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Abstract—Graphs are naturally used to describe the structures
of various real-world systems in biology, society, computer science
etc., where subgraphs or motifs as basic blocks play an important
role in function expression and information processing. However,
existing research focuses on the basic statistics of certain motifs,
largely ignoring the connection patterns among them. Recently,
a subgraph network (SGN) model is proposed to study the
potential structure among motifs, and it was found that the
integration of SGN can enhance a series of graph classification
methods. However, SGN model lacks diversity and is of quite
high time complexity, making it difficult to widely apply in
practice. In this paper, we introduce sampling strategies into
SGN, and design a novel sampling subgraph network model,
which is scale-controllable and of higher diversity. We also
present a hierarchical feature fusion framework to integrate the
structural features of diverse sampling SGNs, so as to improve
the performance of graph classification. Extensive experiments
demonstrate that, by comparing with the SGN model, our new
model indeed has much lower time complexity (reduced by two
orders of magnitude) and can better enhance a series of graph
classification methods (doubling the performance enhancement).

Index Terms—network sampling, subgraph network, feature
fusion, graph classification, biological network, social network

I. INTRODUCTION

Networks or graphs are frequently used to capture vari-
ous relationships that exist in the real world, and thus we
witness the emergence of social networks [1]–[3], traffic net-
works [4]–[6], biological networks [7]–[9], literature citation
networks [10], [11], etc. The recently proposed graph represen-
tation methods allow us to better understand the structures of
these networks and promote the development of various disci-
plines. Interestingly, the early graph embedding methods were
benefited from natural language processing [12], while now the
graph neural networks (GNN) are used to successfully deal
with visual semantic segmentation [13]. Furthermore, these
graph embedding methods have made remarkable achieve-
ments in such areas as recommendation systems [14], [15], QA
sites [16], [17], and even drug discovery [18], [19]. In fact,
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network science, together with machine learning (especially
deep learning), has made an important contribution to the
development of cross-disciplines.

Subgraphs or motifs [20], [21], as basic building blocks,
can be used to describe the mesoscale structure of a network.
The networks constructed by different subgraphs may have
vastly different topological properties and functions, and thus
could be integrated into many graph algorithms to improve
their performances. For instance, after extracting the root
subgraph with a modified skip-gram model, Narayanan et
al. [22] proposed Subgraph2Vec as an unsupervised represen-
tation learning method, leading to good performance on graph
classification. Ugander et al. [23] treated subgraph frequencies
in social networks as local attributes and found that subgraph
frequencies do provide unique insights for identifying social
and graph structures of large networks. Inspired by neural
document embedding models, Nguyen et al. [24] proposed the
GE-FSG method, which adopts a series of frequent subgraphs
as the inputs of the PV-DBOW model to obtain the entire-
graph embeddings, achieving good performance in graph
classification and clustering. These studies focus more on
the basic statistics, e.g., the number of subgraphs, but lack
analysis of the underlying structure among these subgraphs.
The recently proposed subgraph network (SGN) model [25]
takes the above issue into consideration and connects different
subgraphs to construct a new network at a higher level. This
process can be iterated to form a series of SGNs of different
orders. It has been proven that SGNs can effectively expand
the structural space and further improve the performance of
network algorithms.

However, SGN model has the following two shortages.
First, the rule to establish SGN is deterministic, i.e., users
can generate only one SGN of each order for a network. Such
lack of diversity will limit the capacity of SGN to expand the
latent structure space. Second, when the number of subgraphs
exceeds the number of nodes in a network, the generated
SGN can be even larger than the original network, which
makes it extremely time-consuming to process SGNs of the
higher-order, letting alone integrating these SGNs to design
algorithms of better performances. On the other hand, it is
noted that network sampling can increase the diversity by
introducing the randomness, and meanwhile control the scale,
providing an effective and inexpensive solution for network
analysis. This merit thus is exactly complementary to the SGN
model.

In this paper, we introduce network sampling into the SGN
model, and proposes Sampling SubGraph Network (S2GN).
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In particular, we utilize the following four network sampling
strategies, including random walk, biased walk, link selection,
and spanning tree, to sample a subnetwork containing certain
numbers of nodes and links, and then map the subnetwork
to SGN based on certain rules. Network sampling and SGN
construction can be used iteratively, so as to create a series of
S2GN of different orders, whose structural features can then
be fused with those of the original network, so as to enhance
a number of network algorithms. Specifically, we have the
following contributions:

• We propose a new network model, sampling subgraph
network (S2GN), by introducing network sampling into
SGN. Compared with SGN, our S2GN can increase the
diversity and decrease the complexity to a certain extent,
benefiting the subsequent network algorithms.

• We propose hierarchical fusion to fully utilize the struc-
tural information extracted from S2GNs of different
orders, generated by different sampling strategies, to
enhance various graph classification algorithms based on
manual attributes, Graph2Vec, DeepKernel, and Caps-
GNN.

• We apply the new method to eight real-world network
datasets, and our experimental results demonstrate the ef-
fectiveness and efficiency of S2GN. The fusion of S2GNs
generated by different sampling strategies can increase
the performance of graph classification algorithms in 30
out of 32 cases, with a relative improvement of 10.75% on
average (4.68% for SGN). This value increases to 14.49%
(2.06% for SGN) when only CapsGNN is considered, i.e.,
the combination of S2GN-Fusion and CapsGNN achieves
the F1-Score 80.98% on average, greatly improving
the graph classification performance. More remarkably,
compared with SGN, generating S2GNs needs much less
time, reduced by almost two orders of magnitude.

The rest of the paper is structured as follows. In Sec. II,
we briefly describe the related work in network sampling and
feature extraction. In Sec. III, we introduced the construction
method of S2GN. In Sec. IV, we give several feature extraction
methods, which together with S2GN are applied to eight real-
world network datasets. Finally, we conclude the paper and
highlight some promising directions for future work in Sec. V.

II. RELATED WORK

In this section, to supply some necessary background in-
formation, we give a brief overview of network sampling
strategies and graph representation algorithms in graph mining
and network science.

A. Network Sampling

Our work is closely related to the line of research in the
network analysis based on sampling. Sampling methods in
graph mining have two main tasks: generating node sequences
and limiting the scale of the network. For the former, many
studies utilize sampling strategies to extract node sequences
to provide materials for subsequent network representation.
Random walk [26] is one of the most famous node sampling
methods, which has a wide influence in the field of graph

mining [27], [28]. For example, DeepWalk [29] combined the
random walk with the language model in NLP, which was
applied to node classification as a graph embedding method.
In addition, Grover and Leskovec [30] designed a biased walk
mechanism based on random walk, which had a further im-
provement in node classification. Breadth-First Sampling [31]
is a node sampling algorithm, which is biased to the nodes
of high degrees and has been successfully applied in the
measurement and topological analysis of OSNs. By limiting
the scale of a network, Satuluri et al. [32] sparsified graphs
and achieved faster graph clustering without sacrificing quality.
Moreover, sampling on graphs also has a wide spectrum
of applications on network visualization [33]. The sampling
method can simplify the network while preserving significant
structure information, which is of ultra importance in graph
mining.

B. Graph Representation
The most naive network representation method is to calcu-

late graph attributes according to certain typical topological
metrics [34]. Early graph embedding methods were consider-
ably affected by NLP. For example, as graph-level embedding
algorithms, Narayanan et al. proposed Subgraph2Vec [22] and
Graph2Vec [35], which achieve good performances on graph
classification.

Another popular approach is to use graph kernel methods
to capture the similarity between graphs. Although repre-
senting networks well, they generally have relatively high
computational complexity [34]. It is worth mentioning that
the WL kernel [36] was used to make the subgraph iso-
morphism check more effective. On this basis, Yanardag and
Vishwanathan [37] proposed an alternative kernel formulation
termed as Deep Graph Kernel (DeepKernel) which achieved
good performances on several datasets.

With the rise of spectral analysis of graph data in recent
years, graph convolutional neural network (GCN) has been
developed. It uses the Laplace decomposition of graphs to
achieve convolutional operation in the spectral domain. Kipf et
al. [38] used this neural network structure for semi-supervised
learning, and achieved excellent results. Later, mathematical
analysis on GCN went further and proved that the Laplacian
decomposition used by GCN and Laplacian smoothing on im-
ages have mathematically equivalent forms [39]. At the same
time, GCNs in the spatial domain have also been proposed.
Inspired by the idea of convolution kernels in CNN, Mathias
et al. [40] proposed the method of PATCHY-SAN, which can
determine the direction of the convolutions and the order of the
nodes in the convolution window, and this model also achieved
good results in graph classification. In this way, GCN treats the
obtained information without weighting, i.e. the information
of important neighbors and non-important neighbors will be
put into the convolution layer in an unbiased manner. GAT
overcomes this shortage by supplementing a self-attention
coefficient before the convolution layer [41]. Based on the
newly proposed capsule network architecture, Zhang et al. [42]
designed a CapsGNN to generate multiple embeddings for
each graph, thereby capturing the classification-related in-
formation and the potential information with respect to the
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graph properties at the same time, which achieved the good
performance.

Although the above graph representation methods have
relatively high expressiveness and learning ability, largely
improving the performance of graph classification, they do not
have good interpretability, and in addition, they only rely on
a single network structure, limiting their ability to exploit the
latent structural space. Therefore, we generate multiple S2GNs
to fully expand the latent structural space, so as to enhance
the network algorithms. Our experiments have demonstrated
that S2GNs can be naturally integrated with many graph
representation methods by our feature fusion framework for
the further improvement of their effectiveness.

III. METHODOLOGY

We first briefly review SGN and the four network sampling
methods. Then we introduce the framework to establish S2GN.

A. Subgraph network

Subgraph network (SGN) [25] is considered as a mapping
function in network space. It provides a scalable model that
transforms the original node-level network into a subgraph-
level network. As shown in Fig. 1, the SGN in Fig. 1 (b) can
be obtained by SGN mapping from the original network in
Fig. 1 (a). One can see that the edges of different colors in
(a) are mapped into the corresponding nodes in (b), which are
naturally connected depending on whether they share the same
node in the original network.

SGN mapping

(a) Original network (b) SGN

Fig. 1. Schematic diagram of SGN construction.

Formally, given an undirected network G = (V,E) as an
original network, where V and E are the node and edge sets,
respectively. Let Vi ⊆ V and Ei ⊆ E. Then, gi = (Vi, Ei)
is a subgraph of G. The SGN, denoted by Gs = L (G), is a
mapping from G to Gs = (Vs, Es), where the node and edge
sets are denoted by Vs={gi|i = 0, 1, 2, ..., n} and Es ⊆ (Vs×
Vs). If ga ∩ gb 6= ∅, i.e., ga ∩ gb ∈ V , in the original network,
then they are connected in the SGN, i.e., (ga, gb) ∈ Es. It
can be seen that the construction of SGN has three steps: (i)
detect subgraphs {gi} from the original network; (ii) clear and
define the connection rules between subgraphs; (iii) build SGN
by leveraging the subgraphs.

For simplicity, here for the case of 1st-order SGN, denoted
by SGN(1), pairwise linked nodes are chosen as building
units, and the adjacent node pairs are connected. In this case,
SGN(1) is equivalent to the line graph [43], which reveals the
topological interaction between edges of the original network.
Fu et al. [3] used this method to map the original network to
an SGN, and then used the node centrality in SGN to predict

the weights of edges of the original network. As the SGN
gradually maps to the higher-order network space, one can
observe more abundant feature information. For example, the
2nd-order subgraph network, denoted by SGN(2), is obtained
by repeating the mapping process on the SGN(1). The building
unit of SGN(2) is a 2-hop structure (open triangle), which
maintains the 2nd-order interactive information of the edge
structures and can provide more insights about the local
structure of a network [44]. To reduce the density of SGN,
in the case of SGN(2), two building units are connected when
they share the same edge. The latent structural information
provided by higher-order SGNs may steadily diminish as the
order increases. Therefore, SGN generally works best with the
first two orders [25].

B. Network Sampling Strategies

In this paper, we adopt the following four sampling strate-
gies, including random walk, biased walk, link selection, and
spanning tree, to design our S2GN.

Random walk. Random walk [45] can be used to obtain
the co-occurrence relationship between nodes during network
sampling. A node in a network can be described by the
wandering sequence starting from it. The wandering sequence
obtained from the node contains both local and higher-order
neighbors. When the wandering scope is extended to the graph
level, one can peek into the topology of the whole network.
In our model, given a network G = (V,E), the random walk
algorithm is described as follows:

• Start with an initial node v0 ∈ V .
• At step i, choose one neighbouring node u ∈ N (vi−1).
• Let vi ← u be the next node and get the edge Ê ←
Ê +

{
(vi−1, vi)

}
.

• Repeat the steps until |Ê| = |V |.
Node vi is generated by the following distribution:

P (vi = x|vi−1 = m) =

{
α
N , if(m,x) ∈ E
0, otherwise

where α is the transition probability between nodes m and x,
and N is the normalizing constant. One can follow the above
steps to simulate a random walk and get the final substructure
Ĝ = (V̂ , Ê).

Biased walk. In the field of network science, biased walk
[46] is different from the random walk where the probability
of a potential new state is independent of external conditions.
When the network is too complex to be analyzed by statistical
methods, the biased walk provides an effective method for
structural analysis by extracting the symmetry of an undirected
network. The concept of the biased walk has attracted consid-
erable attention, especially in the fields of transportation and
social networks [47]. Here, we adopt the walking mechanism
of Node2Vec [30], where the homogeneity equivalence and
structural equivalence of nodes are preserved by integrating
the depth-first search and breadth-first search. Specifically, we
adopt the 2nd-order random walk with parameters p and q,
which takes into account the topological distance between the
next node and the previous node as well as the connectivity of
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(a) Original network (b) A spanning tree

Fig. 2. Illustration of the walk procedure in link selection.

the current node. Thus, the transition probability α between
vi and vi+1 is determined by

α(vi,vi+1) = ωpq(v
i−1, vi+1) =


1
p , d(vi−1,vi+1) = 0

1, d(vi−1,vi+1) = 1
1
q , d(vi−1,vi+1) = 2

where vi−1, vi, and vi+1 are the previous, current, and next
nodes, respectively, and d(vi−1,vi+1) ∈ (0, 1, 2) indicates the
shortest path between vi−1 and vi+1. Note that α is equal to
ωpq when the network is unweighted. Various substructures of
network can be obtained by controlling p and q.

Link selection. We also propose a new edge-based sampling
method, namely link selection. Given a network G = (V,E),
we first sample an initial edge e0 = (v0, v1), and then
randomly select a node of this edge as the source node of
the next sampling edge. The nodes of all the sampled edges
form the source node pool Vpool for the next sampling. The
sampling process will not terminate until the stop condition
is met. The substructures after this sampling strategy are
obtained by a diffuse search from a central edge, which ensures
the acquisition of important network structures to a certain
extent. As shown in Fig. 2, the node pair (1,2) is selected
as the initial edge and then we can get the substructure that
contains nodes (1,2,3) after one iteration through node ”2” and
get an expanding substructure that contains nodes (1,2,3,4)
after second iteration through another node ”1”. After several
iterations, one can get the final substructure, which contains
7 nodes and 8 edges while the program satisfies the stop
condition.

• Start with an initial edge e0 = (v0, v1) ∈ E, and let
Vpool =

{
v0, v1

}
, Epool =

{
e0
}

.
• At step i, choose one node u ∈ Vpool.
• Let ui ← u be the next start node and select an edge

(ui, ui+1) /∈ Epool.
• Update Vpool ← Vpool +

{
ui+1

}
and get the edge pool

Epool ← Epool +
{

(ui, ui+1)
}

.
• Repeat the above steps until |Epool| = |V |.
Note that (ui, ui+1) has the same transition probability with

the random walk, and Vpool and Epool are the node and edge
sets of the final substructure Ĝ. This method differs from
random walk in that it can search the network on the basis

of the current substructure rather than a single node, which
can reduce the appearance of a chain structure to a greater
extent.
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Fig. 3. The substructure obtained by spanning tree.

Spanning tree. A spanning tree [48] is a minimally con-
nected substructure that contains all nodes in the graph, as
shown in Fig. 3. Different spanning trees can be obtained by
traversing from different nodes. Here we randomly select a
node as the initial node. The maximum and minimum spanning
trees are unified without considering the edge weights. In this
section, we use the typical Kruskal algorithm [49] to generate
spanning trees and the weight values of edges are all set to 1.

C. Framework for Constructing S2GN

Most real-world networks have large scale and complex
structure. Typically, SGN could be even larger and denser,
making the follow-up network algorithms less efficient. It may
also introduce extra noisy structural information, disturbing
the network algorithms to a certain extent. In view of this, we
focus on optimizing the SGN model and propose a framework
for constructing a sampling subgraph network (S2GN) by
integrating different network sampling methods. The pseu-
docodes of constructing S2GN and sampling substructures are
given in Algorithms 1 and 2, respectively. In Algorithms 1,
GetMaxSubstructure(·) is to obtain the maximally connected
substructure of original network if it is not connected; NodeR-
anking(·) is to rank the input nodes; SGNAlgorithms(·) is to
construct SGNs. GetNextEdgeWithStrategy(·) in Algorithms 2
is to get the next edge according to a given sampling strategy.

In general, S2GN can be constructed in three steps: source
node selection, sampling substructure and S2GN construction,
which are introduced in the following.

• Source node selection: There are many ways to choose
the initial node: (i) Randomly select a node as the
source node; (ii) Select an initial node according to its
importance measured by closeness centrality [50], K-
shell [51], PageRank [52] or others. In this paper, we use
the K-shell method in order to capture the key structure
more likely.

• Sampling substructure: After the initial source node
is determined, a substructure can be obtained by con-
ducting a certain sampling strategy to extract the main
context of the current network. According to different
sampling strategies, diverse sampling substructures can be
generated, reflecting the different aspects of the original
network and further benefiting the subsequent network
algorithms.
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Algorithm 1: Construction of S2GN.
Input: A network G(V ,E) with node set V and link

set E ⊆ (V × V );
Sampling strategy fs(·);
The order of SGN h.
Output: S2GN, denoted by Gs(Vs,Es).

1 Initialize a temporary object Gs = G;
2 while h do
3 if the Gs is not full-connected then
4 GetMaxSubstructure(Gs);
5 Initial node u = NodeRanking(Vs);
6 Get sampling substructure Ĝs through

executing Algorithm 2;
7 Gsgn = SGNAlgorithms(Ĝs);
8 Gs ← Relabeled(Gsgn);
9 end

10 else
11 Repeat 5-8;
12 end
13 h = h− 1;
14 end
15 return Gs(Vs,Es)

• S2GN construction: Based on the sampling substructure,
we use SGN model to construct S2GN. Note that network
sampling and SGN are adopted iteratively so as to get
the S2GNs of higher orders. This method can control the
size of S2GNs and meanwhile increase their diversity.
Therefore, compared with SGN, the S2GN could further
enhance both efficiency and effectiveness of the subse-
quent network algorithms.

Now, we use various feature extraction methods to get
structural features from S2GNs of different orders, which are
first fused and then used to establish the graph classification
models. The overall framework of S2GN construction for
structural feature space expansion is shown in Fig. 4. Note
that, generally, information fusion tries to integrate information

Algorithm 2: Sampling substructure.
Input: A network G(V ,E);
Source node u;
Sampling walks l.
Output: Sampling substructure, denoted by Ĝs=g(v̂,ê).

1 Let v0=u, initial walkv to [v0], walke to ∅;
2 Select first edge e1 with a given probability of

sampling strategy;
3 Append the v1 = dst(e1) to walkv , e1 to walke;
4 for i = 2 to l − 1 do
5 curv = walkv[-1], cure = walke[-1];
6 ei = GetNextEdgeWithStrategy(curv , cure);
7 Append ei to walke, vi=dst(ei) to walkv;
8 end
9 v̂ = walkv , ê = walke;

10 return Ĝs=g(v̂,ê)

from multiple aspects to improve algorithm performance,
which has a wide range of applications in practice. For
instance, in speech recognition, the visual features of the lip
motion are fused with the speech signal features to predict the
words expressed [53]. In image recognition, Xuan et al. [54]
developed a multistream convolutional neural network to auto-
matically merge the features of multi-view pearl images, so as
to improve the accuracy of pearl classification. In this paper,
we use different sampling strategies to capture the structural
features from different aspects. As an example, we visualize
different 1st-order and 2nd-order S2GNs generated by the four
network sampling strategies on positive and negative samples
from the MUTAG dataset, as shown in Fig. 5. It can be seen
that the S2GNs generated by different sampling strategies have
quite different structures, and the structural difference between
the positive and negative samples may be enlarged in S2GNs.
Therefore, it can be expected that the fusion of these diverse
S2GNs could improve the performance of graph classification.
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Fig. 5. Visualization of 1st-order and 2nd-order S2GNs using four network sampling strategies on positive and negative samples from the MUTAG dataset.

IV. EXPERIMENTS

Now, we compare S2GN and SGN models on their abilities
to enhance graph classification based on four feature extraction
methods. We first introduce the datasets, followed by the
feature extraction methods and the parameter setting. After
that, we show the experimental results with discussion.

A. Datasets

We test our S2GN method on eight real-world network
datasets, as introduced in the following. IMDB-BINARY is
about social networks, while the others are about bio- and
chemo-informatics networks. The basic statistics of these
datasets are presented in Table I.

• MUTAG [55] contains 188 mutagenic aromatic and het-
eroaromatic compounds, with nodes and edges repre-
senting atoms and the chemical bonds between them,
respectively. They are labeled according to whether there
is a mutagenic effect on a special bacteria.

• PTC [56] includes 344 chemical compound graphs, with
nodes and edges representing atoms and the chemical

TABLE I
BASIC STATISTICS OF EIGHT DATASETS. NG IS THE NUMBER OF GRAPHS,
#Cmax IS THE NUMBER OF GRAPHS BELONGING TO THE LARGEST CLASS,
NC IS THE NUMBER OF CLASSES, AND #NODES AND #EDGES ARE THE

AVERAGE NUMBERS OF NODES AND EDGES, RESPECTIVELY, OF THE
GRAPHS IN THE DATASET.

Dataset NG #Cmax NC #Nodes #Edges
MUTAG 188 125 2 18 20
PTC 344 192 2 14 14
PROTEINS 1113 663 2 39 73
ENZYMES 600 100 6 32 63
NCI1 4110 2057 2 30 32
NCI109 4127 2079 2 30 32
IMDB-BINARY 1000 500 2 20 193
D&D 1178 691 2 284 716

bonds between them, respectively. Their labels are de-
termined by their carcinogenicity for rats.

• PROTEINS [57] comprises of 1113 graphs. The nodes are
Secondary Structure Elements (SSEs) and the edges are
neighbors in the amino-acid sequence or in the 3D space.
These graphs represent either enzyme or non-enzyme
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proteins.
• ENZYMES [58] contains 600 protein tertiary structures,

and each enzyme belongs to one of the 6 EC top-level
classes.

• NCI1 & NCI109 [8] comprise of 4110 and 4127 graphs,
respectively. The nodes and edges represent atoms and
chemical bonds between them, respectively. They are two
balanced subsets of the datasets of chemical compounds
screened for the activities against non-small cell lung
cancer and ovarian cancer cell lines, respectively. The
positive and negative samples are distinguished according
to whether they are effective against cancer cells.

• IMDB-BINARY [59] is about movie collaboration includ-
ing 1000 graphs, which is collected from IMDB and
contains lots of information about different movies. Each
graph is an ego-network, where nodes represent actors or
actresses and edges indicate whether they appear in the
same movie. Each graph is categorized into one of the
two genres (Action and Romance).

• D&D [60] contains 1178 graphs of protein structures. A
node represents an amino acid and edges are constructed
if the distance between two nodes is less than 6 Å. A label
denotes whether a protein is an enzyme or non-enzyme.

B. Feature Extraction Methods

We adopt four typical methods to generate graph represen-
tation, namely manual attributes, Graph2Vec, DeepKernel, and
CapsGNN, which are introduced in the following.

• Attributes: Here, we use the same 11 manual attributes
as those introduced in [25], including the number of
nodes, the number of edges, average degree, network
density, average clustering coefficient, the percentage
of leaf nodes, the largest eigenvalue of the adjacency
matrix, average betweenness centrality, average closeness
centrality, and average eigenvector centrality.

• Graph2Vec [35]: This is the first unsupervised embedding
approach for an entire network, which is based on the
extending word-and-document embedding techniques that
has shown great advantages in natural language process-
ing (NLP).

• DeepKernel [37]: This method provides a unified frame-
work that leverages the dependency information of sub-
structures by learning latent representations. The sub-
structure similarity matrix,M, is calculated by the matrix
V with each column representing a sub-structure vector.
Denote by P the matrix with each column representing a
sub-structure frequency vector. According to the defini-
tion of kernel: K = PMPT = PVVTPT = HHT, one
can use the columns in the matrix H = PV as the inputs
to the classifier.

• CapsGNN [42]: This method was inspired by Cap-
sNet [61], which adopts the concept of capsules to
overcome the weakness of existing GNN-based graph
embedding algorithms. In particular, CapsGNN extracts
node features in the form of capsules and utilizes the
routing mechanism to capture important information at
the graph level. The model generates multiple embed-

dings for each graph so as to capture graph properties
from different aspects.

C. Parameter Setting
For source node selection, we choose the node of the

largest K-shell [51] as the source node for random walk (RW)
and biased walk (BW), and choose the edge of the largest
betweenness centrality as the source edge for link selection
(LS). We randomly pick up a node as the source node for the
spanning tree (ST) to increase the diversity of S2GN, since the
sampled subnetworks will be quite similar if we fix the source
node for this method. Moreover, we set the two parameters of
BW as p = 4 and q = 1.

In this study, for Graph2Vec, the embedding dimension is
adopted according to [35]. Since the embedding dimension
is predominant for learning performances, a commonly-used
value of 1024 is adopted. The other parameters are set to
default values: the learning rate is set to 0.5, the batch size
is set to 512 and the number of epochs is set to 1000. For
DeepKernel, according to [37], the Weisfelier-Lehman subtree
kernel is used to build the corpus and its height is set to
2. Furthermore, the embedding dimension is set to 10, the
window size is set to 5 and skip-gram is used for the word2vec
model. We adopt the default parameters for CapsGNN and
flatten the multiple embeddings of each graph as the input.

Without loss of generality, the well-known Random Forest is
chosen as the classification model. Meanwhile, for each feature
extraction method, the feature space is first expanded by using
S2GNs, and then the dimension of the feature vectors is
reduced to the same value as that of the feature vector obtained
from the original network using PCA in the experiments, for a
fair comparison. Each dataset is randomly split into 8 folds for
training and 2 fold for testing. Here, the F1-Score is adopted
as the metric to evaluate the classification performance:

F1 =
2PR

P +R
, (1)

where P and R are the precision and recall, respectively. In
order to diminish the random effect of the fold assignment to
some extent, the experiment is repeated 100 times and then
the average F1-Score and its standard deviation are reported.

We further define the relative improvement rate (RIMP) of
SGN or S2GN model as

RIMP = (F1model − F1ori)/F1ori (2)

where F1ori and F1model refer to the F1-Score of the graph
classification algorithm without and with the SGN model (or
S2GN-Fusion model), respectively.

D. Experimental Results
We use the four network sampling strategies to generate

sampling substructures, and further construct the correspond-
ing 1st-order and 2nd-order S2GNs, denoted by S2GN-RW,
S2GN-BW, S2GN-LS, and S2GN-ST, respectively1. After that,

1It has been proven that the graph classification models can be significantly
enhanced by appropriately using the structural information of the SGNs in the
first two orders, while such gain will be reduced soon as more SGNs of higher
orders are integrated [25]. This is why we only use the S2GNs of the first
two orders here.
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TABLE II
CLASSIFICATION RESULTS MEASURED BY F1-Score ON EIGHT DATASETS BY USING DIFFERENT FEATURE EXTRACTION METHODS.

Algorithm Classification results (F1-Score, %)
Attributes MUTAG PTC PROTEINS ENZYMES NCI1 NCI109 IMDB-BINARY D&D Avg.

Original 86.58± 3.61 63.52± 4.55 78.30± 2.49 43.37± 2.29 67.48± 0.87 67.34± 1.25 73.00± 3.68 75.85± 1.61 69.43
SGN 91.58± 4.21 67.94± 6.36 79.46± 2.96 50.22± 2.91 69.84± 1.59 69.73± 1.97 77.65± 4.50 76.65± 1.59 72.88

RIMP -SGN 5.78% 6.96% 1.48% 15.79% 3.50% 3.55% 6.37% 1.05% 4.97%
S2GN-RW 90.53± 2.11 66.71± 1.62 77.76± 1.52 52.17± 2.36 74.82± 0.69 73.96± 0.84 71.85± 2.74 77.37± 2.91 73.15
S2GN-BW 93.94± 2.37 69.11± 2.94 79.83± 1.46 53.37± 2.78 75.47± 0.98 73.99± 1.04 76.05± 1.29 77.75± 1.68 74.94
S2GN-LS 89.21± 2.48 66.18± 2.55 78.57± 1.44 49.50± 2.14 75.85± 1.03 74.65± 0.62 71.80± 2.53 76.91± 1.94 72.83
S2GN-ST 90.79± 2.12 70.44± 2.75 76.28± 1.89 45.33± 1.29 72.25± 1.08 73.26± 0.76 77.60± 1.50 76.90± 2.47 72.81

S2GN-Fusion 94.74± 1.84 72.06± 3.29 79.14± 0.84 55.25± 1.90 76.03± 1.32 74.89± 1.18 76.97± 1.21 77.03± 2.46 75.76

RIMP -Fusion 9.42% 13.44% 1.07% 27.39% 12.67% 11.21% 5.44% 1.56% 9.12%

Graph2Vec MUTAG PTC PROTEINS ENZYMES NCI1 NCI109 IMDB-BINARY D&D Avg.
Original 83.15± 9.25 60.17± 6.86 73.30± 2.05 45.17± 2.73 73.22± 1.81 74.26± 1.47 62.47± 3.99 70.25± 2.18 67.75

SGN 86.84± 5.70 63.24± 6.70 74.44± 3.09 48.73± 2.56 76.64± 3.21 74.86± 2.76 70.65± 5.55 80.42± 3.06 70.73
RIMP -SGN 4.44% 5.10% 1.56% 7.88% 4.67% 0.81% 13.09% 14.48% 4.39%

S2GN-RW 80.26± 2.69 61.47± 2.06 76.37± 1.12 48.67± 2.53 76.88± 1.35 74.39± 1.40 68.35± 1.57 81.86± 1.80 71.03
S2GN-BW 86.84± 3.07 64.71± 2.85 77.13± 1.09 52.33± 2.30 77.39± 1.12 75.69± 1.46 71.64± 2.00 82.12± 2.22 73.48

S2GN-LS 81.05± 2.57 62.35± 2.88 76.91± 2.21 47.68± 1.73 79.18± 1.71 77.42± 1.13 67.25± 2.16 81.77± 1.98 71.70
S2GN-ST 81.84± 2.99 63.97± 2.39 75.20± 2.15 49.87± 2.91 76.30± 1.21 72.95± 0.89 72.49± 2.11 74.92± 2.89 70.94

S2GN-Fusion 81.73± 3.37 64.38± 2.42 75.10± 0.89 54.78± 2.29 76.91± 0.72 75.72± 1.31 76.43± 2.17 82.75± 2.79 73.48

RIMP -Fusion -1.71% 7.00% 2.46% 21.28% 5.04% 1.97% 22.35% 17.79% 8.46%

DeepKernel MUTAG PTC PROTEINS ENZYMES NCI1 NCI109 IMDB-BINARY D&D Avg.
Original 82.95± 2.68 59.04± 1.09 73.30± 0.82 45.04± 3.73 67.06± 1.91 67.04± 1.36 67.50± 2.45 75.97± 1.91 67.24

SGN 93.68± 5.15 65.88± 5.05 76.78± 2.41 45.93± 3.75 70.26± 1.24 71.06± 1.61 75.70± 1.55 77.84± 2.08 72.14
RIMP -SGN 12.94% 11.59% 4.75% 1.98% 4.77% 6.00% 12.15% 2.46% 7.29%

S2GN-RW 93.68± 5.66 61.76± 3.77 75.80± 4.21 43.32± 3.64 69.15± 1.63 69.06± 1.70 72.30± 2.68 83.47± 1.00 71.07
S2GN-BW 94.00± 5.43 67.35± 4.48 76.69± 2.97 47.75± 2.68 71.51± 1.38 69.83± 2.05 74.10± 3.33 81.57± 1.11 72.85
S2GN-LS 93.68± 4.59 66.18± 4.21 76.16± 1.92 50.28± 3.04 71.55± 1.15 70.19± 2.26 75.80± 3.43 83.98± 1.77 73.48
S2GN-ST 88.95± 3.68 65.29± 4.59 74.73± 4.54 48.02± 3.52 70.77± 1.20 71.04± 1.03 75.90± 2.07 78.94± 1.38 71.71

S2GN-Fusion 94.73± 4.07 70.88± 4.25 77.14± 2.97 52.21± 2.24 71.06± 1.01 70.48± 1.22 76.50± 3.75 83.77± 1.87 74.60

RIMP -Fusion 14.20% 20.05% 5.24% 15.92% 5.96% 5.13% 13.33% 10.27% 10.94%

CapsGNN MUTAG PTC PROTEINS ENZYMES NCI1 NCI109 IMDB-BINARY D&D Avg.
Original 86.32± 7.52 62.06± 4.25 75.89± 3.51 49.78± 3.02 78.30± 1.80 72.99± 2.15 72.71± 4.36 67.75± 2.57 70.73

SGN 89.47± 7.44 64.12± 3.67 76.34± 4.13 50.04± 2.70 78.61± 1.87 73.72± 2.39 76.47± 5.74 68.71± 1.91 72.19
RIMP -SGN 3.65% 3.32% 0.59% 0.52% 0.40% 1.00% 5.17% 1.42% 2.06%

S2GN-RW 88.70± 4.59 77.81± 4.96 84.73± 2.09 51.33± 1.14 74.23± 1.40 75.16± 1.39 92.50± 3.15 78.05± 1.91 77.81
S2GN-BW 92.63± 4.82 81.91± 5.45 84.10± 3.72 52.77± 2.11 78.83± 2.35 75.25± 1.69 93.35± 1.12 78.66± 2.32 79.69
S2GN-LS 90.53± 4.59 79.11± 4.16 84.28± 1.96 52.17± 1.23 76.57± 1.26 75.43± 1.46 93.92± 1.75 77.03± 1.52 78.63
S2GN-ST 89.21± 5.73 78.67± 5.06 84.03± 2.58 52.56± 1.18 76.52± 1.42 75.16± 1.60 94.20± 1.26 72.31± 2.73 77.83

S2GN-Fusion 93.15± 4.11 84.12± 6.47 85.18± 1.84 56.08± 3.15 78.13± 2.27 78.23± 1.05 95.10± 2.30 77.85± 1.95 80.98

RIMP -Fusion 7.91% 35.55% 12.24% 12.66% -0.22% 7.18% 30.79% 14.90% 14.49%

we adopt the four feature extraction methods, namely manual
attributes, Graph2Vec, DeepKernel, and CapsGNN, to get
structural feature vectors. For each feature extraction method,
we fuse the vectors generated from the different S2GNs to a
single vector. Finally, this vector is fed into the Random Forest
model to produce the classification result. Note that we also
produce the results for a single sampling strategy for a more
comprehensive comparison. Here, a ten-fold cross-validation
method is used to calculate F1-Score of graph classification.
To enrich the sampling structures and reduce the probability
of sampling repetition, 10 sampling averaging processes were
carried out for each sampling strategy.

1) Enhancement on classification performance: The ex-
perimental results are shown in Table II, where one can
see that the four S2GN models based on a single sampling

strategy, i.e., S2GN-RW, S2GN-BW, S2GN-LS, and S2GN-
ST, are comparable with the SGN model, which all produce
similar classification results under different datasets and fea-
ture extraction methods. Interestingly, S2GN-BW outperforms
SGN in enhancing the classification models based on the four
feature extraction methods in most cases, leading to a relative
improvement of 4.52% on average. Such results are consistent
with the experience that Node2Vec is a powerful method to
capture the structural properties of a network. Moreover, since
different S2GNs generated by different sampling strategies
can capture the different aspects of a network, as visualized
in Fig. 5, one may expect that the fusion of these S2GNs
can produce even better classification results. Indeed, we find
that the fusion of S2GNs increases the performance of the
original graph classification algorithms in 30 out of 32 cases,
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Fig. 6. Average F1-Score as functions of the training set size (represented by the fraction of samples in the training set), for various feature extraction
methods on different datasets, based on RW, BW, LS, ST and Fusion, respectively.

with a relative improvement of 10.75% on average (much
better than 4.68% by SGN). The value increases to 14.49%
(much better than 2.06% by SGN) when only CapsGNN is
considered. This result is quite impressive, since CapsGNN,

together with S2GN, achieves the state-of-the-art performance
on PROTEINS and IMDB-BINARY datasets.

To address the robustness of our S2GN model against the
size variation of the training set, the F1-Score is calculated
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by using various sizes of training sets (from 10 to 90 percent,
within a 20 percent interval). For each size, the training
and test sets are randomly divided, which is repeated 100
times with the average result recorded. The results are shown
in Fig. 6 for various feature extraction methods on eight
datasets. It can be seen that still the curves of S2GN-Fusion
are relatively higher than those of S2GNs generated by a
single sampling strategy in most cases, indicating that the
superiority of S2GN-Fusion is robust in enhancing graph
classification algorithms. In particular, such superiority seems
much more significant when enhancing CapsGNN, which is
interesting and may indicate that the potential of S2GN-Fusion
could be exploited further by connecting a better embedding
method or end-to-end graph neural network, and meanwhile
there could be much room for further improvement for graph
classification.

2) Reduction of time complexity: Note that one important
motivation to introduce sampling strategies into SGN is to con-
trol the network size so as to improve the efficiency of the net-
work algorithms based upon them. Therefore, here to address
the computational complexity of our method, we record the
average computational time of SGN and S2GN generated by
the four sampling strategies on the eight datasets, namely MU-
TAG, PTC, PROTEINS, ENZYMES, NCI1, NCI109, IMDB-
BINARY, and D&D. The results are presented in Table III,
where one can see that, overall, the computational time of
S2GN is much less than that of SGN for each sampling strat-
egy on each dataset, decreasing from hundreds of seconds to
less than 19 seconds. In fact, the computational time of S2GNs
generated by different sampling strategies is comparable to
each other. Considering that S2GN-Fusion method needs to
generate all the four S2GNs, its computational time is close to
the sum of individual ones, which is still less than 25 seconds.
Such results suggest that, by comparing with SGN, our S2GN
model can indeed largely increase the efficiency of the network
algorithms.

In fact, we can estimate the time complexity of our model
in theory. For random walk, it is a computationally efficient
sampling method, which only requires O(|E|) space complex-
ity to store the neighbors of each node in the graph. As for
the time complexity, by imposing graph connectivity in the
sample generation process, random walk provides a convenient
mechanism to increase the effective sampling rate by reusing
samples across different source nodes. For biased walk, we
adopt the 2nd random walk mechanism of Node2Vec, where
each step of random walk is based on the transition probability
α which can be precomputed, so the time consuming of each
step using alias sampling is O(1). Link selection broadens the
scope of the start node at each step in the random walk process,
thereby accelerating the time to reach the stop condition.
Kruskal algorithm to generate spanning trees is a greedy
algorithm, which has O(|E|log(|E|)) time complexity. We
know that the computational complexity of SGN(1) is O(|E|2)
and that of constructing SGN(2) is O(|E|4). Our S2GN model
constrains the expansion of the network scale and reduces
the cost of constructing SGNs to the fixed O(|E|2). Thus,
the time computational complexity T of our S2GN model is
O(|E|+ |E|2) ≤ T ≤ O(|E|log|E|+ |E|2|) according to the

TABLE III
AVERAGE COMPUTATIONAL TIME TO ESTABLISH SGN AND S2GNS BY

THE FOUR SAMPLING STRATEGIES ON THE EIGHT DATASETS.

Time (Seconds) SGN S2GN
RW BW LS ST

MUTAG 1.58× 102 0.677 0.252 0.600 0.090
PTC 1.93× 103 1.216 0.804 1.170 0.607
PROTEINS 3.20× 103 1.192 1.161 2.018 1.625
ENZYMES 3.97× 103 1.284 1.230 2.106 1.598
NCI1 1.75× 102 2.670 2.099 2.484 1.746
NCI109 1.75× 102 2.682 2.114 2.495 1.749
IMDB-BINARY 1.11× 104 1.478 1.580 1.256 1.106
D&D 7.90× 102 2.701 3.162 18.32 0.805
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Fig. 7. The t-SNE visualization of structural features using CapsGNN without
(left) and with (right) S2GN-ST. The same color of points represent the same
class of graphs in IMDB-BINARY dataset.

different sampling strategies, which is much lower than that
of SGN.

3) Visualization: As a simple case study, we visualize the
results of classification on IMDB-BINARY dataset based on
CapsGNN method to verify the effectiveness of our S2GN
model. Here, we choose S2GN-ST to visualize since this is
the best S2GN generated by the single sampling strategy that
enhances the classification performance of CapsGNN most.
As shown in Fig. 7, the structural features are located in
different places by utilizing t-SNE. The left shows the original
classification result using CapsGNN without S2GN-ST, while
the right depicts the optimized distribution of the same dataset
using CapsGNN with S2GN-ST. One can see that the graphs
in IMDB-BINARY dataset can indeed be distinguished by the
original features of CapsGNN, but it appears that the distinc-
tion of graphs could become more explicit after hierarchical
representation through network sampling and SGN mapping,
demonstrating the effectiveness of our S2GN model.

V. CONCLUSIONS

In this paper, we present a novel sampling subgraph network
(S2GN) model as well as a hierarchical feature fusion frame-
work for graph classification by introducing network sampling
strategies into the SGN model. Compared with the latter, the
S2GNs are of higher diversity and controllable scale, and thus
benefit the network feature extraction methods to capture more
various aspects of the network structure with higher efficiency.

We use different sampling strategies, namely random walk
(RW), biased walk (BW), link selection (LS), and spanning
tree (ST), to generate the corresponding sampling subgraph
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networks S2GN-RW, S2GN-BW, S2GN-LS, and S2GN-ST,
respectively. The experimental results show that, compared
with SGN, S2GN has much lower time complexity, which was
reduced by almost two orders of magnitude, and meanwhile
they have comparable effects on graph classification. In fact,
the network algorithms based on S2GN-BW behave even
better than those based on SGN, although each sampling
subnetwork is only a part of the original network. More
interestingly, when the features of all the four S2GNs are fused
and then fed into graph classification models, the classification
performance can be significantly enhanced. In particular, when
CapsGNN is used to extract the features of these S2GNs, we
can achieve the-state-of-the-art results on the PROTEINS and
IMDB-BINARY datasets.

In the future, we will try more sampling strategies and then
integrate them with SGN to generate more diverse S2GNs;
we will also apply our framework to more tasks beyond graph
classification, such as link prediction, node classification, etc.
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