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Temporal Network Prediction and Interpretation
Li Zou, Xiu-Xiu Zhan, Jie Sun, Alan Hanjalic, Fellow, IEEE and Huijuan Wang

Abstract—Temporal networks refer to networks like physical contact networks whose topology changes over time. Predicting future
temporal network is crucial e.g., to forecast the epidemics. Existing prediction methods are either relatively accurate but black-box, or
white-box but less accurate. The lack of interpretable and accurate prediction methods motivates us to explore what intrinsic
properties/mechanisms facilitate the prediction of temporal networks. We use interpretable learning algorithms, Lasso Regression and
Random Forest, to predict, based on the current activities (i.e., connected or not) of all links, the activity of each link at the next time
step. From the coefficients learned from each algorithm, we construct the prediction backbone network that presents the influence of all
links in determining each link’s future activity. Analysis of the backbone, its relation to the link activity time series and to the time
aggregated network reflects which properties of temporal networks are captured by the learning algorithms. Via six real-world contact
networks, we find that the next step activity of a particular link is mainly influenced by (a) its current activity and (b) links strongly
correlated in the time series to that particular link and close in distance (in hops) in the aggregated network.

Index Terms—temporal network, link prediction, prediction backbone network

F

1 INTRODUCTION

Real-world systems can be represented as complex net-
works, where nodes denote the components and links de-
note relations or interaction between these components. In
many cases, however, the interactions are not continuously
active. For example, individuals connect via email, text mes-
sage, phone call or physical contact at specific time stamps
instead of constantly. Temporal networks [1], [2], [3] could
represent these systems more realistically with time-varying
network topology. A temporal network can be regarded as a
static network where each link is further associated with
a time series specifying whether an interaction (contact)
occurs or not at each time step. Temporal networks display
non-trivial properties, which may have profound effect on
the dynamic processes deployed on them. For example, the
inter-event (contact, activation) time between a node pair
has been found to follow a heavy-tail or power-law distri-
bution in many temporal networks [4], [5], [6]. It has been
shown that temporal network properties such as community
structure, the degree distribution in the aggregated network
and inter-event time influence the diffusion processes on the
temporal network [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16].

Temporal network prediction is a task of predicting
temporal interactions/contacts at a future time step based
on the temporal network topology observed in the past.
Predicting the temporal network such as a physical contact
network in the future is essential to forecast performance of
a process upon the network like the prevalence of epidemic
spreading. The temporal network prediction problem is
also equivalent to problems in recommender systems, e.g.,
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predicting which user will purchase which product, which
individuals will become acquaintance [17], [18], [19].

Existing prediction methods are either relatively accurate
but black-box, or white-box but less accurate, although
progress has also been made recently in evaluating the pre-
dictability of a temporal network [20]. Markovian Methods
and machine learning algorithms have been developed to
predict temporal network in short term, i.e., at the next time
step based on the network observed so far within a given
time window. Markovian models [21] can be developed by
considering the time series or activity of each link and pre-
dict a link’s future activity based on its previous activities.
Markovian models have also been built by regarding the
temporal network or the link activated at each time step
as the state [22], [23]. Deep learning methods have been
further developed to improve the temporal link prediction.
Examples include temporal network embedding [24], [25],
[26], restricted Boltzmann machine (RBM) based methods
[27], [28] and Graph neural networks [29], [30], [31], [32].
These methods, however, do not allow for insightful inter-
pretation regarding which inherent property or mechanism
of the temporal networks could these methods capture
when predicting temporal networks.

In this work, we address the problem of temporal net-
work prediction, and its interpretation with respect to what
underlying properties of temporal networks a prediction
algorithm possibly captures or utilizes. We confine ourselves
to the problem of predicting the activity of each link at
a given time step based on the activities of all the links
at the previous step. A statistical learning algorithm, i.e.,
Lasso Regression and a basic machine learning algorithm,
i.e., Random Forest have been used for network prediction
because of their interpretability. We further construct the
prediction backbone network using the coefficients learned
from the algorithms. The weighted backbone network sug-
gests the influence of every link in determining a given’s
activity. Characterizing the backbone network in relation to
the time series of all the links and the aggregated network
unveils other patterns underlying the temporal networks
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that possibly facilitate the prediction. We find that a link's
current state is largely determined by its own activity but
also influenced by the activities of other links, at the pre-
vious time step. Links tend to influence each other more
if they have a shorter and/or more shortest paths in the
aggregated network and are more strongly correlated in
their time series.

These findings, when combined with modern deep
learning techniques can potentially lead to interpretable
yet accurate prediction models. They may also inspire the
development of temporal network models and strategies to
mitigate epidemic spreading on physical contact networks.

2 TEMPORAL NETWORK REPRESENTATION

A temporal network can be represented as a sequence
of network snapshots G = {G1, G2, ..., GT }, where T is
duration of the observation window, Gt = (V ;Et) is the
snapshot at time step t with V and Et being the set of nodes
and contacts, respectively. If node j and k have a contact at
time step t, (j, k) ∈ Et. Here, we assume all snapshots share
the same set of nodes, i.e., V . The links in the aggregated
network Gw are defined as E = ∪Tt=1Et. That is, a pair of
nodes is connected with a link in the aggregated network
if at least one contact occurs between them in the temporal
network. Hence, the link set E in the aggregated network
contains all the node pairs that have contact(s) in the tem-
poral network and the total number of links is M = |E|.
We give each link in the aggregated network an index i,
where i ∈ [1,M ]. The temporal connection or activity of
link i over time could then be represented by a T -dimension
vector xi whose element is xi(t), where t ∈ [1, T ], xi(t) = 1
when node pair i has a contact at time t and xi(t) = 0
if no contact occurs at t. The activity of all links can be
captured by a M×T dimensional matrix X with its element
X(i, t) = xi(t) where t ∈ [1,T ] and i ∈[1,M ].

3 EMPIRICAL DATA SETS

Most real-world temporal network data sets available are
contact networks. Without losing the generality, we choose
six empirical networks that range from physical and vir-
tual human contact networks to animal contact networks:
Hypertext 2009 [33], [34], Highschool [35], Call [36], Sms
[36], Baboons [37], and Ant [38]. Basic description is given in
section 1 in Supplementary and properties of these data sets
are given in Table 1. Note that the time steps at which there
is no contact in the whole network have been deleted. Basic
description of how each temporal network is measured and
constructed explains to some extent the difference of these
networks in, for example, the average number of contacts
per link.

We report the distribution of inter-event(contact) time in
Figure 1, i.e., the interval between two consecutive contacts
between a node pair. As it is often the case for human
dynamics, the distributions of inter-contact time are hetero-
geneous. All our six systems show a heavy-tail distribution.
It means the networks we consider exhibit burstiness which
corresponds to frequent activities over a short period of time
followed by a long period of inactivity [39], [40], [41].

TABLE 1: The number of nodes (N = |V |), the number of node
pairs that have contact(s) (M ), the length of the observation
time window (T ), time resolution (δ sec), the average number
of contacts within the observation time window per link (η) and
the type of contacts in each empirical network.

Network N M T δ η Type
Hypertext 2009 113 2196 5246 20 9.5 Human contact

(conference)
Highschool 312 2242 899 20 12.8 Human contact

(high school)
Call 75 270 8597 1 34 Human contact

(phone call)
Sms 110 210 60932 1 291 Human contact

(message)
Baboons 26 303 10072 5 1401 Animal contact

(Baboons)
Ant 89 649 993 0.5 2.8 Animal contact

(ants)

4 TEMPORAL NETWORK PREDICTION METHODS

In this section, we propose our methodology which allows
not only temporal network prediction but also the deduction
of the relationship between links in the aggregated network
Gw in influencing each other’s activity, i.e., the dynamic of
link activities. Specifically, we aim to understand to what
extend a link’s activity (active/having contact or not) at a
given time step is determined by the other links’ and its
own activity at the previous time step.

Firstly, we introduce a statistical learning algorithm, i.e.,
Lasso Regression and a basic machine learning algorithm,
i.e., Random Forest, to predict temporal networks. In view
of the heavy-tail distribution of inter-event time, thus the
possibility that the activity of a link remains the same
within a short period, we introduce two baseline models
that assume the activity of a link is determined only by its
own activity at the previous time step. These four models
predict the activity of a link at a given time based on its
and/or other links’ activities at the previous time step.

Afterwards, we illustrate how to deduce the influence
between links in activities via applying these proposed
models to real-world temporal network data. This requires
the calibration of the coefficients of the models and entails
the the setup of training and test data sets.
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Fig. 1: The probability distribution Pr[∆ = k] of the inter-event
time ∆ in number of time steps in log-log scale for (a) Baboons,
(b) Hypertext 2009, (c) Call, (d) Highschool, (e) Sms and (f) Ant.
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4.1 Lasso Regression and Random Forest Model

Our method applies to a generic temporal network with N
nodes andM links (node pairs that have at least one contact)
whose activities are recorded within a time window [1, T ].
The activities of the M links are recorded by a M ∗T matrix
X . The state or activity of link i at time t + 1 is xi(t + 1)
(t ∈ [p, p+L− 1]), which equals 1 when link i is active, and
equals 0 otherwise. We assume that the activity of link i at
time t+1 is a function of the activities of all the links at time
t, i.e.,

xi(t+ 1) = fi(x1(t), x2(t), ..., xM (t)). (1)

The mapping function fi is unknown and link-specific.
It can be learned from the activities of all links, i.e.,
[xi(p), xi(p + 1), · · ·, xi(p + L)] where i ∈ [1,M ] within
a time window [p, p+L], and denoted as fp,Li . We construct
in total L training data samples for each link i based on the
temporal network observed within [p, p+L]: we use link i′s
state at each time step t+1 ∈ [p+1, p+L] as target and the
corresponding features are the states of all links at time step
t. The training data samples for node pair i is expressed as
a set Di(p, L):

Di(p, L)={xi(t+1);x1(t), x2(t), · · · , xM (t)}p+L−1t=p . (2)

A learning algorithm assumes a given function fp,Li ,
whose coefficients can be learned from a training set
Di(p, L). The learned function fp,Li tells us to what extent
xi(t + 1) can be estimated by the activity of each link at t
respectively.

We explore a statistical learning (Lasso Regression) and a
machine learning algorithm (Random Forest) to learn fp,Li .

Lasso Regression assumes fi to be a linear function [42],
[43]

xi(t+ 1) =
M∑
j=1

xj(t)βij + ci. (3)

The objective is

min
βi

{
p+L−1∑
t=p

(xi(t+1)−
M∑
j=1

xj(t)βij − ci)2+α
M∑
j=1

|βij |}. (4)

where L is the number of training samples,M is the number
of features as well as the number of links, ci is the constant
coefficient and βi = {βi1, βi2, · · · , βiM} are the regression
coefficients of all the features for link i. A large coefficient
βij indicates that feature xj(t) influences or determines
significantly the target xi(t+ 1).

We use L1 regularization, which adds a penalty to
the sum of the magnitude of coefficients

∑M
j=1 |βij |. The

parameter α controls the penalty strength. The regulariza-
tion forces some of the coefficients to be zero and thus
lead to models with few non-zero coefficients (relevant
features). If α is zero, Lasso Regression reduces to the
classical linear regression algorithm. Given a training data
set Di(p, L) = {xi(t + 1);x1(t), x2(t), · · · , xM (t)}p+L−1t=p ,
the coefficients βi(p, L) of the Lasso Regression model for
each node i can be learned. The optimal α that achieves
the best prediction is chosen from 50 logarithmically spaced
points within [10−4, 10].

Random Forest is a non-linear ensemble learning algo-
rithm for tasks such as classification [44], [45]. A large
number of decision trees can be constructed from a training
set. A decision tree is a flowchart-like structure in which
each internal node represents a “test” on a feature, each
branch represents the outcome of the test, and each leaf node
represents a class label. The paths from root to leaf represent
classification rules. Each tree is grown based on each train-
ing set Di(p, L) = {xi(t+1);x1(t), x2(t), · · · , xM (t)}p+L−1t=p

as follows: 1) choose randomly a set of m (m << M )
features out of the M features as the nodes in the tree 2)
collect from each training sample the m features and the
corresponding target 3) construct the decision tree based on
the data collected from 2). The optimal m that leads to the
highest prediction precision is chosen.

Random Forest could rank the importance
of the features in estimating the target in a
nonlinear way. Considering training set Di(p, L) =
{xi(t + 1);x1(t), x2(t), · · · , xM (t)}p+L−1t=p , the value of the
jth feature in the first sample is xj(p), the value in the
second sample is xj(p + 1). The values for the jth feature
are ordered as {xj(p), xj(p + 1), · · · , xj(p + L − 1)}
from the first sample to the (p + L)th sample.
To measure the importance of the jth feature, its
values {xj(p), xj(p + 1), · · · , xj(p + L − 1)} are
randomized/permuted. Random Forest model is then
trained by the original training set and the permuted
training set respectively. The importance of a feature is
reflected by the difference between the prediction errors
of the model learned from the original and permuted
training set respectively. The coefficient βij is obtained
as the normalized difference in prediction error. A larger
difference in prediction error means a larger contribution
of the feature to the target prediction. We use TreeBagger
implementation in Matlab with 1000 trees and use default
values for other parameters.

4.2 Training and test data
The temporal network observed in each sub-window [p, p+
L] where p ∈ [1, T−L−1] is considered as a training set and
the learned model function will be tested in predicting the
temporal network observed at p+L+1, using the temporal
network observed at p+L. For each learning algorithm, the
coefficients {βi(p, L)}, i = 1, 2, · · · ,M , learned from each
training set Di(p, L) will be used to predict the activity of
the links in the test set Qi(p, L) = {xi(p + L + 1);x1(p +
L), x2(p+ L), · · · , xM (p+ L)}. In total, T − L− 1 training
sets, together with their corresponding test sets, will be
considered for each temporal network.

4.3 Baseline models
We introduce two baseline models that predict a link’s
future activity based on its current activity. The probability
that a link has the same state at two consecutive time steps
is high, above 0.93 in each network. Hence, the baseline
model 1 predicts the activity of a link at the next time step
equal to the link’s own activity at the current step, i.e.,
xi(t + 1) = xi(t). If link i is active (inactive) at time step
t − 1, then its state at t is predicted to active (inactive) in
baseline model 1.
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Baseline model 2 is the corresponding Lasso Regression,
xi(t+ 1) = βi,ixi(t) + ci where a link’s current activity is a
linear function its own previous activity. The same training
and test sets have been used as introduced in section 4.1.

5 MODEL EVALUATION

For a given length L of the training sets, we evaluate each
model via its average quality in predicting links’ activi-
ties in a test set Qi(p, L) using the coefficients {βi(p, L)}
learned from the corresponding training set Di(p, L), where
i = 1, 2, ...M . The average is over all test sets, i.e., p ∈
[1, T − L− 1].

The prediction quality in a test set is measured via the
area under the ROC curve (AUC) [46], [47]. AUC provides
an aggregate measure of performance across all possible
classification thresholds. It ranges in value from 0 to 1. A
high AUC implies high prediction quality.

Different lengths L ∈ [1, T − 50] of the training set are
considered when evaluating the performance of each model.
The maximum Lmax = T − 50 ensures a minimum of 50
training/test sets for each temporal network.

Figure 2 shows that the training set length L indeed
affects the prediction the quality AUC in all the networks.
A relatively good performance tends to be obtained by a
medium training length L, e.g., L ∼ 100. A small length,
e.g., L ∼ 10 is insufficient for a model to learn the coeffi-
cients that to have reasonable prediction quality. A model
with a large length may not capture the change of network
dynamics over time, if there is. When the length is extremely
large, e.g., L→ T−50, the number of training set T−(L+1)
is small and the corresponding test sets lie mainly at the
end of the observation window [0, T ]. Such boundary effect
leads to low robustness of the model against abrupt change
in data at the end of the observation window. For example,
Supplementary Figure 2 shows an abrupt change in the total
number of contacts per time step at the end of the time
window in network Call. Correspondingly, the prediction
quality AUC changes sharply when L is around T − 50.

Almost all the AUC values are larger than 0.5, which
corresponds to the performance of random guessing. This
suggests that all the models including the simple baseline
models perform better than random guessing.

Lasso Regression performs the best in Hypertext 2009,
Call, Sms and Ant networks. And for Baboons and High-
school networks, Lasso regression and Random Forest per-
form comparably, better than the baseline models. Random
Forest does not perform evidently better than the baseline
model2 in Call, Sms and Ant, which have a lower number
of contacts per step on average than the other networks (see
Supplementary Figure 1). In general, the linear relationship
of Lasso Regression models the link activity dynamic in
temporal networks the best. In contrast, the baseline models
that predict a link activity based on the link’s own activity
in the previous time step, gain a smaller AUC. Hence, the
activities of other links contribute to the prediction of a
given link’s activity. Both Lasso Regression and Random
Forest could achieve a reasonably good prediction quality
via the choice of the training length L.

The area under the precision recall curve AUPR [48]
is also considered to measure the prediction quality. It

is considered as a more suitable measure for imbalanced
classification problems. A larger AUPR suggests a better
prediction quality. Similar results are obtained when AUPR
is used to measure the link prediction quality for model
evaluation (see Supplementary Figure 1). The prediction
quality is the lowest in network Ant, which is possibly due
to its lowest average number of contacts per link observed
within the observation time window.

6 MODEL INTERPRETATION

The relatively good performance of the two models moti-
vates us to further explore which links’ activities influence
a given link’s activity more via the coefficients learned from
the two models. We firstly introduce how to construct the
prediction backbone network using the coefficients learned
from a model. The backbone is a directed weighted network
where nodes are the links in the aggregated network and
weight Bij , i, j ∈ [1,M ] represents the influence of link j
in the aggregated network on link i in predicting link i’s
activity. Furthermore, we unravel which links’ activities in-
fluence a given link’s activity more via analyzing properties
of the backbone as well as its relation to the aggregated
network and the time series of the links.

6.1 Construction of the prediction backbone network
using influence coefficients

The coefficients of each algorithm can be derived as follows.
From a training set Di(p, L), where i = 1, 2, ...,M , we can
obtain the coefficients or coefficient matrix {βij(p, L)}Mi,j=1

for each learning algorithm, either Lasso Regression or
Random Forest. Each element βij(p, L) indicates the contri-
bution or influence of the activity of link j at a time t− 1 in
determining the activity of link i at t, where t ∈ [p+1, L+p].

For each network, we consider from now on the training
set length L at which the Lasso Regression obtains the
maximal AUC value. Furthermore, we randomly choose 50
out of T − (L+ 1) training sets. We consider the coefficient
matrices obtained from these 50 training sets via Lasso
Regression and Random Forest, respectively, as samples to
understand the influence between links.
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Fig. 2: The prediction quality AUC for Lasso Regression,
Random Forest and Baseline model 1 and 2 respectively in six
temporal networks at different training set lengths L.
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We find a positive correlation between the coefficients
βij(p, L) obtained from the two algorithms respectively.
Their Pearson correlation coefficients is higher than 0.5 in all
networks and is higher than 0.8 in network Baboons, Hyper-
text2009, Call and Sms. It indicates that the coefficients, i.e.,
the influence between links, obtained by these two learning
algorithms are consistent with each other. Hence, we will
focus on the coefficients and the corresponding prediction
backbone of Lasso Regression since now on, which performs
the best in link prediction.

The prediction backbone network can be constructed as
follows. The nodes of the backbone correspond to the M
links in the aggregated network. The backbone is a directed
and weighted complete network with self-loops. The weight
Bij = E[βij(p, L)] where i, j ∈ [1,M ] is the average of the
coefficient over the 50 samples, representing the influence
of link j in the aggregated network on link i in determining
link i’s activity. The coefficient βij(p, L) where i, j ∈ [1,M ]
derived from a sample, possibly positive or negative, rep-
resents to what extent the contact of link j leads to the
contact of link i at the next step. Among the 50 samples, the
coefficients of any two samples are positively correlated on
average. The average Pearson correlation of the coefficients
from two random samples is 0.77, 0.72, 0.45, 0.74, 0.88 and
0.07 for Baboons, Hypertext 2009, Call, Highschool, Sms,
and Ant respectively. Hence, the weight Bij = E[βij(p, L)]
in the backbone suggests the average influence of link j on
link i in activity.

We evaluate to what extent a link’s activity is influenced
by the activity of its own and of the other links. The
probability density function1 fBij (x) where i = j of the
influence of a link on its own activity and fBij (x) where
i 6= j of the influence of a different link are given in Figure
3. The influence of the link itself Bi=j tends to be larger than
the influence of another link Bi6=j on link i’s activity in most
networks except for Hypertext 2009 and Ant, where the self-
influence Bi=j can be negative. This suggests that Lasso’s
out-performance than the baseline model is because Lasso
considers other links’ influence on a given link’s activity
and Lasso considers a link’s its own influence differently
from the baseline model.

To have a better understanding of our backbone net-
works which are weighted directed complete graphs with
self-loops, we visualize the sub-network of a backbone
network. The sub-network includes only the none self-
loop links in the backbone network that have the highest
weights/influence and the corresponding end nodes of
these links, such that the average degree of the sub-network
is 2. We take the Sms backbone as an example, since it
has the smallest number of nodes among all data sets,
and visualize the sub-network of its backbone in Figure 4.
Since the backbone is a directed network, a node pair in
the sub-network may have none, one or two unidirectional
links. Figure 4 shows that few node pair is connected by
two unidirectional links or a bidirectional link, which is
represented by two green links, whereas most node pairs

1. The probability density function fBij
(x) of a continuous variable

Bij is defined as fBij
(x) = lim∆x→0

Pr[x<Bij≤x+∆x]

∆x
, the probabil-

ity that the variable is within each range or bin (x, x+ ∆x] normalized
by the size of the bin ∆x.

are connected by an unidirectional link, which is colored in
red. This suggests that a high weight Bij of link from i to j
in the backbone does not imply a high weight of Bji. This
observation is in line with the weak correction ρ(Bij , Bji)
between the weight of the two reciprocal links of a node pair
in the original un-sampled backbone network, as shown in
in Table 2. Furthermore, node size and node color in Figure
4 are proportional to the node’s in-strength and out-strength
in the sub-graph respectively. A dark blue (white) color of a
node represents a large (small) out-strength. We find that
a node with a large in-strength in the sub-network does
not necessarily have a large out-strength. This finding via
visualization is consistent with the weak Pearson correlation
ρ(Sin, Sout) between the in-strength and out-strength of a
node in the original un-sampled backbone network, as given
in Table 2.
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Fig. 3: The probability density function fBij (x) of the weight
Bij in the backbone network, when i = j and i 6= j respectively.

6.2 Backbone network in relation to time series

To understand which kind of links influence a given link i’s
activity more, we explore the relation between the weight
Bij in the backbone and the correlation of the time series
corresponding to link i and j.

We first explore whether the relatively high coefficients
Bii can be explained by the auto-correlation of a link i’s
time series {xi(t)}t=1,2,··· ,T . Auto-correlation describes the
degree of similarity between a given time series and its
lagged version. It measures the correlation between current
value of a time series and its past value. Our models
use links’ activities at the previous time step to predict a
link’s activity at current time step. Hence, we compute, for

TABLE 2: The Pearson correlation coefficient ρ(Sin, Sout)
between in-strength and out-strength of node, and ρ(Bij , Bji)
between the weight B(i, j) and B(j, i) of the two reciprocal
links of a node pair in the backbone network.

Network ρ(Sin, Sout) ρ(Bij , Bji)
Baboons 0.30 0.27

Hypertext 2009 -0.02 -0.01
Call 0.01 0.01

Highschool -0.22 0.00
Sms -0.40 0.08
Ant 0.19 -0.01
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Fig. 4: Visualization of a sub-network of the Sms backbone
network. The sub-network is composed of only the none self-
loop links in the backbone network that have the highest
weights and their corresponding end nodes, such that average
degree of the sub-networks is 2. When a node pair is connected
by one (two) unidirectional links, the connection is represented
by a link in red (two links in green). Node size and node color
are proportional to the node’s in-strength and out-strength in
the sub-graph respectively. A dark blue (white) color of a node
represents a large (small) out-strength.
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Fig. 5: The probability density function fRxixi
(t,t−1)(x) of the

auto-correlation coefficient Rxixi(t,t−1) in each of the six net-
works.

each link i, the Pearson correlation coefficient Rxixi
(t, t− 1)

between {xi(t)}t=1,2,...,T−1 and {xi(t)}t=2,3,...,T as its
auto-correlation coefficient. The distribution of the auto-
correlation coefficient of a link in each empirical temporal
network is shown in Figure 5. In networks, such as Ba-
boons (Hypertext 2009 and Ant) where the average auto-
correlation coefficient is high (low), the self-influence Bi=j
tends (not) to be evidently larger than the influence of
another link Bi6=j on the given link i’s activity. Moreover,
we find that the ranking of these networks in the average
number of contacts within the observation time window per
link (see Table 1) is the same as their ranking in the average
auto-correlation (see Figure 5). Hence, a network with a
large average number of contacts per link tends to have
a high auto-correlation. Correspondingly, its self-influence
Bi=j in the backbone tends to be evidently larger than the
influence of another link Bi6=j (see Figure 3).

Similarly, we study further the relation between
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Fig. 6: The probability density distribution of Pearson coeffi-
cient BC between Bij and cross-correlation coefficient Rxixj .

the coefficient Bij and the Pearson correlation co-
efficient Rxixj

(t, t − 1) between {xi(t)}t=2,3,...,T and
{xj(t)}t=1,2,...,T−1, where i ∈ [1,M ] and i 6= j. This aims
to understand whether the influence Bij of another link j
on i can be explained by the cross correlation Rxixj

(t, t− 1)
between the two links’ activity series. The cross correlation
is non-reciprocal Rxixj

(t, t − 1) 6= Rxjxi
(t, t − 1). The

Pearson correlation coefficients between Rxixj
and Rxjxi

are 0.99, 0.29, 0.25, 0.42, 0.68 and 0.05 for Baboons, Hypertext
2009, Call, Highschool, Sms and Ant respectively. Specif-
ically, we compute the Pearson correlation coefficient at
each node i between the influence Bij and cross correlation
Rxixj

(t, t − 1) where i ∈ [1,M ] and i 6= j. The probability
density function of this Pearson correlation coefficient at
a random node in Figure 6 shows that the influence Bij
tends to be positively correlated with thus can be partly
explained by the cross correlation coefficient Rxixj

(t, t− 1).
The correlation Rxixj

(t, t− 1) between the activities of link
i and j allows our models to predict the activity of link i at
t using the activity of link j at t− 1. The Pearson coefficient
BC between Bij and cross-correlation Rxixj

is the strongest
in Sms. The skewed probability density function fRxixj

(x)

of the cross-correlation in Sms (see Supplementary Figure 3)
explains the skewed distribution fBij (x) where i 6= j of the
influence of another link in the backbone (see Figure 3).

6.3 The backbone network in relation to the aggregated
network
The activities of other links have been shown to contribute
to a better prediction of a link’s activity. We would like
to explore which kind of other links have more influence
Bij on a link. Would links that are close in the aggregated
network tend to have a high influence on each other in ac-
tivity prediction? Firstly, we define the topological distance
or hopcount between two links in the aggregated network.
The topological distance, also called hopcount, between two
nodes on a static network is the number of links along
the shortest path between the two nodes. The distance Hij

between two links i and j is defined on the aggregated
network. The distance Hii between the same link i is 0. The
distance Hij between two different links i and j is defined
as the minimal hopcount between one end node of link i and
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Fig. 7: The probability distribution Pr[H = k] of the topological
distance H of two random links in the aggregated network. All
six real-world networks are considered.
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Fig. 8: The average weight in Lasso Regression E[Bij |Hij = k]
given the distance of the two links in each of the six networks.

one end node of link j plus one. Hence, two links that share
one end node in common have a hopcount 1. The line graph,
e.g, G∗w of an aggregated network Gw can be constructed by
considering each link in Gw as a node, and two nodes are
connected in G∗w if the two corresponding links in Gw share
a common end node. The distance between two links in Gw
equals the hopcount between their corresponding nodes in
the line graph G∗w.

Figure 7 shows the distribution Pr[H = k] of link
distance for all the six networks. The distance is in general
small, except that few nodes are isolated from the largest
connected component, leading to an infinite distance to the
other nodes. Networks that are measured within a small
(large) spatial space like Ant, Baboons, Hypertext (Call, Sms,
Highschool) tend to have a small (large) average hopcount
and a large (small) link density in the aggregated network,
which is the number of links M normalized by N(N−1)/2.
Of course, the average hopcount of a network could be also
influenced by the number N of nodes.

Ref. [49] has shown that nodes that are closer to a target
node have more influence on the target node’s state. So
here we further explore whether links that are closer in
topological distance tend to have more influence on each
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Fig. 9: The average weight E[Bij |Hij = 1, nij = k] and
E[Bij |Hij = 2, nij = k] in Lasso Regression coefficient given
the distanceHij and number of common neighbors nij between
link i and j.

other’s activity. Fig. 8 illustrates influence between two links
E[Bij |Hij = k] given their topological distance. Still, we
focus on Lasso Regression. The influence E[Bij |Hij = k]
in general decreases with k. This is also supported by
the negative Pearson correlation between the Bij and the
distanceHij of two links for Baboons (-0.32), Hypertext 2009
(-0.13), Call (-0.014), Highschool (-0.068), Sms (-0.035) and
Ant (-0.027). In network call and Ant, the probability that
two links have a distance 4 or larger is small. The average
influence E[Bij |Hij = k] when k ≤ 4 is thus derived from
few link pairs and can be noisy. Since Bij can be negative,
E[Bij |Hij = k] represents to what extent on average the
contact of link j could lead to the contact of link i given that
i and j have a distance k. The average strength of influence
E[|Bij ||Hij = k] also tends to decrease with k, as shown in
Supplementary Figure 4.

It is interesting to notice that the average weight
E[Bij |Hij = inf ] is none zero when the distance is infinity
in network Call and Sms. Normally, it is assumed that links
can influence each other at least when they are connected.
The none zero coefficient E[Bij |Hij = inf ] may suggest
that the two links are possibly connected in the aggregated
network, but not observable in the current aggregated net-
work or the temporal network measured within the short
time window [1, T ].

Figure 8 shows that E[Bij |Hij = k] is relatively large
when k = 1, 2. We consider further the link pairs that
have a distance Hij = 1 and Hij = 2 respectively. Among
those link pairs, we explore whether link pairs that are well
connected tend to have a high influence. How well link i and
j are connected can be measured by the number of common
neighbors nij of their corresponding nodes in the line graph
G∗w. Figure 9 demonstrates the influence between two links
E[Bij |Hij = 1, nij = k] and E[Bij |Hij = 2, nij = k]
respectively as a function k of the number of common
neighbors. We find no clear relation between E[Bij |Hij =
1, nij = k] and k. The distance Hij = 1 means that node i
an j are connected by a link in the line graph G∗w. In this
case, the number of common neighbors, which equals the
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number of two-hop paths, paths that are longer than the
shortest path is not correlated with the influence. However,
E[Bij |Hij = 2, nij = k] does increase with k. Node pairs
that have more shortest paths, i.e., two hop paths tend to
have a higher influence. Similarly the average influence
strength E[|Bij ||Hij = 2, nij = k] also tends to increase
with k, as shown in Supplementary Figure 5. Links that have
a short distance and are connected by many shortest paths
tend to influence each other strongly.

7 LONG-TERM EFFECT

The Lasso regression assumes that a link’s current state is a
linear function of the activities of all the links at the previous
step. In this section, we generalize this assumption as:

xi(t) =
M∑
j=1

{xj(t−1)β1
ij+xj(t−2)β2

ij+...

+xj(t−p)βpij + ci}. (5)

where a link’s current state is a linear function of the
activities of all the links in the previous p steps. The Lasso
regression (see Eq. 3) that we have investigated in the
previous sections corresponds to the case when p = 1. The
prediction quality AUC is shown in table 2 for different
choices of p. In general, considering the activity of a longer
influence period, i.e., p > 1 can hardly improve the link pre-
diction quality. The same is observed when the prediction
quality is evaluated via AUPR (see Supplementary Table
1). The current activity of a link is mainly influenced by the
activities of links at the previous time step.

The small memory length p that we have considered is
insufficient to capture periodic or pseudo-periodic behavior,
in view the time resolution or duration of a time step,
which is in the order of seconds. This choice is limited
by two factors: the observation window of most real-world
temporal networks is short and the computational complex-
ity of Lasso Regression [50] is high: O((Mp)3 + (Mp)2L),
where M and L are number of nodes in the backbone and
the length of training set, respectively. We deem it as an
important future work to explore how underlying periodic
behavior in the temporal network is captured by a learning
model and influences the link prediction. Our finding with
regard to which kind of links in the backbone tend to have
a high weight may shed light on the selection of model
features to reduce the computational complexity.

TABLE 3: The prediction quality AUC for Lasso Regression for
different influence period p.

Network p = 1 p = 2 p = 3 p = 4 p = 5
Hypertext 2009 0.97 0.97 0.97 0.93 0.93
Highschool 0.93 0.94 0.93 0.93 0.93
Call 0.97 0.97 0.96 0.96 0.96
Sms 0.96 0.96 0.96 0.96 0.96
Baboons 0.96 0.96 0.96 0.96 0.96
Ant 0.76 0.77 0.76 0.76 0.76

8 CONCLUSION

In this work, we illustrate our method that enables inter-
pretable temporal network prediction. Interpretable learn-
ing algorithm Lasso Regression and Random Forest are

employed to predict the activity (connected or not) of each
link at the next time step based on the current activities of
all links. The coefficients learned from each algorithm are
further used to construct the prediction backbone network,
presenting the influence or contribution of all links in deter-
mining each link’s activity. Via exploring the properties of
the backbone network and its relation to the activity time
series of links and its relation to the aggregated network,
we find the following in six real-world physical and virtual
contact networks. A link’s next step activity is mainly influ-
enced by the current activity of the link itself and of other
links that are better connected with the link. Two links are
better connected if they have shorter and/or more shortest
paths in the aggregated network. The influence between two
links tend to be large if their corresponding activity time
series are strongly correlated.Hence, the learning algorithm
also captures the underlying network properties and cor-
relation in activity time series, which are usually utilized
by network property based prediction methods. Finally,
both algorithms’ performance can be hardly improved by
considering the activities of more than one time steps in
the past. The physical contact networks considered differ
in the average number of contacts per link observed due
the nature of these networks and the methods they are
measured or defined. A low average number of contacts
per link, e.g., in Ant, may suggest a low prediction quality,
a low auto-correlation of the time series in the network and
a less evident self-influence in the backbone.

These findings, when combined with modern deep
learning techniques, can potentially lead to interpretable
and more accurate prediction. Our findings may also shed
lights on the modeling of the long-term temporal network
evolution, in contrast to short-term network prediction.
Such models are crucial to forecast the long-term perfor-
mance of e.g. epidemic/information spreading on the net-
work. The linear regression assumed by Lasso could be one
elementary mechanism to model temporal networks. The
influence patterns that we have discovered can be further
used to adapt other dynamic processes to model temporal
networks. Our findings of the backbone network and its
association with other network properties may also inspire
the solution of network classification and optimization prob-
lems. For example, the spread of epidemic/information
can be mitigated by blocking the temporal interactions of
selected links [51], [52]. The influence of a link on and by
the other links could possibly help with the selection of the
links to block.

High-order models have been explored recently to ac-
count for various types of high-order dependencies in data
on complex systems [53]. It has been found, for example,
high-order models of paths in temporal networks, could
improve node ranking [54], [55] and community detection
[56]. Our Lasso Regression and Random Forest Model are
high-order in broad sense: the state of a node pair depends
on the states of many node pairs in the past over a period.
These models together with the interpretations may shed
light on the possible mechanism by which the temporal net-
work may emerge and patterns in paths [53] may emerge.
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[12] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-L. Barabási,
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