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Abstract—Convolutional Neural Networks (CNNs) have been widely deployed, while traditional cloud data-centers based applications
suffer from the bandwidth and latency network demand when applying to Industrial-Internet-of-Things (IIoT) fields. It is critical to
migrate the CNNs inference to edge devices for efficiency and security concerns. However, it is challenging to deploy complex CNNs
on resource-constraint IIoT edge devices due to a large number of parameters and intensive floating-point computations. In this paper,
we propose ABM-SpConv-SIMD, an on-device inference optimization framework, aiming at accelerating the network inference by fully
utilizing the low-cost and common CPU resource. ABM-SpConv-SIMD first adopts a model optimizer with pruning and quantization,
which produces Sparse Convolutional models. And then, the Accumulation-Before-Multiplication mechanism is proposed to reduce
multiplication operations. Additionally, the SIMD instructions, which are commonly available on cost-effective edge devices, are
employed to improve the performance of convolutions. We have implemented ABM-SpConv-SIMD base on the ARM Compute Library
software framework and evaluated on Hikey970 and Raspberry Pi devices with two representative models AlexNet and ResNet50. The
results show that the ABM-SpConv-SIMD can significantly improve the performance, and achieve on average of 1.96x and 1.73x
speedup respectively over the baseline implementation with negligible loss of accuracy.

Index Terms—Convolutional Neural Networks, Edge Devices, Industrial Internet-of-Things Applications, Single Instruction Multiple
Data, Sparse Convolution
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1 INTRODUCTION

THE rapid development of sensor technology, network
communication and cloud computing technology en-

ables many industrial Internet-of-Things (IIoT) applications,
covering a wide range of fields such as structural health
monitoring and remote diagnosis [1], intelligent transporta-
tion [2], financial technology applications [3], and industrial
control systems such as specific voice control [4]. In the
past few years, Convolution Neural Networks (CNNs) has
developed into one of the key branches of deep learning and
paved the way in many domains such as computer vision [5]
and language translation [6]. Based on its powerful feature
extraction and data analysis capabilities, CNNs are also
widely used in many IIoT applications. For example, CNN
models have shown outstanding results for human activity
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recognition in a smart home environment [7], surface defect
inspection in intelligent industrial production [8], and health
symptoms monitoring such as elderly fall detection [9] and
chronic diseases management [10] in smart healthcare. Be-
sides, CNN can also be used as a fundamental model in IIoT
applications based on other artificial intelligence algorithms,
such as federated learning-based architecture for detecting
Android malware applications [11].

Generally, CNN models should be trained with extensive
data available and then used for inference in the specific sce-
nario for numerous IIoT applications. Model training means
incrementally modifying the weight values associated with
connections in the network until a satisfactory error rate has
been achieved, which is usually deployed on a customized
data-center infrastructure. And model inference refers to
flowing the input data through the network and getting
the output such as classification result. In an edge-side
environment, edge devices are often required to provide low
inference latency for a single request to improve efficiency,
rather than high inference throughput as in a data-center
environment. Therefore, we focus on edge-side inference
latency optimization in this paper.

Normally, edge-side CNNs inference relies on the com-
puting resources in the cloud-side servers, while the edge
devices which contain various sensors are only responsible
for collecting data and then uploading it to the servers
for further inference. However, the cloud-based approach
may violate the real-time requirements of delay-sensitive
IIoT applications due to network congestion and may cause
resource conflict of remote computing servers while the
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local edge devices are left idle [12]. Even though the network
performance has been significantly improved, such as 5G,
Wi-Fi and UWB, it is still challenging to get a guaranteed
response from the remote data-centers which are required to
handle numerous requests from massively distributed edge
devices. Besides, transmitting and storing personal health
data with cloud servers may raise many privacy and secu-
rity challenges. Therefore, deploying the CNNs inference on
local edge devices rather than with the help of cloud servers
is necessary, which makes no data transmission and then no
privacy threat nor network latency.

Running CNNs inference requires intensive floating-
point computing power and memory bandwidth, which is
impractical on cost-effective edge devices. To address this
problem, lots of research has been conducted. For exam-
ple, many specifically designed hardware components, such
as floating-point accelerators, Graphics Processing Units
(GPUs), and Neural Network Processing Unit (NPU) [13],
have been integrated into edge devices to provide turbo
performance. At the same time, new software frameworks
such as Tensorflow Lite [14] and Pytorch Mobile [15] are
proposed. However, integrating these new hardware tech-
nologies into industrial IoT applications is still challenging
due to the strict cost control, energy constraints, and infeasi-
bility of hardware expansion on existing industrial devices.

In this paper, ABM-SpConv-SIMD, an on-device in-
ference runtime optimization framework, is proposed to
accelerate model inference for CNN-based IIoT applica-
tions by fully utilizing the common CPUs resource on the
commercial-off-the-shelf cost-effective edge devices. ABM-
SpConv-SIMD consists of two key steps. Firstly, a pruning
and quantization approach is adopted to remove the re-
dundant parameters and filters, which can reduce the com-
putation power required during inference. And then, the
expensive floating-point operations are converted to fixed-
point integer operations through quantization. Secondly,
an Accumulation Before Multiplication Sparse Convolution
algorithm (ABM-SpConv) is designed based on the sparse
filters after quantization, which can reduce the costly mul-
tiplication operations. After that, a multi-channel parallel
convolution is implemented based on SIMD instructions,
which indicates that the common CPU hardware resources
are fully utilized.

In summary, our paper makes the following contribu-
tions:

• We propose a framework that employs offline prun-
ing and quantization, and online optimization to fit
CNN models for cost-effective edge devices.

• We design and implement ABM-SpConv-SIMD,
which optimizes the sparse convolution algorithm
with commonly available SIMD instructions, and
then improves the CNNs inference performance on
edge devices.

• We conduct a series of experiments to evaluate
the performance of ABM-SpConv-SIMD, including
ImageNet classification experiments of deploying
AlexNet and ResNet50 on two ARM-based SoCs,
Hikey970 and Raspberry Pi 3B. The results show that
our framework can achieve a speedup of 1.96x on
Hikey970 and 1.73x on Raspberry Pi with less than
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Fig. 1: An illustration of the architecture of AlexNet [5],
where Conv, Pool, and FC represent the convolutional

layer, pooling layer, and fully-connected layer, respectively.

2% accuracy loss, compared with the GEMM based
convolution algorithm.

• ABM-SpConv-SIMD is not CNN model specific and
is compatible with other CNNs for inference latency
optimizations.

The rest of the paper is organized as follows. Section 2
describes the background. Section 3 illustrates our ABM-
SpConv-SIMD framework. Section 4 presents our experi-
mental methodology. Section 5 describes the experiment
results. Section 6 provides the related work. And Section
7 concludes the paper and considers future work.

2 BACKGROUND

2.1 Convolutional Neural Networks
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Fig. 2: The implementation of the convolutional layer and
general matrix multiplication convolution algorithm.

Convolutional Neural Networks are wildly used in
many domains, such as computer vision [5] and video anal-
ysis [16]. A CNN model generally consists of several layers
which perform different operations on a given input, such
as convolutional layers, pooling layers, and fully-connected
layers. Fig.1 shows the structure of Alexnet [5], a classical
CNN proposed in 2012. Specifically, the convolutional layers
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TABLE 1: Classic convolutional neural networks and corresponding parameters, where MACs represent
multiply-accumulate operations that compute the product of two numbers and add that product to an accumulator.

Year Name No. of Layers No. of Conv Layers No. of Parameters No. of MACs AccuracyConv Layers FC Layers Conv Layers FC Layers

2012 AlexNet [5] 8 5 2.3M 58.6M 666M 58.6M 83.6%
2014 Overfeat [17] 8 5 16M 130M 2.67G 124M 85.8%
2014 VGG16 [18] 16 13 14.7M 124M 15.3G 130M 92.6%
2015 GoogLeNet [19] 22 21 6M 1M 1.43G 1M 93.3%
2016 ResNet50 [20] 50 49 23.5M 2M 3.86G 2M 96.4%

and fully-connected layers are the major component of the
model. At the same time, these layers also contribute to the
major floating-point computation and memory access.

With the rapid development of the neural network,
deeper models are proposed to be integrated with more
convolutional layers. Tab.1 shows the accuracy and parame-
ters of the five classical CNN models including AlexNet [5],
Overfeat [17], VGG16 [18], GoogLeNet [19] and ResNet50
[20]. It can be seen that as the accuracy of the model
increases, the parameters or multiply-accumulate (MAC)
operations in the convolutional and fully-connected layers
are increasing. According to prior research [21], the ex-
ecution time of convolutional and fully-connected layers
account for over 90% of the total inference latency. There-
fore, this research focuses on optimizing convolutional and
fully-connected layers based on the architecture resource
available on the CPUs wildly deployed in edge devices.

Convolution is a common operation in the two-
dimensional data processing. Normally, there is an input
data such as an image, and a filter, a small bitmap sliding
over the input data to extract input features. Nowadays
the input data generally contains multiply channels, which
makes the input data as three-dimensional arrays. For exam-
ple, there are three channels (RGB) for input data from cam-
era. Therefore, the convolution operation on the input data
is extended from two-dimensional to three-dimensional.

Fig.2-(a) shows the implementation of a convolutional
layer. The input and filter of the convolutional layer are
three-dimensional arrays, where IC, IH, IW, K represent
the input channel, input height, input width, and filter
height/width, respectively. It is worth noting that the fil-
ters have the same channel IC as the input data. As the
Fig.2 shows, for the three-dimensional convolution, a filter
(e.g., Filter 0) slides over the input, and the corresponding
three-dimensional input data extracted at every position is
donated as input cube. Then, multiple input pixels in the
input cube are multiplied with corresponding weights in the
filter, the results of which are accumulated and then stored
as an output element. And the above operations of an input
cube and a filter is donated as dot product. When a filter
slides over the whole input data, multiple input cubes (e.g.,
Input Cube 0 to Input Cube T-1) will be extracted to do
dot product with this filter to get multiple output elements,
which are then arranged into a two-dimensional output map
(e.g., Output Map 0) of size [OH, OW]. Assuming that there
are OC filters of a convolutional layer, when repeating the
above calculation for OC times, a three-dimensional output
data of size [OC, OH, OW] is generated. In summary, the
detailed implementation of the convolutional layer can be
summarized as multiple dot product process, where each

dot product corresponds to an input cube and a filter.
Traditionally, in the fully-connected layer, each filter

convolves on the whole input image to extract the overall
features of the input instead of local features, so the size of
filters in the fully-connected layer is the same as the input
image. Therefore, the fully-connected layer can be treated as
a special case of the convolutional layer with input data of
size [IC, IH, IW], filters of size [OC, IC, IH, IW], and output
data of size [OC, 1, 1]. So among the various existing deep
learning frameworks, the fully-connected layers share lots
of the implementation details with the convolutional layers.
Therefore, we use convolutional layers to generalize the
two categories of convolutional and fully connected layers
subsequently.

In many deep learning frameworks, the convolutional
layer is implemented and optimized based on the Gen-
eral Matrix Multiplication (GEMM) convolution algorithm.
First, convert the three-dimensional input data into a two-
dimensional input feature matrix, a row of which represents
an input cube. Then, convert OC three-dimensional filters
into another filter matrix, a column of which represents a
filter. Finally, the convolution is converted to the matrix
multiplication of input feature matrix and filter matrix, as
is shown in Fig.2-(b).

2.2 Pruning and Quantization
The toughest challenge for deploying CNNs inference com-
putations on edge devices is the extremely high computa-
tional workload and storage costs. To overcome this obsta-
cle, various schemes, including model quantization (reducing
arithmetic precision of the parameters) [22], [23], [24], low-rank
factorization (factorizing the weight matrix into low-rank matri-
ces) [25], knowledge distillation (distilling the knowledge learned
from a complex network and pass it to a small network) [26], [27],
and network pruning (trimming unimportant weights) [28], [29],
have been proposed and studied to compress the model size
and reduce the computational workload effectively.

According to the granularity of pruning operation con-
ducted in the algorithms, existing pruning schemes can
be divided into two broad categories: structured pruning
[29], [30], [31], [32], [33] and unstructured pruning (also
referred to as weights pruning) [28], [34], [35], [36], [37], [38].
The granularity of unstructured pruning is a single neuron,
while the granularity of structured pruning can be channels,
filters, and even layers. Normally, for general accelerator
hardware ( such as CPUs and GPUs ), structured pruning is
more effective [39] in deployment due to the regular sparse
granularity. For dedicated neural network processors [40],
[41], [42], unstructured pruning methods are more attractive
as they can normally achieve better reduction effects on both
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Fig. 3: Overview of the ABM-SpConv-SIMD framework.

the memory footprint and computational workload of the
DNN model over structured pruning approaches [30]. To
achieve better reduction effects, we propose to use unstruc-
tured pruning schemes on embedded CPU processors. And
to overcome the irregular sparsity, we design a new sparse
convolution algorithm that can efficiently accelerate CNN
models compressed by unstructured pruning schemes.

2.3 SIMD
Single instruction, multiple data (SIMD) technology such as
Intel AVX [43] and ARM NEON [44] are widely used in
processors to enhance multimedia user experiences, such as
video watching, editing and enhancing, game processing,
photo processing, and voice recognition, which are among
the most common requirements of today’s embedded edge
devices such as smartphones and tablets. SIMD units refer to
hardware components in processors that perform the same
operation on multiple data operands concurrently. Typically,
SIMD units perform operations directly on a vector register
that contains several operands of the same length. The
smaller the bit-width of each operand, the more the number
of operands that can be processed in parallel. Therefore,
SIMD is suitable for accelerating complex and intensive
computational processes with high repeatability and simple
logic, such as matrix multiplication. Compared with spe-
cially designed hardware accelerators, SIMD units are more
cost-effective for resource-constrained edge devices. As we
described in 2.1, there are many dot product operations
between different input cubes and different filters in the
convolutional layer, which are independent of each other
and therefore suitable for NEON acceleration.

3 SYSTEM DESIGN

3.1 Framework Overview
Fig.3 shows the ABM-SpConv-SIMD framework, including
a model optimizer in the front end and a SIMD sparse
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Fig. 4: Multi-objective CNN network pruning algorithm
adopted by this work.

convolution executor in the back end. First, to make the
CNN models suitable for edge devices with limited mem-
ory bandwidth and computation power, for a given pre-
trained CNN model, the model optimizer performs model
pruning to remove the redundant weights or connections
and model quantization to convert floating-point weights
into fixed-point. For the special filters after pruning and
quantization, we redesign an accumulation before multiplica-
tion sparse dot product (ABM-SpDP) algorithm to replace the
original dot product, which can remove costly multiplication
computations. Moreover, in order to collect information
of valid weights for sparse convolution, we encode each
pruned filter into two arrays. All of the above processes are
completed on the offline host machine. Second, to reduce
CNNs inference latency on local edge devices, the back-
end SIMD sparse convolution executor performs runtime
optimization of the convolutional layer by utilizing common
SIMD instructions. ABM-SpConv-SIMD first performs data
rearrangement methods, including input cubes extracting
and interleaving to meet the requirements of SIMD instruc-
tions to parallel accessing the memory. dThen, instruction-
level parallelism is achieved by mapping multiple ABM-
SpDP calculation corresponding to multiple input cubes in a
convolutional layer to different channels of SIMD registers.
Both the input rearrangement and SIMD instruction-level
parallelism are executing on the online ARM devices. In
summary, ABM-SpConv-SIMD makes the following run-
time optimizations for each inference of CNN, including
multiplication operation reduction, data layout optimiza-
tion for vectorization, instruction parallelism by SIMD, and
fix-point integers to fully utilize the SIMD registers.

3.2 Pruning and Quantization

Pruning and quantization are efficient approaches to com-
press CNN models and fit them into edge devices, which
can determine the quality of CNNs by fine-tuning or even
retraining the pre-trained models. Inspired by the studies of
Deep Compression [45], MetaPruning [33] and Ristrerro [24],
we have developed an efficient CNN pruning approach
that can deliver optimal pruning results both in terms of
memory footprint and computational workload, and thus
can significantly improve the runtime performance of the
pruned model when deployed on embedded processors.
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Inspired by the recent studies of Deep Compression [45] and
MetaPruning [33], we introduce a genetic algorithm-based
multi-objective CNN pruning flow. As illustrated by Fig.4,
the flow first performs sparsity architecture exploration to
find the suitable sparsity ratio for each layer with given
accuracy and performance constraints. And then, based on
the optimal pruning ratio obtained in the first step, the
second step conducts several iterations of weight-pruning
and weigh-regrow to tune the CNN model and restore the
accuracy.

The proposed pruning scheme maps the network prun-
ing procedure as a multi-objective optimization problem.
The optimization objectives include: CNN model size (mem-
ory cost), computational workload and accuracy. Given a
CNN as W = {W1,W2, · · ·WL}, where Wl represent the
filter in each layer and Wl ∈ ROCl×ICl×Kl×Kl , 1 ≤ l ≤ L.
L is the total number of layers. OCl defines the number
of filters of the size ICl × Kl × Kl in the l-th layer, where
ICl matches the number of channels of the input feature
map. Further, the input/output feature maps are of the size
ICl × Hl × Wl and ICl+1 × Hl+1 × Wl+1, respectively.
Assuming after pruning, the size of the model is reduced
by Rparam times, which can be quantitatively calculated by

Rparam = 1∑L
l=1 Sp

l ·pl
, Sp

l = OCl·ICl·Kl·Kl∑L
l=1 OCl·ICl·Kl·Kl

(1)

where pl represents the pruning rate of the weight in the
l-th layer, and the optimal values of pl will be searched
by the genetic algorithm in the first step of the proposed
algorithm. We also introduce Sp

l as a saliency score that
measures the contribution of the l-th layer to the total model
size. Similarly, we also quantitatively define the workload
reduction ratio Rops as

Rops=
1∑L

l=1 So
l ·pl

, So
l =

OCl·ICl·Kl·Kl·Hl+1·Wl+1∑L
l=1 OCl·ICl·Kl·Kl·Hl+1·Wl+1

(2)

where we introduce So
l as the computational workload

saliency for the l-th layer. For a given network architecture,
the distribution of layer-wise saliency can be obtained in
advance. Both Sp

l and So
l can be use as an weights to balance

the model’s memory footprints and workloads during the
searching procedures.

In this work, the goal of the pruning algorithm is to
achieve both the desired memory footprint and computa-
tional workload goals at the same time during network

pruning for given accuracy budget. Therefore, we formula
the CNN pruning flow as the following multi-objective
optimization procedure:

argmin
p1,p2,...,pL

L (Net (p1, p2, . . . pL;W ))

s.t. Rparam ≥ Pset

Rops ≥ Fset

(3)

where Net denotes the baseline network model. Pset and
Fset represent the desired memory and workload reduction
ratios, respectively.

Fig.4 shows the CNN pruning flow. The first stage is neu-
ral network sparsity architecture exploration. Based on this
prior knowledge of the saliency score of each layer, a generic
algorithm is used to explore the entire sparsity architecture
space, i.e., {(p1, p2 · · · pL) : pl ∈ [0, 1], l = 1, 2, · · ·L}, and
then find all the good pruning ratio candidates that meet
both model size and workload targets obtaining the Pareto
solution set. The searching flow is conducted as follow:
1) randomly generating several chromosomes as the initial
Pareto solution set; 2) pruning the network according to
each sparsity setting (i.e., the chromosomes) and evaluating
the accuracy as the fitness scores of all pruned sparse
networks under both memory footprint and workload con-
straints. To prune the network, the network parameters
are first sorted according to their absolute value, and the
low ranking parameters are then trimmed (forced to zero
values). In each layer, the total number of parameters to be
trimmed are calculated from the sparsity setting; 3) chro-
mosomes with the highest fitness scores are preserved and
added to the elitists, and then mutation and crossover are
performed to obtain a new population according to prede-
fined probability; 4) repeatedly conducting the evaluation-
selection-crossover-mutation procedure until the algorithm
finds a satisfactory Pareto solution set that satisfies both
memory footprint and workload constraints. Finally, the
top-ranked pruning ratio combination is promoted as the
most suitable sparsity architecture to meet the desired prun-
ing goals. The second stage is the pruning and fine-tuning
stage. We use the pruning rate obtained in the exploration
stage to perform pruning and fine-tuning on the pre-trained
model. To prevent some important parameters from being
pruned incorrectly, we allow the trimmed weights to regrow
and the model accuracy to improve correspondingly.

For network quantization, we adopt a uniform bit-width
setting but variable fractional bit-width for each CNN layer.
In each layer, the filter, input and output data are presented
in fixed-point numbers as Qw · 2−Fw , Qb · 2−Fb , Qin · 2−Fin

and Qout · 2−Fout , respectively. The variable Q denotes the
fixed-point binary word with B-bit length, while F denotes
a bias presenting the number of fractional bits of the fixed-
point number. Fig.5 illustrates the CNN quantization flow
adopted in this work, which is based on the scheme used
in [46] but with some improvements. For each layer, the
quantization method first determines the Fw, Fb and per-
forms quantization for the filters, then verifies whether the
Top1/Top5 accuracy meets the preset threshold value. If the
goal (accuracy) is satisfied, the quantization of input and
output continues, otherwise, the Fw, Fb value is updated
and the filter is re-quantized. The main difference with
the scheme used in [46] is that, instead of minimizing the
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Fig. 6: An example of (a): original partial filter in the third
convolutional layer of AlexNet, (b): pruned and quantized

filter corresponding to the original filter, (c): original
dot product and accumulation before multiplication sparse dot
product (ABM-SpDP) proposed in this paper, and (d): two

arrays after filter encoding.

truncation error during quantization of the weights, our
quantization flow searches for the group of parameters Fw,
Fb, Fin and Fout jointly, which minimizes the hardware cost
while satisfying the accuracy bound at the same time. Our
modified scheme provides a faster algorithm runtime and
better control of the desired classification accuracy.

3.3 The ABM-SpDP Algorithm

Through pruning and quantization, the sparse filters are
filled with zero-value weights, and the 32-bit floating-point
weights are converted to 8-bit fixed-point integers. For ex-
ample, Fig.6-(a) and Fig.6-(b) show an original filter and a
converted sparse filter respectively. The original dot product
of the original filter is shown clearly in Fig.6-(c), where Ix
represents the input pixel corresponding to the xth weight
when executing dot product. For the special sparse filter,
there are a large number of weights with the same value
after quantization. Thus the corresponding input pixels
must be multiplied by the same value when executing the
dot product. Therefore, we can first accumulate these input
pixels and then multiply the accumulation result with the
weight value. Take value 8 in Fig.6-(b) as an example, the
dot product can be converted from (I0×8+I8×8+I10×8)
to (I

′

0 + I
′

8 + I
′

10) × 8, where the I
′

x represents the quan-
tized input pixels. Thus the multiplication operations are
reduced from three to one. Furthermore, Fig.6-(c) shows the
computation of all valid weights, where zero-value weights
are not involved in the calculation, and 8-bit integer weights
are used to do sparse convolution instead of floating-point
weights.

Assuming that filters are quantized using q bits, there are
a total of Q = 2q different values at most for the filter. Then,
the sparse convolution is shown in the following formula,
where wp denotes the weight value and

∑
FIp(w) repre-

sents all the input pixels in the input cube corresponding
to the weights with value wp at different positions. We
call this redesigned dot product as accumulation before

multiplication sparse dot product, ABM-SpDP. For each
non-zero weight value wp in the filter, ABM-SpDP first de-
termines the position of multiple weights with value wp and
finds the input pixels corresponding to these weights. Then
ABM-SpDP accumulates these input pixels and multiplies
the results with wp, which means that the valid weights
with value wp in this filter have been processed. Finally, for
other non-zero weight values, repeat the above process and
accumulate the results. An output FO, which represents the
final convolution result of an input cube and a filter, can
be obtained when processing all the valid values. Through
accumulation before multiplication, the costly redundant
multiplication operations corresponding to the weights with
the same value are reduced, contributing to performance
gains.

FO =
∑

FI0(w) · w0 + ...+
∑

FIQ−1(w) · wQ−1

=

Q−1∑
p=0

(wp ·
∑

FIp(w))
(4)

As described above, the valid non-zero weight values
and their occurrence positions are useful for the pruned
filters, so we encode the pruned filters into two arrays to
record the valid information. As Fig.6-(d) shows, for a non-
zero valid value, we first store its fixed-point integer value
VAL and the total number NUM of weights with value VAL
in the filter. Then the VAL and NUM are merged into a 16-
bit signed short integer, which is saved as an item in the
first array. In addition, we use another array to store the
occurrence positions (Z, Y, X) of valid weights. For NUM
weights with the value VAL, NUM items are generated in
the second array to represent the NUM valid positions. And
the positions of different weights corresponding to different
values are stored in the order in which the value appears.

Since the filter size is fixed for a CNN model, the offset of
a valid weight with respect to the base address of the filter
can be calculated as Offset = Z × (K ×K) + Y ×K +X ,
where K represents the width and height of the filter. Thus
the address of corresponding input pixel is calculated as
follows: Addr = P+Offset = P+Z×(K×K)+Y ×K+X ,
where P represents the base address of an input cube.
Therefore, we propose to store the offset into 16-bit unsigned
short integers offline, rather than the (Z, Y, X) pairs. For
example, Fig.6-d shows a simple case of filter encoding.
There are three weights with value 8, so one entry in the
first array is VAL=8, NUM=3 and three entries in the second
array are 0, 8, 10, which are offsets corresponding to three
valid occurrence positions (0, 0, 0), (0, 2, 2), (1, 0, 1).

3.4 Accelerating Multiple ABM-SpDP Processes with
SIMD Instructions
As described in 2.1, the detailed implementation of the con-
volutional layer can be summarized as multiple dot product
processes, where each dot product corresponds to an input
cube and a filter. And the original dot product can be opti-
mized to ABM-SpDP, as described above. Therefore, all the
computations in the convolutional layer can be summarized
as multiple ABM-SpDP processes. Since each input cube
is independent and performs the same operations in the
convolutional layer, we choose to correspond multiple input
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cubes with multiple channels of SIMD registers, i.e., one
channel handles one input cube. , which enables parallelism
of multiple ABM-SpDP processes associated with multiple
input cubes. And the SIMD-based optimized convolution
is donated as accumulation before multiplication sparse
convolution (ABM-SpConv-SIMD). Therefore, we first need
to extract all the input cubes and then effectively arrange
multiple input cubes to meet the requirements of SIMD
instructions to parallel access the memory. Based on the
above analysis, we design the input rearrangement method.

3.4.1 Data Rearrangement Method to Meet the Require-
ments of SIMD Instructions
Since the input data is multidimensional, the input pixels in
an input cube are discontinuous in memory, which impairs
data locality when executing convolution and introduces
data dependency of adjacent input cubes. To address this
problem, we first design Im2Row. As is shown in Fig.7-(a),
as the filter slides over the input data in the fixed stride,
the input cube of size [IC, K, K] is extracted into a one-
dimensional vector and then saved as a row in the input
feature matrix. We extract input pixels in the order of width
dimension, height dimension, and channel dimension, and
then get a ICxKxK vector. When the filter is finished sliding
over the whole input data, all the input cubes can be ex-
tracted and organized into a two-dimensional input feature
matrix.

However, in the input feature matrix, even though the
data of a single input cube is stored continuously, the
arrangement of data among multiple input cubes does not
satisfy the memory access patterns of NEON instructions.
For example, when processing the first elements of multi-
ple input cubes simultaneously, the existing input feature
matrix cannot guarantee the continuity of those first ele-
ments, so loading the first elements of multiple input cubes
cannot be achieved by one NEON instruction. To solve
this problem, we design the second input rearrangement
method Interleave. Considering the fixed length of NEON
registers and overflow in subsequent addition and multipli-
cation operations, we will divide the 128-bit NEON registers
into eight channels. Therefore, we need to interleave eight
input cubes. As is shown in Fig.7-(b), the Interleave method
first rearrangements the first elements of eight input cubes
and interleaves them into consecutive memory space, then
processes the following elements until all the elements of
the eight cubes are processed. After that, eight input cubes
are stored alternately, but the eight elements in the same
position are stored consecutively. As is shown in Fig.7-(c),
by specifying the start address of every eight elements, they
can be simultaneously loaded into eight channels of a SIMD
register for further computation.

3.4.2 Multi-Channel Parallel ABM-SpDP Processes Based
on SIMD
Despite the SIMD parallel optimization, the algorithm logic
of ABM-SpConv-SIMD is the same as the original ABM-
SpDP logic, which is briefly summarized as follows: (1) for
each non-zero weight value VAL in the filter, ABM-SpConv-
SIMD first determines NUM positions of weights with value
VAL and loads NUM input pixels groups corresponding to
these weights, (2) then ABM-SpConv-SIMD accumulates

these input pixels groups correspondingly, (3) multiplies the
accumulation result with VAL, (4) finally, for other non-zero
weight value, repeats the above process and accumulates the
multiplication results to get the final results, which equals
to the dot products of eight input cubes and one filter. Now
we introduce the details of each step.

First, load input pixels groups corresponding to multiple
weights with the same value by using LD1 instructions.
As Fig.8 step-1 shows, to determine the positions of these
input pixels groups, a VAL-NUM pair in the first encoded
array and NUM positions ((Z, Y, X) pair or offset) for
weights with value VAL in the second encoded array should
be loaded. Then, for each input pixels group correspond-
ing to a valid weight, the address can be calculated as
addr = P +8×offset, where P represents the base address
of the eight input cubes after input rearrangement. Then
LD1 instructions are used to load consecutive 64-bit input
data into eight-channel SIMD registers, with each channel
storing an 8-bit input pixel corresponding to an input cube.
In order to avoid data overflow in subsequent accumulation,
we expand the 8-bit signed integer in each channel into 16-
bit by using the SSHLL instructions.

Second, accumulate NUM groups of input pixels cor-
responding to NUM weights with the same value by us-
ing ADD instructions. The ADD instruction adds the data
stored in the corresponding channels of the two source
registers, which indicates that each input pixels stored in
each channel of a SIMD register are accumulated with
corresponding pixels stored in the rest (NUM-1) SIMD reg-
isters. Eight different channels in a register are processed
independently, thus enabling the parallel processing of eight
input cubes.

Third, multiply the accumulated input result with the
current valid weight value by using MUL instructions.
When multiplying the 16-bit accumulated input result with
the 8-bit valid weight, the multiplication of the two must be
stored using more than 24 bits to prevent data overflow.
Therefore, we use 32 bits to represent the multiplication
results. We first expand the 16-bit accumulated input into
32-bit by using DUP instructions, and the original eight-
channel register is divided into two four-channel registers,
as shown in Fig.8 step-3. Then, we expand the valid 8-bit
weight value VAL stored in the first encoded array into
32-bit and use DUP instructions to copy the valid weight
into two four-channel registers. At last, we perform 32-
bit multiplication operations and get the corresponding
32-bit multiplication results for the current valid weight
value. Similar to the ADD instruction, the MUL instruction
multiples the data stored in the corresponding channels of
the two source registers independently, which means the
accumulated input result of each input cube can multiply
with corresponding valid weight separately.

Finally, repeat the above three steps and get multiple
temporary multiplication results corresponding to multi-
ple valid weight values, and then we can get the final
convolution results of eight input cubes and a filter by
accumulating all the temporary multiplication results. The
results are stored in two four-channel SIMD registers, with
each channel corresponding to an input cube, as is shown in
Fig.8. Then the convolution results of input and filter should
be added with bias.
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Fig. 7: The overview of input rearrangement methods, including Im2Row and Interleave.

Since the precision of input data and filter is Fin and Fw

respectively after quantization, the precision of the above
convolution result is Fin + Fw, which is not the same as
the precision Fb of bias, so the precision control needs to
be considered when adding with bias. Besides, the precision
Fout of output data in this layer is equal to the precision
F

′

in of input data in the next layer, which is not the same
as the precision Fin + Fw of the convolution result and the
precision Fb of bias, so the precision control needs to be
considered when saving the output data too.

3.4.3 Precision Control for Fixed-Point Computation
As mentioned in Section 3.2, the input, filter, bias and output
data are presented in fixed-point numbers as Qin · 2−Fin ,
Qw · 2−Fw , Qb · 2−Fb and Qout · 2−Fout , respectively. The
variable Q denotes the fixed-point binary word used for
calculation in ABM-SpConv, while F denotes a bias present-
ing the number of fractional bits of the fixed-point number.
Therefore, the above convolution result of input and filter
can be represented as I · 2−(Fin+Fw), with I representing
the fixed-point integer of convolution result stored in SIMD
registers. The bias can also be represented as B · 2−Fb ,
with B representing the fixed-point integer of bias. When
adding I and B, we first use SHL instructions to convert
bias to integers with the same number of fractional bits as
I . That is, load B and shift B left by Fin + Fw − Fb bits
and get B

′
= B · 2Fin+Fw−Fb , as is shown in the first five

instructions of Fig.8 step-4. Then, the bias can be represents
as B

′ ·2−(Fin+Fw). Through adding I and B
′
, we can get the

output result, which is represent as (I +B
′
) · 2−(Fin+Fw), as

the sixth and seventh instructions of Fig.8 step-4 show.
The last step is converting the fractional bits of output

from Fin+Fw to Fo, so we shift (I+B
′
) left by Fo− (Fin+

Fw) bits, and get O = (I +B
′
) · 2Fo−(Fin+Fw), as the eighth

and ninth instructions show. It is worth noting that when
executing shifting, the fixed-point output integer should be
rounded up to the nearest integer instead of being directly
floored. And to achieve this, we add C = 2(Fin+Fw)−Fo−1 to
(I +B

′
), and then shifting left (I +B

′
). When finishing the

above steps, the output result can be represented as O ·2−Fo ,
with O representing the fixed-point integer of output.

Then, as the last five instructions show, we use XTN
instructions to narrow the 32-bit output into 8-bit and use
ST1 instructions to store the output to the corresponding

position of the output feature matrix, with a row represent-
ing output pixels corresponding to a filter and a column
representing output pixels corresponding to an input cube.
When we process all the input cubes and filters, a complete
output feature matrix can be obtained, and then we can
use Row2Im to convert the output feature matrix to three-
dimensional output data, which is the inverse process of
Im2Row.

4 EXPERIMENTAL METHODOLOGY

4.1 Experimental Setup

To evaluate the effectiveness of ABM-SpConv-SIMD, we
measure the latency of several CNN models on two rep-
resentative modern edge devices: Hikey970 and Raspberry
Pi 3B. First, Hikey970 consists of four high-performance
2.36-GHz ARM Cortex A73 cores and four energy-efficient
1.8-GHz ARM Cortex A53 cores. Its hardware specification
represents the high-end edge SoCs. Second, Raspberry Pi
represents the edges SoCs of low-end devices and consists
of four 1.2-GHz ARM Cortex A53 cores. The OS used in our
experiment is Ubuntu18.04.

4.2 CNN Models

We choose to evaluate two representative CNN models
from two different CNN classes, AlexNet [5] and ResNet50
[20]. AlexNet [5] represents early CNNs with large filter
size. ResNet50 represents CNNs with complex network
structures, which have a large number of convolutional
layers and floating-point operations. We choose Pytorch pre-
trained AlexNet and ResNet50 model as our baseline model.
The number of parameters, weight size, number of MAC
operations, and top-1/5 accuracy of the baseline model is
shown in Tab.2 and Tab.3. It is worth noting that the number
of MAC operations we count for the baseline AlexNet model
is the sum of all MAC operations in the two-way group
convolution, rather than the MAC operations in the only
one-way group convolution as is shown in Tab.1.

We utilize ARM Compute Library [47], which provides
optimized CNN layer implementations such as GEMM
convolutional layer and Relu activation layer for ARM
CPU cores, to construct CNN models and execute CNNs
inference. We use two different strategies to construct CNN
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Fig. 8: Overview of multi-channel parallelism of eight ABM-SpDP processes based on SIMD instructions.

models, one is using ABM-SpConv-SIMD framework and
loading the optimized model parameters after pruning and
quantization, the other is using GEMM convolution al-
gorithm provided by ARM Compute Library and loading
original pre-trained model parameters. Both CNN models
are designed for image classification, specifically images in
the ImageNet dataset.

5 EXPERIMENT RESULTS

5.1 Pruning and Quantization Results
Tab.2 first shows the number of parameters after pruning,
weight size after quantization and filter encoding, and num-

ber of operations of our optimized models. Compared with
the baseline model, our approach can effectively reduce
the number of parameters, thus reducing storage usage. In
addition, after pruning and quantization, a large number
of floating-point operations are converted to a very small
number of fixed-point MUL and ADD operations, especially
the number of multiplication operations is greatly reduced.

Fig.9 shows the number of parameters for each layer
of AlexNet and partial ResNet50. It can be seen that the
parameters of each layer are effectively reduced after model
optimization. Moreover, the pruning rate of each layer
is also different. Take Alexnet as an example, the fully-
connected layers contain the main parameters, as is shown
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TABLE 2: The number of parameters, weight size, and number of operations of the baseline and optimized CNN models.

Model No. of Parameters Weight Size No. of Operations
Baseline After Pruning Baseline Encoded Baseline (MACs) After Pruning (MUL) After Pruning (ADD)

AlexNet 60.95M 5.77M 233MB 11.65MB 1.14G 19M 107M
ResNet50 25.50M 4.70M 97MB 10.08MB 4.09G 173M 753M

Pytorch Pre-trained Model Pruned and Quantized Model

Number of Parameters for Each Layer of AlexNet Number of Parameters for Each Layer of Partial ResNet50

Fig. 9: Layer-wise parameter scale of AlexNet and partial ResNet50.

TABLE 3: Inference Accuracy of the baseline CNN models
and the models processed by the model optimizer.

Model Top-1/5 Accuracy
Baseline After Pruning

AlexNet 56.55% / 79.09% 54.67% / 78.83%
ResNet50 76.15% / 92.87% 74.36% / 91.33%

in Fig.9, after model optimization, the parameters of the
fully connected layer are reduced by a factor of 10.

5.2 Inference Accuracy
As is shown in Tab.3, for the inference accuracy of classifica-
tion tasks on the validation set of ImageNet, ABM-SpConv-
SIMD introduces less than 2% accuracy loss compared with
original pre-trained models.

5.3 Inference Latency
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Fig. 10: Average inference latency of AlexNet and ResNet50
on Hikey970 and Raspberry Pi, respectively.

Fig.10 shows the average end-to-end inference latency
of AlexNet and ResNet50 on Hikey970 and Raspberry Pi.

It clearly shows that the inference latency of models built
based on ABM-SpConv-SIMD is significantly reduced com-
pared with those built on GEMM. More precisely, ABM-
SpConv-SIMD achieves 1.83x and 2.09x speeds up for
AlexNet and ResNet50 on Hikey970, respectively. Moreover,
on Raspberry Pi, ABM-SpConv-SIMD can achieve 1.88x and
1.58x speeds up for AlexNet and ResNet50, respectively.

For further analysis, we evaluate the inference latency
for each layer of AlexNet and partial ResNet50, as is shown
in Fig.11 and Fig.12. First, the performance improvement of
end-to-end inference mainly comes from the convolutional
and fully-connected layers. In addition, for the activation
layers in two models and eltwise layers in ResNet50, using
8-bit fixed-point integers instead of floating-point numbers
can also reduce execution time. This is because SIMD in-
structions can process more channels simultaneously when
processing 8-bit integers, thus achieving higher parallelism.
Second, using ABM-SpConv-SIMD exhibits different de-
grees of performance improvement for the convolutional
and fully-connected layers. For example, for the first con-
volutional layer in AlexNet, our framework has almost no
performance gains. However, for the fully-connected layers
in AlexNet, our framework can obtain 3.48x performance
improvement on Hikey970 and 3.87x performance improve-
ment on Raspberry Pi. Furthermore, the performance im-
provements of fully-connected layers come from the front-
end model optimizer reducing most of the parameters and
a lot of memory bandwidth usage when executing con-
volution online. As the original fully-connected layers in
AlexNet have a large number of parameters, the model
optimizer achieves greater pruning strength for fully con-
nected layers than other convolutional layers. In summary,
we believe that ABM-SpConv-SIMD can gain performance
improvement in edge devices where computation and band-
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Fig. 11: AlexNet layer-wise inference latency on Hikey970 and Raspberry Pi.
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Fig. 12: Partial ResNet50 layer-wise inference latency on Hikey970 and Raspberry Pi.

width are very limited.

5.4 Insight at Micro-architectural Level
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Fig. 13: Micro-architectural events comparison between
GEMM and ABM-SpConv-SIMD of AlexNet and ResNet50

on Hikey970.

After obtaining significant performance improvements,
we use perf, a performance analysis tool provided by the
linux kernel, to analyze the sparse convolution algorithm
from a micro-architectural insight. Fig.13 compares our
approach with classical GEMM on five micro-architectural
events of AlexNet and ResNet50 on Hikey970. As can be
seen, the execution of the ABM-SpConv-SIMD improves
the IPC during program execution, which indicates that
our approach can exploit the processor performance more
fully. In addition, the ABM-SpConv-SIMD can significantly
reduce the L2 Cache Miss, L1 Dcache Load Miss, and L1
Dcache Store Miss, which indicates that compared with
GEMM, our approach can better improve the data locality.
However, ABM-SpConv-SIMD introduces deeper loops and

more conditional judgments since we need to traverse the
two arrays for each encoded filter to load all the valid
weights and process different numbers of valid positions
for a valid weight, resulting in a higher branch miss, as is
shown in Fig.13.

5.5 Comparison with other work
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Fig. 14: Performance of ResNet50 with several framework.

We compare the inference latency of ResNet50 based
on the ABM-SpConv-SIMD framework against other CNN
frameworks developed for edge mobile devices. Fig.14
shows the performance of several frameworks. For ARM
Compute Library (GEMM), NCNN [48] and ABM-SpConv-
SIMD, we conduct actual experiments on our platform
Hikey970. For Pytorch Mobile [15], Caffe2 [49] and Ten-
sorflow Lite [14], the inference time are taken from other
resources [51]. Then the borrowed experimental results
are scaled approximately to compensate for differences
in platforms by using AI-benchmark [50]. AI-benchmark
[50] presents the real-world performance results on various
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mobile SoCs, which cover all main existing deep learning
frameworks, AI models, and hardware configurations. Fur-
thermore, AI-benchmark scores each mobile SoC to char-
acterize their AI performance, known as AI score, which
is the reference we chose to compensate for performance
differences between hardware platforms. This model per-
formance scaling approach is also adapted in another work
called Pipe-it [52], where it can be proven to be effective.
In summary, as shown in Fig.14, ABM-SpConv-SIMD can
provide the highest performance among all the frameworks.

6 RELATED WORK

Application of CNNs in IIoT fields. Many studies have
recently proposed deploying CNNs in IIoT applications
based on its powerful feature extraction ability. In the field
of intelligent industrial manufacturing, Yuanbin Wang et al.
proposed a CNN-based visual sorting system for accurate
part model classification in flexible manufacturing systems
[53]. Fei Wang et al. designed a cascade CNN (C-CNN)
with progressive optimization for motor fault diagnosis
[54]. Tanveer Hussain et al. presented a lightweight CNN
and IIoT-based computationally intelligent multiview video
summarization system [55], which can be used for secu-
rity monitoring and intelligent transportation. In addition,
a CNN-based camera management system is designed to
work as a substitute for the academic filming crew in online
classes or examinations [56]. Mingdong Zhang et al. de-
signed a residual-based COVID-19 detection network [57],
which can efficiently extract the lung features through small
COVID-19 samples and remove the pretraining requirement
on other medical datasets.

Optimizations of CNN inference on edge devices.
CNN inference optimization on edge devices has become
a rich research area. Some works focus on compressing the
CNN model and reducing computations to enable CNNs
on edge devices. Han et al. proposed a model compres-
sion method including pruning, trained quantization and
huffman coding, which can effectively remove redundant
parameters [45]. Based on the sparsity feature of CNN
after pruning, some studies propose to trim out redundant
computations. SparCE [58] proposed to extend the CPU’s
five-level pipeline mechanism and then skip redundant
instruction sequences with operand zero (sparsity) that do
not contribute to the final result, thus obtaining performance
gains. UCNN [59] is designed to exploit computation reuse
with the same weights and further improve performance
by exploiting sparsity in weights, as reducing computation
due to repeated zero weights is a special case of reducing
computation due to repeated weights. Unfortunately, the
hardware extensions are costly and not scalable.

In addition to exploiting the sparsity of CNNs to im-
prove performance, some studies accelerate the on-device
computation by fully utilizing on-ship hardware resources,
such as SIMD units and GPUs. A robust work proposed by
Yizhi Liu employed a full-stack and systematic scheme of
optimizations, including single-thread optimization of the
convolutional layers using SIMD instructions [60]. Feath-
erCNN [61] designed a highly efficient generalized matrix
multiplication routine based on SIMD instructions to accel-
erate Winograd convolution on ARM CPUs. In addition to

using SIMD units, DeepX [62] and uLayer [63] proposed
to decompose deep model network architectures into unit-
blocks of various types and deploy them on heterogeneous
local device processors (e.g., CPUs, GPUs). DeepMon [64]
proposed to use various optimization techniques including
the convolutional layer caching, decomposition, and matrix
multiplication optimizations to efficiently offload convolu-
tional layers to mobile GPUs and accelerate the processing.
Unfortunately, hardware accelerators like GPUs are not
common and energy-efficient, and the software approaches
mentioned above can not reduce the number of operations,
so the performance improvement is limited.

7 CONCLUSION AND FUTURE WORK

Executing CNN’s inference tasks for many IIoT applications
on local edge devices can provide real-time performance
and protect users’ privacy. Resource-constrained edge de-
vices must fully utilize their hardware resources to accel-
erate CNNs inference. In this paper, we propose ABM-
SpConv-SIMD, a low latency on-device inference runtime
optimization framework. ABM-SpConv-SIMD first adopts
offline model pruning and quantization approaches to opti-
mize models and then employs a series of runtime optimiza-
tions including multiplication operation reduction, data lay-
out optimization for vectorization, instruction parallelism
by SIMD, and fix-point integers to fully utilize the com-
monly available and cost-effective CPU SIMD architectures
to accelerating CNN inference. The experimental results
show that ABM-SpConv-SIMD can achieve 1.96x (high-end)
and 1.73x (low-end) performance improvement on average
and 2.09x (high-end) and 1.88x (low-end) at most when
executing inference on two representative edge devices.

There are several interesting directions for future work.
First, ABM-SpConv-SIMD considers latency-aware pruning.
We wish to design an energy-aware pruning strategy based
on energy estimation methodology [65], which considers
not only the memory footprint and computation workload
but also each layer’s energy consumption. For data-driven
neural network models, high accuracy, good generalization
ability, and good robustness often rely on a large amount
of training data, which means generating a more complex,
deeper, and larger network model. Knowledge distillation
can transfer the multi-domain knowledge learned from
a large complex integrated model to a small lightweight
model which can be better applied to downstream inference
tasks [66]. Therefore, in the future, we consider employing
the knowledge distillation method to complete the knowl-
edge migration from more complex models to lightweight
models, and then use ABM-SpConv-SIMD framework to
complete the model structure simplification, so as to fur-
ther improve the inference accuracy and reduce the infer-
ence time. For example, huge Natural Language Process-
ing (NLP) models such as Bert, GPT, and ELMo can be
compressed by distilling the complex transformer structure
contained in NLP models into simple and lightweight trans-
former, or simple LSTM and textCNN model [67], [68], [69],
[70], thus facilitating the implementation of some natural
language processing applications such as speech recogni-
tion, machine translation, and voice recognition on edge IoT
devices.
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