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Abstract—In comparison with individual testing, group testing
is more efficient in reducing the number of tests and potentially
leading to tremendous cost reduction. There are two key
elements in a group testing technique: (i) the pooling matrix that
directs samples to be pooled into groups, and (ii) the decoding
algorithm that uses the group test results to reconstruct the status
of each sample. In this paper, we propose a new family of pooling
matrices from packing the pencil of lines (PPoL) in a finite
projective plane. We compare their performance with various
pooling matrices proposed in the literature, including 2D-
pooling, P-BEST, and Tapestry, using the two-stage definite
defectives (DD) decoding algorithm. By conducting extensive
simulations for a range of prevalence rates up to 5%, our
numerical results show that there is no pooling matrix with the
lowest relative cost in the whole range of the prevalence rates. To
optimize the performance, one should choose the right pooling
matrix, depending on the prevalence rate. The family of PPoL
matrices can dynamically adjust their construction parameters
according to the prevalence rates and could be a better
alternative than using a fixed pooling matrix.

Index Terms—group testing, perfect difference sets, finite pro-
jective planes.

I. INTRODUCTION

COVID-19 pandemic has deeply affected the daily life of

many people in the world. The current strategy for dealing

with COVID-19 is to reduce the transmission rate of COVID-

19 by preventive measures, such as contact tracing, wearing

masks, and social distancing. One problematic characteristic

of COVID-19 is that there are asymptomatic infections [1]. As

those asymptomatic infections are unaware of their contagious

ability, they can infect more people if they are not yet been

detected [2]. As shown in the recent paper [3], massive

COVID-19 testing in South Korea on Feb. 24, 2020, can greatly

reduce the proportion of undetectable infected persons and

effectively reduce the transmission rate of COVID-19.

Massive testing for a large population is very costly if it

is done one at a time. For a population with a low preva-

lence rate, group testing (or pool testing, pooled testing,

batch testing) that tests a group by mixing several samples

together can achieve a great extent of saving testing resour-

ces. As indicated in the recent article posted on the US

FDA website [4], the group testing approach has received a

lot of interest lately. Also, in the US CDC’s guidance for

the use of pooling procedures in SARS-CoV-2 [5], it defines

three types of tests: (i) diagnostic testing that is intended to

identify occurrence at the individual level and is performed

when there is a reason to suspect that an individual may be

infected, (ii) screening testing that is intended to identify

occurrence at the individual level even if there is no reason

to suspect an infection, and (iii) surveillance testing

includes ongoing systematic activities, including collection,

analysis, and interpretation of health-related data. The gen-

eral guidance for diagnostic or screening testing using a

pooling strategy in [5] (quoted below) basically follows the

two-stage group testing procedure invented by Dorfman in

1943 [6]:

“If a pooled test result is negative, then all specimens can

be presumed negative with the single test. If the test result is

positive or indeterminate, then all the specimens in the pool

need to be retested individually.”

The Dorfman two-stage algorithm is a very simple group

testing strategy. Recently, there are more sophisticated group

testing algorithms proposed in the literature, see, e.g., [7]–

[10]. Instead of pooling a sample into a single group, these

algorithms require diluting a sample and then splitting it into

multiple groups (pooled samples). Such a procedure is speci-

fied by a pooling matrix that directs each diluted sample to be

pooled into a specific group. The test results of pooled samples

are then used for decoding (reconstructing) the status of each

sample. In short, there are two key elements in a group testing

strategy: (i) the pooling matrix, and (ii) the decoding

algorithm.

As COVID-19 is a severe contagious disease, one should be

very careful about the decoding algorithm used for recon-

structing the testing results of persons. Though decoding algo-

rithms that use soft information for group testing, including

various compressed sensing algorithms in [8]–[12], might be

more efficient in reducing the number of tests, they are more

prone to have false positives and false negatives. A false posi-

tive might cause a person to be quarantined for 14 days and
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thus losing 14 days of work. On the other hand, a false nega-

tive might have an infected person wandering around the

neighborhood and cause more people to be infected. In view

of this, it is important to have group testing results that are as

“definite” as individual testing results (in a noiseless setting).

Following the CDC guidance [5], we use the decoding algo-

rithm, called the definite defectives (DD) algorithm in the liter-

ature (see Algorithm 2.3 of the monograph [13]), that can have

definite testing results. The DD algorithm first identifies nega-

tive samples from a negative testing result of a group (as

advised by the CDC guidance [5]). Such a step is known as

the combinatorial orthogonal matching pursuit (COMP) step

in the literature [13]. Then the DD algorithm identifies posi-

tive samples if they are in a group with only one positive sam-

ple. Not every sample can be decoded by the DD algorithm.

As the Dorfman two-stage algorithm, samples that are not

decoded by the DD algorithm go through the second stage,

and they are tested individually. We call such an algorithm the

two-stage DD algorithm.

One of the main objectives of this paper is to compare the

performance of various pooling matrices proposed in the liter-

ature, including 2D-pooling [7], P-BEST [8], and Tapestry [9],

[10], using the two-stage DD decoding algorithm. In addition

to these pooling matrices, we also propose a new construction

of a family of pooling matrices from packing the pencil of

lines (PPoL) in a finite projective plane. The family of PPoL

pooling matrices has very nice properties: (i) both the column

correlation and the row correlation are bounded by 1, and (ii)

there is a freedom to choose the construction parameters to

optimize performance. To measure the amount of saving of a

group testing method, we adopt the performance measure,

called the expected relative cost in [6]. The expected relative

cost is defined as the ratio of the expected number of tests

required by the group testing technique to the number of tests

required by the individual testing. We then measure the

expected relative costs of these pooling matrices for a range of

prevalence rates up to 5%. Some of the main findings of our

numerical results are as follows:

(i) There is no pooling matrix that has the lowest relative

cost in the whole range of the prevalence rates consid-

ered in our experiments. To optimize the performance,

one should choose the right pooling matrix, depending

on the prevalence rate.

(ii) The expected relative costs of the two pooling matrices

used in Tapestry [9], [10] are high compared to the

other pooling matrices considered in our experiments.

Its performance, in terms of the expected relative cost,

is even worse than the (optimized) Dorfman two-stage

algorithm. However, Tapestry is capable of decoding

most of the samples in the first stage. In other words,

the percentages of samples that need to go through the

second stage are the smallest among all the pooling

matrices considered in our experiments.

(iii) P-BEST [8] has a very low expected relative cost when

the prevalence rate is below 1%. However, its expected

relative cost increases dramatically when the prevalence

rate is above 1.3%.

(iv) 2D-pooling [7] has a low expected relative cost when the

prevalence rate is near 5%. Unlike Tapestry, P-BEST,

and PPoL that rely on robots for pipetting, the implemen-

tation of 2D-pooling is relatively easy by humans.

(v) There is a PPoL pooling matrix with column weight 3

that outperforms the P-BEST pooling matrix for the

whole range of the prevalence rates considered in our

experiments (up to 5%). We suggest using that PPoL

pooling matrix up to the prevalence rate of 2% and then

switch to other PPoL pooling matrices with respect to

the increase of the prevalence rate. The detailed sugges-

tions are shown in Table IV of Section VI.

The paper is organized as follows: in Section II, we briefly

review the group testing problem, including the mathematical

formulation and the DD decoding algorithm. In Section III, we

introduce the related works that are used in our comparison

study. We then propose the new family of PPoL pooling matri-

ces in Section IV. In Section V, we consider the noisy pooled

testing. In Section VI, we conduct extensive simulations to com-

pare the performance of various pooling matrices using the two-

stage DD algorithm. The paper is concluded in Section VII,

where we discuss possible extensions for future works.

II. REVIEW OF GROUP TESTING

A. The problem statement

Consider the group testing problem withM samples (indexed

from 1; 2; . . . ;M), and N groups (indexed from 1; 2; . . . ; N).

The M samples are pooled into the N groups (pooled samples)

through an N �M binary matrix H ¼ ðhn;mÞ so that the mth

sample is pooled into the nth group if hn;m ¼ 1 (see Fig. 1).

Such a matrix is called the pooling matrix in this paper. Note

that a pooling matrix corresponds to the biadjacency matrix of

an N �M bipartite graph. Let x ¼ ðx1; x2; . . . ; xMÞ be the

binary state vector of the M samples and y ¼ ðy1; y2; . . . ; yNÞ
be the binary state vector of theN groups. Then

y ¼ Hx; (1)

Fig. 1. Pooled testing represented by a bipartite graph.

468 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022



where the matrix operation is under the Boolean algebra (that

replaces the usual addition by the OR operation and the usual

multiplication by the AND operation). The main objective of

group testing is to decode the vector x given the observation

vector y under certain assumptions. In this paper, we adopt the

following basic assumptions for binary samples:

(i) Every sample is binary, i.e., it is either positive (1) or

negative (0).

(ii) Every group is binary, and a group is positive (1) if

there is at least one sample in that group is positive. On

the other hand, a group is negative (0) if all the samples

pooled into that group are negative.

If we test each sample one at a time, then the number of

tests for M samples is M, and the average number of tests per

sample is 1. The key advantage of using group testing is that

the number of tests per sample can be greatly reduced. One

important performance measure of group testing, called the

expected relative cost in [6], is the ratio of the expected num-

ber of tests required by the group testing technique to the num-

ber of tests required by the individual testing. The main

objective of this paper is to compare the expected relative

costs of various group testing methods.

B. The definite defectives (DD) decoding algorithm

In this section, we briefly review the definite defectives

(DD) algorithm (see Algorithm 2.3 of [13]). The DD algo-

rithm first identifies negative samples from a negative testing

result of a group. Such a step is known as the combinatorial

orthogonal matching pursuit (COMP) step. Then the DD algo-

rithm identifies positive samples if they are in a group with

only one positive sample. The detailed steps of the DD algo-

rithm are outlined in Algorithm 1.

In Fig. 2, we provide an illustrating example for Algo-

rithm 1. In Fig. 2(a), the test result of G2 is negative, and

thus the three samples S1, S4 and S5, are decoded to be

negative. In Fig. 2(b), the edges that are connected to the

samples S1, S4 and S5, are removed from the bipartite

graph. In Fig. 2(c), the test results of the two groups G1
and G3 are positive. As S2 is the only sample in G3, S2
is decoded to be positive.

Note that one might not be able to decode all the samples by

the above decoding algorithm. For instance, if a particular

sample is pooled into groups that all have at least one positive

sample, then there is no way to know whether that sample is

positive or negative. As shown in Fig. 3, the sample S3 cannot
be decoded by the DD algorithm as the test results of the three

groups are the same no matter if S3 is positive or not.
As shown in Lemma 2.2 of [13], one important guarantee of

the DD algorithm is that there is no false positive.

Proposition 1: ([13], Lemma 2.2) Assume that all the test-

ing results are correct. Then (i) all the samples that are

decoded to be negative in Step 1 of Algorithm 1 are definite

negatives, and (ii) all the samples that are decoded to be posi-

tive in Step 4 of Algorithm 1 are definite positives. As such,

there are no false positives in Algorithm 1.

In order to resolve all the “un-decoded” samples, we add

another stage by individually testing each “un-decoded” sam-

ple. This leads to the following two-stage DD algorithm in

Algorithm 2.

III. RELATED WORKS

In [14]–[16], it was shown that a single positive sample can

still be detected even in pools of 5-32 samples for the standard

RT-qPCR test of COVID-19. Such an experimental result pro-

vides supporting evidence for group testing of COVID-19. In

the following, we review four group testing strategies pro-

posed in the literature for COVID-19.

The Dorfman two-stage algorithm [17]: For the case that

N ¼ 1, i.e., every sample is pooled into a single group, the

DD2 algorithm is simply the original Dorfman two-stage algo-

rithm [6], i.e., if the group of M samples is tested negative,

then all the M samples are ruled out. Otherwise, all the M
samples are tested individually. Suppose that the prevalence

rate is r1. Then the expected number of tests to decode the M
samples by the Dorfman two-stage algorithm is 1þ ð1� ð1�
r1ÞMÞM. As such, the expected relative cost (defined as the

ratio of the expected number of tests required by the group

testing technique to the number of tests required by the indi-

vidual testing in [6]) is Mþ1
M � ð1� r1ÞM . As shown in Table I

of [6], the optimal group size M is 11 with the expected rela-

tive cost of 20% when the prevalence rate r1 is 1%.

2D-pooling [7]: On a 96-well plate, there are 8 rows and 12

columns. Pool the samples in the same row (column) into a

group. This results in 20 groups for 96 samples. One advan-

tage of this simple 2D-pooling strategy is to minimize pipet-

ting errors.

P-BEST [8]: P-BEST [8] uses a 48� 384 pooling matrix

constructed from the Reed-Solomon code [18] for pooled test-

ing of COVID-19. For the pooling matrix, each sample is

pooled into 6 groups, and each group contains 48 samples.

In [8], the authors proposed using a compressed sensing algo-

rithm called the Gradient Projection for Sparse Reconstruction

(GPSR) algorithm for decoding. Though it is claimed in [8]

that the GPSR algorithm can detect up to 1% of positive car-

riers, there is no guarantee that every decoded sample (by the

GPSR algorithm) is correct.

Algorithm 1. The definite defectives (DD) algorithm for

binary samples

Input AnN �M pooling matrixH and a binary N-vector y of the
group test result.

Output anM-vector for the test results of theM samples.

0: Initially, every sample is marked “un-decoded.”

1: If there is a negative group, then all the samples pooled into that

group are decoded to be negative.

2: The edges of samples decoded to be negative in the bipartite

graph are removed from the graph.

3: Repeat from Step 1 until there is no negative group.

4: If there is a positive group with exactly one (remaining) sample

in that group, then that sample is decoded to positive.

5: Repeat from Step 4 until no more samples can be decoded.
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Tapestry [9], [10]: The Tapestry scheme [9], [10] uses the

Kirkman triples to construct their pooling matrices. For the

pooling matrix in [9], [10], each sample is pooled into 3

groups (in their experiments, some samples are only pooled

into 2 groups). As such, it is sparser than that used by P-

BEST. However, one of the restrictions for the pooling matri-

ces constructed from the Kirkman triples is that the column

weights must be 3. Such a restriction limits its applicability to

optimize its performance according to the prevalence rate. We

note that a compressed-sensing-based decoding algorithm was

proposed in [9], [10]. Such a decoding algorithm further

exploits the viral load (Ct value) of each pool and reconstructs

the Ct value of each positive sample. It is claimed to be viable

not just with low (< 4%) prevalence rates but even with mod-

erate prevalence rates (5%-10%).

IV. PPOL CONSTRUCTIONS OF POOLING MATRICES

In this section, we propose a new family of pooling matrices

from packing the pencil of lines (PPoL) in a finite projective

plane. Our idea of constructing PPoL pooling matrices was

inspired by the constructions of channel hopping sequences in

the rendezvous search problem in cognitive radio networks and

the constructions of grant-free uplink transmission schedules in

5 G networks (see, e.g., [19]–[22]), in particular, the channel

hopping sequences constructed by the PPoL algorithm in [19].

A pooling matrix is said to be ðd1; d2Þ-regular if there are

exactly d1 (resp. d2) nonzero elements in each column (resp.

row). In other words, the degree of every left-hand (resp.

right-hand) node in the corresponding bipartite graph is d1
(resp. d2). The total number of edges in the bipartite graph is

d1M ¼ d2 N for a ðd1; d2Þ-regular pooling matrix H. Define

the (compressing) gain

G ¼ M

N
¼ d2

d1
: (2)

A. Perfect difference sets and finite projective planes

As our construction of the pooling matrix is from packing

the pencil of lines in a finite projective plane, we first briefly

review the notions of difference sets and finite projective

planes.

Definition 2: (Difference sets) Let Zp ¼ f0; 1; . . . ; p� 1g.
A set D ¼ fa0; a1; . . . ; ak�1g � Zp is called a ðp; k; �Þ-differ-
ence set if for every ð‘ mod pÞ 6¼ 0, there exist at least �
ordered pairs ðai; ajÞ such that ai � aj ¼ ð‘ mod pÞ, where
ai; aj 2 D. A ðp; k; 1Þ-difference set is said to be perfect if

there exists exactly one ordered pair ðai; ajÞ such that ai �
aj ¼ ð‘ mod pÞ for every ð‘ mod pÞ 6¼ 0.
Definition 3: (Finite projective planes) A finite projective

plane of order m, denoted by PGð2;mÞ, is a collection of

m2 þmþ 1 lines andm2 þmþ 1 points such that

Fig. 2. An illustration for the DD algorithm.

Fig. 3. An un-decoded sample.

TABLE I
ARRANGEMENT OF THE 9 SAMPLES IN A 3� 3 RECTANGULAR GRID

470 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 2, MARCH/APRIL 2022



(P1) every line containsmþ 1 points,
(P2) every point is onmþ 1 lines,
(P3) any two distinct lines intersect at exactly one point, and

(P4) any two distinct points lie on exactly one line.

When m is a prime power, Singer [23] established the con-

nection between an ðm2 þmþ 1;mþ 1; 1Þ-perfect differ-

ence set and a finite projective plane of order m through a

collineation that maps points (resp. lines) to points (resp. lines)

in a finite projective plane. Specifically, suppose that D ¼
fa0; a1; . . . ; amg is an ðm2 þmþ 1;mþ 1; 1Þ-perfect differ-
ence set with

a0 ¼ 0 < a1 ¼ 1 < a2 < . . . ; < am < m2 þmþ 1:

(3)

(i) Let f0; 1; . . . ;m2 þmg be them2 þmþ 1 points.
(ii) Let p ¼ m2 þmþ 1 and D‘ ¼ fða0 þ ‘Þ mod p; ða1 þ

‘Þ mod p; . . . ; ðam þ ‘Þ mod pg, ‘ ¼ 0; 1; 2; . . . ; p� 1
be them2 þmþ 1 lines.

Then these m2 þmþ 1 points and m2 þmþ 1 lines form

a finite projective plane of orderm.

B. The construction algorithm

In this section, we propose the PPoL algorithm for con-

structing pooling matrices. For this, one first constructs an

ðm2 þmþ 1;mþ 1; 1Þ-perfect difference set, D ¼
fa0; a1; . . . ; amg with

a0 ¼ 0 < a1 ¼ 1 < a2 < . . . ; < am < m2 þmþ 1:

(4)

Let p ¼ m2 þmþ 1 and

D‘ ¼ fða0 þ ‘Þ mod p; ða1 þ ‘Þ mod p; . . . ; ðam þ ‘Þ mod pg;
(5)

‘ ¼ 0; 1; 2; . . . ; p� 1 be the p lines in the corresponding finite

projective plane.

It is easy to see that the mþ 1 lines in the corresponding

finite projective plane that contain point 0 are D0; Dp�a1 ;
Dp�a2 ; . . . ; Dp�am . These mþ 1 lines are called the pencil of

lines that contain point 0 (as the pencil point). As the only

intersection of the mþ 1 lines is point 0, these mþ 1 lines,

excluding point 0, are disjoint, and thus can be packed into

Zp. This is formally proved in the following lemma.

Lemma 4: Let D0
p�ai

¼ Dp�ainf0g, i ¼ 1; 2; . . . ;m. Then

fD0; D
0
p�a1

; . . . ; D0
p�am

g is a partition of Zp.

Proof. First, note that fD0; Dp�a1 ; . . . ; Dp�amg are the mþ
1 lines that contain point 0. As any two distinct lines intersect

at exactly one point, we know that for i 6¼ 0,

D0 \D0
p�ai

¼ ? ;

and that for i 6¼ j,

D0
p�ai

\D0
p�aj

¼ ? :

Thus, they are disjoint.

As there are mþ 1 points in D0 and m points in D0
p�ai

,

D0 [D0
p�a1

[ . . . [D0
p�am

contains mþ 1þm2 points.

These mþ 1þm2 points are exactly the set of m2 þmþ 1
points in the finite projective plane of orderm.

In Algorithm 3, we show how one can construct a pooling

matrix from a finite projective plane. The idea is to first con-

struct a bipartite graph with the line nodes on the left and the

point nodes on the right. There is an edge between a point node

and a line node if that point is in that line. Then we start trim-

ming this line-point bipartite graph to achieve the needed com-

pression ratio. Specifically, we select the subgraph with them2

line nodes that do not contain point 0 (on the left) and the d1 m
point nodes in the union of d1 pencil of lines (on the right).

Note that in Algorithm 3, the number of samples has to be

m2. However, this restriction may not be met in practice. A

simple way to tackle this problem is by adding additional

dummy samples to ensure that the total number of samples is

Algorithm 2. The two-stage definite defectives (DD2) algo-

rithm for binary samples

Input AnN �M pooling matrixH and a binary N-vector y of the
group test result.

Output anM-vector for the test results of theM samples.

1: Run the DD algorithm in Algorithm 1.

2: For those “un-decoded” samples, test them one at a time.

Algorithm 3. The PPoL algorithm

Input The number of samples M ¼ m2 with m being a prime

power, and the degree of each sample 1 � d1 � mþ 1.
Output An N �M binary pooling matrix H with M ¼ m2 and

N ¼ d1 m.

1: Let p ¼ m2 þmþ 1 and construct a perfect difference set D ¼
fa0; a1; . . . ; amg in Zp (with a0 ¼ 0 and a1 ¼ 1).

2: For ‘ ¼ 0; 1; . . . ; p� 1, let

D‘ ¼ fða0 þ ‘Þ mod p; ða1 þ ‘Þ mod p; . . . ; ðam þ ‘Þ mod pg
be the p lines.

3: Construct a bipartite graph with the p lines on the left and the p
points on the right. Add an edge between a point node and a line

node if that point is in that line.

4: Remove point 0 and line 0 from the bipartite graph (and the

edges attached to these two nodes). Let G ¼ ðgn;‘Þ be the ðm2 þ
mÞ � ðm2 þmÞ biadjacency matrix of the trimmed bipartite

graph with gn;‘ ¼ 1 if point n is inD‘.

5: Let D0
p�ai

¼ Dp�ainf0g, i ¼ 0; 1; 2; . . . ; m, be the mþ 1 pencil

of lines that contain point 0.

6: Remove the ðp� aiÞth column, i ¼ 1; 2; . . . ;m, in G to form an

ðm2 þmÞ �m2 biadjacency matrix ~G. Note that these m col-

umns correspond to them lines containing point 0.

7: Let B ¼ [d1�1
i¼0 D0

p�ai
(select the first d1 pencil of lines that con-

tain point 0). Remove rows of ~G that are not in B to form a

d1 m�m2 biadjacency matrixH.
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m2. In the literature, there are some sophisticated methods

(see, e.g., the recent work [24]) that further consider the

“balance” issue, i.e., samples should be pooled into groups as

evenly as possible.

Example 5: (A worked example of the PPoL algorithm in

Algorithm 3) Let m ¼ 2, d1 ¼ 1 be the inputs of Algorithm 3.

In Step 1, let p ¼ m2 þmþ 1 ¼ 7 and construct the perfect

difference set D ¼ fa0; a1; a2g ¼ f0; 1; 3g in Z7. In Step 2,

let D0; D1; . . . ; D6 be the 7 lines, where D0 ¼ f0; 1; 3g, D1 ¼
f1; 2; 4g, D2 ¼ f2; 3; 5g, D3 ¼ f3; 4; 6g, D4 ¼ f4; 5; 0g,
D5 ¼ f5; 6; 1g, and D6 ¼ f6; 0; 2g. In Step 3, construct the

bipartite graph with the 7 lines on the left and the 7 points on

the right, and add an edge between a point node and a line

node if that point is in that line. This bipartite graph is shown

in Fig. 4(a). In Step 4, first remove point 0 and line 0 along

with the edges attached to these two nodes from the bipartite

graph. The nodes and the edges that need to be removed are

marked in red in Fig. 4(b), and the trimmed bipartite graph is

shown in Fig. 4(c). Then, let G ¼ ðgn;‘Þ be the 6� 6 biadja-

cency matrix of the trimmed bipartite graph with gn;‘ ¼ 1 if

point n is inD‘, i.e.,

D1 D2 D3 D4 D5 D6

G ¼

1 1 0 0 0 1 0

2 1 1 0 0 0 1

3 0 1 1 0 0 0

4 1 0 1 1 0 0

5 0 1 0 1 1 0

6 0 0 1 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA

(6)

In Step 5, letD0
p�a0

¼ D0
0 ¼ f1; 3g,D0

p�a1
¼ D0

6 ¼ f6; 2g and
D0

p�a2
¼ D0

4 ¼ f4; 5g be the 3 pencil of lines that contain

point 0. In Step 6, remove the ðp� a1Þth = 6th and the

ðp� a2Þth = 4th columns in G to form a 6� 4 biadjacency

matrix ~G, i.e.,

G ¼

1 0 0 0 1 0

1 1 0 0 0 1

0 1 1 0 0 0

1 0 1 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA

)

1 0 0 1

1 1 0 0

0 1 1 0

1 0 1 0

0 1 0 1

0 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA

¼ ~G

(7)

The two lines that need to be removed are marked in red in

Fig. 4(d), and the bipartite graph after removing the two lines

are shown in Fig. 4(e). In Step 7, let B ¼ [d1�1
i¼0 D0

p�ai
¼

D0
p�a0

¼ D0
0 ¼ f1; 3g. Then, remove rows of ~G that are not in

B to form a 2� 4 biadjacency matrixH, i.e.,

~G ¼

1 0 0 1

1 1 0 0

0 1 1 0

1 0 1 0

0 1 0 1

0 0 1 1

0
BBBBBBBB@

1
CCCCCCCCA

) 1 0 0 1

0 1 1 0

� �
¼ H (8)

The points in setB along with the edges attached to these nodes

are marked in red in Fig. 4(f). The output of Algorithm 3 in this

example is the 2� 4 binary pooling matrixH.

Fig. 4. An example to demonstrate how the PPoL algorithm in Algorithm 3 works.
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Proposition 6: The degree of a line node is d1 and the

degree of a point node ism.

Proof: As the remaining lines are the lines not containing

point 0, each line then intersects withD0
p�ai

at exactly one point.

Since there are d1 pencil of lines that contain point 0, each line

then intersects withB ¼ [d1
i¼1D

0
p�ai

at exactly d1 points. On the
other hand, each of the points inB is in a line that contains point

0. As the lines that contain point 0 are removed, each point inB
is inm lines of the remainingm2 lines.

Proposition 7: There is at most one common nonzero ele-

ment in two rows (resp. columns) in the pooling matrix H
from Algorithm 3, i.e., the inner product of two row vectors

(resp. column vectors) is at most 1.

Proof: This is because the bipartite graph with the biadja-

cency matrix H is a subgraph of the line-point bipartite graph

corresponding to a finite projective plane. From (P3) and (P4)

of Definition 3, any two distinct lines intersect at exactly one

point, and any two distinct points lie on exactly one line.

Thus, there is at most one common nonzero element in two

rows (resp. columns) inH from Algorithm 3.

Corollary 8: The girth (the minimum length of a cycle) of

the bipartite graph with biadjacency matrixH is at least 6.

Proof: As the length of a cycle in a bipartite graph must be

an even number, it suffices to show that there does not exist a

cycle of length 4. We prove this by contradiction. Suppose

that there is a cycle of length 4. Suppose that this cycle con-

tains two line nodes L1 and L2 and two point nodes P1 and

P2. Then the intersection of the two lines L1 and L2 contains

two points P1 and P2. This contradicts (P3) in Definition 3.

Theorem 9: Consider using the d1 m�m2 pooling matrix

H from Algorithm 3 for a binary state vector x in a noiseless

setting. If the number of positive samples in x is not larger

than d1 � 1, then every sample can be correctly decoded by

the DD algorithm in Algorithm 1.

Proof: Suppose that there are at most d1 � 1 positive sam-

ples. We first show that every negative sample can be correctly

decoded by the DD algorithm in Algorithm 1. Consider a nega-

tive sample. Since there are at most d1 � 1 positive samples that

can be pooled into the d1 groups of this negative sample, and

two different samples can be in a common group at most once

(Proposition 7), there must be at least one group without positive

samples (among the d1 groups of this negative sample). Thus,

this negative sample can be correctly decoded. Now consider a

positive sample. Since there are at most d1 � 2 positive samples

that can be pooled into the d1 groups of this positive sample, and

two different samples can be in a common group at most once

(Proposition 7), there must be at least one group in which this

positive sample is the only positive sample. Thus, every positive

sample can be correctly decoded.

C. Connection between the PPoL algorithm and the shifted

transversal design

We note that there are other methods that can also generate

bipartite graphs that satisfy the property in Proposition 7. For

instance, in the recent paper [25], T€aufer used the shifted trans-

versal design to generate “mutlipools” (in Definition 1 of [25])

that satisfy the property in Proposition 7 when m is a prime (in

Theorem 3 of [25]). In this section, we establish the connection

between the PPoL design and the shift transversal design when

m is restricted to a prime. We do this by identifying a mapping

between these two designs in the following example.

Example 10: Consider m ¼ 3 in the PPoL algorithm. Then

let p ¼ m2 þmþ 1 ¼ 13, and D0 ¼ fa0; a1; a2; a3g ¼
f0; 1; 4; 6g be a perfect difference set in Z13. By using the PPoL

algorithm in Algorithm 3, we obtain a bipartite graph with 9

samples (lines) and 12 groups (points) in Fig. 5. In the following,

we discuss the four cases with d1 ¼ 1; 2; 3; 4, respectively.
(i) If d1 ¼ 1, D0

p�a0
¼ D0

0 ¼ f1; 4; 6g. Then D1; D10; D8

are in group 1, D4; D3; D11 are in group 4, and

D5; D2; D6 are in group 6. Thus, every sample is con-

tained in d1 ¼ 1 group. (See the black points and lines

in Fig. 5.)

(ii) If d1 ¼ 2, D0
p�a0

¼ D0
0 ¼ f1; 4; 6g and D0

p�a1
¼ D0

12 ¼
f12; 3; 5g. Then, in addition to the pooling results in (i),

D1; D4; D5 are in group 5, D10; D3; D2 are in group 3,

and D8; D11; D6 are in group 12. Thus, every sample is

contained in d1 ¼ 2 groups. (See the black and green

ones in Fig. 5.)

(iii) If d1 ¼ 3, D0
p�a0

¼ D0
0 ¼ f1; 4; 6g, D0

p�a1
¼ D0

12 ¼
f12; 3; 5g, and D0

p�a2
¼ D0

9 ¼ f9; 10; 2g. Then, in addi-

tion to the pooling results in (i) and (ii),D8;D3;D5 are in

group 9, D10;D4;D6 are in group 10, and D1;D11;D2

are in group 2. Thus, every sample is contained in d1 ¼ 3
groups. (See the black, green, and red ones in Fig. 5.)

(iv) If d1 ¼ 4, D0
p�a0

¼ D0
0 ¼ f1; 4; 6g, D0

p�a1
¼ D0

12 ¼
f12; 3; 5g, D0

p�a2
¼ D0

9 ¼ f9; 10; 2g, and D0
p�a3

¼
D0

7 ¼ f7; 8; 11g. Then, in addition to the pooling results

in (i), (ii) and (iii),D1;D3;D6 are in group 7,D8;D4;D2

are in group 8, and D5;D10;D11 are in group 11. Thus,

every sample is contained in d1 ¼ 4 groups. (See the

black, green, red, and orange ones in Fig. 5.)

The above PPoL pooling strategy is the same as

ðN;n; kÞ ¼ ðm2;m; d1Þ-multipool in the shifted transversal

design [25] if we arrange the 9 samples in the 3� 3-square in
Table I. Specifically, pooling along rows yields the three

groups fD1; D10; D8g, fD4; D3; D11g, and fD5; D2; D6g.
This corresponds to the case with d1 ¼ 1 in the PPoL design.

Fig. 5. The bipartite graph obtained by using Algorithm 3 for Example10.
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On the other hand, pooling along columns yields the three

groups fD1; D4; D5g, fD10; D3; D2g, and fD8; D11; D6g.
This corresponds to the case with d1 ¼ 2 in the PPoL design.

Moreover, pooling with slope 1 (resp. 2) corresponds to the

case with d1 ¼ 3 (resp. d1 ¼ 4).
In fact, these two constructions are closely related to

orthogonal Latin squares [26]. For n ¼ 3 (which is a prime

power), there are exactly n� 1 ¼ 2mutually orthogonal Latin

squares: fCðrÞ ¼ c
ðrÞ
i;j : r ¼ 1; 2g, where cðrÞi;j ¼ ðr � iþ jÞ is in

GF(3). With the “vertical” and “horizontal” cases, the maxi-

mum number of multiplicity k in the shifted transversal design

is nþ 1 ¼ 4. Similarly, the maximum number of d1 in the

PPoL algorithm is mþ 1 ¼ 4. Moreover, pooling matrices

that satisfy the decoding property in Theorem 9 are known as

the superimposed codes in [27].

D. Probabilistic analysis of the PPoL pooling matrices

In this section, we conduct a probabilistic analysis of the

PPoL pooling matrices. We make the following assumption:

(A1) All the samples are i.i.d. Bernoulli random variables. A

sample is positive (resp. negative) with probability r1
(resp. r0). The probability r1 is known as the prevalence
rate in the literature.

Note that r1 þ r0 ¼ 1. Also, let q1 (resp. q0) be the probabil-
ity that the group end of a randomly selected edge is positive

(resp. negative). Excluding the randomly selected edge, there

are d2 � 1 remaining edges in that group, and thus

q0 ¼ ðr0Þd2�1; (9Þ
q1 ¼ 1� ðr0Þd2�1: (10Þ

Let p0 be the conditional probability that a sample cannot be

decoded, given that the sample is a negative sample. Note that a

negative sample can be decoded if at least one of its edges is in a

negative group, excluding its edge (see Fig. 6). Consider a nega-

tive sample, called the tagged sample. Since the girth of the

bipartite graph of the pooling matrix is 6 (as shown in Corollary

8), the samples in the d1 groups of the subtree of the tagged sam-

ple are distinct (see the tree expansion in Fig. 6). Thus,

p0 ¼ ðq1Þd1 ¼ ð1� ðr0Þd2�1Þd1 : (11)

Let p̂0 be the conditional probability that the sample end of

a randomly selected edge cannot be decoded, given that the

sample end is a negative sample. Note that the excess degree

of a sample (excluding the randomly selected edge) is d1 � 1.
Analogous to the argument for (11) (see the bottom subtree of

the tree expansion in Fig. 7), we have

p̂0 ¼ ðq1Þd1�1 ¼ ð1� ðr0Þd2�1Þd1�1: (12)

Let p1 be the conditional probability that a sample cannot

be decoded given that the sample is a positive sample. Note

that a positive sample can be decoded if at least one of its

edges is in a group in which all the edges are removed except

the edge of the positive sample. Since an edge is removed if

its sample end is a negative sample and that sample end is

decoded to be negative, the probability that an edge is

removed is ð1� p̂0Þr0. If the tree expansion in Fig. 7 is actu-

ally a tree, then

p1 ¼ ð1� ðr0ð1� p̂0ÞÞd2�1Þd1 : (13)

We note that the tree expansion in Fig. 7 may not be a tree

for a PPoL pooling matrix generated from Algorithm 3, the

identity in (13) is only an approximation. A sufficient condi-

tion for the tree expansion in Fig. 7 to be a tree of depth 4 is

that the girth of the bipartite graph is larger than 8. (If the

graph in Fig. 7 is not a tree, i.e., there is a loop in that graph,

then the girth of the bipartite graph is less than or equal to 8.)

Unfortunately, the girth of a PPoL pooling matrix can only be

proved to be at least 6. Since a sample cannot be decoded with

probability r0p0 þ r1p1, the average number of tests needed

for the DD2 algorithm in Algorithm 2 to decode the M sam-

ples is N þMðr0p0 þ r1p1Þ. The expected relative cost for

the DD2 algorithm with an N �M pooling matrix is

N þMðr0p0 þ r1p1Þ
M

¼ 1

G
þ r0p0 þ r1p1; (14)

where G ¼ M=N is the (compressing) gain of the pooling

matrix in (2). Note that for a ðd1; d2Þ-regular pooling matrix,

we have from (2) that G ¼ d2=d1. Thus, we can use (11), (13)

and (14) to find the ðd1; d2Þ-regular pooling matrix that has the

lowest expected relative cost (though (13) is only an approxi-

mation for the pooling matrices constructed from the PPoL

algorithm). In Table II, we use grid search to find the

ðd1; d2Þ-regular pooling matrix with the lowest expected

Fig. 6. Computing the conditional probability p0 by the tree evaluation
method.

Fig. 7. Computing the conditional probability p1 by the tree evaluation
method.
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relative cost for various prevalence rates r1 up to 10%. The

search regions for the grid search are 2 � d1 � 8 and d1 �
d2 � 31. In the last column of this table, we also show the

expected relative cost of the Dorfman two-stage algorithm

(Table I of [6]). As shown in this table, using the DD2 algo-

rithm (with the optimal pooling matrices) has significant gains

over the Dorfman two-stage algorithm. Unfortunately, not

every optimal ðd1; d2Þ-regular pooling matrix in Table II can

be constructed by using the PPoL algorithm in Algorithm 3. In

Section VI, we will look for suboptimal pooling matrices that

have small performance degradation.

V. NOISY DECODING

In this section, we consider decoding for noisy binary sam-

ples. For this, we introduce the noisy model in [13].

Definition 11: Define the probability transition function

pð1jk; ‘Þ (resp. pð0jk; ‘Þ) such that a group containing k sam-

ples, ‘ of which are positive, the test result for the group is

positive (resp. negative).

For the noiseless model discussed in the previous section,

we have

pð1jk; ‘Þ ¼ 1 if ‘ � 1

0 otherwise

�
; (15Þ

pð0jk; ‘Þ ¼ 1 if ‘ ¼ 0

0 otherwise

�
: (16Þ

There are several noisy models proposed in the literature

(see, e.g., the monograph [13]). Among them, the dilution

noise model might be a suitable one for the rt-PCR test. In the

dilution noise model, the test result of a group containing ‘
positive samples follows a binomial distribution with parame-

ters ‘ and 1� �. Intuitively, a positive sample included in a

group can be “diluted” with probability �. The parameter � is
called the dilution probability. The transition probability func-

tions for the dilution noise model are

pð1jk; ‘Þ ¼ 1� �‘; (17Þ
pð0jk; ‘Þ ¼ �‘; (18Þ

for all k; ‘ � 0. Another way to view the dilution model is to

view the bipartite graph (of the pooling matrix) as a random

weighted graph, where the edge weights of the edges are inde-

pendent Bernoulli random variables with parameter 1� �. In

the following analysis, we say an edge is diluted (resp. not

diluted) if its edge weight is 0 (resp. 1). When an edge is

diluted, the sample end of that edge does not affect the testing

result of the group end of that edge. On the other hand, when

an edge is not diluted and its sample end is positive, then the

group end of that edge is positive.

For the dilutionmodel, theremight be false negatives and false

positives if we use the DD algorithm for decoding. This is

because a positive sample might be diluted during the pooling

process and thus mistakenly decoded as a negative sample. On

the other hand, a negative sample might be pooled into a group

with a false negative and thus be mistakenly decoded as a posi-

tive sample by the DD algorithm (that assumes the only remain-

ing sample in a positive group is positive). In order to ensure that

there are no false positives, we could only run the COMP step in

the DD algorithm and have the un-decoded samples tested one at

a time at the second stage. However, there are still false negatives

due to dilution. To reduce the false negatives, we propose using

the K-combinatorial orthogonal matching pursuit (K-COMP)

algorithm (see Algorithm 4) that only decodes negative samples

if there are in at least K negative groups. When K ¼ 1, this
reduces to the original COMP step in the DD algorithm.

Now we provide a probabilistic analysis of the K-COMP

algorithm. As in Section IV-D, we let q0 be the probability

that the group end of a randomly selected edge is negative.

Excluding the randomly selected edge, there are d2 � 1
remaining edges in that group. Conditioning on the event that

‘ edges of these d2 � 1 remaining edges are not diluted, the

probability that the group end of a randomly selected edge is

negative is r‘0 (as in (9)). Thus, we have

q0 ¼
Xd2�1

‘¼0

r‘0
d2 � 1

‘

� �
ð1� �Þ‘�d2�1�‘

¼ ðr0 þ r1�Þd2�1:

(19)

Following the argument in Section IV-D, let p0 be the con-
ditional probability that a sample cannot be decoded, given

that the sample is a negative sample. Note that a negative sam-

ple can be decoded if at least K of its edges are in negative

groups, excluding its edges. Thus,

p0 ¼ 1�
Xd1
k¼K

d1

k

� �
ðq0Þkð1� q0Þd1�k

¼
XK�1

k¼0

d1

k

� �
ðq0Þkð1� q0Þd1�k:

(20)

TABLE II
THE ðd1; d2Þ-REGULAR POOLING MATRIX WITH THE LOWEST EXPECTED

RELATIVE COST FROM (14)

Algorithm 4. The K-combinatorial orthogonal matching pur-

suit (K-COMP) algorithm for diluted binary samples

Input An N �M pooling matrix H and a binaryN-vector y of the
group test result.

Output anM-vector for the test results of theM samples.

0: Initially, every sample is marked “un-decoded.”

1: If a sample is pooled in at least K negative groups, then that

sample is decoded to be negative.

2: For those “un-decoded” samples, test them one at a time.
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where q0 is in (19). We note that (20) reduced to (11) when

K ¼ 1.
Now, we compute the false negative rate, FNR, which is

defined as the conditional probability that a sample is decoded

to be negative, given that the sample is a positive sample. Con-

sider a positive sample. Conditioning on the event that ~d1 edges
of these d1 edges of this positive sample are diluted, the proba-

bility that this positive sample is decoded to be negative is

X~d1
k¼K

~d1

k

 !
ðq0Þkð1� q0Þ~d1�k; (21)

as shown in (20). Thus,

FNR ¼
Xd1
~d1¼K

X~d1
k¼K

~d1

k

 !
ðq0Þkð1� q0Þ~d1�k

0
@

1
A

d1
~d1

� �
ð�Þ~d1ð1� �Þd1�~d1 :

(22)

In particular, forK ¼ 1, we have

FNR ¼ 1� ð1� q0�Þd1 : (23)

Now, we compute the true positive rate, TPR, or sensitivity,
which is defined as the conditional probability that a sample is

decoded to be positive, given that the sample is a positive sample.

TPR ¼ 1� FNR ¼ ð1� q0�Þd1 : (24)

The expected number of un-decoded samples after Step 1 of

the K-COMP algorithm is Mðr0p0 þ r1 � TPRÞ. Thus, the

expected relative cost for theK-COMP algorithm is

N þMðr0p0 þ r1 � TPRÞ
M

¼ 1

G
þ r0p0 þ r1 � TPR: (25)

VI. NUMERICAL RESULTS

A. Noiseless decoding

In this section, we compare the performance of various

pooling matrices by using the DD2 algorithm in Algorithm 2.

The first four pooling matrices are constructed by using the

PPoL algorithm in Algorithm 3 with the parameters ðm; d1Þ ¼
ð31; 3Þ, (23,4), (13,3), and (7,2), respectively. The fifth pool-

ing matrix is the pooling matrix used in P-BEST [8]. The sixth

matrix is the 15� 35 pooling matrix constructed by the Kirk-

man triples. The next two pooling matrices are used in Tapes-

try [9], [10]. The last pooling matrix is the 2D-pooling matrix

in [7]. In Table III, we show the basic information of these

pooling matrices. The size of an N �M pooling matrix indi-

cates that the number of groups is N , and the number of sam-

ples is M. The parameter d1 is the number of groups in which

a sample is pooled. On the other hand, d2 is the number of

samples in a group. Note that there are some pooling matrices

that are not ðd1; d2Þ-regular. For instance, in the 2D-pooling

matrix, there are 8 groups with 12 samples and 12 groups with

8 samples. Also, both the 16� 40 matrix and the 24� 60
matrix used in Tapestry are not ðd1; d2Þ-regular. The column

marked with row cor. (resp. col. cor.) is the maximum of the

inner product of two rows (resp. columns) in a pooling matrix.

For a pooling matrix, the column marked with girth is the min-

imum length of a cycle in the bipartite graph corresponding to

that pooling matrix. The column marked with (comp.) gain is

the compressing gain G of a pooling matrix, which is the ratio

of the number of columns (samples) to the number of rows

(groups), i.e., G ¼ M=N . As shown in Table III, both the row

correlation and the column correlation of the pooling matrices

constructed from the PPoL algorithm in Algorithm 3 are 1. So

are the 15� 35 pooling matrix constructed by the Kirkman tri-

ples. Such a correlation result is expected from Proposition 7.

On the other hand, the row correlation and the column correla-

tion of the pooling matrix in P-BEST [8] are 6 and 2, respec-

tively. Also, the girth of the pooling matrix in P-BEST is only

4, which is smaller than the other four matrices. The girth of

the 16� 40 pooling matrix in Tapestry is also 4. This shows

that the pooling matrices from the PPoL algorithm are more

“spread-out” than the pooling matrix in P-BEST and the 16�
40 pooling matrix in Tapestry.

In practical situations, the prevalence rates of COVID-19

are basically in the range of 0% to 5%. As such, we conduct

10,000 independent experiments for each value of the preva-

lence rate r1 in this range to compare the performance of pool-

ing matrices in Table III. Each numerical result is obtained by

averaging over these 10,000 independent experiments. Thus,

we believe the simulation results should be applicable to prac-

tical situations.

In Fig. 8, we show the (measured) conditional probability p0
(that a sample cannot be decoded given it is a negative sam-

ple) for these pooling matrices. For the PPoL pooling matri-

ces, the measured p0’s match extremely well with the

theoretical results from (11). As shown in this figure, the Kirk-

man matrix and the two matrices in Tapestry have the best

performance. This is because their d2’s (the number of sam-

ples in a group) are small (below 9 for these three matrices).

As such, the probability that a group is tested negative is

higher than the other pooling matrices. Note that these three

matrices also have low (compressing) gains, 2.33-2.5. On the

other hand, P-BEST has the worst performance for p0 as the

number of samples in a group for that matrix is 48, which is

the largest among all these pooling matrices.

In Fig. 9, we show the (measured) conditional probability p1
(that a sample cannot be decoded given it is a positive sample)

for these pooling matrices. Once again, the Kirkman matrix

and the two matrices in Tapestry have the best performance.

This is mainly due to the low (compressing) gains of these

three matrices. Though not shown in Fig. 9, we note that the

TABLE III
BASIC INFORMATION OF SOME POOLING MATRICES
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measured p1’s are very close to those from (13), and thus the

tree expansion in Fig. 7 is actually tree-like.

As discussed in Section IV-D, the probability that a sample

cannot be decoded is r0p0 þ r1p1. Such a probability is also

the probability that a sample needs to go through the second

stage for individual testing. In Fig. 10, we show the probability

r0p0 þ r1p1 as a function of the prevalence rate r1 for various
pooling matrices. As shown in this figure, the Kirkman matrix

and the two matrices in Tapestry have the best performance.

Once again, this is mainly due to the low (compressing) gains

of these three matrices. We note that it takes time to do the

second test. The numerical results in Fig. 10 imply that using

the Kirkman matrix (or the two matrices in Tapestry) has the

shortest expected time to obtain a testing result.

A fair comparison of these pooling matrices is to measure

their expected relative costs (defined in [6]). Recall that the

expected relative cost is the ratio of the expected number of

tests required by the group testing technique to the number of

tests required by the individual testing. In Fig. 11, we show

the (measured) expected relative costs for these pooling matri-

ces. In this figure, we also plot the curve for the Dorfman two-

stage algorithm (the black curve) with the optimal group size

M chosen from Table 1 of [6] for the prevalence rates,

1%; 2%; . . . ; 5%. To our surprise, the curves for the Kirkman

matrix and the two matrices in Tapestry are above the black

curve. This means that the expected relative costs of these

three matrices are higher than the (optimized) Dorfman two-

stage algorithm. Thus, if the additional amount of time to go

through the second stage is not critical, using other pooling

matrices could lead to more cost reduction than using these

three matrices. There are several pooling matrices that have

very low relative costs when the prevalence rates are below

1%. The P-BEST pooling matrix is one of them. However, the

relative cost of the P-BEST pooling matrix increases dramati-

cally when the prevalence rates are above 1.3%. Moreover,

the P-BEST pooling matrix has a higher relative cost than the

(optimized) Dorfman two-stage algorithm when the preva-

lence rate is above 2.5%. On the other hand, 2D-pooling has a

very low relative cost when the prevalence rates are above

2.5%. To summarize, there does not exist a pooling matrix

that has the lowest relative cost in the whole range of the prev-

alence rates considered in our experiments.

To optimize the performance, one should choose the right

pooling matrix, depending on the prevalence rate. However,

this might be difficult as the exact prevalence rate of a new

Fig. 9. The conditional probability p1 (that a sample cannot be decoded
given it is a positive sample) as a function of the prevalence rate r1 for various
pooling matrices.

Fig. 10. The probability r0p0 þ r1p1 (that a sample cannot be decoded at the
first stage and should be tested individually at the second stage) as a function
of the prevalence rate r1 for various pooling matrices.

Fig. 11. The expected relative cost as a function of the prevalence rate r1 for
various pooling matrices.

Fig. 8. The conditional probability p0 (that a sample cannot be decoded
given it is a negative sample) as a function of the prevalence rate r1 for various
pooling matrices.
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outbreak of COVID-19 in a region might not be known in

advance. Our suggestion is to use suboptimal PPoL matrices

for a range of prevalence rates, as shown in Table IV. As

shown in this table, the costs computed from the theoretical

approximations in (14) and the costs measured from simula-

tions are very close, and they are within 2% of the minimum

costs for ðd1; d2Þ-regular pooling matrices in Table II. From

our numerical results in Fig. 11, we suggest using the PPoL

matrix with d1 ¼ 3 and d2 ¼ 31 when the prevalence rate r1 is
below 2%. In this range of prevalence rates, its expected rela-

tive cost is even smaller than that of P-BEST. Moreover, it

can achieve an 8-fold reduction in test costs when the preva-

lence rate is near 1% (as shown in Table IV), and most sam-

ples can be decoded in the first stage (as shown in Fig. 10).

When the prevalence rate r1 is between 2%-4%, we suggest

using the PPoL matrix with d1 ¼ 4 and d2 ¼ 23. In this range

of prevalence rates, using such a pooling matrix can still

achieve (at least) a 3-fold reduction in test costs. Roughly,

17% of samples need to go through the second stage when the

prevalence rate is near 4% (as shown in Fig. 10). When the

prevalence rate r1 is between 4%-7%, we suggest using the

PPoL matrix with d1 ¼ 3 and d2 ¼ 13, and it can still achieve

(at least) a 2-fold reduction in test costs. When the prevalence

rate r1 is between 7%-10%, we suggest using the PPoL matrix

with d1 ¼ 2 and d2 ¼ 7. Though its expected relative cost is

still lower than that of the Dorfman two-stage algorithm, the

difference is small.

B. Noisy decoding

In this section, we compare the performance of various

pooling matrices in the noisy case. The pooling matrices are

the same as those in Section VI-A. We consider two dilution

probabilities � ¼ 0:01 and � ¼ 0:1 in the dilution noise model.

For the noisy decoding, we use the K-COMP algorithm with

K ¼ 1 andK ¼ 2 in Algorithm 4.

To compare the performance of these pooling matrices in

the noisy case, we conduct 10,000 independent experiments

for each value of the prevalence rate r1, ranging from 0% to

5%. Each numerical result is obtained by averaging over these

10,000 independent experiments. In Fig. 12, we show the sen-

sitivity for these pooling matrices using the 1-COMP decoding

algorithm. For � ¼ 0:01, we observe that the performances of

all pooling matrices are comparable. For � ¼ 0:1, the PPoL

(7,2) matrix and the 2D-pooling matrix have the best perfor-

mance, while the P-BEST pooling matrix has the worst result

when the prevalence rate r1 is less than 1.5%. The results can

be explained from the value of d1, the degree of each sample.

Specifically, if one of the edges of a positive sample is diluted,

then such a sample may be decoded as a negative one. Conse-

quently, the larger d1 results in the worse performance. In this

figure, we also observe that the sensitivity increases in r1. The
reason is that by using the 1-COMP decoding algorithm, there

are more un-decoded samples as r1 increases. Such un-

decoded samples are tested individually at the second stage.

This contributes to more true positive samples.

In Fig. 13, we show the expected relative costs for these

pooling matrices using the 1-COMP decoding algorithm.

When r1 is below 1.5%, the value of � has little effect on the

expected relative costs for all pooling matrices. This is

because the number of positive samples is small under low

prevalence rates, and hence most of the samples can be

decoded at the first stage. The same argument also explains

that the higher (compressing) gain of the pooling matrix leads

to a lower expected relative cost when r1 is below 2%. More-

over, as r1 increases, we observe that the expected relative

costs of the P-BEST matrix and the PPoL(31,3) rise dramati-

cally. The reason is that they have larger d2’s. Specifically, if

TABLE IV
SUBOPTIMAL PPOL POOLING MATRICES. r1: PREVALENCE RATES; d1 AND d2:
PARAMETERS OF PPOL POOLING MATRICES; COST (14): COSTS COMPUTED

FROM THE THEORETICAL APPROXIMATIONS IN (14); COST (SIM): COSTS

MEASURED FROM SIMULATIONS; DORFMAN [6]: COSTS BY THE DORFMAN

TWO-STAGE ALGORITHM

Fig. 12. The sensitivity as a function of the prevalence rate r1 for various
pooling matrices under the dilution noise � by using the 1-COMP decoding
algorithm.

Fig. 13. The expected relative cost as a function of the prevalence rate r1 for
various pooling matrices under the dilution noise � by using the 1-COMP
decoding algorithm.
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a single group contains more samples, this group is more

likely to be positive and thus cannot be decoded at the first

stage.

In Fig. 14 and Fig. 15, we show the sensitivity and the

expected relative costs, respectively, for the pooling matrices

using the 2-COMP decoding algorithm. Compare with the

results of K ¼ 1, the sensitivity of K ¼ 2 shows a consider-

able improvement when � ¼ 0:1. The reason is that for K ¼
2, a sample can be decoded as negative only when this sample

is pooled in at least 2 negative groups. This greatly enhances

the sensitivity, but the expected relative costs increase because

more samples need to be tested at the second stage.

In Fig. 13 and Fig. 15, we also plot the curve for the Dorf-

man two-stage algorithm (the black curve) with its optimal

group size for the prevalence rates, 1%; 2%; . . . ; 5%. We can

see that when K ¼ 1, the PPoL(31,3), the P-BEST matrix, the

2D-pooling matrix, and the PPoL(23,4) have lower expected

relative costs than that of the Dorfman two-stage algorithm

because of their higher (compressing) gains. When K ¼ 2,
none of these matrices outperforms the Dorfman two-stage

algorithm in terms of the expected relative costs.

To sum up, in the dilution noise model, the sensitivity of the

1-COMP decoding algorithm in Algorithm 4 decrease signifi-

cantly with respect to the increase of the dilution noise.

Though using the 2-COMP decoding algorithm in Algorithm

4 results in a considerable improvement, the expected relative

costs may be higher than those by the Dorfman two-stage

algorithm. Thus, the simple Dorfman method might be a better

strategy for pooled testing in a noisy setting.

VII. CONCLUSION

In this paper, we proposed a new family of PPoL polling

matrices that have maximum column correlation and row

correlation of 1 for a wide range of column weights. Using

the two-stage definite defectives (DD2) decoding algorithm,

we compare their performance with various pooling matrices

proposed in the literature, including 2D-pooling [7], P-

BEST [8], and Tapestry [9], [10]. Our numerical results

showed no pooling matrix with the lowest expected relative

cost in the whole range of the prevalence rates. To optimize

the performance, one should choose the right pooling matrix,

depending on the prevalence rate. As the family of PPoL

matrices can dynamically adjust their construction parame-

ters according to the prevalence rates, it seems that using

such a family of pooling matrices might lead to better cost

reduction than using a fixed pooling matrix. We also con-

sider a noisy setting in this paper. Our numerical results

show a trade-off between the high sensitivity and the low

expected relative costs. As such, when the dilution noise is

not negligible, the simple Dorfman method might be a better

strategy for pooled testing.

In this paper, we only considered binary samples. For ter-

nary samples, there are three test outcomes: negative (0),

weakly positive (1), and strongly positive (2). It seems possi-

ble to extend the DD2 algorithm for binary samples to the set-

ting with ternary samples by using successive cancellations.
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