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Abstract—Many complex systems involve direct interactions
among more than two entities and can be represented by hyper-
graphs, in which hyperedges encode higher-order interactions
among an arbitrary number of nodes. To analyze structures and
dynamics of given hypergraphs, a solid practice is to compare them
with those for randomized hypergraphs that preserve some specific
properties of the original hypergraphs. In the present study, we
propose a family of such reference models for hypergraphs, called
the hyper dK-series, by extending the so-called dK-series for dyadic
networks to the case of hypergraphs. The hyper dK-series preserves
up to the individual node’s degree, node’s degree correlation, node’s
redundancy coefficient, and/or the hyperedge’s size depending on
the parameter values. Furthermore, we numerically find that
higher-order hyper dK-series more accurately preserves the
shortest path length and degree distribution of the one-mode
projection of the original hypergraph, which the method does not
intend to preserve. We also apply the hyper dK-series to numerical
simulations of epidemic spreading and evolutionary game dynamics
on empirical social hypergraphs. We find that the hyperedge’s size
affects these dynamics more than any of the node’s properties and
that the node’s degree correlation and redundancy in the empirical
hypergraphs promote cooperation.

Index Terms—Configuration models, hypergraphs, reference
models.

I. INTRODUCTION

NETWORKS are a representation of complex systems that

consist of nodes and pairwise interactions among the

nodes [1]–[4]. Various mathematical and computational meth-

ods have enabled us to study the structure and dynamics of

network data across disciplines. Many networks share struc-

tural patterns, such as heterogeneous distributions of the

node’s degree (i.e., number of other nodes to which a node is

directly connected), an abundance of triangles, correlation in

terms of the degree of adjacent pairs of nodes, community

structure, and many more. These and other structural proper-

ties affect dynamic processes on networks such as epidemic

spreading, evolution of cooperation, and synchronization.

Real-world complex systems often involve unit interactions

among more than two nodes. Examples include group conversa-

tions in social contact networks [5], [6], multiple recipients of sin-

gle emails [7], co-authoring in collaboration networks [8]–[10],

joint interactions among proteins in biological systems [11], [12],

and many more [13], [14]. These complex systems can be

expressed as hypergraphs composed of nodes and hyperedges,

where a hyperedge represents interaction among two or more

nodes. A major method for analyzing hypergraphs is to project

them to dyadic networks (i.e., conventional networks, in which

each edge connects a pair of nodes) and then analyze them [8],

[15], [16]. However, a growing body of evidence suggests the

limitations of describing the structure and dynamics of networks

including higher-order interactions only using pairwise interac-

tions [9], [13], [17]–[26]. In line with this, various measurements,

dynamical process models, and theories have been developed for

hypergraphs, particularly in recent years [14].

In general, a reference model for networks produces synthetic

networks that preserve some specific properties of the given net-

work and randomize other properties of the given network [27].

Regardless of the type of networks (e.g., dyadic networks or

hypergraphs), it is a recommended practice that one compares the

structure and dynamics of a network at hand with those for ran-

domized networks produced by reference models. Such an analy-

sis helps us to reveal whether or not the given network has a

certain structure relative to the random case and how the structural

properties not preserved by the reference network model impacts

dynamics on networks. For dyadic networks, a family of standard

reference model is the configuration models that preserve the

degree of each node or its expectation [28]–[30]. The configura-

tion models have been used for finding higher-order structural

properties of various networks that the node’s degree or its distri-

bution does not imply [1], [31]–[34]. Furthermore, such findings

have led to the development of reference models that preserve

some higher-order properties of the input network, e.g., the degree

correlation and the clustering coefficient of the node [35]–[43].

For hypergraphs, the properties of hyperedges as well as

those of nodes are considered to affect their structure and
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dynamics. The existing reference models for hypergraphs pre-

serve only up to the degree of each node and the size of each

hyperedge (i.e., number of nodes that belong to each hyper-

edge) of a given hypergraph [23], [29], [44]–[46]. In the present

study, we propose a family of reference models for hyper-

graphs, called the hyper dK-series. The original dK-series is a

nested family of reference models that preserve local properties

of nodes of the given dyadic network [37], [41], [43]. The hyper

dK-series extends the dK-series to the case of hypergraphs.

The hyper dK-series preserves local properties of nodes and

hyperedges of the given hypergraph to tunable extents. Then,

we showcase its use in investigating epidemic spreading [47]

and evolutionary game dynamics [48] models on hypergraphs.

Our code for the hyper dK-series is available at https://github.

com/kazuibasou/hyper-dk-series.

II. PRELIMINARIES

A. Hypergraph and Bipartite Graph

We represent a network including higher-order interactions

among two or more entities as an unweighted hypergraph that

consists of a set of nodes V ¼ fv1; . . . ; vNg and a set of hyper-
edges E ¼ fe1; . . . ; eMg, where N is the number of nodes,

andM is the number of hyperedges. We assume that the origi-

nal hypergraph, for which we generate sample hypergraphs

using reference models, contains no multiple edges. Each

hyperedge ej 2 E is a subset of V with arbitrary cardinality

jejj.
We denote by G ¼ ðV;E; EÞ the bipartite graph that corre-

sponds to the given hypergraph, where E is a set of edges in

the bipartite graph. An edge ðvi; ejÞ exists between each node

vi and each hyperedge ej if and only if vi belongs to the hyper-
edge ej in the hypergraph. We denote by M ¼ jEj the number

of edges in G. We show a hypergraph and its bipartite-graph

representation in Fig. 1.

B. Local Properties of Nodes and Hyperedges

In this section, we describe local properties of bipartite

graph G, some of which our reference models preserve. We

denote the incidence matrix of G by B ¼ ðBijÞ, where i ¼
1; . . . ; N; j ¼ 1; . . . ;M, Bij ¼ 1 if ðvi; ejÞ 2 E, and Bij ¼ 0
otherwise. Let ki ¼

PM
j¼1 Bij be the degree of node vi. We

denote the size of hyperedge ej, i.e., the number of nodes that

belong to hyperedge ej, by sj ¼
PN

i¼1 Bij.

We define the joint degree distribution of two nodes that share

at least one hyperedge, which extends the joint degree distribu-

tion for dyadic networks [37], [43]. Letmðk; k0Þ denote the num-

ber of hyperedges that nodes with degree k ¼ 1; . . . ;M and

nodes with degree k0 ¼ k; . . . ;M share. For example, in a bipar-

tite graph shown in Fig. 1(b), one obtains mð1; 2Þ ¼ 2 because

node v1 with degree k1 ¼ 2 and node v3 with degree k3 ¼ 1
share a hyperedge e2, and node v2 with degree k2 ¼ 2 and node

v3 share a hyperedge e2. Similarly, one obtainsmð1; 1Þ ¼ 0 and
mð2; 2Þ ¼ 2. We define the pairwise joint degree distribution of

the node, denoted byP ðk; k0Þ, as

P ðk; k0Þ ¼ 2mðk; k0ÞPM
j¼1 sjðsj � 1Þ : (1)

Note that P ðk; k0Þ is normalized, i.e.,
PM

k¼1

PM
k0¼k P ðk; k0Þ ¼

1. We also define the average degree of the nearest neighbors

of nodes with degree k, which extends the definition for

dyadic networks [1], [49], by

knnðkÞ ¼
PM

k0¼1 k
0P ðk; k0ÞPM

k0¼1 P ðk; k0Þ : (2)

Equations (1) and (2) are consistent with the corresponding

definitions for dyadic networks when sj ¼ 2 for each hyper-

edge ej 2 E.

We also examine quadruple relationships around a node in a

bipartite graph, which is similar to local clustering (i.e., abun-

dance of triangles) in dyadic networks. The redundancy coeffi-

cient of node vi, denoted by ri, quantifies the amount of

quadratic relationships around the node in a bipartite graph [50].

It is the fraction of pairs of hyperedges to which vi belongs such
that at least one different node also belongs to both hyperedges.

Formally, if ki > 1, we define

ri ¼ 2

kiðki � 1Þ
XM
j¼1

Xj�1

j0¼1

Bi;jBi;j01fjGi;j;j0 j > 0g (3)

where we define Gi;j;j0 ¼ fvi0 2 V nfvig j Bi0;jBi0;j0 > 0g and

1fcondg denotes an indicator function that returns 1 if a condi-

tion cond holds and 0 otherwise. We define ri ¼ 0 if ki 2
f0; 1g. The degree-dependent redundancy coefficient of the

node is the average of the redundancy coefficient over the

nodes with degree k, i.e.,

rðkÞ ¼ 1

nðkÞ
XN

i¼1; ki¼k

ri; (4)

where nðkÞ is the number of nodes with degree k.
One can also define the pairwise joint size distribution of

the hyperedge and the redundancy coefficient of the hyperedge

in the same way as for the node. However, we do not introduce

them because we construct reference models that preserve up

to the size distribution of the hyperedge. This choice stands on

our observation that it is practically difficult to generate ran-

domized bipartite graphs preserving up to pairwise correlation

and quadratic relationships for both nodes’ degrees and

Fig. 1. Hypergraph and the corresponding bipartite graph. (a) A hypergraph
that consists of V ¼ fv1; v2; v3g and E ¼ fe1; e2g, where e1 ¼ fv1; v2g and
e2 ¼ fv1; v2; v3g. (b) The corresponding bipartite graph, which consists of V ,
E, and E ¼ fðv1; e1Þ; ðv1; e2Þ; ðv2; e1Þ; ðv2; e2Þ; ðv3; e2Þg.
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hyperedges’ sizes. If one is interested in preserving the size

correlation and redundancy for hyperedges instead of the cor-

responding quantities for nodes, one can apply our algorithm

described in the following text after interchanging the nodes

and hyperedges in the bipartite-graph representation of the

hypergraph.

III. REFERENCE MODELS FOR

HYPERGRAPHS — HYPER dK-SERIES

In this section, we propose a family of reference models

for hypergraphs that preserve local properties of nodes and

hyperedges in the given hypergraph to different extents.

We extend a class of reference models for dyadic networks

called the dK-series [37], [41], [43] to the case of hyper-

graphs. The dK-series preserves some local properties of

nodes (i.e., degree distribution, joint degree distribution, or

degree-dependent clustering coefficient) of a given dyadic

network.

The proposed model, which we refer to as hyper dK-series,

produces a bipartite graph that preserves the joint degree distri-

butions of the node in the subgraphs of size dv 2 f0; 1; 2; 2:5g
or less and the size distributions of the hyperedge in the sub-

graphs of size de 2 f0; 1g or less in the given bipartite graphG.

We list the quantity corresponding to each dv and de value in

Table I. By definition, the hyper dK-series with dv ¼ 0 pre-

serves the numbers of edges in G, or equivalently, the average

degree of the node. The hyper dK-series with dv ¼ 1 preserves
the degree of each node. With de ¼ 0 and de ¼ 1, the hyper

dK-series preserves the average size of hyperedges and the

size of each hyperedge, respectively. With dv ¼ 2, it preserves
the degree of each node and aims to preserve the pairwise joint

degree distribution of the node.With dv ¼ 2:5, it intends to pre-
serve the joint degree distributions of nodes in the subgraphs of

size between dv ¼ 2 and dv ¼ 3. By definition, this means that

the hyper dK-series preserves the degree of each node, approx-

imately preserves the pairwise joint degree distribution of the

node, and approximately preserves the degree-dependent

redundancy coefficient of the node. Like the dK-series for

dyadic networks [37], [41], [43], the hyper dK-series have an

inclusiveness property. In other words, the hyper dK-series

with given values of dv and de preserve quantities that any

hyper dK-series with ðd0v; d0eÞ, where d0v � dv and d0e � de,
preserve.

A. dv 2 f0; 1g
In this section, we describe generation of bipartite graphs

using the hyper dK-series with dv 2 f0; 1g and de 2 f0; 1g.
We distinguish between the original bipartite graph, denoted

by G ¼ ðV;E; EÞ, and the bipartite graph produced by the

hyper dK-series, denoted by ~G ¼ ðV;E; ~EÞ. We allow ~G to

have multiple edges between nodes and hyperedges and to

have multiple connected components, which are allowed in

previous studies as well [29], [50]. We define a component of

a bipartite graph as any of its maximal subgraphs in which any

two nodes are connected to each other by a path within the

subgraph. Our algorithm of the hyper dK-series starts with a

bipartite graph with N nodes,M hyperedges, and no edge.

When ðdv; deÞ ¼ ð0; 0Þ, we sequentially add edges to con-

struct ~G as follows. We select a node uniformly randomly,

i.e., with probability 1=N and a hyperedge uniformly at ran-

dom, i.e., with probability 1=M, and connect them (Fig. 2(b)).

We repeat this procedure M times. The generated bipartite

graph has N nodes, M hyperedges, and M edges, and hence

preserves the average nodal degree and the average size of the

hyperedge. When ðdv; deÞ ¼ ð1; 0Þ, we first attach ki half-

edges to each node vi (Fig. 2(c)). Then, we connect each of

the M half-edges to a hyperedge chosen uniformly at random,

i.e., with probability 1=M. The case of ðdv; deÞ ¼ ð0; 1Þ is par-
allel to that of ðdv; deÞ ¼ ð1; 0Þ. Specifically, we first attach sj
half-edges to each hyperedge ej (Fig. 2(d)) and then connect

each of the M half-edges to a node chosen uniformly at ran-

dom, i.e., with probability 1=N . When ðdv; deÞ ¼ ð1; 1Þ, we
first attach ki half-edges to each node vi and sj half-edges to
each hyperedge ej (Fig. 2(e)). Then, we select a free (i.e., yet

available) half-edge attached to a node and a free half-edge

attached to a hyperedge uniformly at random and connect

them to create a hyperedge. We repeat these steps until we

exhaust all the free half-edges.

The hyper dK-series with dv 2 f0; 1g and de 2 f0; 1g are

the same as the existing reference models for bipartite graphs.

Specifically, the hyper dK-series with ðdv; deÞ ¼ ð1; 1Þ is a

standard configuration model for bipartite graphs [29], [30],

which one often uses as a reference model for bipartite

graphs [44], [50]–[54] and hypergraphs [23]. The hyper

dK-series with ðdv; deÞ ¼ ð0; 0Þ is the bipartite version of the

Erdo��s-R�enyi random graph [55]. The hyper dK-series with

ðdv; deÞ ¼ ð0; 1Þ and ð1; 0Þ has also been used as a reference

model for bipartite graphs [46] and hypergraphs [56].

B. dv 2 f2; 2:5g
The hyper dK-series with dv � 1 and de � 1 exactly pre-

serves up to the degree of each node and the size of each

hyperedge. However, it is practically difficult to construct a

bipartite graph that exactly preserves the pairwise joint degree

distribution of the node by starting from the empty network

and adding edges. The intuitive explanation for this difficulty

is as follows. Consider an edge, of which one end has already

been attached to a node v with degree k. Suppose that we

connect the other end of this edge to hyperedge e of size

s. If s � 3, then mðk; k0Þ, i.e., the number of hyperedges

TABLE I
PROPERTIES OF NODES AND HYPEREDGES CORRESPONDING TO EACH dv

AND de VALUE. THE HYPER dK-SERIES WITH ðdv; deÞ ¼ ð2; 1Þ, FOR
EXAMPLE, PRESERVES THE QUANTITIES FOR dv ¼ 0; 1; 2, AND de ¼ 0; 1

SHOWN IN THIS TABLE.
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that a node with degree k and a node with degree k0 share
simultaneously changes for multiple values of k0 in gen-

eral. This fact makes it difficult to connect edges between

nodes and hyperedges one by one while exactly preserving

the node’s pairwise joint degree distribution, i.e., P ðk; k0Þ,
for all k and k0.

This problem is similar to the one for dyadic networks; it is dif-

ficult to construct dyadic networks that exactly preserve higher-

order structures than the pairwise joint degree distribution of the

node [37], [41], [43]. To mitigate this problem, the algorithm of

the dK-series for dyadic networks uses the so-called targeting-

rewiring process with the aim of preserving the pairwise joint

degree distribution and the triadic relationships, i.e., the degree-

dependent clustering coefficient of the node. In the targeting-

rewiring process, one repeatedly rewires edges in the generated

network such that the final network exactly preserves the pair-

wise joint degree distribution and approximately preserves the

degree-dependent clustering coefficient of the input network.

We extend the targeting-rewiring process for dK-series to the

case of bipartite graphs to realize the algorithm of hyper

dK-series with dv 2 f2; 2:5g. We show the composition of the

hyper dK-series with dv 2 f2; 2:5g, which involves the target-

ing-rewiring process, in Fig. 3. Specifically, the hyper dK-series

with dv ¼ 2 starts by generating a bipartite graph using the hyper
dK-series with d0v ¼ 1 and the given de 2 f0; 1g (see Fig. 3(a)

and 3(b)). The generated network preserves the degree of each

node and either the average size of hyperedges or the size of each

hyperedge depending on whether de ¼ 0 or de ¼ 1, respectively.
Then, we run the targeting-rewiring process for dv ¼ 2, which
amounts to repeatedly rewiring edges such that the randomized

hypergraph approximately restores the joint degree distribution

of the original hypergraph while exactly preserving the degree of

each node.

The targeting-rewiring process for dv ¼ 2 runs as follows.

We first select a pair of edges ðvi; ejÞ and ðvi0 ; ej0 Þ such that

i 6¼i0 and j 6¼ j0 uniformly at random (see Fig. 4(a)). Then, we

replace ðvi; ejÞ and ðvi0 ; ej0 Þ by ðvi; ej0 Þ and ðvi0 ; ejÞ if and only
if a distance between the original and present pairwise joint

degree distribution, denoted by D2, decreases if we rewire the

edges. Using the normalized L1 distance, we defineD2 by

D2 ¼
PM

k¼1

PM
k0¼k jP 0ðk; k0Þ � P ðk; k0ÞjPM
k¼1

PM
k0¼k P ðk; k0Þ

¼
XM
k¼1

XM

k0¼k

2m0ðk; k0ÞPM
j¼1 s

0
jðs0j � 1Þ �

2mðk; k0ÞPM
j¼1 sjðsj � 1Þ

�����

�����; (5Þ

where P 0ðk; k0Þ, m0ðk; k0Þ, and s0j represent the pairwise joint

degree distribution of the node, the number of hyperedges that

nodes with degree k and nodes with degree k0 share, and the size
of hyperedge ej, respectively, for the rewired hypergraph.

To derive the second line in (5), we have used
PM

k¼1PM
k0¼k P ðk; k0Þ ¼ 1. We repeat the rewiring attempts R times

untilD2 becomes sufficiently small and hardly decreases by fur-

ther rewiring.We setR ¼ 500M.

The rewiring preserves the normalization factor,PM
j¼1 s

0
jðs0j � 1Þ, because the rewiring does not alter s0j for any

j ¼ 1; . . . ;M. This property makes it easy to calculate D2. In

other words, for each edge ðv; eÞ to be added or removed by

the rewiring, it is sufficient to calculate how the number of

hyperedges, m0ðk; k0Þ, where k and k0 are the degrees of two

nodes belonging to hyperedge e, changes (see (5)).
It is also difficult to construct bipartite graphs that exactly

preserve the degree-dependent redundancy coefficient of the

node, rðkÞ, over the values of k. This is because the redun-

dancy coefficients of multiple nodes simultaneously change if

one adds or removes an edge in general. Therefore, for dv ¼
2:5, we further repeatedly rewire edges of the hypergraph gen-

erated by the hyper dK-series with dv ¼ 2 as follows. (We

call this procedure targeting-rewriting for dv ¼ 2:5. See also

Figs. 3(c) and 3(d).) We first select a pair of edges ðvi; ejÞ and
ðvi0 ; ej0 Þ such that i 6¼ i0, j 6¼ j0, and ki ¼ ki0 uniformly at ran-

dom (see Fig. 4(b)). Then, we replace ðvi; ejÞ and ðvi0 ; ej0 Þ by
ðvi; ej0 Þ and ðvi0 ; ejÞ if and only if the distance defined by

D2:5 ¼
PM

k¼1 jr0ðkÞ � rðkÞjPM
k¼1 rðkÞ

; (6)

where r0ðkÞ represents the degree-dependent redundancy coeffi-
cient of the node for the rewired hypergraph, decreases after the

rewiring.We repeat the rewiring attemptsR ¼ 500M times.

Fig. 2. An example schematically showing the algorithm of the hyper dK-series with dv 2 f0; 1g and de 2 f0; 1g. (a) A bipartite graph. (b) ðdv; deÞ ¼ ð0; 0Þ.
(c) ðdv; deÞ ¼ ð1; 0Þ. (d) ðdv; deÞ ¼ ð0; 1Þ. (e) ðdv; deÞ ¼ ð1; 1Þ.
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It is easy to calculate D2:5 upon a rewiring attempt. To

explain this, we rewrite (6) as

D2:5 ¼
PM

k¼1
1

nðkÞ j
PN

i¼1; ki¼kðr0i � riÞjPM
k¼1

1
nðkÞ

PN
i¼1; ki¼k ri

; (7)

where r0i represents the redundancy coefficient of node vi for the
rewired hypergraph. To derive (7), we have used the fact that the

rewiring exactly preserves the degree of each node. (7) implies

that it is sufficient to only calculate the change in r0i for the nodes
that are involved in the rewiring (i.e., vi and vi0) and those that

share at least one hyperedge with either vi or vi0 .
The first subprocess comprising the hyper dK-series with

dv 2 f2; 2:5g is to generate a randomized hypergraph using

the hyper dK-series with dv ¼ 1 (see Fig. 3). This process pre-
serves the node’s degree distribution and destroys the degree

correlation and redundancy of the node. The second subpro-

cess comprising the hyper dK-series with dv 2 f2; 2:5g is the

targeting-rewiring process. This process also preserves the

node’s degree distribution. Therefore, the entire procedure of

the hyper dK-series with dv 2 f2; 2:5g preserves the node’s

degree. Furthermore, the targeting-rewriting with dv ¼ 2 and

dv ¼ 2:5 makes the degree correlation and redundancy,

respectively, approach those of the original hypergraph, which

has been lost in the course of the first subprocess. Therefore,

the entire hyper dK-series with dv ¼ 2 and dv ¼ 2:5 approxi-

mately preserves the degree correlation and the redundancy,

respectively.

The targeting-rewiring process for dv ¼ 2:5 also preserves

the degree correlation, i.e., P 0ðk; k0Þ for each k and k0, for the

Fig. 4. Rewiring of two edges in the targeting-rewiring process. (a) dv ¼ 2.
(b) dv ¼ 2:5. In (a), we allow k 6¼ k0. In (b), we require k ¼ k0. Note that the
algorithm for dv ¼ 2:5 undergoes the rewiring process for dv ¼ 2 shown in (a)
before one runs the rewiring process shown in (b).

Fig. 3. Workflow of the hyper dK-series with dv 2 f2; 2:5g and de 2 f0; 1g.M represents the number of hyperedges; P ðkÞ represents the degree distribution of
the node; P ðsÞ represents the size distribution of the hyperedge; P ðk; k0Þ represents the joint degree distribution of the node; rðkÞ represents the degree-depen-
dent redundancy coefficient of the node.

NAKAJIMA et al.: RANDOMIZING HYPERGRAPHS PRESERVING DEGREE CORRELATION AND LOCAL CLUSTERING 1143



following two reasons. First, owing to the constraint that ki ¼
ki0 , the rewiring preserves m0ðk; k0Þ, i.e., the number of hyper-

edges that nodes with degree k and nodes with degree k0 share,
for any k and k0. Second, the rewiring preserves the normaliza-

tion factor
PM

j¼1 s
0
jðs0j � 1Þ as in the case of dv ¼ 2.

The targeting-rewiring process for dv ¼ 2 or 2.5 preserves the

size of each hyperedge of the randomized hypergraph. However,

with ðdv; deÞ ¼ ð2; 0Þ or ð2:5; 0Þ, the hyper dK-series does not

preserve the size of each hyperedge of the input hypergraph. This

is because we first generate a bipartite graph with ðdv; deÞ ¼
ð1; 0Þ, which destroys the size distribution of hyperedges, prior

to the targeting-rewiring (see Figs. 3(a) and 3(c)).

C. An Alternative Algorithm for ðdv; deÞ ¼ ð2; 1Þ:
Randomizing Rewiring

For ðdv; deÞ ¼ ð2; 1Þ, we have an alternative to the target-

ing-rewiring process, which is an extension of the so-called

randomizing-rewiring process in dK-series for dyadic net-

works [37], [43] to the case of bipartite graphs. The randomiz-

ing rewiring produces bipartite graphs that exactly preserve

both nodal degree distribution and P ðk; k0Þ. In randomizing

rewiring, the initial bipartite graph is a replica of the original

bipartite graph G. Then, we select a pair of edges, ðvi; ejÞ and
ðvi0 ; ej0 Þ, such that i 6¼ i0, j 6¼ j0, and ki ¼ ki0 uniformly at ran-

dom, and then replace ðvi; ejÞ and ðvi0 ; ej0 Þ by ðvi; ej0 Þ and

ðvi0 ; ejÞ. The rewiring preserves the degree of each node,

P ðk; k0Þ, and the size of each hyperedge. We repeat this rewir-

ing procedure R0 times, where R0 is sufficiently large, and use

the final result as ~G. We set R0 ¼ 100M because we have

found up to our numerical efforts that the overlap of edges of

G and those of the rewired hypergraph converges sufficiently

before R0 ¼ 100M.

The randomizing rewiring has an advantage over the target-

ing rewiring in that it exactly preserves both the degree of each

node and P ðk; k0Þ of the input bipartite graph; the targeting

rewiring only approximately preserves P ðk; k0Þ. However, in
contrast to the case of dyadic networks for which the randomiz-

ing rewiring is efficient [37], [43], the randomizing rewiring

for the hyper dK-series has two drawbacks. First, it is only

practical with ðdv; deÞ ¼ ð2; 1Þ. On one hand, although we can

easily extend the randomizing rewiring to the case of dv � 1
and de � 1, efficient algorithms for generating bipartite graphs

exactly preserving the quantities with dv � 1 and de � 1
already exist, as we described in Section III-A. On the other

hand, it is practically difficult to apply the randomizing rewir-

ing in the case of ðdv; deÞ ¼ ð2; 0Þ; ð2:5; 0Þ, and ð2:5; 1Þ
because a proposed random rewiring that respects the con-

straints imposed by the given ðdv; deÞ rarely preserves P ðk; k0Þ.
Second, the overlap of the edges in G and those in the rewired

hypergraph converges to a nonnegligibly large value with the

randomizing rewiring with ðdv; deÞ ¼ ð2; 1Þ. In other words,

the randomizing rewiring does not sufficiently randomly shuf-

fle the edges of the original bipartite graph even if one carries

out the rewiring many times. We show numerical evidence of

this phenomenon in Appendix A. Therefore, we use the target-

ing rewiring in the following analyses when ðdv; deÞ ¼ ð2; 1Þ.

IV. RESULTS

A. Data

In this section, we apply the hyper dK-series to four empiri-

cal hypergraphs. The NDC-classes hypergraph, which we refer

to as the drug hypergraph in the following text, is a drug net-

work constructed from the National Drug Code Directory [13].

Its nodes are class labels, such as serotonin reuptake inhibitor,

and a hyperedge is a set of class labels associated with a single

drug. The Enron hypergraph is an email communication net-

work [7], [13], in which a node is an email address, and a

hyperedge is a set of all recipient addresses of an email. The

primary-school hypergraph is a social contact network, where

nodes are individuals (i.e., students or teachers), and a hyper-

edge represents an event in which a set of individuals are in

face-to-face contact event with each other [5], [13]. The high-

school hypergraph is also a social contact network, where

nodes are students, and a hyperedge is a face-to-face contact

event among a set of students [6], [13]. We preprocessed each

data set by first removing multiple hyperedges in the original

hypergraph, and then by extracting the largest connected com-

ponent. Table II shows properties of the largest connected

component, which we use in the following analysis, for the

four data sets.

B. Structural Properties

For each empirical hypergraph, we compare six structural

properties among the given hypergraph and hypergraphs gen-

erated by the hyper dK-series with dv 2 f0; 1; 2; 2:5g and de 2
f0; 1g. We also analyze an existing reference model for bipar-

tite graphs, the B2K [45], as a benchmark. In terms of the ter-

minology of hypergraphs, the B2K model preserves the

degree of each node, the size of each hyperedge, and the num-

ber of hyperedges with size s to which nodes with degree k
belong for each k and s.
Fig. 5 compares the six structural properties between the

drug hypergraph, the hyper dK-series, and the B2K model.

The results for the hyper dK-series with de ¼ 0 and various

values of dv together with those for the original drug hyper-

graph and the B2K model are shown in Fig. 5(a)–5(f). We

make the following observations. First, Fig. 5(a) indicates that

the hyper dK-series with dv 2 f1; 2; 2:5g but not dv ¼ 0
exactly preserves the degree of each node (and therefore the

degree distribution) of the drug hypergraph, which is

expected. Second, Fig. 5(b) indicates that the hyper dK-series

with dv 2 f2; 2:5g but not dv 2 f0; 1g approximately pre-

serves the average degree of the nearest neighbors of nodes

with degree k, denoted by knnðkÞ, in the input hypergraph.

Because knnðkÞ is a derivative of the pairwise joint distribution
of the node’s degree, P ðk; k0Þ, which the hyper dK-series with

dv � 2 intends to preserve, this result is also expected. The

hyper dK-series with dv 2 f0; 1g produces networks without

noticeable degree correlation of the node (see Fig. 5(b)).

Third, as expected, the hyper dK-series with dv ¼ 2:5 but not

with smaller dv values approximately preserves the degree-

dependent redundancy coefficient of the node, rðkÞ, of the
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empirical hypergraph (see Fig. 5(c)). Fourth, as expected, the

hyper dK-series with any dv 2 f0; 1; 2; 2:5g and de ¼ 0 does

not preserve the distribution of the size of the hyperedge of

the original hypergraph; it only preserves the average size of

the hyperedge (see Fig. 5(d)). Fifth, the hyper dK-series with a

larger value of dv better approximates the distribution of the

shortest path length between node pairs although the hyper

dK-series is not designed to preserve this quantity (see Fig. 5(e)).

Finally, we show in Fig. 5(f) the cumulative degree distribution

of the one-mode projection, where each pair of nodes in the pro-

jected network are adjacent if they belong to at least one common

hyperedge, and the multiplicity of the edge is equal to the number

of hyperedges that the two nodes share [57], [58]. The hyper

dK-series progressively better approximates the cumulative

degree distribution of the one-mode projection when dv is larger,
whereas the results are similar between dv ¼ 2 and dv ¼ 2:5.
Note that the hyper dK-series is not designed to preserve the

degree distribution of the one-mode projection.

We show in Fig. 5(g)–5(l) the results for the hyper

dK-series with de ¼ 1 and various values of dv together with

those for the empirical hypergraph and the B2K model. The

results for the empirical hypergraph and the B2K model shown

in these figures are the same as those shown in Fig. 5(a)–5(f).

We make the following observations. First, as expected, the

results shown in Fig. 5(g)–5(i) are similar to those shown in

Fig. 5(a)–5(c). In other words, the hyper dK-series with dv �
1 preserves the degree distribution of the node, that with dv �
2 additionally preserves knnðkÞ, and that with dv ¼ 2:5 addi-

tionally preserves rðkÞ. Second, Fig. 5(j) indicates that the

hyper dK-series preserves the distribution of the size of hyper-

edge, which is because we set de ¼ 1. Third, similar to the

case of de ¼ 0, the hyper dK-series with a larger dv value bet-
ter approximates the distribution of the shortest path length

between nodes (see Fig. 5(k)). A comparison between Figs. 5(e)

and 5(k) suggests that the approximation accuracy is not notably

different between de ¼ 0 and de ¼ 1. Finally, a comparison

between Figs. 5(f) and 5(l) suggests that the hyper dK-series

with dv � 2 and de ¼ 1more accurately approximates the cumu-

lative degree distribution of the one-mode projection than the

hyper dK-series with the same dv value and de ¼ 0 and than that
with dv � 1 and de ¼ 1. This is presumably because the node’s

degree in the one-mode projection depends not only on the

degree of the node in the original hypergraph but also on the size

of each hyperedge to which the node belongs.

The B2K model exactly preserves the distributions of node’s

degree and hyperedge’s size, as expected (see Figs. 5(a) and

5 (d)). However, it does not preserve the node’s degree

correlation and the redundancy coefficient of the empirical net-

work (see Figs. 5(b) and 5(c)). Therefore, roughly speaking, the

complexity of the B2Kmodel is somewhere between that of the

hyper dK-series with ðdv; deÞ ¼ ð1; 1Þ and that with ðdv; deÞ ¼
ð2; 1Þ. We also find that the B2K model accurately preserves

the degree distribution of the one-mode projection (see Fig. 5

(f)) although the B2Kmodel does not intend to preserve it.

To be quantitative, we measure the distance in the distribu-

tion of each of the six quantities between the empirical hyper-

graph and each type of synthetic hypergraph for each data set.

For the degree distribution of the node, the size distribution of

the hyperedge, and the degree distribution of one-mode projec-

tion, we calculate the Kolmogorov-Smirnov distance between

the cumulative distribution for the original bipartite graph and

that for the generated bipartite graph. The Kolmogorov-Smir-

nov distance between two cumulative distributions, denoted by

F1ðxÞ and F2ðxÞ, is given by supxjF1ðxÞ � F2ðxÞj. For knnðkÞ,
rðkÞ, and the distribution of the shortest path length between

nodes (which we denote by P ð‘Þ for the shortest path length ‘),
we calculate the normalized L1 distance between the vector

corresponding to the original bipartite graph, denoted by xx ¼
ðx1; x2; . . . ; xLÞ, and that corresponding to the synthetic bipar-
tite graph, denoted by ~xx ¼ ð~x1; ~x2; . . . ; ~xLÞ. Specifically, we
set xk ¼ knnðkÞ with k ¼ 1; . . . ;M, xk ¼ rðkÞ with k ¼
1; . . . ;M, or xk ¼ P ð‘Þwith k ¼ 1; . . . ; N � 1, and similar for

~xx. The distance between xx and ~xx is defined by
PL

i¼1 j~xi �
xij=

PL
i¼1 jxij. For each property and each model, we average

the distance value over 100 independent runs. In each model,

we generate an independent bipartite graph for each run.

We show the distance measurement results in Table III. The

following observations apply to all the data sets unless we

state otherwise. First, we verify that the degree distribution of

the node is the same between the empirical data and the hyper

dK-series with dv � 1 and the B2K model. Second, the hyper

dK-series with dv ¼ 2 realize a considerably small distance to

the empirical data in terms of knnðkÞ. Third, the hyper

dK-series with dv ¼ 2:5 yields a small distance to the empiri-

cal data in terms of rðkÞ. Fourth, the distribution of hyper-

edge’s size is the same between the empirical data, any hyper

dK-series with de ¼ 1, and the B2K model. Fifth, for both

de ¼ 0 and de ¼ 1, the hyper dK-series is more similar to the

empirical data in terms of the distribution of shortest path

length between nodes (i.e., P ð‘Þ) when dv is larger. However,
with the exception of primary-school hypergraph, the relative

error between the hyper dK-series and the empirical hyper-

graph in terms of P ð‘Þ is large (i.e., > 30%) even with

ðdv; deÞ ¼ ð2:5; 1Þ. Finally, the hyper dK-series with

TABLE II
PROPERTIES OF THE EMPIRICAL DATA SETS.N: NUMBER OF NODES,M: NUMBER OF HYPEREDGES,M:
NUMBER OF EDGES IN THE CORRESPONDING BIPARTITE GRAPH, �k: AVERAGE DEGREE OF THE NODE, �s:

AVERAGE SIZE OF THE HYPEREDGE, �r: AVERAGE REDUNDANCY COEFFICIENT OF THE NODE, �l:
AVERAGE SHORTEST PATH LENGTH BETWEEN NODES.
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Fig. 5. Structural properties of the drug hypergraph, the networks generated by the hyper dK-series, and the B2Kmodel. We use the hyper dK-series with de ¼ 0
in (a)–(f) and de ¼ 1 in (g)–(l). Panels (a) and (g): cumulative degree distribution of the node, (b) and (h): average degree of nearest neighbors of nodes with degree
k, (c) and (i): degree-dependent redundancy coefficient of the node, (d) and (j): cumulative size distribution of the hyperedge, (e) and (k): distribution of shortest
path length between nodes, and (f) and (l): cumulative degree distribution of the one-mode projection. We define the shortest path length between two nodes as the
smallest number of hyperedges on the path between the two nodes among all the paths. The average shortest path length is the average of the shortest average path
between a pair of nodes over all pairs of nodes in the largest connected component. The largest connected component of randomized hypergraphs contains almost
all nodes for all the four empirical hypergraphs (see Section S1 in the supplementary material for details). We indicate the curves by the arrow and label wherever
multiple curves completely or heavily overlap each other.
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ðdv; deÞ ¼ ð2; 1Þ, (2.5,1) and the B2K model are close to the

empirical data in terms of the degree distribution of the one-

mode projection. All these results are consistent with those

shown in Fig. 5. We also statistically tested how significantly

the hyper dK-series changes each structural property of a

given hypergraph (see Section S2 in the supplementary

material).

To examine if the targeting rewiring introduces sufficient

randomization, we measure the distance measuresD2 andD2:5,

which are defined in (5) and (6), as a function of the number of

rewiring attempts, R, for the hyper dK-series with dv 2
f2; 2:5g and de 2 f0; 1g. The results for the drug data set are

shown in Fig. 6. For both de ¼ 0 and de ¼ 1, D2 rapidly

decreased to values that are� 15% larger than the final value in

the first� 100M targeting rewiring attempts. Then,D2 contin-

ued to decrease slowly towards the final value. Similarly, D2:5

in the case of both de ¼ 0 and de ¼ 1 rapidly decreased to val-

ues that are � 10% larger than the final values in the first

100M targeting rewiring attempts and then slowly decayed

towards the final values. We confirmed that the trajectories of

D2 andD2:5 were similar for the other three data sets.

C. Epidemic Spreading

A primary application of the hyper dK-series is to simula-

tions of dynamical or other processes on hypergraphs. Specifi-

cally, comparisons between the results on the original and

synthetic hypergraphs generally help us to understand particu-

lar structural properties of the hypergraph that impact the pro-

cesses on hypergraphs. For example, comparisons between a

dynamical process on networks generated by the hyper

dK-series with dv ¼ 0 and with dv ¼ 1 will reveal the effect

of the node’s degree distribution. This is because the hyper

dK-series with dv ¼ 0 destroys the degree distribution of the

original hypergraph, whereas that with dv ¼ 1 preserves it.

Likewise, comparisons between dv ¼ 1 and dv ¼ 2 will reveal

the effects of degree correlation; comparisons between dv ¼ 2
and dv ¼ 2:5 will reveal the effects of redundancy; compari-

sons between de ¼ 0 and 1 will reveal the effects of the hyper-
edge’s size distribution. We showcase the application of the

hyper dK-series with epidemic spreading and evolutionary

game dynamics models.

In this section, we examine a susceptible-infected-suscepti-

ble (SIS) model on hypergraphs in continuous time [47]. Each

TABLE III
DISTANCE BETWEEN THE EMPIRICAL HYPERGRAPHS AND THOSE GENERATED BY THE REFERENCE MODELS (I.E., HYPER dK-SERIES AND B2K

MODEL). IN THE TABLE, P ðkÞ REPRESENTS THE CUMULATIVE DEGREE DISTRIBUTION OF THE NODE; knnðkÞ REPRESENTS THE AVERAGE

DEGREE OF THE NEAREST NEIGHBORS OF NODES WITH DEGREE k; rðkÞ REPRESENTS THE DEGREE-DEPENDENT REDUNDANCY COEFFICIENT OF

THE NODE; P ðsÞ REPRESENTS THE CUMULATIVE SIZE DISTRIBUTION OF THE HYPEREDGE; P ðlÞ REPRESENTS THE DISTRIBUTION OF THE

SHORTEST PATH LENGTH BETWEEN NODES; P ð�kÞ REPRESENTS THE CUMULATIVE DEGREE DISTRIBUTION OF THE ONE-MODE PROJECTION.
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node is in either the susceptible state or the infectious state at

any time t. Each infectious node recovers and becomes sus-

ceptible according to a Poisson process with rate d. A funda-

mental assumption underlying the present model, which

distinguishes it from other SIS models on hypergra-

phs [59]–[61], is that the contagion process is critical-mass

dynamics, which generalizes a previous model [62]. Let rj
denote the fraction of infectious nodes in hyperedge ej 2 E.

For each hyperedge ej, each susceptible node in ej becomes

infected at rate �j if and only if rj � u, where u is a parameter.

We set d ¼ 1 and �j ¼ �log 2jejj, where � is a parameter [47].

We assume that all the nodes are initially infectious and run

the SIS model on the primary-school and high-school hyper-

graphs until t ¼ 100. We confirmed that the fraction of infected

nodes converges to an approximate stationary value before t ¼
100. For the given u and � values, we average the fraction of

infected nodes over 95 � t � 100 and over 100 runs. In the

case of the hyper dK-series, we generate an independent bipar-

tite graph for each run.

In Figs. 7(a) and 7(b), we set u ¼ 0:1 and compare the frac-

tion of infected nodes among the primary-school hypergraph

and hypergraphs generated by the corresponding hyper

dK-series. We set de ¼ 0 in Fig. 7(a) and de ¼ 1 in Fig. 7(b).

The results for the empirical hypergraph shown in Figs. 7(a)

and 7(b) are the same. We make the following observations.

First, the hyper dK-series with de ¼ 0 considerably overesti-

mates the fraction of infected nodes and underestimates the epi-

demic threshold for the empirical hypergraph for any dv.
Second, the fraction of infected nodes in the hyper dK-series

with de ¼ 1 is closer to that in the empirical hypergraph than

with de ¼ 0. Third, the hyper dK-series with ðdv; deÞ ¼ ð1; 1Þ,
(2,1), and (2.5,1) accurately estimate the fraction of infected

nodes and the epidemic threshold in the empirical hypergraph

and almost to the same extent. In other words, the hyper

dK-series with ðdv; deÞ ¼ ð1; 1Þ is necessary and sufficient for

reproducing the fraction of infected nodes as a function of the

infection rate. These results indicate that the size of each hyper-

edge, or equivalently, its distribution, is a main determinant of

the epidemic spreading more than are the node’s local proper-

ties with dv > 1, such as the degree correlation and redun-

dancy coefficient, and mesoscopic or macroscopic structure of

the hypergraph. These results qualitatively remain the same

for a different threshold value, i.e., u ¼ 0:5 (see Figs. 7(c) and

7(d)) and for the high-school hypergraph (see Figs. 7(e)–7(h)).

D. Evolutionary Dynamics

Next, we compare evolutionary dynamics on the empirical

hypergraphs and the hyper dK-series. We use a previously

proposed model of public goods game on hypergraphs, which

proceeds as follows [48]. Each node selects either to cooperate

or defect in each round of evolutionary dynamics. A coopera-

tor transfers an asset c to the public goods of hyperedge e,
where jej � 2. A defector does not contribute to the public

goods. The total investment in e is nCc, where nC is the num-

ber of cooperators in e. Then, one multiplies the total invest-

ment by the synergy factor R, where R > 1, and then equally

distributes the multiplied total investment among all the nodes

in e. The payoff that a cooperator and defector receives from

hyperedge e is equal to pC ¼ RnCc=jej � c and pD ¼
RnCc=jej, respectively. As in the previous study [48], we

assume R ¼ ajejjb, where a > 0 and b � 0.
We numerically simulate the evolutionary public goods

game on the given hypergraph as follows. Initially, each node

is independently cooperator or defector with a probability of

0.5 each. In each round, we first uniformly randomly select a

node vi, whose strategy (i.e., cooperation or defection) may be

updated, with probability 1=N and then select a hyperedge ej
to which vi belongs with probability 1=ki uniformly at ran-

dom. We continue this selection procedure until we select a

hyperedge with jejj � 2. We have confirmed that each node

belongs to at least one hyperedge with jejj � 2 in all cases.

Then, all the nodes that belong to ej play the public goods

game just once in each of the hyperedges to which they

belong. Each node accumulates the payoffs from all the games

that the node plays. Then, we divide the accumulated payoff

by the number of games that the node has played. We denote

by pi the payoff of node vi. Node vi adopts the strategy of the

node that has gained the largest payoff in hyperedge ej,
denoted by vi0 , with probability ðpi0 � piÞ=D. When b < 1,
we set

D ¼
a~sb�1

min ð~smin � 1Þ � asb�1
max þ 1 if a � 2

~s
b�1
min

þs
b�1
max

;

a~sbmin � 1 otherwise;

8<
:

(8)

where ~smin ¼ maxfsmin; 2g, and smax and smin are the largest

and smallest sizes of the hyperedge, respectively. When b �
1, we set

D ¼
asb�1

maxðsmax � 1Þ � a~sb�1
min þ 1 if a � 2

~s
b�1
min

þs
b�1
max

;

asbmax � 1 otherwise:

8<
:

(9)

Equations (8) and (9) guarantees that the probability ðpi0 �
piÞ=D is normalized (see Ref. [48] for details). If pi0 � pi,

node vi does not adopt the strategy of vi0 . For the given a and

b values, we measure the fraction of cooperators as the

Fig. 6. Distance between the original and synthetic hypergraphs in the target-
ing-rewiring process for the drug data set. (a) dv ¼ 2. (b) dv ¼ 2:5.
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average over the ð106 þ 1Þst and ð106 þ 103Þth rounds in a

single run and over 100 runs. In the case of the hyper

dK-series, we generate an independent bipartite graph for

each run.

In Figs. 8(a) and 8(b), we set b ¼ 0 and compare the fraction

of cooperators on the primary-school hypergraph and the hyper

dK-series. We set de ¼ 0 in Fig. 8(a) and de ¼ 1 in Fig. 8(b).

The results for the empirical hypergraph shown in Figs. 8(a)

and 8(b) are the same. We make the following observations.

First, at both de values, the node’s pairwise degree correlation
present in the empirical hypergraph promotes the cooperation

but the node’s degree distribution or the profile of the redun-

dancy coefficient does not. Second, the fraction of cooperators

in the hyper dK-series with any dv and de ¼ 0 is considerably

smaller than that in the empirical hypergraph. In contrast, the

fraction of cooperators in the hyper dK-series with de ¼ 1 is

generally close to that in the empirical hypergraph. Therefore,

destroying the distribution of the hyperedge’s size in the origi-

nal hypergraph suppresses cooperation. In fact, the size distri-

bution of the hyperedge is a stronger determinant of the amount

of cooperation than any of the node’s local properties investi-

gated (i.e., the degree distribution, pairwise degree correlation,

and redundancy coefficient).

Figures 8(c) and 8(d) show the results for b ¼ 1. We make

the following observations. First, when de ¼ 0 (see Fig. 8(c)),

preserving the node’s degree correlation and redundancy of

the original hypergraph individually enhances cooperation.

However, when one destroys the degree correlation (i.e., dv ¼
0 or 1), there is less cooperation than in the original hyper-

graph. Furthermore, intriguingly, the hyper dK-series with

ðdv; deÞ ¼ ð2; 0Þ and ð2:5; 0Þ realize more cooperation than on

the original hypergraph, suggesting that destroying the network

structure that is higher-order than the degree-correlation and

redundancy promotes cooperation. Second, there is less coop-

eration when the distribution of the hyperedge’s size is pre-

served (i.e., de ¼ 1; Fig. 8(d)) than destroyed (i.e., de = 0;

Fig. 8(c)). This result is opposite to that for b ¼ 0 (see Figs. 8

(a) and 8(b)). Third, similarly to the case of de ¼ 0, the preser-
vation of the node’s degree correlation and redundancy (but not

higher-order structure) of the original hypergraph individually

increases cooperation in the case of de ¼ 1. In particular, hyper
dK-series with ðdv; deÞ ¼ ð2:5; 1Þ realizes more cooperation

than on the original hypergraph (see the purple line in Fig. 8

(d)). A comparison between Figs. 8(c) and 8(d) suggests that,

no matter whether the distribution of the hyperedge’s size is

destroyed or preserved, destroying the structure that is higher-

order than the node’s redundancy by randomization yields

more cooperation than in the original hypergraph. All these

results qualitatively remain the same for the high-school hyper-

graph (see Figs. 8(e)–8(h)).

The critical point a ¼ acðbÞ separating the defection and

cooperation phases is analytically calculated as follows [48]:

acðbÞ ¼ 1Psmax
s¼~smin

~pðsÞsb�1
; (10)

where ~pðsÞ ¼ pðsÞ=Psmax
s¼~smin

pðsÞ, and pðsÞ represents the

fraction of hyperedges of size s. Note that it holds thatPsmax
s¼~smin

~pðsÞ ¼ 1. In the infinite well-mixed population, the

evolutionary dynamics converge to full defection and full

cooperation when a < acðbÞ and a > acðbÞ, respectively.

Fig. 7. Fraction of infected nodes in the SIS model on hypergraphs. The results for primary-school data set are shown in (a)–(d), and those for the high-school
data set are shown in (e)–(h). We set ðde; uÞ ¼ ð0; 0:1Þ in (a) and (e); ðde; uÞ ¼ ð1; 0:1Þ in (b) and (f); ðde; uÞ ¼ ð0; 0:5Þ in (c) and (g); ðde; uÞ ¼ ð1; 0:5Þ in (d) and
(h). We indicate the curves by the arrow and label wherever multiple curves heavily overlap each other.
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Fig. 8. Evolution of cooperation in the public goods game on hypergraphs. Panels (a)–(d) show the fraction of cooperators for the primary-school data set, and
panels (e)–(h) are for the high-school data set. We set ðde; bÞ ¼ ð0; 0Þ in (a) and (e); ðde; bÞ ¼ ð1; 0Þ in (b) and (f); ðde;bÞ ¼ ð0; 1Þ in (c) and (g); and ðde;bÞ ¼
ð1; 1Þ in (d) and (h). We indicate the curves by the arrow and label wherever multiple curves heavily overlap each other.

Fig. 9. Comparison between the targeting-rewiring and randomizing-rewiring processes for the drug hypergraph. We set ðdv; deÞ ¼ ð2; 1Þ. (a) Cumulative
degree distribution of the node, (b) average degree of the nearest neighbors of nodes with degree k, (c) degree-dependent redundancy coefficient of the node,
(d) cumulative size distribution of the hyperedge, (e) distribution of the shortest path length between nodes, and (f) cumulative degree distribution of the one-
mode projection. We indicate the curves behind other curves by the arrow and label wherever multiple curves completely or heavily overlap each other.
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When b ¼ 0, the primary-school hypergraph yields acð0Þ �
2:31. Roughly consistent with this, the fraction of cooperators

on the empirical hypergraph reaches � 1.0 at a � 2:5 in our

simulations (see the red lines in Figs. 8(a) and 8(b)). The cor-

responding hyper dK-series with any dv and de ¼ 0 leads to

acð0Þ � 2:77, which underestimates the threshold obtained

from the numerical simulations, i.e., a � 3:3 (see Fig. 8(a)).

However, (10) and our numerical results are consistent in the

sense that the critical point in terms of a for the hyper

dK-series with de ¼ 0 is larger than that for the empirical

hypergraph. The hyper dK-series with any dv and de ¼ 1 has

the same analytically determined threshold, acð0Þ � 2:31, as
the empirical hypergraph because these hypergraphs have the

same distribution of the hyperedge’s size. This result is also

consistent with our numerical result that the fraction of coop-

erators reaches � 1.0 at a � 2:5 in the hyper dK-series with

any dv and de ¼ 1 (see Fig. 8(b)). When b ¼ 1, (10) predicts
that acð1Þ ¼ 1:0 regardless of dv and the size distribution of

the hyperedge (therefore, regardless of de). This result is con-
sistent with our numerical results shown in Figs. 8(c) and 8(d).

For the high-school hypergraph, we obtain acð0Þ � 2:23 for

the empirical hypergraph and the hyper dK-series with de ¼ 1,
acð0Þ � 2:75 for the hyper dK-series with de ¼ 0, and acð1Þ ¼
1:0 for the empirical and synthetic hypergraphs. In our numeri-

cal simulations, we obtain acð0Þ � 2:5 for for the empirical

hypergraph (see the red lines in Figs. 8(e) and 8(f)) and the

hyper dK-series with de ¼ 1 (see Fig. 8(f)), acð0Þ � 3:3 for the
hyper dK-series with de ¼ 0 (see Fig. 8(e)), and acð1Þ � 1:0
for the empirical and synthetic hypergraphs (see Figs. 8(g) and

8(h)). These results are qualitatively the same as those for the

primary-school hypergraph.

V. CONCLUSION

We proposed a family of reference models for hypergraphs

called the hyper dK-series. The hyper dK-series preserves the

local properties of nodes and hyperedges in the given hyper-

graph to different extents. We empirically showed that the

hyper dK-series preserves the properties of nodes and hyper-

edges, as intended, across different hypergraph data sets. We

also showcased its use as reference models in investigating epi-

demic spreading and evolution of cooperation on hypergraphs.

Models of dynamical processes on hypergraphs, such as the epi-

demic spreading [59]–[61], [63], evolutionary dynamics [48],

[64], opinion dynamics [65]–[67], and synchronization [68]–

[71], have been proposed. Deploying the hyper dK-series to

studies of various models of dynamics is expected to better

reveal how the dynamics depend on the specific structural prop-

erties of the given hypergraphs.

Up to our numerical efforts, we found that the hyper

dK-series with a larger dv value better approximates the distri-

bution of the shortest path length between nodes for the empir-

ical hypergraphs. However, as expected, even the hyper

dK-series with the largest dv value (i.e., dv ¼ 2:5) does not
accurately approximate the distribution of the shortest path

length. In particular, we found that the average shortest path

length for the hypergraphs generated by the hyper dK-series

with dv ¼ 2:5 is smaller than that for the empirical hyper-

graph for all the four data sets (e.g., the drug hypergraph has

the average shortest length of 3.53, whereas the hyper

dK-series has 3.03 for ðdv; deÞ ¼ ð2:5; 0Þ and 2.77 for

ðdv; deÞ ¼ ð2:5; 1Þ). The community structure is one of net-

work structures that is higher-order than the redundancy coef-

ficient of the node and likely increases the shortest path

length between nodes. Extending the hyper dK-series to ref-

erence models that additionally preserve the community

structure warrants future work. To this end, it may be useful

to employ a family of stochastic block models with the com-

munity structure for bipartite graphs [72]–[75] or hyper-

graphs [76]–[79].

APPENDIX A

COMPARISON OF THE TARGETING REWIRING AND

RANDOMIZING REWIRING FOR ðdv; deÞ ¼ ð2; 1Þ
In this section we compare the targeting-rewiring and ran-

domizing-rewiring processes with ðdv; deÞ ¼ ð2; 1Þ. We show

the distributions of the six quantities for the two rewiring pro-

cesses for the drug hypergraph in Fig. 9. Both rewiring pro-

cesses exactly preserve the degree distribution of the node and

the size distribution of the hyperedge of the original bipartite

graph (see Figs. 9(a) and 9(d)). The randomizing-rewiring pro-

cess exactly preserves knnðkÞ, whereas the targeting-rewiring

process only approximately preserves it (see Fig. 9(b)). The

Fig. 10. The Jaccard index between a set of edges of the empirical hypergraph and that of the hypergraph generated under the randomizing rewiring. We set

ðdv; deÞ ¼ ð2; 1Þ. (a) Drug, (b) Enron, (c) primary-school, and (d) high-school. The Jaccard index between the sets of edges is given by jE \ ~Ej=jE [ ~Ej, where E
and ~E are the set of edges in the original and synthetic hypergraphs, respectively. In calculating the Jaccard index, we removed multiplicity of edges in ~E.
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two rewiring methods produce similar networks in terms of the

degree-dependent redundancy coefficient, the distribution of

the shortest path length between nodes, and the degree distribu-

tion of the one-mode projection, as shown in Figs. 9(c), 9(e),

and 9(f), respectively.

We also compare the two rewiring processes in terms of

the overlap of the edges of the empirical hypergraph and

those of the synthetic hypergraphs. Fig. 10(a) shows the Jac-

card index between the sets of edges in the drug hypergraph

and the hypergraph generated by the randomizing rewiring

as a function of the number of rewiring attempts. The figure

indicates that the Jaccard index steadily decreases as the ran-

domizing rewiring proceeds. However, it plateaus at � 0.32,

which implies that a set of edges in the synthetic bipartite

graph is not sufficiently shuffled due to the constraints that

each edge rewiring step has to preserve P ðk; k0Þ in addition

to the degree of each node. The Jaccard index similarly pla-

teaus at � 0.45, � 0.45, and � 0.21 for the Enron, primary-

school, and high-school hypergraphs, respectively (see

Figs. 10(b), 10(c), and 10(d), respectively). In contrast, the

Jaccard index is � 0.036, � 0.016, � 0.006, � 0.005 under

the targeting rewiring for the drug, Enron, primary-school,

and high-school hypergraphs, respectively. Therefore, we

conclude that the randomizing rewiring does not sufficiently

shuffle the edges of the input hypergraph.
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