the composition, management, and deliv-
ery of smart services in social computing applications [6, 30]. With
the rapid development of modern information technology like In-
ternet of Things, recent years have been witnessing the emergence
of large scale networks accompanied with big data [3, 45]. Such
progress increases the scale and complexity of the underlying big
networks, subsequently raises unprecedented challenges in data
analytics, including clustering, anomaly detection, association-rule
mining, and prediction.

In social computing applications, for instance, nodes and rela-
tions are organized under certain rules to form clusters. Clustering
algorithms have been regarded as powerful network mining tools,
and various large-scale computing methods have been proposed
for analyzing big network data [18]. Some prior studies investigate
network connectivity within the cohesive graph substructures to
present solutions for clustering. Leskovec et al. [16] and Akrida et
al. [1] showed that network density generally increases superlin-
early over time. Although real social networks have increase dense
grow denser over time, they are still relative sparse from the aspect
of data analytics. Benson et al. [4] proposed an effective approach
to identify clusters of network motifs in networks, which offers a
new insight into the organization of social networks.

However, the scales of social networks are in rapid expansion,
which makes the computational analysis intractable [42]. Motifs are
needed to be firstly detected, thus consuming much computational
timewhen implementingmotif clusteringmethods. Therefore, a ma-
jor challenge of network research lies on the reduction of network
complexities while improving the efficiency of motif clustering.
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Consequently, network topological structures appear to be partic-
ularly important in the context of big networks. To address this
problem, it is essential to understand the fundamental structures
of social networks, especially when big data have already enlarged
the scale [14, 25]. Therefore, we aim to develop a dimensionality
reduction algorithm with strong applicability for motif clustering
in this work. Meanwhile, theoretical proof as well as experimental
verification are both required to expand application scenarios of
the proposed method.

In this paper, we propose a clustering algorithm CHIEF (Clus-
tering with HIgher-ordEr motiFs) to address the above mentioned
challenge in big (social) networks. CHIEF mainly contains two
procedures: (1) finding maximal 𝑘-edge-connected subgraphs (ab-
breviated as 𝑘-connected subgraphs for the rest of this paper) in
the target network; (2) employing higher-order motifs for cluster-
ing. Specifically, CHIEF contains two approaches: CHIEF-ST and
CHIEF-AP. CHIEF-ST is the standard acceleration, which improves
the algorithmic efficiency in large-scale networks without compro-
mising the motif clustering results. CHIEF-AP is an approximate
acceleration approach, which retains the eigenvalues of the ad-
jacency matrix and the Laplace matrix meanwhile at the highest
degree. CHIEF is novel and innovative in the following aspects.

• High algorithmic efficiency: CHIEF employs maximal 𝑘-
connected subgraphs finding approach, which yields higher
efficiency than the baseline approaches. We conduct exper-
iments on 18 top conferences and journals networks and
5 different synthetic social networks. Experimental results
show that CHIEF is the most efficient algorithm as compared
with the baseline methods.

• Optional acceleration approaches: CHIEF includes two
acceleration approaches: CHIEF-ST and CHIEF-AP. CHIEF-
ST provides an accuracy acceleration whereas CHIEF-AP
provides an approximate optimal approach. Theoretically,
both approaches can accelerate motif clustering, especially
for scenarios of extremely large networks.

• Higher-ordermotifs:CHIEF employs heterogeneous higher-
order motifs. Compared with triangle motifs, CHIEF achieves
better clustering results using heterogenous four node mo-
tifs.

We run CHIEF-AP with different 𝑘 on two large-scale academic
networks as well as on five synthetic networks. The two large-scale
academic networks cover two different disciplines, including the
computer science data from Microsoft Academic Graph (MAG) and
the entire data from American Physical Society (APS). To employ
larger size motifs in clustering, we use heterogeneous four-node
motifs to explore higher order organizations. To examine the effec-
tiveness, we calculate the CII (Collaboration Intensity Index) [44] of
vertices within each identified cluster.We find that four-nodemotifs
cluster performs better than heterogeneous triangle motifs cluster
under certain circumstances. This illustrates that higher-order mo-
tifs may be more applicable than triangle motifs due to the degree of
network density. We generate five synthetic networks in different
scales, and compare the proposed solution against two baseline
algorithms, the MovCut algorithm [13] and the motif clustering
algorithm [4].

The rest of the paper is organized as follows. Related works are
introduced in the next section. Section III gives the preliminaries,
including definitions of network motifs and 𝑘-connected subgraphs,
and the formulation of the problem. Section IV illustrates the de-
sign of CHIEF. Section V presents the basic theories of standard
acceleration and approximate acceleration. Section VI discusses
experimental details, including data pre-processing, experiment de-
sign, baseline methods, and evaluation indices. Section VII analyzes
the experimental results. Finally, Section VIII concludes this paper.

2 RELATEDWORK
Applied clustering algorithms for analyzing and categorizing larger
number of applications have been under on-going development [31,
39]. Previous studies developed a categorizing framework for clus-
tering algorithms from a theoretical perspective. When selecting
clustering algorithms, three criteria should be considered, includ-
ing data size, data dimension, and presence of outliers. Variety is
the ability of a clustering algorithm to handle different types of
data, including numerical, categorical, and hierarchical data [32].
Velocity refers to the processing speed of a clustering algorithm.
Algorithmic complexity and execution time can be used in guid-
ing the selection of a suitable clustering algorithm [37]. Generally,
clustering algorithms can be categorized into five types, including
partitioning-based, hierarchical-based, density-based, grid-based,
model-based, and motif-aware clustering algorithms [7].

Partitioning-based clustering algorithms divide network data
objects into many partitions. Each partition represents a different
cluster, wherein clusters should meet two criteria: (1) each cluster
should at least contain one object; and (2) each object must belong
to exactly one group without any overlap [27]. Hierarchical-based
clustering algorithms organize data in a hierarchical manner, which
depends on the medium of proximity [2]. In such algorithms, indi-
vidual data is presented by leaf nodes. While propagating through
the hierarchy, the initial cluster will be divided into several clus-
ters gradually. Density-based clustering algorithms separate the
object data set according to their regions of density, connectivity,
and boundary. A cluster is usually defined as a connected dense
subgraph or component, which will grow in any direction that
the density leads to [22]. Grid-based clustering algorithms divide
the data objects into the form of grids. The accumulated grid-data
makes grid-based clustering techniques independent of the num-
ber of data objects that employ a uniform grid to collect regional
statistical data. Then cluster process will perform on the grid in-
stead of the whole data set directly [9]. Model-based clustering
algorithms assume that the data is generated by a mixture of un-
derlying probability distributions. Model-based methods optimize
the fitting functions, which represent the relationships between the
given data set and some predefined mathematical models [21].

Differ from algorithms mentioned above, motif-aware cluster-
ing algorithms rely on network motifs, which have been recog-
nized as the basic units of networks in network topological struc-
ture [8, 28, 41, 43]. Network motifs refer to those induced subgraphs
with a significant high frequency corresponding to small patterns
that appear in networks. In many kinds of networks such as aca-
demic networks and social networks, network motifs have been
used to describe sorts of entities in various networks. The wide use
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of network motifs makes the methods of identifying and analyzing
motif clusters especially important [15]. As one of the most funda-
mental units in networks, motifs can be used to uncover the basic
building blocks of most networks. Motifs have been applied in solv-
ing many different kinds of problems in the application scenarios of
social computing [17, 47]. Among these applications, motif-aware
clustering is the most typical one.

It is proved that motif-based clustering algorithms always con-
tain a procedure of motif detection, which leads to high computa-
tional complexity of such kind of algorithms [20]. Before Benson
et al. [4] proposed a fast motif-based clustering algorithm, the
efficiency of motif-aware clustering algorithms has not been im-
proved substantially. Afterwards, many studies work on this kind
of clustering algorithms, e.g., [23] and [19]. The main challenge
of motif-aware clustering algorithms is how to enlarge the basic
clustering unit from nodes to motifs in networks and reduce the
computational complexity at the same time.

Current motif-aware clustering algorithms are generally based
on spectral clustering, which aims at minimizing the motif con-
ductance when clustering motifs. Yin et al. [42] proposed a graph
diffusionmethod called approximate personalized PageRank (APPR)
that “spreads" mass from seed set with minimal motif conductance
to identify the cluster, and it naturally handles directed graphs
clustering. Tsourakakis et al. [35] focused on triangle motifs within
graphs. The notion of triangle motif conductance is presented to
appropriate random walk on the graph and to generalize graph
expansion based on triangles motif. Zhou et al. [48] first computed
the distribution of high-order random walk and clustered motifs,
which starts with a seed vertex and iteratively explores its neigh-
borhood until a small motif conductance is found. Huang et al. [11]
designed a novel higher-order structure termed harmonic motif to
integrate higher-order structural information, which is taken as the
auxiliary information for discovering the multi-layer community.

Network connectivity occupies a decisive position as well as
graph connectivity. However, most existing defined structures fo-
cus on node degrees instead of network connectivity within the
cohesive graph substructures. To address the computational com-
plexity issue in motif-aware clustering methods, we propose CHIEF
in this work to first partition the network with 𝑘-connected graphs
and then conduct motif clustering.

3 PRELIMINARIES AND PROBLEM
FORMULATION

This section introduces network motifs and 𝑘-edge-connected sub-
graphs in networks, and gives the formal definition of the research
problem.

3.1 Network Motifs
Network motifs appear repeatedly among various networks, which
reflect underlying functional properties within networks [46]. Each
of these motifs are defined by a particular pattern of interactions be-
tween graph nodes. Therefore, motifs have a notable significance in
uncovering structural design principles of complex networks. Gen-
erally, motifs are organized in different sizes. Herein, we introduce
two kinds of motifs in undirected networks.

• A three-node motif, i.e., triangle motif, is a connected graph,
which is comprised of three nodes and at least two edges
that connect nodes.

• A four-node motif, e.g., bi-fan motif, is a connected graph,
which is comprised of four nodes and at least three edges.

Higher-order motifs are also called graphlets, subgraphs, or com-
ponents, etc [28]. Some researchers distinguish these concepts de-
pending on their scale. In this paper, we usemotif to avoid ambiguity.
The structure of the motif generally becomes more complicated
when the number of vertices increases. In CHIEF, both triangle and
four-node motifs are used to identify clusters in different networks.
Since there are several structural forms of motifs, we label each
kind of heterogeneous motif in Figure. 1. Since 𝑀31 and 𝑀41 are
homogeneous with paths in undirected graphs, and these paths are
generally of little significance in social networks. Therefore, these
two kinds of motifs are removed in our experiments.

Figure 1: Heterogeneous structures of triangle motifs and
four-node motifs in undirected graphs.

3.2 𝑘-connected Subgraphs
Connectivity is a fundamental subject in graph theory. Graphs
are used to represent relationships between entities in real world.
Effective 𝑘-connected subgraph finding algorithms can be used
to identify closely related individuals. However, as a fundamental
subject in graph theory, checking graph connectivity is more time
consuming than checking node degrees [33, 36]. Thus, in this paper,
we use an efficient approach to discover all maximal 𝑘-connected
subgraphs. Here, we model network data as a simple and undirected
graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes and 𝐸 is a set of edges.

• A graph 𝐺 is 𝑘-connected graph refers to the connected
graph that cannot be disconnected by removing less than 𝑘
edges [10].

• Agraph𝐺 is maximal𝑘-connected refers that the𝑘-connected
subgraphs are not contained in other𝑘-connected subgraphs [49].

Figure. 2 shows a 2-connected graph and its maximal 3-connected
subgraphs, respectively. Under many circumstances, it is a better
approach to use 𝑘-connected subgraphs to model vertex clusters.
Several methods are proposed to speed up 𝑘-connected finding,
edge reduction, and cut pruning. In this paper, we will use edge
reduction methods to improve algorithm execution efficiency.
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Figure 2: An example of 2-connected subgraph. If we remove
two edges 𝑒1, 𝑒2 of a 2-connected graph, thenwe get twomax-
imal 3-connected subgraphs of original graph.

Figure 3: An example of motif conductance calculation.

3.3 Problem Formulation
Consider a connected, undirected, large-scale network𝐺 = (𝑉 , 𝐸),
wherein 𝑉 is a set of vertices, 𝐸 is a set of edges, 𝑛 and𝑚 are the
number of vertices and edges in𝐺 , respectively. To a given network
motif𝑀 , recognize a cluster of vertices, 𝑆 , with the following two
constraint conditions. (1) Nodes in 𝑆 should participate in many
motifs with the same structure to 𝑀 . (2) The set 𝑆 should avoid
cutting 𝑀 . This occurs when only a subset of the vertices from a
motif are in the set 𝑆 . Find a cluster that minimizes the ratio 𝜙𝑀 (𝑆),
wherein 𝜙𝑀 (𝑆) is defined as shown in Equation (1).

𝜙𝑀 (𝑆) = cut𝑀 (𝑆, 𝑆)/min[Vol𝑀 (𝑆),Vol𝑀 (𝑆)], (1)

wherein, 𝑆 refers to the complement of 𝑆 , cut𝑀 (𝑆, 𝑆) represents the
number of motif 𝑀 with at least one node in 𝑆 and one in 𝑆 , and
Vol𝑀 (𝑆) is the number of nodes in𝑀 that reside in 𝑆 . 𝜙𝑀 (𝑆) refers
to the motif conductance of 𝑆 with respect to𝑀 .

Motif conductance is proposed to guide motif clustering. When
clustering motifs, we aim at minimizing motif conductance. A lower
motif conductance means that less motifs are cut, thus leading to
less loss in motif clustering. We give a simple example to illustrate
the calculation of motif conductance. If we choose the triangle motif
as𝑀 , then there exist totally 9 instances of𝑀 . in Figure 3. Only one
motif instance is cut in this example. Therefore, motif conductance
is 1/9.

Motif conductance minimization is an NP-hard problem [4].
Therefore, the main difficulty that needs to be addressed in this
problem is how to reduce computing complexity. To solve this prob-
lem, we first find maximal 𝑘-connected subgraphs in the network
to reduce computing complexity from the perspective of network
connectivity. Then we cluster higher-order motifs in the network.

4 THE DESIGN OF CHIEF
This section introduces the CHIEF framework. The first part intro-
duces the main idea of finding the maximal 𝑘-connected subgraphs.
The second part introduces the procedure of higher-order motif
clustering. The last part introduces the integral process of CHIEF.

4.1 Finding 𝑘-connected Subgraphs
Graph connectivity is usually used to measure the reliability of the
network when the network topology structure is represented by
graph. Graph connectivity is significant in many problems. In this
problem, graph connectivity can be used to decide which edges
or vertices should be removed. This process aims at disconnecting
an originally connected graph with less loss. By convention, if a
vertex is removed, then all edges joining it will be removed as well.
However, the converse may not establish. Here, we introduce graph
connectivity and vertex connectivity as follows.

To a given graph 𝐺 , if removing a set of edges 𝐸0 (𝐺) can make
𝐺 unconnected, then 𝐸0 (𝐺) is a disconnecting set of edges of 𝐺 .
The smallest disconnecting set is called an edge cut set. Similarly,
if removing a set of vertices 𝑉0 (𝐺) can make𝐺 unconnected, then
𝑉0 (𝐺) is disconnecting set of vertices of 𝐺 . The smallest discon-
necting set is called a vertex cut set. The edge cut set or vertex cut
set which contains the least number of edges or vertices is called
minimum-cut set.

4.1.1 Minimum-cut Based Approach. In this paper, we use a rea-
sonably efficient and low-complexity Stoer-Wagner (SW) algorithm,
which is introduced briefly in this section. The SW algorithm was
proposed by Mechthild Stoer and Frank Wagner [34]. In Algo-
rithm 1, it first selects a seed vertex, and then repeatedly takes out
other vertices from 𝑉 to merge with the seed vertex. In each loop,
the vertex which owns the highest connectivity with the seed set is
selected and the selected vertex should be removed from𝑉 . In Step
7, 𝐸 ′𝑐𝑢𝑡 contains the edges which connect the last added vertex to
other vertices.

Algorithm 1 SW minimum-cut algorithm

Input: a graph 𝐺 = (𝑉 , 𝐸);
Output: the minimum-cut edge set 𝐸𝑐𝑢𝑡 ;
1: initialize 𝐸𝑐𝑢𝑡 = 𝐸;
2: initialize 𝐴={a randomly chosen vertex 𝑉 };
3: while 𝐴 ≠ 𝑉 do
4:
5: add the most tightly connected vertex of 𝑉 into 𝐴;
6: end while
7: merging the last two vertices added into 𝐴;
8: 𝐸 ′𝑐𝑢𝑡 =edges which connect the last added vertex to other ver-

tices;
9: while |𝑉 | > 1 do
10: if |𝐸𝑐𝑢𝑡 | > |𝐸 ′𝑐𝑢𝑡 | then
11: 𝐸𝑐𝑢𝑡 = 𝐸

′
𝑐𝑢𝑡 ;

12: end if
13: end while
14: return 𝐸𝑐𝑢𝑡
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The SWalgorithm can be used to acceleratemaximal𝑘-connected
subgraph finding. This is because that this algorithm solves the
minimum-cut problem by using |𝑉 | − 1 minimum 𝑠 − 𝑡 cut compu-
tations. A 𝑠 − 𝑡 cut is defined as a partition of 𝑉 , which separates
vertices 𝑠 and 𝑡 into two different components. |𝐸𝑐𝑢𝑡 | is calculated as
cut-off threshold in maximal 𝑘-connected subgraph finding, which
will be explain in Section 4.1.2.

4.1.2 Finding Maximal 𝑘-connected Subgraphs. To reduce the com-
putational complexity, we employ the arithmetic idea from the
𝑘-connected subgraph finding algorithm, which is first proposed
in [49]. Though the algorithm framework proposed in [4] has been
proved to identify higher-order structure in high efficiency, the
computational complexity still can be reduced by partitioning large-
scale networks. For a 𝑘-connected subgraph 𝐺 , we can introduce
some precomputed maximal 𝑘 ′-connected subgraphs as bases to
explore 𝑘-connected subgraphs.

Algorithm 2 Finding maximal 𝑘-connected subgraphs

Input: a graph 𝐺 = (𝑉 , 𝐸), 𝑘 ;
Output: a set of maximal 𝑘-connected subgraphs 𝑅;
1: initialize 𝑅0 = {𝐺};
2: for each subgraph 𝐺𝑎 (𝑉𝑎, 𝐸𝑎)(|𝑉𝑎 | ≠ 1) in 𝑅0 do
3: find SW minimum-cut of 𝐺𝑎 with cut set 𝐸𝑐𝑢𝑡 ;
4: if |𝐸𝑐𝑢𝑡 | < 𝑘 then
5: cut 𝐺𝑎 into 𝐺𝑎1 , 𝐺𝑎2 ;
6: 𝑅0 = 𝑅0 ∪ {𝐺𝑎1 ,𝐺𝑎2 } − {𝐺𝑎};
7: else
8: 𝑅 = 𝑅 ∪ {𝐺𝑎};
9: end if
10: end for
11: return 𝑅

If a maximal 𝑘 ′-connected subgraph 𝐺 ′ has 𝑘 ′ ≥ 𝑘 , then it can
be referred that 𝐺 ′ is also 𝑘-connected. However, 𝐺 ′ may not be
maximal at 𝑘 . If all maximal 𝑘 ′-connected subgraphs that 𝑘 ′ > 𝑘 ,
then these 𝑘 ′-connected subgraphs can be regarded as a whole
subgraph according to Lemma 1. Compared with the original graph,
the size of the resulting graph is then significantly reduced.

If a maximal 𝑘 ′-connected subgraph𝐺 ′ has 𝑘 ′ < 𝑘 , then𝐺 ′ may
contain induced 𝑘-connected subgraphs. Therefore, we can find all
maximal 𝑘-connected subgraphs from 𝐺 ′ directly. If all maximal
𝑘 ′-connected subgraphs if obtained (when 𝑘 ′ < 𝑘), we can start
searching from these 𝑘 ′-connected subgraphs without resorting to
the original graph due to the fact that a 𝑘-connected subgraph is
also 𝑘 ′-connected.

In this work, we first use the SW algorithm to calculate the values
of 𝑘 for each subgraph. Then we use connectivity threshold 𝑘 to
find a set of maximal 𝑘-connected subgraphs. The logical structure
of the algorithm is shown in Algorithm 2. There are two facts worth
mentioning, which are illustrated as follows.

• When implementing global minimum cut algorithm, the low-
est value among the |𝑉 | − 1 𝑠 − 𝑡 cuts. That is, if any |𝐸𝑐𝑢𝑡 |
among all these |𝑉 | − 1 cuts having |𝐸𝑐𝑢𝑡 | < 𝑘 , we can stop
finding other 𝑠 − 𝑡 cuts on 𝐺𝑎 and then separate 𝐺𝑎 by 𝐸𝑐𝑢𝑡 .
This mechanism provides an early-stop property for our

Algorithm 3 Motif Clustering

Input:a set of maximal 𝑘-connected subgraphs 𝑅, motif𝑀𝑖 𝑗 ;
Output:a set of subgraphs 𝑆 ;
1: initialize 𝑆 = ∅;
2: for 𝑘 ′-connected subgraph 𝑆𝑘′ in 𝑅 do
3: calculate adjacent matrix 𝐴𝑀𝑖 𝑗

and diagonal matrix 𝐷𝑀𝑖 𝑗
;

4: get the re-weighted graph 𝑆𝑘′ ;
5: calculate Laplacian matrix 𝐿𝑀 ;

6: 𝜎𝑖=the index of 𝑖th smallest value of 𝐷− 1
2

𝑀
𝑧;

7: calculate the conductance of each 𝜎𝑖 ;
8: cut 𝑆𝑘′ = 𝑆1 ∪ 𝑆1 by min𝜙𝑀 (𝑆𝑘′);
9: add arg min{|𝑆 |, |𝑆 |} to 𝑅0;
10: end for
11: return 𝑆

method. Besides, the SW algorithm has a much lower com-
putational complexity as compared with those flow-based
algorithms. That is the reason why the SW algorithm is
chosen.

• The size of resulting graph is significantly reduced when a
maximal 𝑘 ′-connected subgraph 𝐺 ′ has 𝑘 ′ ≥ 𝑘 . Under some
circumstances, some neighbor vertices of𝐺𝑎 may be directly
removed by our method. Here, a neighbor vertex refers to
a vertex not in 𝐺𝑎 but is incident on an edge which has the
other end in 𝐺𝑎 . To avoid loss in maximal 𝑘-connected sub-
graph finding, the expanding process can be introduced in
this procedure. The expanding process will first expand𝐺𝑎 ,
and then contract it. The main idea of subgraph expanding
is to let 𝐺𝑎 absorb neighbor vertices while keeping 𝐺𝑎 con-
nected, end the absorbing process when 𝐺𝑎 is not growing
fast. However, the expanding process will take much more
time than directly adding𝐺𝑎 to 𝑅 in the step 8 of Algorithm 2.

4.2 Clustering with Higher-order Motifs
Benson et al. [4] use higher-order network structures to identify
clusters in big networks. To a given network 𝐺 with 𝑛 vertices,
and certain motif type of interest𝑀 , construct the motif adjacency
matrix𝑊𝑀 , wherein, (𝑊𝑀 )𝑖 𝑗 refers to the co-occurrence counts of
nodes 𝑖 and 𝑗 in the motif𝑀 . Here, the algorithm firstly calculate
the spectral ordering 𝜎 of the vertices of the nodes from normalized
motif Laplacian matrix constructed via𝑊𝑀 , followed by finding
the subset of 𝜎 with smallest motif conductance, as illustrated in
the following two steps:

4.2.1 Spectral Ordering 𝜎 . To a given graph or network 𝐺 having
𝑛 vertices, the Laplacian matrix 𝐿 = [𝐿𝑖 𝑗 ], also called admittance
matrix or Kirchhoff matrix, is defined as follows.

𝐿𝑖 𝑗 =


𝑘𝑖 if i = j
−1 if i ≠ j, vi adjacent vj,
0 otherwise

(2)

wherein, 𝑘𝑖 is the vertex degree of 𝑣𝑖 , 𝑖, 𝑗 = 1, ..., 𝑛.
To a certain motif 𝑀 , we use 𝐿𝑀 to represent the normalized

Laplacian matrix in this work. The normalized Laplacian matrix is
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calculated according to the adjacency matrix𝑊𝑀 and the diagonal
matrix 𝐷𝑀 . 𝐿𝑀 is defined as follows.

𝐿𝑀 = 𝐼 − 𝐷− 1
2

𝑀
𝑊𝑀𝐷

− 1
2

𝑀
, (3)

It is worth mentioning that 𝐿𝑀 is always symmetrical and semi-
positive definite. Besides, the following theorem establishes.
Lemma 1: The Laplacian matrix of a given graph𝐺 is denoted as 𝐿.
𝑝 is the number of disjoint subgraphs in the graph (or components
in the network). Then 𝐿 has real eigenvalues 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑝 .
Therefore, if the graph (or network) is connected, which also means
that 𝑝 = 1, then 0 = 𝜆1 < 𝜆2 ≤ ... ≤ 𝜆𝑛 . Herein, 𝜆2 is called the
spectral gap of the corresponding Laplacian matrix and the ordering
of {𝜆𝑖 } is called spectral ordering [5].

4.2.2 Motif Conductance. Motif conductance is used as the thresh-
old value in this step. Tominimize𝜙𝑀 (𝑆) and identifymotif clusters,
we use an optimization method that can find near-optimal clusters.
The clustering methodology is extended based on the eigenvalues
and eigenvectors of matrices, to account for higher-order struc-
tures. Specifically, a cluster 𝑆 is identified when 𝜙𝑀 (𝑆) ≤ 2

√︁
𝜙∗𝑀 .

Wherein, 𝜙 ∗𝑀 (𝑆) = min𝑇 ⊂𝑉 (𝑇 ) is the most proper motif conduc-
tance over all sets 𝑇 . The logical structure of the algorithm in this
procedure is shown in Algorithm 3.

4.3 Integral Process of CHIEF
We give the integral process of CHIEF in Algorithm 4. In CHIEF,
we first find all of the maximal 𝑘-connected subgraphs to partition
networks, which assists speeding up higher-order motifs based clus-
tering algorithm in Algorithm 3. Then we implement the clustering
approach.

Algorithm 4 shows the whole process of CHIEF. Firstly, we ini-
tialize 𝑅0 as the pre-computed 𝑘 ′−connected subgraphs. To reduce

Algorithm 4 CHIEF

Input: a graph 𝐺 = (𝑉 , 𝐸), motif𝑀𝑖 𝑗 , 𝑘 ;
Output: a set of subgraphs 𝑆 ;
1: initialize 𝑅0={precomputed 𝑘 ′-connected subgraphs;}
2: remove infrequent edges and nodes;
3: if 𝑑𝑒𝑔(𝑣) < 𝑘 then
4: remove 𝑣 ;
5: end if
6: for 𝑘 ′-connected subgraph 𝑆𝑘′ in 𝑅0 do
7: if |𝑉𝑆𝑘′ | < 𝑘 then
8: remove 𝑆𝑘′ ;
9: end if
10: if 𝑘 ′ ≥ 𝑘 then
11: add 𝑆𝑘′ to 𝑅;
12: else
13: 𝐸𝑐𝑢𝑡=MinimumCut(𝑆𝑘′ );
14: remove 𝐸𝑐𝑢𝑡 from 𝑆𝑘′ ;
15: end if
16: end for
17: 𝑆=MotifCluster(𝑅,𝑀𝑖 𝑗 );
18: return 𝑆

computing complexity and improve algorithm efficiency, we re-
move infrequent edges and nodes by degree in Step 2 to Step 5.
For the 𝑘 ′−connected subgraphs in 𝑅0, if |𝑉𝑆𝑘′ |, i.e., the vertices
number of 𝑆𝑘′ is less than 𝑘 , then remove 𝑆𝑘′ . If not, add 𝑆𝑘′ to 𝑅
when 𝑘 ′≥𝑘 . When 𝑘 ′≤𝑘 , implement MinimunCut function on 𝑆𝑘′
and remove 𝐸𝑐𝑢𝑡 from 𝑆𝑘′ . Finally, implement MotifCluster function
with parameters 𝑅 and 𝑀𝑖 𝑗 . Let 𝑆 equal MotifCluster(𝑅,𝑀𝑖 𝑗 ) and
then return 𝑆 .

4.4 Input Analysis of CHIEF
The main process of CHIEF have been introduced. Actually, the
main procedures of CHIEF-ST and CHIEF-AP are the same, but they
end up with different clustering results when input parameters are
different. Based on the discussion in Section 5, we analyze the
accuracy of CHIEF-ST and CHIEF-AP below.

4.4.1 CHIEF-ST. According to Theorem 1 in Section 5, when the
network motif is 𝑘-connected, the first procedure will not affect the
second procedure at all. Therefore, when input target motif and 𝑘
satisfy that the target motif is 𝑘-connected, CHIEF is an accuracy
acceleration algorithm, i.e., CHIEF-ST.

4.4.2 CHIEF-AP. When the input target motif is not 𝑘-connected,
the proposed algorithm, i.e., CHIEF-AP, achieves approximate opti-
mal clustering results. Theorem 3 gives the boundaries of difference
between minimal eigenvalues of L𝑘 and that of L𝐺 , which in-
dicates that the impact of first procedure on clustering result is
acceptable.

5 THEORETICAL PROOF FOR CHIEF
In this section, we discuss some theoretical proofs and analyze
the accuracy of CHIEF. We will examine CHIEF-ST first and then
CHIEF-AP.

The following lemma guarantees the consistence of𝑘-connectivity
in the contracted graph and the original graph, which has been
proved in [49].

Lemma 2: Given a graph 𝐺 = (𝑉 , 𝐸), let 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 ) be a 𝑘-
connected subgraph of 𝐺 , let 𝐺 ′ = (𝑉 ′, 𝐸 ′) be the graph produced
from𝐺 by contracting𝐺𝑘 into a vertex 𝑣𝑛𝑒𝑤 . For any vertex, define
𝑖𝑚𝑎𝑔𝑒 (𝑣) ∈ 𝑉 ′ as:

(1) 𝑖𝑚𝑎𝑔𝑒 (𝑣) = 𝑣𝑛𝑒𝑤 , if 𝑣 ∈ 𝑉𝑘 ;
(2) 𝑖𝑚𝑎𝑔𝑒 (𝑣) = 𝑣 , if 𝑣 ∈ 𝑉 \𝑉𝑘 ,

then for any vertices 𝑣1, 𝑣2 ∈ 𝑉 , 𝑣1, 𝑣2 are 𝑘-connected in 𝐺 , if and
only if either 𝑖𝑚𝑎𝑔𝑒 (𝑣1) = 𝑖𝑚𝑎𝑔𝑒 (𝑣2) = 𝑣𝑛𝑒𝑤 or 𝑖𝑚𝑎𝑔𝑒 (𝑣1) and
𝑖𝑚𝑎𝑔𝑒 (𝑣2) are 𝑘-connected in 𝐺 ′.

5.1 CHIEF-ST
Herein, we give theoretical proofs and analysis for CHIEF.We prove
that if the network motif is 𝑘-connected, then the first procedure
will not affect the second procedure.

Theorem1: For a target network𝐺𝑡𝑎𝑟 = (𝑉𝑡𝑎𝑟 , 𝐸𝑡𝑎𝑟 ), 𝑆𝑘 = {𝐾1, . . . , 𝐾𝑚}
is a set containing all maximal 𝑘-connected subgraphs of 𝐺𝑡𝑎𝑟 .
Suppose all target motifs are in the set 𝑀𝑡𝑎𝑟 = {𝑀1, . . . , 𝑀𝑛},
wherein𝑀𝑖 = (𝑉𝑀𝑖

, 𝐸𝑀𝑖
). Then𝑀𝑡𝑎𝑟 ⊆ 𝑆𝑘 when𝑀𝑖 is 𝑘-connected,

𝑖 = 1, . . . , 𝑛.
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Proof: If the cut set 𝐸𝑐𝑢𝑡 ⊆ 𝐸 (𝑀𝑖 ) after 𝑘-connected subgraph find-
ing procedure, then this must be because that 𝑀𝑖 is 𝑘-connected.
Wherein, 𝑖 = 1, . . . , 𝑛. As we know that 𝑑𝑒𝑔𝑟𝑒𝑒 (𝐸𝑐𝑢𝑡 ) ≤ 𝑘 , therefore
the 𝑘-connected subgraph finding procedure cannot cut off any
motif in 𝐸 (𝑀𝑖 ). From this, we can infer that 𝐺𝑡𝑎𝑟 cannot be cut
off as well. After finding SW minimum-cut, it can be divided into
following two cases.

(1) There exists 𝑑𝑒𝑔𝑟𝑒𝑒 (𝐸𝑐𝑢𝑡 ) = 𝑘𝑖 < 𝑘 − 1 and 𝐸𝑐𝑢𝑡 ∩ 𝐸 (𝑀𝑖 ) =
Φ, 𝑖 = 1, . . . , 𝑛. Then the rest 𝑘 − 1−𝑘𝑖 edges of 𝐸𝑐𝑢𝑡 are from
𝐸 (𝑀𝑖 ). These 𝑘 − 1− 𝑘𝑖 edges cannot be cut because that𝑀𝑖

is 𝑘-connected. The minimal node degree of 𝑀𝑖 is no less
than 𝑘 , i.e., 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑉𝑀𝑖

) ≥ 𝑘 .
(2) When 𝐸𝑐𝑢𝑡 ∩ 𝐸 (𝑀𝑖 ) ≠ Φ, 𝑖 = 1, . . . , 𝑛, the edges belong to

𝐸𝑐𝑢𝑡 ∩ 𝐸 (𝑀𝑖 ) should be deleted. Otherwise, this is not the
minimum cut.

To sum up, all𝑀𝑖 will not be cut. This fact indicates that the first
procedure of CHIEF cannot affect the second one at all. q.e.d.

Take𝑀46 in Figure 1 as an example, all of𝑀46 in the network will
be maintained after finding maximal 3-connected subgraphs in the
network. However, if we aim at finding maximal 4-connected sub-
graphs or 4 higher connected subgraphs, some of motifs isomorphic
to𝑀46 may be broken.

From the perspective of probability, the nodes with lower degree
are generally not contained in many motifs. That is, the node with
low node degree is more difficult to form motif than the node with
high node degree. Therefore, not many broken motifs exist when
finding the maximal 𝑘-connected subgraphs.

The aforementioned analysis illustrates that when we find maxi-
mal 𝑘-connected subgraphs before motif clustering, we can choose
𝑘 according to the minimal node degree of target motif in order to
accelerate motif clustering accurately.

5.2 CHIEF-AP
In order to accelerate the motif clustering algorithm in large-scale
network, we employ the maximal 𝑘-connected subgraphs finding
algorithm. Herein, we prove that the finding procedure is an ap-
proximate optimal approach.

Herein, we introduce a lemma below. This lemma illustrates an
important conclusion between two Hermitian matrices [24].

Lemma 3: Suppose 𝐴, 𝐵 ∈ 𝐶𝑛×𝑛 are two Hermitian matrices and
their eigenvalues are ranked in ascending order as shown below.

𝜆1 (𝐴) ≤ 𝜆2 (𝐴) ≤ . . . ≤ 𝜆𝑛 (𝐴),
𝜆1 (𝐵) ≤ 𝜆2 (𝐵) ≤ . . . ≤ 𝜆𝑛 (𝐵),

𝜆1 (𝐴 + 𝐵) ≤ 𝜆2 (𝐴 + 𝐵) ≤ . . . ≤ 𝜆𝑛 (𝐴 + 𝐵) .
(4)

then there exists
𝜆𝑖 (𝐴) + 𝜆1 (𝐵)
𝜆𝑖−1 (𝐴) + 𝜆2 (𝐵)

. . .

𝜆1 (𝐴) + 𝜆𝑖 (𝐵)

≤ 𝜆𝑖 (𝐴 + 𝐵) ≤


𝜆𝑖 (𝐴) + 𝜆𝑛 (𝐵)

𝜆𝑖+1 (𝐴) + 𝜆𝑛−1 (𝐵)
. . .

𝜆𝑛 (𝐴) + 𝜆𝑖 (𝐵)

(5)

Theorem 2: To the given network 𝐺 = (𝑉 , 𝐸), let 𝐴𝐺 be the adja-
cency matrix of 𝐺 . After finding maximal 𝑘-connected subgraphs

in 𝐺 , 𝐺𝑘 is the network that contains all maximal 𝑘-connected
subgraphs and 𝐺

𝑘
is the rest part of 𝐺 . Let the adjacency ma-

trix of 𝐺𝑘 be 𝐴𝑘 . Then the eigenvalues of above mentioned net-
works satisfy |𝜆min (𝐴𝑘 ) − 𝜆min (𝐴𝐺 ) | ≤ 𝛿 , wherein, 𝜆min > 0,
𝛿 =

√︃
𝜆max (𝐴𝑇

𝑘
𝐴
𝑘
) [49].

Proof: It is evident that 𝐴𝑘 , 𝐴𝑘 , 𝐴𝐺 ∈ 𝐶𝑛×𝑛 are Hermitian ma-
trices, wherein the adjacency matrix of 𝐺

𝑘
be 𝐴

𝑘
(𝑖, 𝑗). Therefore,

the original adjacency matrix 𝐴𝐺 , the 𝐴𝐺 = 𝐴𝑘 +𝐴
𝑘
. According to

Lemma 3, if the eigenvalues are ranked in the ascending order as
shown below,

𝜆1 (𝐴𝑘 ) ≤ 𝜆2 (𝐴𝑘 ) ≤ · · · ≤ 𝜆𝑛 (𝐴𝑘 ),
𝜆1 (𝐴𝑘 ) ≤ 𝜆2 (𝐴𝑘 ) ≤ · · · ≤ 𝜆𝑛 (𝐴𝑘 ),
𝜆1 (𝐴𝐺 ) ≤ 𝜆2 (𝐴𝐺 ) ≤ · · · ≤ 𝜆𝑛 (𝐴𝐺 ) .

(6)

then there exists
𝜆𝑖 (𝐴𝑘 ) + 𝜆1 (𝐴𝑘 )
𝜆𝑖−1 (𝐴𝑘 ) + 𝜆2 (𝐴𝑘 )

. . .

𝜆1 (𝐴𝑘 ) + 𝜆𝑖 (𝐴𝑘 )

≤ 𝜆𝑖 (𝐴𝐺 ) ≤


𝜆𝑖 (𝐴𝑘 ) + 𝜆𝑛 (𝐴𝑘 )

𝜆𝑖+1 (𝐴𝑘 ) + 𝜆𝑛−1 (𝐴𝑘 )
. . .

𝜆𝑛 (𝐴𝑘 ) + 𝜆𝑖 (𝐴𝑘 )

(7)

It can be inferred that

𝜆max (𝐴𝑘 ) ≥ 𝜆min (𝐴𝐺 ) − 𝜆min (𝐴𝑘 ) ≥ 𝜆min (𝐴𝑘 ) (8)

wherein, 𝑖 = 1, 2, . . . , 𝑛.
Therefore, |𝜆𝑚𝑖𝑛 (𝐴𝐺 ) − 𝜆𝑚𝑖𝑛 (𝐴𝑘 ) | <

√︃
𝜆𝑚𝑎𝑥 (𝐴𝑇

𝑘
𝐴
𝑘
).

The theorem below discusses the perturbation of Laplacian ma-
trix.

Theorem 3: To the given network 𝐺 = (𝑉 , 𝐸), let L𝐺 be the
Laplacian matrix of 𝐺 . After finding maximal 𝑘-connected sub-
graphs in𝐺 ,𝐺𝑘 is the network that contains all maximal𝑘-connected
subgraphs and 𝐺

𝑘
is the rest part of 𝐺 . Let the Laplacian matrix

of 𝐺𝑘 be L𝑘 and the adjacency matrix of 𝐺𝑘 be 𝐴𝑘 . The diago-
nal matrix of 𝐺 is denoted as 𝐷𝐺 . Then the following results are
obtained.
𝜆min (L𝑘 ) − 𝜆min (L𝐺 ) ≥

𝜆max (𝐷−1
𝐺 𝐴𝐺 ) − 𝜆max (𝐷−1

𝑘
𝐴𝐺 ) + 𝜆max (𝐷−1

𝑘
𝐴
𝑘
)

(9)

𝜆min (L𝑘 ) − 𝜆min (L𝐺 ) ≤
𝜆max (𝐴𝐺 )
min(𝐷𝐺𝑖𝑖

) − 𝜆max (𝐷−1
𝑘
𝐴𝑘 ) (10)

wherein, 𝐷𝐺 and 𝐷𝑘 refers to the diagonal matrix of 𝐴𝐺 and 𝐴𝑘 ,
respectively. 𝐷𝐺𝑖𝑖

refers to the diagonal elements of𝐺 ’s diagonal
matrix, which is defined as 𝐷𝐺𝑖𝑖

=
∑𝑛

𝑗=1𝐴(𝑖, 𝑗). 𝛿 is the spectral
radius of 𝐴

𝑘
.

Proof: First we give the proof of Equation (9). According to the def-

inition of Laplacian matrix, we can get that L𝐺 = 𝐼 − 𝐷− 1
2

𝐺
𝐴𝐺𝐷

− 1
2

𝐺
.

Therefore, the eigenvalues satisfy 𝜆(L𝐺 ) = 1 − 𝜆(𝐷− 1
2

𝐺
𝐴𝐺𝐷

− 1
2

𝐺
).

This indicates that when 𝜆(𝐷− 1
2

𝐺
𝐴𝐺𝐷

− 1
2

𝐺
) is at the maximum value,

𝜆(𝐿𝐺 ) is at the minimum value. We denote the minimum value of
𝜆(𝐿𝐺 ) as 𝜆min (𝐿𝐺 ), which is

𝜆min (L𝐺 ) = 1 − 𝜆max (𝐷
− 1

2
𝐺
𝐴𝐺𝐷

− 1
2

𝐺
) (11)
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Since we have illustrated that 𝐴𝐺 = 𝐴𝑘 +𝐴
𝑘
. Therefore, the Lapla-

cian matrix of 𝐺𝑘 satisfies Equation (12).

L𝑘 = 𝐼 − 𝐷− 1
2

𝑘
𝐴𝑘𝐷

− 1
2

𝑘
= 𝐼 − 𝐷− 1

2
𝑘

(𝐴𝐺 −𝐴
𝑘
)𝐷− 1

2
𝑘

= 𝐼 − 𝐹 (12)

wherein, 𝐹 = 𝐷
− 1

2
𝑘
𝐴𝐺𝐷

− 1
2

𝑘
− 𝐷− 1

2
𝑘
𝐴
𝑘
𝐷
− 1

2
𝑘

. Therefore, there exists
𝜆(L𝑘 ) = 1 − 𝜆(𝐹 ). According to the aforementioned discussion,
Equation (13) establishes.

𝜆min (L𝑘 ) = 1 − 𝜆𝑚𝑎𝑥 (𝐹 ) (13)

As it is known that the norm of difference between two matrices
is less or equal to the absolute value of the difference between the
norms of the two matrices. Then Equation (14) establishes.

𝜆max (𝐹 ) ≤ |𝜆max (𝐷
− 1

2
𝑘
𝐴𝐺𝐷

− 1
2

𝑘
) − 𝜆max𝐷

− 1
2

𝑘
𝐴
𝑘
𝐷
− 1

2
𝑘

| (14)

According to Equations (13) and (14), we can achieve

𝜆min (L𝑘 ) = 1 − 𝜆max (𝐹 )

≥ 1 − |𝜆max (𝐷
− 1

2
𝑘
𝐴𝐺𝐷

− 1
2

𝑘
) − 𝜆max𝐷

− 1
2

𝑘
𝐴
𝑘
𝐷
− 1

2
𝑘

|

= 1 − 𝜆max (𝐷
− 1

2
𝑘
𝐴𝐺𝐷

− 1
2

𝑘
) + 𝜆max𝐷

− 1
2

𝑘
𝐴
𝑘
𝐷
− 1

2
𝑘

(15)

If we multiply both sides of this equation with -1 of Equation (12)
and then we add it with Equation (15), we can achieve

𝜆min (L𝑘 ) − 𝜆min (L𝐺 )

≥ 𝜆max (𝐷
− 1

2
𝐺
𝐴𝐺𝐷

− 1
2

𝐺
) − 𝜆max (𝐷

− 1
2

𝑘
𝐴𝐺𝐷

− 1
2

𝑘
)

+ 𝜆max (𝐷
− 1

2
𝑘
𝐴
𝑘
𝐷
− 1

2
𝑘

)

= 𝜆max (𝐷−1
𝐺 𝐴𝐺 ) − 𝜆max (𝐷−1

𝑘
𝐴𝐺 ) + 𝜆max (𝐷−1

𝑘
𝐴
𝑘
)

(16)

Then we give the proof of Equation (10). According to Equa-
tions (11) and (13), it can be inferred that

𝜆min (L𝑘 ) − 𝜆min (L𝐺 )
= 1 − 𝜆max (𝐹 ) − (1 − 𝜆max (𝐷−1

𝐺 )𝐴𝐺 )
= 𝜆max (𝐷−1

𝐺 )𝐴𝐺 ) − 𝜆max (𝐷−1
𝑘
𝐴𝑘 )

≤ 𝜆max (𝐷−1
𝐺 ) · 𝜆max (𝐴𝐺 ) − 𝜆max (𝐷−1

𝑘
𝐴𝑘 )

=
𝜆max (𝐴𝐺 )
min(𝐷𝐺𝑖𝑖

) − 𝜆max (𝐷−1
𝑘
𝐴𝑘 )

(17)

q.e.d.

6 EXPERIMENTS
Since theoretical proof shows that CHIEF-ST offers accurate ac-
celeration, we only examine the effectiveness and efficiency of
CHIEF-AP in this section. We evaluate CHIEF-AP on both real-
world networks and synthetic networks. Since synthetic networks
require no pre-processing, the pre-processing procedure and the
experiment design only apply to real-world academic networks.
Then we introduce baseline methods and evaluation indices.

6.1 Data Preprocessing
We use both the MAG and the APS datasets for experiment. Specif-
ically, we retrieve publication data in computer science discipline
from MAG and those in physics discipline from the APS dataset. In
this work, we examine papers published in the year period of 2009

to 2013. All experiments run on a server with 2.6 GHz Intel Xeon E5-
2620 v4 processor and 128GB of main memory. The pre-processing
of the datasets includes the following two steps.

(1) Name Disambiguation: Data pre-processing is required
since there are (almost) no name disambiguation mecha-
nisms in these two data sets. We distinguish names mainly
in two procedures. First, we distinguish names by their co-
authors and then distinguish authors who share no common
co-authors by institutions. This method can distinguish most
names except scholars who share one name and work in the
same institution.

(2) Removing Inactive Scholars: In academic networks, the
purpose of motif clustering is to find scholar clusters with
high collaborative relationships [40]. Thus, we remove rela-
tionships with lower collaboration frequencies. By statistics,
more than 98% of collaborative relationships are one-time
collaboration in MAG. And more than 78% of collaborative
relationships are one-time or two-time collaboration in APS.
We remove scholars with limited collaboration history with
less than two times.

After the abovementioned data pre-processing, we obtain 159,725
authors as nodes and 35,216,158 collaborative relationships in APS
so as to build a collaboration network of the physic field. In MAG,
we obtain 194,909 authors and 23,776,184 collaborative relation-
ships to construct a collaboration network of the computer science
field. All of source codes can be found in github1.

6.2 Experiment Design
We implement CHIEF-AP on the two co-author networks from
MAG and APS dataset in the following steps, respectively. Figure 4
shows the detailed flow of our experiments.

Step 1: Network Construction
Construct a collaboration network 𝐺 = (𝑉 , 𝐸), whose vertices set
𝑉 represent scholars and edges 𝐸 represent collaboration relation-
ships between two certain scholars. Each edge is weighted by the
collaboration frequency between the two vertices who collaborates
with each other. Since most of scholars have limited collaborators,
the adjacency matrix of the collaboration network is a large-scale
sparse matrix. Thus, we filter out edges with lower weights and
reconstruct a new collaboration network𝐺1 = (𝑉1, 𝐸1), wherein𝑉1
is the new vertices set and 𝐸1 is the new edge sets. The edges are
weighted by CII. To reduce the computing complexity and improve
the algorithmic efficiency, we take network connectivity into con-
sideration and partition𝐺1 into 𝑘-connected subgraphs in the next
step.

Step 2: 𝑘-connected Subgraphs Finding
In this step, we partition the collaboration network into a set of
maximal 𝑘-connected subgraphs from the viewpoint of network
connectivity. Therefore, we take no account of weights and set
weights of all edges to 1. Before 𝑘-connected subgraph partition,
we calculate the values of 𝑘 for each component in 𝐺1. Next, we
use different values of 𝑘 ′ to find maximal 𝑘 ′-connected subgraphs
in each component. For any 𝑘-connected component, if 𝑘 ′ < 𝑘 ,
1https://github.com/yushuowiki/CHIEF

https://github.com/yushuowiki/CHIEF
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Figure 4: The framework of CHIEF-AP in co-author networks.

add this component directly into the result set 𝑅. If 𝑘 ′ > 𝑘 , find
𝑘 ′-connected subgraphs by edge reduction within this component,
and the results are added into the result set 𝑅.

Step 3: Higher-order Motifs Clustering
In this step, we cluster triangle motifs and heterogeneous four-node
motifs. For a given motif 𝑀 , this step aims to recognize a set of
nodes 𝑆 , that minimizes motif conductance 𝜙𝑀 (𝑆). We employ tri-
angle motifs (i.e., 𝑀32) and heterogeneous four-node motifs (i.e.,
𝑀42, 𝑀43, 𝑀44, 𝑀45, 𝑀46) to construct Laplacian matrices for each
subgraphs. Then, we calculate the conductance of each subgraphs
in 𝑅 according to the eigenvalues of each Laplacian matrices, and
then we cut the motifs with the smallest motif conductance.

6.3 Baseline Methods
For comparison, we also employ two baseline methods on our data
in two procedures, respectively. We first use MovCut algorithm in
the procedure of choosing the most proper 𝑘 , which is mentioned
in [13]. MovCut is introduced to verify whether 𝑘-connected sub-
graph finding process can achieve the best modularity, so that we
can ensure the most proper 𝑘 has been chosen. We then use higher-
order clustering method without 𝑘-connected subgraph finding
procedure as the first contrast algorithm in clustering process [4].
This is used to verify whether the 𝑘-connected subgraph finding
process can accelerate motif clustering.

Here we give a brief introduction to MovCut. To a given graph
𝐺 = (𝑉 , 𝐸), a vertex 𝑖 , and a positive integer 𝑘 , MovCut aims at find-
ing a set of nodes 𝑆 ⊆ 𝑉 that achieves the minimum conductance
among all sets of nodes that contain 𝑖 and |𝑆 | ≤ 𝑘 . The solution ®𝑥∗
of the optimization problem is of the form in Equation 18.

®𝑥∗ = 𝑎(𝐿𝐺 − 𝛾𝐷𝐺 )+𝐷𝐺
®𝑆 , (18)

wherein, 𝛾∈(−∞, 𝜆2 (𝐺)), 𝛾 = 𝛼−1
𝛼 , and 𝑎 ∈ [0,∞] is a normaliza-

tion constant.
In [13], 𝑘 is chosen as 50 in the experiments of collaboration

network. Besides, 𝛼 is set to be 20 values of equal space intervals in

between [0.7, (1−𝜆2)−1−10−10], where (1−𝜆2)−1 is the theoretical
maximum for 𝛼 .

In our experiments, we set 𝑘 = 50 as well in order to achieve
similar performance. We set 𝛼 to 20 values of equal space intervals
in between [0.7, 1

1−𝑒 ], where 𝑒 is the eigenvector of 𝐿𝐺 .

6.4 Evaluation Indices
We introduce two indices, network modularity and collaboration
intensity index (CII), to evaluate the collaboration intensity within
co-author networks.We also select two indices, cluster compactness
(CCP) and cluster separation (CSP), from the perspective of graph
structure to verify experimental results of the proposed algorithm.
In this section, the formal definitions of above indices are given.

6.4.1 Network Modularity. Since we use academic social networks
for our experiments, we introduce network modularity as one of
evaluation metrics. Network modularity is first proposed to quan-
tify performance of community detection algorithm. A higher net-
work modularity value refers that the community is of higher co-
hesion [38]. In this paper, we calculate network modularity as
Equation (19) according to Newman’s definition in [26].

𝑄 =
1
4𝑚

∑︁
𝑖 𝑗

(𝐴𝑖 𝑗 −
𝑘𝑖𝑘 𝑗

2𝑚
) (𝑠𝑖𝑠 𝑗 + 1) (19)

Herein, 𝑄 is the value of network modularity of a certain sub-
graph;𝑚 is the number of edges within the subgraph; 𝑖, 𝑗 are any
two nodes within or subgraph. Let 𝑠𝑖 = 1 if node 𝑖 belongs to
subgraph 1, otherwise 𝑠𝑖 = −1.

6.4.2 Collaboration Intensity Index. We introduce the CII index [44]
to evaluate the cluster results of co-author network. CII is calcu-
lated based on both the collaboration frequency and the number
of papers two scholars published. CII is proposed to evaluate the
collaboration intensity between two scholars, which is calculated
according to Equation (20).

𝐶𝐼𝐼 =
Δ𝑡2−𝑡1𝑘

2
𝑖 𝑗

Δ𝑡2−𝑡1𝑘𝑖Δ𝑡2−𝑡1𝑘 𝑗
(20)
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In Equation (20), Δ𝑡2−𝑡1𝑘𝑖 refers to the number of papers pub-
lished between year 𝑡1 and 𝑡2 by scholar 𝑖 , and Δ𝑡2−𝑡1𝑘

2
𝑖 𝑗
refers to

the number of papers that scholar 𝑖 and 𝑗 co-authored between year
𝑡1 and 𝑡2.

CII is a relative evaluation index that can be used to represent
collaboration relationships between scholars. In contrast to CF
(Collaboration Frequency), CII reflects how close two scholars col-
laborate.

As an example, Figure 5 shows the co-author relationships of
four scholars, and each edge weight represents the number of co-
authored papers between the co-author pair. The number beside
scholar names represent the total number of papers published by
the scholar. It can be seen that Alice and Bob have collaborated 5
times, which equals that of Bob and Cindy. However, Bob is the
only scholar collaborated with Alice, while Alice is not the only one
for Bob. CII can reflect such kind of distinctions. The CII between
Bob and Cindy, i.e., CII𝐵𝐶 , is calculated by 52

25×40 , which equals
0.025. But CII𝐵𝐴 , i.e., the CII between Bob and Alice, is calculated
by 52

25×5 , which equals 0.2. CII𝐵𝐴 is much higher than CII𝐵𝐶 . This
fact represents that the collaboration intensity between Alice and
Bob is much stronger.

Figure 5: An example of co-author network. Each edge
weight represents the number of collaborations between
two scholars.

6.4.3 Cluster Compactness. Cluster compactness (CCP) [12]is pro-
posed to evaluate whether the distances within cluster are compact
or not. CCP is the average value of the distances between each
vertex and the center vertex in one certain cluster. A lower value
of CCP illustrates that the cluster is tighter. Meanwhile, a cluster
with lower CCP is also generally believed to be a better cluster. For
vertex 𝑖 in the cluster, the compactness of 𝑖 and cluster center, i.e.,
𝐶𝐶𝑃𝑖 , is defined in Equation (21).

𝐶𝐶𝑃𝑖 =
1

|Ω𝑖 |
∑︁

𝑥𝑖 ∈Ω𝑖

∥𝑥𝑖 − 𝜔𝑖 ∥ (21)

In Equation (21), Ω𝑖 is the vertex set of the cluster and 𝜔𝑖 is the
cluster center vertex. In this work, the vertex center is chosen as the
vertex with maximum degree in the cluster. When there exist more
than one vertex owning maximum degree, we randomly choose

one of them. Besides, the distance is defined as the shortest path
in the cluster. Suppose there are 𝑛 clusters totally, then the formal
definition of 𝐶𝐶𝑃 is shown in Equation (22).

𝐶𝐶𝑃 =
1
𝑛

𝑛∑︁
𝑖=1

𝐶𝐶𝑃𝑖 (22)

CCP reflects the distance between each vertex and cluster center
vertex. However, CCP can only reflect the compact degree within
the cluster. Therefore, we introduce another index to evaluate the
cluster algorithm, which is called cluster separation.

6.4.4 Cluster Separation. Cluster separation (CSP) [29] is proposed
to evaluate the distance between clusters. CSP is the average dis-
tance between center vertices of clusters. A higher value of CSP
refers to a farther distance between two clusters, which indicates
that the cluster results is better. The formal definition of CSP is
given in Equation (23).

𝐶𝑆𝑃 =
2

𝑘2 − 𝑘

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

∥ 𝜔𝑖 − 𝜔 𝑗 ∥2 (23)

In Equation (23), 𝑘 is the number of clusters, and𝜔𝑖 , 𝜔 𝑗 represent
the center vertex of cluster 𝑖 and 𝑗 , respectively. CSP can reflect
the distances between clusters at a macro level. However, CSP
ignores the closeness within the clusters. Therefore, CSP and CCP
are always used together to evaluate cluster results.

7 RESULTS AND DISCUSSION
In this section, we discuss about the experimental results from
mainly two perspectives. First, we discuss and evaluate the cluster
results according to experiments on collaboration networks. Then,
we analyze the cluster effectiveness according to experiments on
synthesized networks.

7.1 Implementing CHIEF on Collaboration
Networks

We respectively analyze two procedures, i.e., (1) selecting the most
proper value of 𝑘 in finding the maximal 𝑘-connected subgraphs,
and (2) higher order motif clustering. Selecting the most proper 𝑘
for networks is a vital process in the whole algorithm. Therefore,
we analyze this process by itself in particular.

7.1.1 Selection of the Most Proper 𝑘 . In order to reduce computa-
tional complexity, we first find the maximal 𝑘-connected subgraphs.
By taking this step, the computational complexity of network can
be significantly reduced. At the same time, it can keep the network
connectivity up to the hilt, which ensures that this step will main-
tain the original network structure as much as possible. However,
there still exist some differences when using different values of 𝑘 in
finding the maximal 𝑘-connected subgraphs. Different values of 𝑘
will affect the network connectivity. Therefore, to achieve the best
network partition, we need to find the most suitable value of 𝑘 .

We implement experiments to select the most proper 𝑘 in MAG
and APS, respectively. Figure 7 and Figure 8 show the values of
CCP in MAG and APS, respectively. Both in Figure 7 and Figure 8,
most values of CCP equal 1. However, differences can be obviously
seen from these figures. In all these figures, each circle represents
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Figure 6: Experimental results of 𝑘-connected subgraph
based cut andMovCut. Networkmodularity of each network
partitioned by different 𝑘 are shown.

the values of a set of 𝑘 , in which the inner circle corresponds to
a lower value of 𝑘 . That is, take Figure 7 (a) as an example, 𝑘 =

2, 3, 4, 5 correspond to the circles from inside to outside, respectively.
Different color represents different proportions for each CCP value.

Patterns can be obviously found in both Figure 7 and Figure 8.
One of the most obvious patterns is that different values of 𝑘 do
have an influence on the network partition results. Higher values
of 𝑘 may over partition the network, which leads to the situations
in Figure 7(d) and in Figure 8(d). In these two figures, it can be
seen that there exist considerable large proportion of [0.7, 0.9]
when 𝑘 =13,14,15,16,17. Reason behind this phenomenon is because
of an inappropriate value of 𝑘 . Higher values of 𝑘 will make 𝑘-
connected subgraphs extremely compact, leading to the fact that
some edges with high connectivity are cut off. This is why the CCPs
in [0.7, 0.9] occupy a large proportion in Figure 7(c) and Figure 7(d).
Choosing higher values of 𝑘 will result in over partition, while
choosing lower values of 𝑘 will give rise to a negative network
partition as well. From Figure 7 and Figure 8, we can see that
when 𝑘 is between 2 and 9, similar patterns can be also found in
Figure 7(a), (b) and Figure 8(a), (b). The proportions of [0.7, 0.9] are
large when 𝑘 =2,3,4,5,6,7,8,9. Apparently, smaller values of 𝑘 may
lead to looser structure of 𝑘-connected subgraphs. This fact makes
smaller values of 𝑘 perform worse when partitioned network since
edges with lower connectivity are not cut off. There is still a slight
difference between MAG and APS. When 𝑘 > 14, the proportion of
CCP=1 in APS is much less than that in MAG. In other 3 subgraphs,
this difference does not obviously exist. This phenomenon may
be caused by disciplinary differences. In computer science area,
scholars may collaborate within smaller groups or teams. Moreover,
scholars from computer science area generally collaborate with
higher CII than scholars from physics. Results about CII in Figure 11
prove this as well.

Figure 9 and Figure 10 show the CSP of MAG and APS respec-
tively. As mentioned above, the more CSP approaches 0, the better
𝑘 is. Overall, CSP mostly approaches 0 no matter in MAG or APS.
This may be caused by the differences of the network properties.
While co-author network is considered a kind of social network,
and it exhibits similar attributes of being sparse. Thus, CSP values

are generally equal or approach 0. This is the reason that those
subgraphs in Figure 9 and Figure 10 share similar CSP distributions.

Considering several values of 𝑘 , it would be better choosing
a 𝑘 value from 8, 9, . . . , 14. Thus we calculate network modular-
ity for each network partitioned with different 𝑘 values. Network
modularity is shown in Figure 6. The value of network modularity
mainly depends on network vertices distribution. It is widely used
in quantifying network community classification. When network
modularity approaches 1, it is proved that the network community
structure intensity is strong. Therefore, the optimal network parti-
tion can be obtained by maximizing network modularity. It can be
seen from Figure 6, both APS and MAG obtain the highest network
modularity when 𝑘 = 10.

In general, choosing an optimal value 𝑘 is vital in CHIEF. We use
CCP and CSP as indicators in order to choose a more proper value
of 𝑘 . To specifically make a better decision on choosing 𝑘 , we then
calculate network modularity to ensure that network modularity
gets as close to 1 as possible. This procedure is quite important
since different 𝑘 effect differently on partitioning networks. Cutting
off edges with lower connectivity is quite meaningful, especially
in clustering methods. With this procedure, network scale can be
sharply reduced without reducing connectivity of the network.
At the same time, the accuracy of clustering results would not be
reduced. Based on our experimental results, the value of 𝑘 in finding
maximal 𝑘-connected subgraphs is set to 11 for both MAG and APS
(datasets).

7.1.2 Motif Clustering. We achieve 10 groups of clustering results,
wherein, 5 groups are for MAG while another 5 groups are for APS.
To examine the clustering results in collaboration networks, we cal-
culate average CII within each cluster. Considering the “Rule of 150",
we calculate CII between each couple of co-authored scholars and
filter out scholars with top 20% CII. We then cluster scholars with
top 20% CII. To examine whether the proposed algorithm achieves
the best clustering results, we calculate the portion that how many
scholars in high collaboration intensity are in the clustering results
we achieved. The results show that our clustering results include
all of scholars with top 20% CII. Moreover, most ratios are larger
than 60%, which indicates that the clustering results achieved by
CHIEF are both effective and accurate.

It turns out that all of the clusters are in high collaboration
intensity. Experimental results are shown in Figure 11, wherein, the
first 5 figures show CII in APS clusters and the latter 5 figures show
that in MAG. To distinguish the results of two data sets, we use
different colors in the two sets of graphs. In Figure 11, red series
bars represent ratio of APS and blue series bars represent ratio of
MAG.

We calculate the computational speed of CHIEF and a baseline
method (motif clustering without 𝑘-connected subgraph finding
process). We unprejudicedly select 10 top academic conferences and
8 top journals in MAG to generate 18 academic networks with dif-
ferent scales. Basic information of conferences is shown in Table 1
and that of journals is shown in Table 2. Then we run both CHIEF
and the baseline method on these 18 networks. Figure 12(a) shows
the running time comparison over the 10 academic conference net-
works. Figure 12(b) shows that of the 8 top journal networks. It is
noted that the operation time of IJCAI and IEEE are lower than that
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Table 1: Basic Information of Academic Conference Networks

Academic Conference Name JCDL CSCW SIGIR KDD CIKM ICDE INFOCOM WWW IJCAI AAAI

Number of Scholars 3182 4491 5531 6443 8086 8333 11533 10472 11322 16286
Number of Papers 1713 2322 4101 3236 4356 4357 8252 5567 7982 11030
Number of Vertices 7763 11975 12906 18750 18222 21583 28802 24508 21052 36480
Optimal Value of 𝑘 3 5 4 6 6 4 5 8 6 7
Modularity Score 0.574 0.479 0.543 0.57 0.486 0.583 0.631 0.533 0.615 0.468

Table 2: Basic Information of Academic Journal Networks

Academic Journal Name Nature STM Trans Pro AI SIAM IEEE ACM

Number of Scholars 2519 6146 8090 6934 10299 25742 278813 31325
Number of Papers 655 5125 3326 2323 6187 25368 270673 21712
Number of Vertices 60921 10150 14910 20892 19566 41858 902769 68758
Optimal Value of 𝑘 3 6 5 8 8 6 7 5
Modularity Score 0.578 0.585 0.605 0.471 0.607 0.559 0.476 0.613

(a) 𝑘 = 2, 3, 4, 5 (b) 𝑘 = 6, 7, 8, 9 (c) 𝑘 = 10, 11, 12, 13 (d) 𝑘 = 14, 15, 16, 17

Figure 7: CCP of the network partitioned by different maximal 𝑘-connected subgraphs in MAG.

(a) 𝑘 = 2, 3, 4, 5 (b) 𝑘 = 6, 7, 8, 9 (c) 𝑘 = 10, 11, 12, 13 (d) 𝑘 = 14, 15, 16, 17

Figure 8: CCP of the network partitioned by different maximal 𝑘-connected subgraphs in APS.

of other networks. The underlying reason is that these networks
have different structures. Such difference might cause significant
influence on operation time. Apparently, CHIEF is more efficient
than the baseline algorithm. This indicates that 𝑘-connected sub-
graph finding process accelerates motif clustering. As mentioned
previously, clustering results achieved from CHIEF-AP are in high
collaboration intensity. Thus CHIEF-AP is both effective and effi-
cient.

7.2 Implementing CHIEF on Synthetic
Networks

To examine both the universality and the efficiency of the pro-
posed algorithm, we generate synthesized networks at different
scales. Table 3 shows the details of generated synthetic networks.
After generation, we calculate the optimal value of 𝑘 for each net-
work. The last column of Table 3 lists the values. In contrast to the
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(a) 𝑘 = 2, 3, 4, 5 (b) 𝑘 = 6, 7, 8, 9 (c) 𝑘 = 10, 11, 12, 13 (d) 𝑘 = 14, 15, 16, 17

Figure 9: CSP of the network partitioned by different maximal 𝑘-connected subgraphs in MAG.

(a) 𝑘 = 2, 3, 4, 5 (b) 𝑘 = 6, 7, 8, 9 (c) 𝑘 = 10, 11, 12, 13 (d) 𝑘 = 14, 15, 16, 17

Figure 10: CSP of the network partitioned by different maximal 𝑘-connected subgraphs in APS.

(a) 𝑀42 (b) 𝑀43 (c) 𝑀44 (d) 𝑀45 (e) 𝑀46

(f) 𝑀42 (g) 𝑀43 (h) 𝑀44 (i) 𝑀45 (j) 𝑀46

Figure 11: Average CII in APS clusters andMAG clusters. Figure (a) to Figure (e) show the CII results in APS clusters and Figure
(f) to Figure (j) show that in MAG clusters. The depth of the color indicates the number of clusters having specific vertices and
edges. 𝑋 axis represent the number of vertices. 𝑌 axis represents the number of edges. Each cell represents the ratio that how
many scholars are with high CII.
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real-world networks, synthetic networks are far denser than collab-
oration networks. The connectivity of a dense network is usually
higher than a sparse one. Therefore, the optimal value of 𝑘 is 11
in MAG and APS collaboration networks, and 𝑘 < 6 in synthetic
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Figure 12: Running time comparison of 18 academic net-
works in different scales.

Table 3: Basic Information about Generated Synthetic Net-
works

Network Label NV NE RRP Opt 𝑘

N1 102 3 × 102 0.2 5
N2 103 3 × 103 0.3 5
N3 104 3 × 104 0.4 4
N4 105 3 × 105 0.5 4
N5 106 3 × 106 0.6 3

networks. In Table 3, NV represents the number of vertices, and NE
represents the number of edges, RRP is randomization reconnection
probability, and Opt 𝑘 represents the optimal value of 𝑘 .

To imitate real-world social networks as much as possible, we use
the same vertices degree distribution as small world. The vertices
degree distribution of the five networks are shown in Figure 13. It
can be seen from Figure 13 that the degree distributions of artificial
networks are relatively concentrated. We implement experiments
without data preprocessing, which is different from experiments on
collaboration networks. Actually, data preprocessing can remove
infrequent vertices and edges, which makes it impossible to divide
large component into several small connected components.

It is worth mentioning that though we generate synthetic net-
works to simulate real-world social networks, synthetic networks
are still much denser than real world ones. Therefore, real social
networks own stronger community characteristics than synthetic
networks. However, the distinction has no effect on the experimen-
tal results in this subsection.

The experimental results are shown in Figure 14. Subgraphs of
Figure 14 show the comparisons of the running times consumed by
CHIEF-AP and the baseline method, in which each subgraph shows
the results for motif 𝑀32, 𝑀42, 𝑀43, 𝑀44, 𝑀45, 𝑀46, respectively.
Generally, the efficiency of CHIEF precedes the baseline method
significantly. This is because that when the scale of network in-
creases, global motif cluster algorithm consumes much more time.
Still, we can see something unusual from Figure 14. Though CHIEF-
AP outperforms for the most time, the baseline method performs
better under some circumstances. When implementing the two
methods in network N1, the baseline method consumes less time
than CHIEF-AP does. This is because that when the network scale
is extremely small, finding maximal 𝑘-connected subgraphs is time-
consuming, whichmakes the whole computing time higher than the
baseline method. In the other four subgraphs, CHIEF-AP performs
better than the baseline method no matter which motif is used in
clustering. It is worth mentioning that in network N2, the baseline
method consume an abnormal running time when using 𝑀42 in
clustering. This may be caused by two factors, i.e., motif structure
and network structure. Motif structure of𝑀42 is complicate, which
makes the clustering time extremely high. The abnormal running
time may also be caused by the network structure, since baseline
method did not partition network firstly. Generally, the efficiency
of CHIEF-AP is much higher than baseline method, especially for
large-scale networks. In the era of big data and large-scale net-
works, highly efficient algorithms like CHIEF is meaningful since
high efficiency algorithms are in great demand.

The CCP and CSP values are shown in Table 4. It can be seen
that for all of motifs in this experiment, the minimum value of CCP
equals 1.0000. According to statics, there are quite a number of
clusters with CCP=1.0000. As we mentioned above, a lower CCP
refers to a tighter cluster. This indicates that most of our clustering
results are tight. Besides, maximum CCP of𝑀32 are relatively low.
Even so, most CCP values are close to the minimum one, i.e., 1.0000.
Take N3 and N4 as examples, the maximum CCP values of 𝑀32
are 6.5853 and 6.1212. There are 2 clusters with CCP> 5, while
there are 145 clusters in N3 totally. For N4, there are only 5 clusters
with CCP> 5, while there are 202 clusters in total. This fact shows
that most clusters formed by CHIEF are very tight. As for CSP, the
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Figure 13: The degree distribution of synthetic networks.
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Figure 14: Comparison of CHIEF and the baseline method in terms of the execution time, with subgraphs illustrating results
under different motifs.

Table 4: Average CCP and CSP of Synthetic Networks

Network Label
𝑀32 𝑀42 𝑀43

Avg CCP Avg CSP Avg CCP Avg CSP Avg CCP Avg CSP

N1 1.3843 4.6932 1.3503 4.2036 1.6727 4.3645
N2 2.3797 5.7053 1.8268 5.2302 1.8552 5.4803
N3 2.0140 6.5789 1.9038 5.4463 1.8412 8.6171
N4 2.0527 7.5913 1.6070 8.4216 1.6553 6.6448
N5 1.8099 6.6005 1.7696 6.0328 1.6974 5.6340

Network Label
𝑀44 𝑀45 𝑀46

Avg CCP Avg CSP Avg CCP Avg CSP Avg CCP Avg CSP

N1 1.3055 4.9120 1.3724 4.1697 1.2326 4.5087
N2 1.6704 4.9110 2.4855 4.2562 1.5271 6.6375
N3 1.7426 4.8522 2.1669 5.1319 1.9385 7.4977
N4 1.8754 6.0901 1.7902 7.8963 1.7181 8.7147
N5 2.0034 5.2313 1.7754 7.6404 1.8618 8.3115

average value of CSP is much higher than CCP, which indicates
that the distances between clusters are much longer. In total, there
are 7 clusters in N1, 68 in N2, 145 in N3, 205 in N4, and 437 in N5.

In general, triangle motif clustering consumes less time compar-
ing to other motifs. This is because of the efficiency of processing
triangle motif over other structure during the process of searching
for homogeneous motif structures. On the other hand, higher-order
motif clustering is practicable in certain networks, especially in
large-scale networks, is considered beneficial, whereas the speed of
its motif clustering procedure can be accelerated using the proposed
algorithm.

8 CONCLUSION
The increasing scale of big (social) networks has brought in chal-
lenges for analyzing data due to its complicated structure. We solve
this problem from two perspectives. First, we first partition the net-
work to better break up the complicate structure of big networks.
Second, we focus on higher-order network motifs in big (social)
networks instead of triangle motifs. In this work, we have proposed
CHIEF that offers efficient and effectiveness motif clustering for big
(social) networks. CHIEF includes two acceleration components,
CHIEF-ST for accurate acceleration and CHIEF-AP for approximate
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acceleration. The accuracy of both variants has been proved theo-
retically. To examine the efficiency of CHIEF-AP experimentally,
we implement CHIEF-AP on 5 different synthetic networks and 18
conferences and journals networks. Experimental results show that
CHIEF-AP outperforms baseline methods in big networks. To date,
motif clustering still cannot be totally solved by parallel algorithm.
Therefore, the high efficiency and effectiveness of CHIEF provide
a new perspective of motif clustering in big (social) networks. In
our future work, we will also plough deep into parallel solutions
for motif clustering in big networks.
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