
An Influence Maximization Algorithm Based
on Community-Topic Features for Dynamic

Social Networks

Xi Qin , Cheng Zhong , and Qingshan Yang

Abstract—Real social networks are huge and continueto expand
rapidly. Most existing dynamic influence maximization (IM)
algorithms are based on the node-to-node propagation model;
hence, they have high time complexity and large storage space
consumption. They usually reduce computational complexity
using a sampling method while sacrificing the influence spread. In
this paper, we propose a topic-aware community independent
cascade (IC) model to reduce the complexity of dynamic IM
without losing accuracy. The proposed model reduces the problem
domain through community-level propagation, and then enhances
the global features by integrating community structural features,
community topic features, and time information into an IC model.
We construct the data structure of the dynamic community index
to avoid recalculation when the network grows. Based on the
dynamic community index, we design a dynamic IM algorithm to
quickly approximate the solution with the ð1� 1

eÞ-approximation
guarantee. The experimental results on real social networks
demonstrated that, compared with existing IM algorithms, the
proposed algorithm had better stability and dynamic adaptability,
higher computational efficiency, and less space consumption
without reducing the approximation ratio and influence spread.

Index Terms—Influence Maximization, Dynamic Social Net-
works, Community Features, Topic-Aware.

I. INTRODUCTION

REAL social networks can quickly spread product news

by virtue of their large user groups and word-of-mouth

effects. Research on the influence maximization (IM) of

social networks has been receiving extensive attention from

academia and industrial fields. There are two important IM

issues in a social network. The first issue is how to identify

the most influential users, we call them seeds, to maximize

the spread of information. The second issue is how to esti-

mate the influence spread of seeds. Domingos [1] and

Richardson [2] proposed the basic algorithm of the IM

problem. Kempe et al. [3] further proposed two classic IM

propagation models: the linear threshold (LT) model and

independent cascade (IC) model. Kempe also proved that

although the IM problem is NP-hard, if the influence propa-

gation function satisfies non-negativity, monotonicity, and

submodularity, then the greedy method can be used to solve

the IM problem with the ð1� 1
e � "Þ-approximation ratio,

where e is the base of the natural logarithm and " is any posi-

tive real number. Subsequently, researchers proposed approx-

imation IM algorithms based on static network models, such

as CELF [4], CELF++[5], TIM [6], and IMM [7]. However,

the topology of the network, propagation probability between

users, and interests of users constantly change over time in a

real social network. Hence, researchers began to further

explore the IM problem in a dynamic network environment.

The dynamic network is modeled as a collection of static net-

work snapshots at multiple time steps. This indicates that the

dynamic IM problem is more complicated than the static IM

problem. Solving the dynamic IM problem not only requires

solving the tracking problem of the dynamic network but

also studying the reduction of the algorithm time-space

complexities.

To reduce the complexity of the dynamic IM problem, we

model the dynamic social network as a set of “community

networks” at multiple time steps and study influence propa-

gation at the community level. We establish a community

feature set to enhance the influence spread of the IM model

by integrating community topological features, community

topic features, and time information. We also design a

dynamic community index (DC-index) structure to record

network changes and dynamically update the results of the

IM algorithm without recalculation. The contributions of this

paper are as follows:

1) We propose a topic-aware community IC (TCIC) model

to reduce the required time-space complexities of

dynamic IM without losing accuracy.

2) We construct the data structure of the DC-index to obtain

the effect of avoiding recalculation when the network

grows. Based on the DC-index, we design a dynamic IM

algorithm to implement the goal of quickly approximating

the solutionwith the ð1� 1
eÞ-approximation guarantee.

3) The experimental results on real social networks

demonstrated that the proposed algorithm is superior

to existing algorithms in terms of influence spread,
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stability, scalability, running time, memory usage, and

acceleration.

The remainder of the paper is organized as follows: In

Section II, we summarize recent work. In Section III, we intro-

duce the TCIC model in detail. In Section IV, we describe the

DC-index structure and algorithm. In Section V, we present

the experimental results. In Section VI, we summarize the

paper and propose future work.

II. RELATED WORK

A. Influence Maximization Analysis in a Dynamic Network

Dynamic IM analysis has become a challenging problem

because of the constantly evolving relationships in real social

networks. In recent years, studies have been conducted on the

IM problem in a dynamic network environment. Aggarwal

et al. [8] expressed the dynamic network as an initial graph

G0 and evolution graph Gt in the time interval ½t; tþ h�, and
proposed a heuristic method to identify the seed set St at time

t whose influence value is the largest at time tþ h. This was
an early solution to the dynamic IM problem. Chen et al. [9]

designed a upper bound interchange (UBI) greedy algorithm

with the 1/2-approximation ratio based on the upper bound-

based lazy forward algorithm [10] and shortest path 1

model [11]. The UBI algorithm is currently only applicable to

IC models. Ohsaka et al. [12] designed a dynamic IM algo-

rithm based on the classic IC model, which uses the index

structure to update the network topology information. Bao

et al. [13] proposed a dynamic IM algorithm called RSB. In

the model training stage, RSB relies on a large amount of

training data to ensure the accuracy of the model. Wang et al.

[14] proposed a general regularized learning framework to

model topic-aware influence propagation in a dynamic net-

work. Li et al. [15] proposed an agent-based long-term influ-

ence automatic maintenance model and a timeliness increase

heuristic algorithm, which can select influential nodes multi-

ple times in a dynamic social network. Then, Li [16] further

proposed a collective intelligence model to investigate influ-

ential nodes in a fully dynamic environment. It occupies many

computers’ running memory when processing a large number

of sample data, and its result falls easily into the local optimal

solution. Meng et al. [17] used the dynamic IC model to

explore dynamic IM problems. Min et al. [18] proposed a new

concept of “time-aware IM,” and designed a topic-based time-

aware greedy algorithm and topic-based time-aware heuristic

algorithm. Yerasani et al. [19] proposed a simple memetic

algorithm to identify seeds that are activated at various time

intervals to maximize the gain of the influence value.

Most existing dynamic IM algorithms are based on the

“node-to-node” diffusion model. The time-space complexity

of these models is high, and the seed search efficiency is low.

B. Community Influence

Community is an important structure in social networks.

Nodes in the community have the characteristics of close topo-

logical correlation, similar focus on topics, and frequent

interaction [20]–[22]. Studies have been conducted that use the

community structure to optimize the IM algorithm. Belak et al.

[23] proposed a cross-community influence analysis frame-

work to provide coarse-grained analysis for social networks.

Eftekhar et al. [24] proposed a coarse-grained propagation

model that examines the social network at the group level. An

IM algorithm that uses this model can quickly identify the most

influential “groups” instead of “individuals,” which greatly

accelerates the IM calculation in a social network. Chen et al.

[25] proposed a community IM algorithm in a static network.

Wang [26] proposed an evolutionary network modeling

method using the community structure. Researchers have

shown that using the community structure can help the IM algo-

rithm to improve the processing power for social networks.

Existing analysis of IM based on the community structure is

not sufficiently good for the adaptability of network evolution.

Additionally, existing algorithms lose features in the commu-

nity abstraction process, which reduces their accuracy.

C. Topic-Aware Influence

The mining of users interests in social networks is a very

important issue that requires topic extraction from the content

to which users pay attention [27]. Therefore, the topic is an

important form of content dissemination in social networks.

Topic-aware IM modeling is an effective extension of topol-

ogy-based modeling. By integrating topic characteristics, the

model can describe IM problems more accurately in a real net-

work. Recently, studies have been conducted on the topic-

aware IM problem. Barbieri et al. [28] proposed an Authorita-

tiveness-Interest Relevance (AIR) model and designed a gener-

alized expectation maximization algorithm to learn the

parameters in the AIR model. Aslay et al. [29] proposed a tree-

based index to quickly search seeds for the topic-aware IM

problem. Wei et al. [30] studied the pre-processing of real-time

topic-aware IM to avoid recalculating the IM for each topic.

Chen et al. [31] proposed an maximum influence arborescence

algorithm to approximate the influence propagation using the

local tree structure of nodes. This algorithm is different from

those in the topic-aware IM studies that used edge topic depen-

dence to establish a propagation model. Li et al. [32] proposed

a real-time topic-aware maximization algorithm based on node

topic-relevant target modeling. Wang et al. [14] designed a

general regular learning framework to model the influence

propagation of topic perception in a dynamic network.

Most existing topic-aware IM algorithms are based on

node-to-node propagation models. Although the accuracy and

influence spread of the algorithm have been improved, the cal-

culation efficiency is not high.

III. PROBLEM MODELING

In this section, we introduce the TCIC model and formalize

the IM problem in a dynamic network environment. Table I

shows the symbols used in the model.
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A. Diffusion Model

In the classic IC model, the social network is represented as

a directed graph G ¼ ðV;EÞ, where V denotes the set of indi-

vidual nodes in the network and E denotes the set of social

relationships between individual nodes. Each user u 2 V has a

status of either inactive or active, and the status does not return

to inactive after the user is activated. Each edge ðu; vÞ 2 E has

a propagation probability pðu; vÞ that represents the strength

of the influence of user u on user v. Propagation starts from

the seed S and proceeds in discrete time steps. When user u is

activated in time step t, it attempts to activate all inactive

neighbors in time step tþ 1.
To use the community feature to reduce the calculation com-

plexity, we redefine the IC model at the community level. We

define community C as a super node C ¼ ðCV;CEÞ, where
CV � V is a group of users that belong to the community and

CE � E is a group of relationships between community mem-

bers. The out-degree d�C and in-degree dþC of the super node C
refer to the sum of the out-degree and sum of the in-degree of

all members in community C, respectively. Based on the super

nodes, we describe the social network asGcom ¼ ðVcom;EcomÞ,

where Vcom ¼ fC1; C2; . . . ; Cmg represents the set of super

nodes,m ¼ jVcomj, and Ecom={ðcu; cvÞ; cu 2 Ca; cv 2 Cb, and

Ca; Cb 2 Vcom; 1 � a; b � m, a 6¼ bg represents the set of

social relations between super nodes. Each super node C 2
Vcom has a target probability pC . Among the activated super

nodes, the top M super nodes with the strongest influence are

called community seeds. The diffusion process of the commu-

nity IC model has two stages: community activation and intra-

community spread. Starting from community C, the influence

diffusion process is performed on Gcom as follows: when the

communityC is activated at time step t, the internal nodes ofC
are affected with probability q at time step tþ 1, and at time

step tþ 2, the newly added activation node in community C
influences neighboring communitiesNC . Neighboring commu-

nity N 2 NC is activated with target probability pN , and com-

munity C continues to activate internal nodes simultaneously.

The diffusion process of the TCIC model is shown in Fig. 1.

Given community seed set Scom, its influence value is defined

as the expected number of activated individual nodes at the end

of the diffusion process, represented by influence function

sðScomÞ. The IM problem based on the TCIC model aims to

identify S�com � Vcom that maximizes sðS�comÞ among all sets of

size at mostM. Formally, the IM problem is defined as the fol-

lowing optimization problem:

S�com ¼ argmax sðScomÞ; jScomj �M: (1)

To calculate the target probability pC of the community

(super node) C in TCIC model, we define the community fea-

ture set FC ¼ ðfC1; fC2Þ, where fC1 represents the influence

of community C on other communities and fC2 represents the

acceptance of community C of external influences. We calcu-

late the two features using the information transmission calcu-

lation [23]. Assume that there are two communities cu and cv,
where cv pays attention to cu. We use wcu;cv to represent the

weight of cu’s influence on cv, and define it as follows:

wcu;cv ¼ rcv;cu
d�cv

; (2)

where rcv;cu represents the total number of users in community

cv that follow the users in community cu, d�cv denotes the sum
of the outgoing degrees of community cv. fC1 ¼ ðwCC1

; wCC2
;

. . . ; wCCmÞ; fC2 ¼ ðwC1 C; wC2 C; . . . ; wCmCÞ, where C;C1;
C2; . . . ; Cm 2 Vcom;m ¼ jVcomj.
We define target probability pC as the probability of com-

munity C being activated under the influence of community

feature set FC . To enhance the global characteristics of pC , we
consider pC as the topic-aware probability. There is a topic z 2
½1; k� in Gcom. Then each super node C has topic-aware target

probability pC :

pC ¼ pðCjFCÞ ¼
Xk
z¼1

pðCjzÞ � pðzjFCÞ: (3)

Assume that the features in the community feature set are

independent of each other. Hence, (3) can be transformed into

the following using the Bayesian formula and total probability

TABLE I
SYMBOLS AND THEIR MEANINGS IN THE MODEL
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formula:

pC ¼
Xk
i¼1

pðzjCÞ � pðCÞ
pðzÞ � pðFC jzÞ � pðzÞ

pðFCÞ

¼
Xk
i¼1

pðzjCÞ � pðCÞ
pðzÞ �

Y
f2FC

pðf jzÞ � pðzÞPk
z0¼1

Y
f2FC

pðf jz0Þ � pðz0Þ ;

(4)

where pðzjCÞ is the distribution of topic z in community C,

denoted by uzC . According to the prior probability, pðzÞ ¼
pðz0Þ ¼ 1

k , pðCÞ ¼ 1
m . Hence,

pC ¼ k

m

Xk
z¼1

uzC

Y
f2FC

pðf jzÞPk
z0¼1

Y
f2FC

pðf jz0Þ : (5)

After a community is activated, the diffusion among internal

users is related to the internal topology of the community.

Within a cohesive (highly connected) community, members

have a high influence on each other. We use cohesion coeffi-

cient rC [24] to describe the internal structure of communityC:

rC ¼
P

cu2C e�cu
d�C

; C 2 Vcom; (6)

where cu represents the users in community C, e�cu denotes the
number of outgoing edges that cu connects to other nodes in

community C,
P

cu2C e�cu represents the sum of outgoing

edges among all users in community C, and d�C is the out-

degree of community C. The internal diffusion of community

C is described by the community influence coverage pC 2
½0; 1�; C 2 Vcom. pC ¼ 0 means that there are no activated

users in community C and pC ¼ 1 means that all users in

community C have been successfully activated. After

community C is activated, the activations inside this commu-

nity lead to an expected number of pC � q � rC additional

activated members. The newly activated members start the

intra-community diffusion process and succeed in increasing

the progress fraction by pCðq � rCÞ2. Adhering to this intra-

community diffusion process yields the first influence cover-

age p1
C of community C is:

p1
C ¼ pC þ pC � q � rC þ pCðq � rCÞ2 þ � � �

¼ min 1;
pC

1� q � rC

� �
; C 2 Vcom: (7Þ

In the community diffusion process, the nodes in commu-

nity C are not only affected by C but also by neighboring

communities of C. The influence coverage of the (lþ 1)-th
diffusion in community C is plþ1

C :

plþ1
C ¼ min

�
1;pl

C þ max
N2NC

�
pl
N � pl�1

N

�
� wNC � pC

1� q � rC

� �

þ
�
1� pl

C

�
� pC
1� q � rC

�
; N; C 2 Vcom; (8Þ

where communityN represents the neighboring community of

C, maxN2NC
ððpl

N � pl�1
N Þ � wNC � pC

1�q�rCÞ means that the

newly activated nodes of neighboring communities attempt to

activate members of community C, and ð1� pl
CÞ � pC

1�q�rC
denotes mutual diffusion between nodes in community C.

B. Influence Maximization Problem in a Dynamic Network

Environment

In a dynamic network environment, we regard social net-

works as a set of static network snapshots at a series of time

steps GD
com ¼ fGt

comjt ¼ 1; . . . ; Tg. The change of topology

between two time steps is expressed as DGt
com ¼

Fig. 1. Topic-aware community independent cascade propagation model.
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ðDV t
com;DE

t
comÞ. The relationship between network snapshots

at time steps t and tþ 1 is Gtþ1
com ¼ Gt

com [ DGt
com; t ¼

1; . . . ; T � 1, where Gt
com ¼ ðV t

com; E
t
comÞ. For each Gt

com,

there is a set of corresponding community target probabilities

ptC and a set that consists of community influence coverage

pt;l
C . The first influence coverage of the TCIC model in

dynamic network, p1;1
C , is expressed as

p1;1
C ¼ min 1;

p1C
1� q � r1C

� �
; C 2 Vcom: (9)

At each time step t, the influence coverage of the lþ 1th
propagation, pt;lþ1

C , is expressed as

pt;lþ1
C ¼ min

�
1;pt;l

C þ max
N2NC

��
pt;l
N � pt;l�1

N

�
� wt

NC

� ptC
1� q � rtC

�
þ
�
1� pt;l

C

�
� ptC
1� q � rtC

�
;

N; C 2 Vcom: (10Þ

At time step tþ 1, the influence coverage of the first propa-
gation, ptþ1;1

C , is expressed as

ptþ1;1
C ¼ min

�
1;pt;F

C þ max
N2NC

��
pt;F
N � pt;F�1

N

�
� wtþ1

NC

� ptþ1C

1� q � rtþ1C

�
þ
�
1� pt;F

C

�
� ptþ1C

1� q � rtþ1C

�
;

N; C 2 Vcom; (11Þ

where F represents the last diffusion at time step t.
To solve the dynamic IM problem, it is necessary to identify

a series of seed sets SD
com ¼ fSt

comjt ¼ 1; . . . ; Tg of size at

mostM to maximize the influence function stðSt
comÞ:

St�
com ¼ argmax stðSt

comÞ; jSt
comj �M; t ¼ 1; . . . ; T: (12)

We use the final influence calculation method in [24] to esti-

mate the influence value of the seed set. At each time step t,
the influence value of the community seed St�

com is st
S ¼

nt
S � pt;F

S , where nt
S is the number of internal users of the

seed S and pt;F
S is the final influence coverage of the seed S at

the time step t.
If there is no overlap between the communities, the influ-

ence value of the optimal seed set St�
com, s

tðSt�
comÞ, is calculated

as follows:

stðSt�
comÞ ¼

X
S2St�com

nt
S � pt;F

S ; t ¼ 1; . . . ; T: (13)

If the communities overlap, the influence value stðSt�
comÞ of

optimal seed set St�
com is calculated as follows:

stðSt�
comÞ ¼

XjSt�comj
j¼1
ð�1Þjþ1

�
X
i1 ;...;ij :

1�i1�i2�����ij�jSt�com j

nt

\j
r¼1Sir

�
Yj

r¼1p
t;F
Sir

0
BB@

1
CCA;

t ¼ 1; . . . ; T:

(14)

For example, if there are three community seeds in the seed

set S�com and they overlap, the total influence value stðSt�
comÞ is

stðSt�
comÞ ¼ nt

S1
� pt;F

S1
þ nt

S2
� pt;F

S2
þ nt

S3
� pt;F

S3

� nt
S1\S2 � pt;F

S1
� pt;F

S2
� nt

S2\S3 � pt;F
S2
� pt;F

S3

� nt
S1\S3 � pt;F

S1
� pt;F

S3

þ nt
S1\S2\S3 � pt;F

S1
� pt;F

S2
� pt;F

S3
: (15Þ

At any time-step t, solving St�
com ¼ argmaxstðSt

comÞ has
been proven to be NP-hard [3]. The influence function repre-

sents the expected number of active nodes at the end of the dif-

fusion process; hence, mapping function stðSt
comÞ : 2V

t
com ! R

is a non-negative function. Because the state of activated

nodes in the TCIC model does not roll back, influence value

stð�Þ increases when seed set St
com is expanded. Therefore

stð�Þ is a monotonically increasing function. Next, we prove

the submodularity of stð�Þ.
Submodularity: stð�Þ is a submodular if and only if for any

community C 2 V t
com and two seed sets St

com and T t
com,

St
com � Tt

com, s
tðSt

com [ fCgÞ � stðSt
comÞ 	 sðTt

com [ fCgÞ�
stðTt

comÞ holds.
Proof: Because St

com � Tt
com, pt;F

Stcom
� pt;F

C � nt
Stcom\fCg �

pt;F

Tt
com
� pt;F

C � nt
Tt
com\fCg

. According to (14), stðSt
com [ fCgÞ

�stðSt
comÞ 	 sðTt

com [ fCgÞ � stðTt
comÞ. Therefore, stð�Þ is

submodular.

According to the [33], if stð�Þ is non-negative, monotonic

and submodular, and stðfÞ ¼ 0, then for Ŝt
com obtained by the

greedy strategy-based IM algorithm, sðŜt
comÞ 	 ð1� ð1�

1
MÞMÞ � sðSt�

comÞ holds. Because 1� 1
e < ð1� ð1� 1

MÞMÞ;
M > 0; and limM!1ð1� ð1� 1

MÞMÞ ¼ 1� 1
e , the approxi-

mation ratio can be simplified to ð1� 1
eÞ. If the IM algorithm

approximately solves the IM problem using a sampling

method, there is an additional term " (sampling error) in

approximation ratio; that is, ð1� 1
e � "Þ. Our proposed algo-

rithm does not perform sampling; hence, its approximation

ratio is ð1� 1
eÞ.

IV. METHOD

A. Dynamic Community Index Structure

In a real social network, the snapshots of two adjacent time

steps are similar. Similar snapshots may lead to similar seed sets.

Hence, the seed set and influence value of the next time step snap-

shot can be calculated based on the result of the previous time

step. We propose the DC-index structure to store Gcom
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community diffusion information at time step t. The DC-index

structure ItC is a four-tuple ItC ¼ ðIsSeedtC; st
C; n

t
C; p

t
CÞ; C 2

Vcom; t ¼ 1; . . . ; T , where IsSeedtC is the seed tag,st
C is the com-

munity influence value, nt
C is the number of community nodes,

and pt
C is the final community influence coverage. For the com-

munity C 2 Vcom, if C is a seed community at time step t, then
the value of IsSeedtC is 1, and ifC is not a seed community, then

the value of IsSeedtC is 0.

B. Proposed Algorithm

Based on the DC-index structure, we propose a community

topic feature-based dynamic IM (CFDI) algorithm. First, the

CFDI algorithm performs data preprocessing to generate the

four-tuple data of the DC-index structure. During the online

diffusion process, the CFDI algorithm calculates the IM value

for network snapshots of T time steps. At each time step, after

F intra-community propagation iterations, M community

seeds are searched, and then their tags I:IsSeedts are set to 1.

At time-step tþ 1, the seed set members are updated accord-

ing to the network changes to avoid recalculation. Algorithm

1 formally describes the CFDI algorithm.

We output the influence value stðStÞ at time step t using the

DC-index structure, obtain the ID of the community seed at

time step t from the DC-index structure, and calculate the

influence value of the seed set using (14). Algorithm 2

describes the algorithm for calculating the influence value of

the seed set, called CFCI.

The CFDI algorithm uses the DC-index structure to store com-

munity diffusion information at each time step. There are m
communities and T time steps in the dynamic network. There-

fore, the space complexity of the CFDI algorithm is OðTmÞ.
In the preprocessing stage, there are T time steps, and each

time step needs to calculate the parameters ofm communities.

Hence, it takes OðTmkÞ time to calculate the community topic

distribution of k topics and OðTmÞ time to calculate

Ft
C; p

t
C; r

t
C and nt

C , t ¼ 1; . . . ; T . In the propagation stage,

there are T time steps and m communities. At each time step,

F iterations of influence diffusion are performed in each com-

munity; hence, it takes OðTFmÞ time to calculate final com-

munity influence coverage and takes OðTMÞ time to search

the seeds. The results of the CFDI algorithm are stored in DC-

index I. Therefore, it takes OðTMÞ time to execute the CFCI

algorithm to estimate the total influence spread of the commu-

nity seed set.

Now, we compare the online time-space complexity and

approximation ratio of the CFDI algorithm using existing three

dynamic algorithms: DFA [12], RSB [13] and InfoIBP [14]. Let

T be the number of time steps,F be the number of diffusion itera-

tions within the community,M be the seed size,m be the number

of communities,m0 be the number of edges in the network, n be

Algorithm 1. CFDI

Input: Gt
com ¼ ðV t

com; E
t
comÞ, T; q;M; k; F

Output: DC-index I
1 == Stage 1:offline preprocessing
2 for t ¼ 1; t � T ; tþþ do

3 for each community C in V t
com do

4 Calculate Ft
C ¼ ðfC1; fC2Þ using (2);

5 for z ¼ 1; z � k; zþþ do

6 Calculate ut;zC using the LDA model [34];

7 end

8 Calculate ptC using (5);

9 Calculate rtC using (6);

10 Count the number of nodes nt
C ;

11 pt
C  0; IsSeedtC  0; st

C  0;
12 end

13 I  I [ ðIsSeedtC; st
C; n

t
C;p

t
CÞ

14 end

15 ==Stage 2:On-line Diffusion Processing
16 for each community C in V 1

com do

17 Calculate p1;1
C using (9);

18 end

19 for t ¼ 1; t � T ; tþþ do

20 for each community C in V t
com do

21 //Initialize temporary variables p
t;0
C

22 pt;0
C  0;

23 for l ¼ 1; l � F � 1; lþþ do

24 Calculate p
t;lþ1
C using (10);

25 end

26 I:pt
C  pt;F

C ;

27 //Calculate the influence of each community I:st
C  

nt
C � pt

C ;

28 //Calculate the value of ptþ1;1
C at next

//time-step

29 Calculate p
tþ1;1
C using (11);

30 end

31 //Set the top-M communities with the largest

//influence value as seed communities

32 S  f;

33 for i ¼ 1; i �M; iþþ do

34 s argmaxc2ðV t
com�SÞðI:st

CÞ
35 S  S [ fsg;
36 I:IsSeedts  1;
37 end

38 end

39 return I;

Algorithm 2. CFCI

Input: DC-index I; T
Output: st; t ¼ 1; . . . ; T

1 for t ¼ 1; t � T ; tþþ do

2 st  0.0;

3 ==G is temporary variable

4 G f;

5 St  Query the communities with I:IsSeedt ¼ 1;
6 for each community C in St do

7 st  st þ I:st
C ;

8 if G \ C 6¼ f then

9 st  st � I:nG\C � I:pt;F
C � I:pt;F

G ;

10 end

11 G fCg;
12 end

13 print st;

14 end
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the number of nodes in the network, and " be the sampling error.

The time complexity of the CFDI algorithm isOðT ðFmþMÞÞ,
its space complexity is OðTmÞ, and its approximation ratio is

ð1� 1
eÞ. The time complexity of the DFA algorithm is

OðT Mðm0þnÞlogn
"3

Þ, its space complexity isOðT ðm0þnÞlogn
"3

Þ, and its
approximate ratio is ð1� 1

e � "Þ. The time complexity of the

RSB algorithm is OðTMnÞ, its space complexity is OðTMnÞ,
and its approximation ratio is ð1� 1

e � "Þ. The time complexity

of the InfoIBP algorithm is OðTMnÞ, its space complexity is

OðTMnÞ, and its approximation ratio is ð1� 1
eÞ. Because 1 <

M < m
 n < m0; 0 < " < 1, OðTmÞ < OðTMnÞ <
OðT ðm0þnÞlogn

"3
Þ, which means that the space complexity of the

CFDI algorithm is much smaller than that of the other three algo-

rithms. In the experiment parameter determination in Section 5,

the value of F is 10, and the number of communitiesm is much

smaller than the number of nodes in the network n; that is,

because ðFmþMÞ 
Mn < ðm0 þ nÞ, OðT ðFmþMÞÞ <
OðTMnÞ < OðT ðm0þnÞlogn

"3
Þ; 0 < " < 1. This means that the

time complexity of the CFDI algorithm is also less than that of

the other three algorithms. For the approximate degree, because

0 < ð1� 1
e � "Þ < ð1� 1

eÞ < 1, approximation ratios of the

CFDI algorithm and InfoIBP algorithm are higher than

those of the DFA and RSB algorithms. The time-space com-

plexity and approximation ratios of the four algorithms are

shown in Table II.

V. EXPERIMENTS

We conducted experiments on the high-performance paral-

lel cluster system at Guangxi University, in which one com-

pute node configuration was eight Intel Xeon E7-8850, 1 TB

main memory, 8� 900 GB storage space, and 1�HCA card.

The running operating system was Red Hat Enterprise Linux

6.2. The DFA algorithm was written in C++ and the other

algorithms were written in Python.

A. Datasets

To effectively evaluate the performance of the CFDI

algorithm, we selected three open source real social network

datasets that contained topical information. Table III shows

the information about the three datasets HepTh-Citation-

network,1 DBLP-Citation-network V4,2 and Wiki-topcats,3

where n is the number of nodes, e is the number of edges, and

m is the number of communities.

The HepTh dataset has 27,770 articles (nodes), 352,807

citation relationships (edges), and 888 journals (communities),

and its time span is from 1993 to 2002. HepTh uses the data in

1993 as the basic graph G1, and the remaining data are divided

into nine parts DG1;DG2; . . . ;DG9, by year as incremental

data. The DBLP dataset has 1,511,035 articles (nodes),

2,084,019 citation relationships (edges), and 7,694 journals

(communities), and its time span is from 1989 to 2010. DBLP

uses the data from 1989 to 2001 as the basic graph G1, and the

remaining data are divided into nine parts DG1;DG2; . . . ;
DG9 by year. The Wiki dataset is a Wikipedia hyperlink net-

work collected in September 2011. The nodes selected are

strongly connected components in Wikipedia and restricted to

TABLE III
INFORMATION ABOUT THE THREE DATASETS

Fig. 2. Popularity and topic distribution of the top 10 communities in the
three datasets.

TABLE II
THE TIME-SPACE COMPLEXITY AND APPROXIMATION RATIOS OF THE FOUR

ALGORITHMS

1 http://snap.stanford.edu/data/cit-HepTh.html
2 https://www.aminer.cn/citation
3 http://snap.stanford.edu/data/wiki-topcats.html
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pages in the top set of categories (those with at least 100

pages). Wiki is a large dense dataset. Because no specific time

information is carried, the dataset is equally divided into 10

parts in the order of edge occurrence. The first part is used as

the basic graph G1, and the remaining nine parts are incremen-

tal data DG1;DG2; . . . ;DG9. For the three datasets, we used

the LDA model [34] to extract the community topic distribu-

tion uzC from the article abstracts of each community. Fig. 2

shows the popularity and topic distribution of the top 10 com-

munities in the three datasets.

The left-hand side of Fig. 2 shows that the number of users

in each community is constantly changing at different time

steps. The right-hand side of Fig. 2 shows the topic distribu-

tion of the top 10 community in the basic graph G1. It indi-

cates that different communities pay attention to different

topics. The three datasets are dynamic, and they have commu-

nity structure and topic information, which meets the experi-

mental requirements.

B. Evaluation Indicators and Baseline

We used the following five indicators to evaluate the perfor-

mance of the algorithm.

1) Influence spread [9], [35], [36]: a measure of the spread

ability of the diffusion model. A large influence spread value

indicates that the algorithm has a good effect on maximizing

influence.

2) Running time: the time required for running the IM algo-

rithm to search for seeds and estimate the maximum influence

spread.

3) Memory capacity used: the amount of memory used by

running the algorithm.

4) Scalability [36], [37]: measures the adaptability of the IM

algorithm to dynamic changes in the network. Generally, the

running time and influence value form a pair of comprehen-

sive indicators to measure the scalability of the IM algorithm.

5) Relationship between similarity and update time [9][36]:

the relationship between the similarity of two adjacent snap-

shots and the update time is used to quantitatively characterize

the speedup of the IM algorithm. The similarity between two

consecutive snapshots Gt and Gtþ1 is measured using the Jac-

card similarity:

JaccardðGt
com;G

tþ1
comÞ ¼

jEt \ Etþ1j
jEt [ Etþ1j (16)

The more similar the two adjacent snapshots, the lower the

time taken to update the seed set and the greater the IM algo-

rithm speedup.

In the experiment, we compared our proposed CFDI algo-

rithm with three existing dynamic IM algorithms, DFA, RSB,

and InfoIBP, where DFA [12] is an IM algorithm that uses the

dynamic index structure, RSB [13] is a random IM algorithm

based on multi-armed bandit optimization, and InfoIBP [14] is

a general regularized learning framework for modeling topic-

aware influence propagation in dynamic network structures.

InfoIBP integrates topics and network structure information

using hidden Markov models to identify influential users effi-

ciently and accurately.

C. Experimental Parameters Setting

In this section, we provide the settings of three important

parameters in the CFDI algorithm. First, we considered the

effect of the number of topics k on the algorithm. We tested

the influence spread and running time using various values of

k in the three networks. We extracted 10, 20, 30, 40, and 50

topics from three datasets, searched the top M seeds, M 2
½10; 20; 30; 40; 50�, and recorded the influence spread and run-

ning time. The experimental results are shown in Fig. 3. Fig. 3

shows that for datasets HepTh and DBLP, when k ¼ 10, the
fitting effect was the best. When k > 10, the influence spread
decreased because of overfitting. However, the running time

increased as the value of k increased. For the Wiki dataset, the

influence spread of the CFDI algorithm was not greatly

affected by the number of topics, and the running time

increased slightly as the value of k ncreased. According to the

above experimental results, we set k ¼ 10 in the subsequent

experiments.

Next, we considered the number of intra-community

spread iterations F to ensure that the CFDI algorithm

Fig. 3. Influence spread and running time of the CFDI algorithm for various
values ofM and k.
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obtained the best results. We used the influence-time ratio

to measure the effect of the algorithm. Fig. 4 shows the

influence-time ratio of the CFDI algorithm with different

values of iterations F on three datasets HepTh, DBLP and

Wiki. Fig. 4 shows that for the three datasets, when F ¼
10, the histogram area of the CFDI algorithm was the larg-

est. This means that the influence-time ratio was the largest

when F ¼ 10, which indicates that after approximately 10 iter-

ations, the CFDI algorithm had the best convergence effect.

Therefore, we set F ¼ 10 in the subsequent experiments.

Finally, we considered the setting of the propagation proba-

bility q in the community. For the setting F ¼ 10, we ran the

CFDI algorithm to search various sizes of seed sets for various

values of q. Fig. 5 shows the average influence-time ratio for

the CFDI algorithm. Fig. 5 shows that on the HepTh dataset,

the value of the average influence-time ratio of the CFDI algo-

rithm was the highest when q was 0.8; on the DBLP dataset,

the value of the average influence-time ratio of the CFDI algo-

rithm was the best when q was 0.9; and for the Wiki dataset,

the value of the average influence-time ratio of the CFDI algo-

rithm was the best when q was 0.8.
In the next section, we compare the CFDI algorithm with

the DFA, RSB, and InfoIBP algorithms. For all four algo-

rithms, the number of time steps T was set to 10. For CFDI,

the value of k was set to 10, F was set to 10, q was set to 0.9

on the DBLP dataset, and q was set to 0.8 on the HepTh and

Wiki datasets. For the DFA algorithm, the higher the value of

b, the greater the accuracy of the influence estimation; how-

ever, when b > 32, the improvement effect was limited;

hence, the value of b was set to 32 and the value of w was set

to bðnþmÞlogn following the experimental settings in [12].

In [13], the RSB algorithm had the highest accuracy when the

value of g was set to 0.2. In [14], the value of a in the InfoIBP

algorithm was set to 1.0.

D. Experimental Results

First, we compared the stability of the DFA, RSB, InfoIBP,

and CFDI algorithms on the three datasets. The experimental

results for these algorithms are shown in Fig. 6. Fig. 6 shows

that the influence spreads of algorithms RSB and DFA were

remarkably affected by the size of the dataset. When the size

of the dataset was not sufficiently large, the advantage of the

RSB algorithm was not obvious; hence, its influence spread on

the two datasets HepTh and DBLP was the lowest. On the large

Wiki dataset, the influence spread of the RSB algorithm was

Fig. 5. Average influence-time ratio of the CFDI algorithm for various val-
ues of q when F ¼ 10.

Fig. 4. Influence-time ratio of the CFDI algorithm for various values of F .
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high, whereas the influence diffusion value of the DFA algo-

rithm was the lowest. We also observed that, for the IM algo-

rithms, the value of the influence spread increased as the size of

community seed setM increased, and these algorithms had dif-

ferent sensitivities to the expansion ofM. The influence spread

of the DFA algorithm was sensitive to M on the Wiki dataset.

The influence spread of the RSB algorithm was sensitive toM
on the HepTh and DBLP datasets. The influence spread of the

InfoIBP algorithm was sensitive to M on all three datasets.

Only the CFDI algorithm obtained the highest influence spread

on all three datasets, and its influence spread was slightly

affected by the increase ofM. This indicates that the DFA algo-

rithm was relatively stable on a small-scale dataset, the RSB

algorithm was relatively stable on a large-scale dataset, and the

InfoIBP algorithm was not stable on the three datasets. The sta-

bility of the CFDI algorithm was best.

Next, we further comprehensively compared the influence

spread, required running time, and memory capacity of the

DFA, RSB, InfoIBP, and CFDI algorithms on the three data-

sets HepTh, DBLP, and Wiki. Table IV, V and VI respec-

tively, show the algorithms’ influence spread, required

running time, and memory capacity when searching for 10,

20, 30, 40, and 50 seeds on the three datasets. Tables IV–VI

show that the influence spread, required running time, and

memory capacity of the four algorithms increased as the net-

work scale expanded. The required memory capacities of the

RSB and InfoIBP algorithms increased as the size of the seed

set increased, but the required memory capacities of the DFA

and CFDI algorithms did not increase as the size of the seed

set increased. When the size of the seed set was 50, the influ-

ence spread of the InfoIBP algorithm was close to that of the

CFDI algorithm, but the required running time of the InfoIBP

algorithm was up to 6.5 times than that of the CFDI algorithm,

and the required memory capacity up to 1,000 times than that

of the CFDI algorithm. The influence spread of the RSB algo-

rithm was lower than that of the CFDI algorithm, the required

running time of the RSB algorithm was up to 26.7 times than

that of the CFDI algorithm, and the required memory capacity

of the RSB algorithm was up to 54.5 times that of the CFDI

algorithm. The influence spread of the DFA algorithm was also

lower than that of the CFDI algorithm, the required running

time of the DFA algorithm was up 20 times that of the CFDI

algorithm, and the required memory capacity of the DFA algo-

rithm was up to 3,000 times that of the CFDI algorithm.

Fig. 6. Influence spread of four algorithms for searching seed sets of different size on HepTH, DBLP and Wiki.

TABLE IV
PERFORMANCE OF FOUR ALGORITHMS ON THE HEPTH DATASET

TABLE V
PERFORMANCE OF THE FOUR ALGORITHMS ON THE DBLP DATASET
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The DFA algorithm had the longest required running time

and the highest memory capacity. This is because running the

DFA algorithm relied on a huge dynamic index structure.

When a new node joined the social network, the DFA algo-

rithm spent great deal of time restructuring the graph, and

required much more running time than the other three algo-

rithms. Simultaneously, the DFA algorithm needed to store a

huge dynamic index structure whose space complexity was

positively related to the number of nodes and edges of the net-

work. Therefore, when the dataset was large, the amount of

calculation and required memory capacity of the DFA algo-

rithm became huge. The DFA algorithm needed to sample

data from the Wiki dataset. Table VI shows the results of run-

ning the DFA algorithm with a 10% sampling rate. Table VI

shows that the influence spread of running the DFA algorithm

on the Wiki dataset was very low, the required time was very

slow, and the memory consumption was the highest. The RSB

algorithm ran faster, but its influence spread was also the low-

est on the HepTh and DBLP datasets. This is because RSB is

an algorithm based on heuristic learning, which requires a

large amount of data to train the model. When the dataset was

small, the training of the model was not sufficient; hence, its

effect of maximizing the influence was not good. When the

dataset was sufficiently large, its effect of maximizing the

influence improved, but the large amount of model training

also resulted in more time consumption. Simultaneously, the

RSB algorithm needed to store the data structure of Monte

Carlo trees. As the size of the training set increased, the

required space of the RSB algorithm also increased. This indi-

cates that sampling was necessary before the RSB algorithm

was run on the large Wiki dataset. Table VI shows the experi-

mental results of running the RSB algorithm with a 50% sam-

pling rate. When the seed set was small, the influence spread of

the InfoIBP algorithm was greatly affected by the size of the

seed set. When the seed set was sufficiently large, the influence

spread of the InfoIBP algorithm tended to be stable. The

InfoIBP algorithm used a latent feature model to extract the

topological features and topic features for each node; hence, its

memory consumption was also very large. When the CFDI

algorithm ran on the small HepTh dataset, medium-scale

DBLP dataset, and large Wiki dataset, its influence spread was

the highest, and its required running time and memory capacity

were the lowest. The reason is that the CFDI algorithm created

a diffusion model at the community level and integrated topic

features, such that the algorithm more effectively maximized

the influence. The CFDI algorithm used incremental data to

update the calculation results to effectively improve the execu-

tion speed. The CFDI algorithm used the DC-index structure,

which was only related to the number of communities, to

remarkably reduce its memory consumption.

Next, we further compared the scalability of the four algo-

rithms. We used the three datasets to construct three growing

networks. HepTh and DBLP were increased according to the

scale jGtþ1j ¼ jGtj þ jDGtj; t ¼ 1; . . . ; 9. jG1j of the HepTh

dataset is 142 KB, and jG10j of the HepTh dataset was

increased to 19 MB. jG1j of the DBLP dataset was 22.9 MB

and jG10j of the DBLP dataset was increased to 65.1 MB. The

Wiki dataset increased according to the scale jGtj ¼ tjG1j; t ¼
1; 2; . . . ; 10. jG1j of the Wiki dataset was 57.9 MB and jG10j of
the Wiki dataset was increased to 579 MB. Fig. 7 shows the

required time for searching the three M-size seed sets. Fig. 7

shows that the required time for running the RSB algorithm on

the three datasets increased as the social network scale

expanded. This indicates that the scalability of the RSB algo-

rithm was not good. The required time for running the InfoIBP

algorithm on the three datasets was relatively stable and the

algorithm had good scalability, but its required time was the

highest. The required time for running the DFA algorithm on

the small HepTh dataset showed an increasing trend as the net-

work grew. On the medium-scale DBLP dataset, the required

time for running the DFA algorithm decreased, and on the large

Wiki dataset, the required time for running the DFA algorithm

was stable. This indicates that the DFA algorithm had good

scalability on medium-scale and large dynamic networks. The

required time for running the CFDI algorithm decreased on the

three datasets as the social network scale expanded. This illus-

trates that the CFDI algorithm had the best scalability.

Finally, we used the “similarity-update time” to evaluate the

acceleration capabilities of the four algorithms. We calculated

the Jaccard similarity between adjacent network snapshots at

10 time steps and calculated the update time of the four algo-

rithms at each time step. Fig. 8 shows the experimental results

for similarity and update time for the four algorithms. If the

update time of an algorithm decreased as the Jaccard similar-

ity increased, the algorithm achieved good speedup [9]. Fig. 8

shows that as the Jaccard similarity increased, the required

update time for running the RSB algorithm on the HepTh and

DBLP datasets decreased, but it increased on the Wiki dataset.

This illustrates that the speedup of the RSB algorithm on the

Wiki dataset was not good. As the Jaccard similarity

increased, the required update time for running the DFA algo-

rithm increased on the HepTh dataset, the required update

time increased on the DBLP dataset, and the required update

TABLE VI
PERFORMANCE OF THE FOUR ALGORITHMS ON THE WIKI DATASET
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time changed little on the Wiki dataset. This indicates that the

speedup of the DFA algorithm on the three datasets was poor.

As the Jaccard similarity increased, the required update time

for running the InfoIBP algorithm changed little on the three

datasets. This illustrates that the InfoIBP algorithm did not

speed up on the three datasets. For the CFDI algorithm, Fig. 8

clearly shows that as the Jaccard similarity increased, the

required update time decreased significantly on the three data-

sets. This indicates that the CFDI algorithm had the best

speedup on the three datasets.

Fig. 8. Jaccard similarity and update time of four algorithms.

Fig. 7. Scalability of the four algorithms on HepTh, DBLP and Wiki.
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VI. SUMMARY AND FUTURE WORK

Our proposed TCIC model uses the feature of community

structure and regards a community as a super node to greatly

reduce the computational size of the dynamic social network.

Simultaneously, the topic features are integrated into the propa-

gation probability to enhance the accuracy of the community IC

model. We designed the DC-index structure to record network

changes to effectively use incremental data to improve the cal-

culation speed. The experimental results demonstrated that our

proposed method consumed less time-space than existing meth-

ods to calculate the IM of dynamic social networks, with good

influence spread, stability, and scalability.

In the future, we will study the TCIC model with the

community discovery function, and strive to apply the CFDI

algorithm to other general models, such as LT models.
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