
Downsampling and Transparent Coding for
Blockchain

Qin Huang1, Li Quan1, and Shengli Zhang2
1School of Electronic and Information Engineering,

Beihang University, Beijing, China, 100191
2College of Information Engineering,

Shenzhen University, Shenzhen, China, 518060

Abstract—With the development of blockchain, the huge his-
tory data limits the scalability of the blockchain. This paper pro-
poses to downsample these data to reduce the storage overhead
of nodes. These nodes keep good independency, if downsampling
follows the entropy of blockchain. Moreover, it demonstrates that
the entire blockchain history can be efficiently recovered through
the cooperative decoding of a group of nodes like fountain codes,
if reserved data over these nodes obey the soliton distribution.
However, these data on nodes are uncoded (transparent). Thus,
the proposed algorithm not only keeps decentralization and
security, but also has good scalability in independency and
recovery.

Index Terms—Blockchain, downsampling, transparent coding,
erasure coding

I. INTRODUCTION

Full nodes, which store the entire blockchain history, can
not only serve its own transactions, but also support the re-
covery of other fail nodes. Therefore, most blockchain systems
recommend their users, at least commercial users, to become
full nodes. However, the storage cost of becoming a full node
is pretty high. For instance, the Bitcoin blockchain size has
exceeded 239GB until September 2019, and is still growing at
a rate of about 50GB per year. Even worse, there is no reward
or only a few rewards for maintaining a full node. Therefore,
maintaining a full node is neither practical nor cost-effective
for general users or even some commercial users. Even though
there are more than 40 million Bitcoin wallets around the
world, it’s not surprising that only about 9000 of them are
full nodes. In other words, only 0.0225% of the nodes are
responsible for most of the security guards and services for
other nodes. It limits the scalability of the blockchain.

Recently, many researchers have devoted themselves to the
storage challenge. In 2008, Nakamoto [3] proposed Simplified
Payment Verification (SPV) and pruned nodes. In 2018, Leung
et al. [4] proposed Vault to speed up bootstrapping for a new
node. Dryja [5] proposed Utreexo to optimize the Bitcoin
unspent transaction outputs (UTXO) set. These remarkable
studies have successfully reduced the storage requirements
of nodes. However, they had to sacrifice the part of the

This work was supported by Young Elite Scientists Sponsorship Program
by CAST under Grant 2017QNRC001. This article was presented in part at
IEEE INFOCOM 2019 [1] and ACM CoNEXT 2019 [2]. (Qin Huang and Li
Quan contributed equally to this work.) (Corresponding author: Qin Huang
and Shengli Zhang. Email: qhuang.smash@gmail.com, zsl@szu.edu.cn.)

blockchain history. The lack of entire blockchain history of
many nodes will centralize the entire blockchain history on
a small number of nodes, jeopardizing the decentralization
of the blockchain. What’s more, since historical records play
an important role in application scenarios such as supply
chain and copyright registration, the lack of blockchain history
can also limit the application of blockchain. In addition to
these studies, some researchers have tried to deal with this
contradiction from the perspective of information theory and
coding theory. In 2018, Perard et al. [6] proposed to use
erasure coding to create low storage blockchain nodes. In
this way, the entire blockchain history can be recovered from
a subset of nodes, but the encoded history cannot be used
directly unless decoded. Therefore, it is important to find a
low-cost blockchain history storage method that can balance
decentralization and transparency (stored data can be used
directly by the node without decoding) to deal with the
contradiction between storage and scalability.

This paper reduces the storage overhead of nodes by down-
sampling history data. After downsampling, a node only needs
to synchronize and maintain a small proportion of all the
blocks. We demonstrate that our well-designed downsampled
nodes (DSNs) can provide good scalability in independency
and recovery.

• Independency: We prove that DSNs are able to inde-
pendently verify and broadcast transactions. Moreover,
DSNs containing blocks with higher entropy have better
verification accuracy than DSNs containing blocks with
lower entropy. Therefore, we downsample blocks follow-
ing the distribution of block entropy to achieve better
verification accuracy. Furthermore, in the UTXOs model,
because of the sequential feature of blockchain, it can
be determined whether a transaction output is valid if
all blocks after that transaction are known. Therefore,
if containing continuous latest blocks, DSNs will not be
deceived by a malicious node to believe a transaction that
references an invalid input.

• Recovery: The entire history data can be recovered
through the cooperation of a group of DSNs. Usually
erasure codes are used for data recovery in distributed
storage systems. However, for blockchain, parity-checks
of erasure codes can not be verified by the hash value
of block headers, and are unavailable before decoding.

ar
X

iv
:1

91
1.

01
77

8v
2

 [
cs

.C
R

]
 2

7
N

ov
 2

01
9

Instead we propose that uncoded (transparent) transac-
tions are stored on a set of DSNs following the soliton
distribution. Only during the recovery, these DSNs en-
code their transactions to help fail nodes. Suppose that
we want to recover a segment with K transactions, and
DSNs have O(ln(K/ε)) transactions of this segment on
average. Each DSN encodes its related transactions into
a codeword by simple bitwise sums. We demonstrate that
the recovery probability is 1−ε if K+O

(√
K ln2(K/ε)

)
codewords of such DSNs are received.

This paper is organized as follows. Section II gives the
background of the blockchain. Section III presents the down-
sampling nodes of blockchain. Section IV introduces the
information entropy of blockchain to guide the downsampling.
Section V achieves the recovery of history data of blockchain
with transparent coding. Section VI concludes this paper.

II. BACKGROUND

As a sequential, open and distributed ledger, blockchain
cryptographically secures records of transactions [7]. It is able
to tolerate the failures of the Byzantine Generals’ Problem [8].
Bitcoin is the first and most typical blockchain system. This
section uses it as an example to describe the structure and
principle of blockchain.

Body

Header

Hash

Merkle
Root

Header

Merkle
Root

Header

Merkle
Root

……Hash Hash

Block 1 Block 2 Block 3 Block N

Header

Merkle
Root

Hash

Transaction

Body

Transaction

Body

Transaction

Body

Transaction

Figure 1. Structure of Bitcoin.

The structure of Bitcoin is illustrated in Fig. 1. It consists
of N + 1 blocks sequentially stored from block 0 to block
N . Every block contains a header and a body. The header
has the previous header’s hash, current timestamp and Merkle
root. With the hash identifier of the previous header, blocks are
sequentially chained together by the hash pointer. The body
contains transactions and their Merkle tree. This tree is the
hash tree of transaction identifiers. The root of this tree is
called the Merkle root, which is stored in the header.

A typical transaction has inputs and outputs

T ≡ {T in, T out}, (1)

where T in is the set of all inputs, and T out is the set of all
outputs. A valid transaction should use UTXOs as its inputs,
except coinbase transaction. When a node processes a new
received transaction T , it needs to check T with Algorithm 1
[9], where Sprocessed denotes the set of processed transactions,
and SUTXO denotes the set of UTXOs.

If Algorithm 1 returns true, T will be regarded as a valid
unconfirmed transaction, then it will be broadcasted. In order

Algorithm 1 Transaction Verification [9]
Input: T ;
Output: true or false;

1: if T ∈ Sprocessed then return false
2: end if
3: //Check whether addresses in the T are valid.
4: if CHECKADDR (T) = false then return false
5: end if
6: //Check whether the originator of T is the legal owner of

the input address.
7: if CHECKOWNER (T) = false then return false
8: end if
9: if T /∈ SUTXO then return false

10: end if
11: if

∑
T in ≥

∑
T out then return true

12: end if

to check all new transactions safely, nodes need to download
and verify the blocks from the genesis block to the latest block.
Then, miners pack several valid transactions into a block. Then
following the consensus mechanism [3] of blockchain, a new
transaction will be carried out by all the nodes.

In fact, the blockchain is a state machine whose state transi-
tion is based on the transaction [10]. For a blockchain, starting
from a genesis state, the blockchain executes transactions one
by one in order, and finally reaches a certain final state. The
state of the blockchain could be defined as follows:

Definition 1. The state of the blockchain is a set of attributes
that reflects the characteristics of the blockchain, which con-
tains the time, consensus results, difficulty, and balances of
different owners.

The state transition caused by the execution of the transac-
tion is

σt+1 ≡ Υ (σt, Tt) , (2)

where Υ is the state transition function, σ is the state of the
blockchain system, and t is the time slot.

For a block, since it contains multiple transactions, the
state transition of the block can be regarded as a continuous
transaction state transfer,

σt+1 ≡ Π (σt, B) , (3)

B ≡ (. . . , (T0, T1, . . .) , . . .) , (4)

Π(σ, B) ≡ Ω (B,Υ (Υ (σ, T0) , T1) . . .) , (5)

where B is the block, which contains a series of transactions
and related parameters; Π is the block-level state transition
function; Ω is the block finalization function, mainly through
the consensus algorithm to determine whether a certain state
after the state transition is finalized and could be added to the
blockchain.

As saving the entire blockchain, full nodes can check
the security of all transactions. However, saving all blocks
increases the amount of data the node needs to process.
These data need to be downloaded, stored, verified, indexed
and updated. This increases the nodes’ storage overhead and
reduces the efficiency of processing transactions.

III. DOWNSAMPLING NODES OF BLOCKCHAIN

As the volume of transactions rapidly increases, the storage
of blockchain history may be unaffordable for most nodes.
A node, e.g. SPV node, may discard all block bodies and
only save block headers, but it will suffer scalability problems.
Since it only stores the block headers of the best chain, it can
neither independently verify and broadcast transactions, nor
help recover history data of the blockchain.

Algorithm 2 Transparent Downsampling Blockchain Algo-
rithm
Input: The number of reserved blocks δ;

1: // The DSN P stores the set of entire block headers H.
2: P : STORE(H);
3: //Get the reserved set D, where D is the set of δ block

bodies.
4: D = GETRES(H);
5: P : STORE(D);

In this section, we propose a node to store all the block
headers and partial block bodies, named downsampling node.
Each DSN can be generated by Algorithm 2 independently.
DSNs are able to independently verify and broadcast transac-
tions and contribute to the recovery of blockchain history as
follows:
• The DSN uses block bodies of D to generate UTXOs

pool PUTXO. When a new T is received, the DSN will
check it with Algorithm 3. If all the checks are passed, T
will be regarded as a valid unconfirmed transaction and
broadcast.

Algorithm 3 Transaction Verification of DSNs
Input: T ;
Output: true or false;

1: if T ∈ Sprocessed then return false
2: end if
3: //Check whether addresses in the T are valid.
4: if CHECKADDR (T) = false then return false
5: end if
6: //Check whether the originator of T is the legal owner of

the input address.
7: if CHECKOWNER (T) = false then return false
8: end if
9: if T in ∈ PUTXO then return false

10: end if
11: if

∑
T in ≥

∑
T out then return true

12: end if

• The entire history data can be recovered through the
cooperation of a group of DSNs. When a node P ′ needs
to recover a block B′, it can request the transaction via
Algorithm 4. In addition, when the node P ′ needs to
recover all blocks, Algorithm 4 can be used in parallel.

It is worth mentioning that DSNs are able to work in-
dependently. Moreover, DSNs only make slight changes in
choosing the reserved data. Thus, it is possible to keep the
original network architecture and consensus algorithms of the
blockchain.

Algorithm 4 Recover a Block
Input:

The set of neighbor nodes of node P ′, {P 1, P 2, . . . , PM};
The block header of B′, h′;

Output: The block B′;
1: for i=1 to M do
2: //P ′ sends h to P i.
3: P ′ → P i: h;
4: if P i → P ′: B′ then return B′

5: end if
6: end for

In the following two sections, we propose entropy-based
downsampling and construct transparent coding to optimize
scalability in independency and recovery, respectively.

IV. ENTROPY-BASED DOWNSAMPLING AND
INDEPENDENCY OF DSNS

In blockchain, the verification of a transaction strongly relies
on the most recent state. It is important for DSNs to select the
block bodies to get as many parts of the most recent state as
possible. Therefore, we propose to downsample block bodies
following the entropy of blockchain.

A. Entropy-based downsampling

Header

Hash

Merkle

Root

Header

Hash

Merkle

Root

……

Header

Hash

Merkle

Root

Header

Hash

Merkle

Root

……

Block Depth, d
1N

…………
δ+1

Reserved Set

Block 1 Block N-δ Block N-δ+1 Block N

δ

Body

Transaction

Body

Transaction

Figure 2. Structure of blockchain on DSNs.

Suppose every block can be viewed independently. The
information entropy of various blocks at a time slot is denoted
by H(d), where the positive integer d is the block depth as
illustrated in Fig. 2. The latest block has depth of 1. Then, the
blockchain can be downsampled by the following Algorithm
5.

In Algorithm 5, the number δ of reserved block bodies
could be set as δ = dmax/M , where M is the downsampling
factor, or according to the state of the DSN and network. The
DSN generates UTXOs pool PUTXO from the reserved block
bodies. When it receives a new transaction T , it will check T
with Algorithm 3.

Let Nt and Nu, respectively, denote the number of all the
transaction outputs and the number of all the UTXOs. Let
Nst and Nsu, respectively, denote the number of transaction
outputs and the number of UTXOs on a DSN. Table I gives the
probability of broadcast of DSNs. If the transaction is valid,

Algorithm 5 Entropy Based Downsampling Blockchain Al-
gorithm
Input:

The information entropy of blocks, H(d);
The number of reserved blocks, δ;

1: // The DSN P stores the set of entire block headers H.
2: P : STORE(H);
3: //Get the δ block headers whose block bodies have the

largest entropy.
4: H′ = MAXN H (H, H(d), δ);
5: //Get the reserved set D, where D is the set of δ block

bodies.
6: D = GETRES(H′);
7: P : STORE(D);

Table I
THE PROBABILITY OF BROADCAST OF DSNS

Probability Broadcast Discard

Valid Nsu
Nu

Nu−Nsu
Nu

Invalid Nst−Nsu
Nt−Nu

Nt−Nu−(Nst−Nsu)
Nt−Nu

the DSN will broadcast it; otherwise discard. We define the
broadcast accuracy as follows.

Definition 2. The broadcast accuracy ϕ is the probability that
a node broadcasts valid transactions.

For a DSN with the reserved set D ⊆ {d1, d2, . . . , dδ}, its
broadcast accuracy is

ϕD =
Nsu
Nu

. (6)

We define u(d) as the probability distribution of each block
used by a new transaction. Then, the entropy and the broadcast
accuracy could be expressed as

H(d) = E[− log u(d)] = −u(d) log u(d), (7)

ϕD =
Nsu
Nu

=

∫
D
u(d)dd. (8)

Since H(d) is proportional to u(d), a higher sum of H(d)
means a higher sum of u(d). Therefore, with the same
number of reserved blocks, the entropy-based downsampling
blockchain algorithm could achieve the highest broadcast
accuracy among different ways of downsampling.

B. Entropy of Bitcoin

Here we use Bitcoin as an example to illustrate how to
estimate the entropy of the blockchain H(d). Since the new
transaction is verified according to the UTXOs pool, the prob-
ability distribution of UTXOs could indicate the probability
distribution of each block used by a new transaction. In other
words, we could estimate H(d) according to the distribution
of UTXOs.

From the set theory, we could build the model of the
blockchain based on UTXOs. Thus, a valid state can be seen
as a set of UTXOs,

σt ≡ {txo1t , txo2t , txo3t , . . . , txont }, (9)

where txoit is the UTXO at the time slot t, i ∈ N.
The inputs and outputs of a transaction can also be regarded

as a set of transaction outputs in the UTXOs model,

T int ≡ {txo
j1
t , txo

j2
t , txo

j3
t , . . . , txo

jin
t }, (10)

T outt ≡ {txok1t+1, txo
k2
t+1, txo

k3
t+1, . . . , txo

kout
t+1 }. (11)

Thus, T int ⊆ σt and T outt ⊆ σt+1.
The state transition between two states can be seen as

removing all txos of transaction inputs from the previous state,
and adding txos of transaction outputs,

σt+1 ≡ σt 4 T. (12)

Thus, the most recent state of Bitcoin can be seen as
the most recent set of UTXOs. However, the distribution
of UTXOs changes as the block height increases, causing
difficulty in analysis. Instead, we focus on state duration
defined as follows.

Definition 3. State duration x is

x ≡ dprod − dused, (13)

where dprod and dused are the depth of the block where a
UTXO was produced and used, respectively.

Let us denote the distribution of x by N(x). For a stable
blockchain, the distribution of the state duration is stable. In
other words, the state duration is more universal. We can derive
the distribution of UTXOs from the survival function of the
state duration.

If every UTXO is random, independent and equally possible
to use, there will be more UTXOs with shorter state duration
than with longer state duration. In this situation, the state
duration should conform to the exponential distribution.

The probability density function of the state duration is

f(x) =
N(x)∫ +∞

0
N(x)dx

. (14)

Its cumulative function is

C(d) =

∫ d−1

0

f(x)dx. (15)

For a block with depth d, each output is used with probability
C(d).

The probability of UTXOs in each block is

U(d) = 1− C(d), (16)

which is the survival function of the state duration.
If the number of transaction outputs is similar, the proba-

bility density function u(d) of UTXOs can be derived from
U(d),

u(d) =
U(d)∫ +∞

0
U(d)dd

. (17)

Based on the 224197 blocks and 847656 UTXOs of Bitcoin
blockchain on April 21, 2018, we fit the distribution of the
state duration to the function

N(x) = 115000e−2.005x + 38850e−0.1302x, (18)

with R − square = 0.99. We include N(x) and the actual
distribution of the state duration in Fig. 3. It shows that
N(x) is close to the actual distribution. The state duration
of Bitcoin is mainly distributed in smaller areas. Therefore,
newer transaction outputs are more likely to be unspent.

0 50 100 150

State duration, x (block)

0

2

4

6

8

10

12

14

16

N
um

be
r o

f U
TX

O
s

104

Bitcoin statistics
N(x)

Figure 3. State duration of Bitcoin.

According to the above N(x), we have

f(x) = 0.3233e−2.005x + 0.1092e−0.1302x, (19)

and
u(d) = 0.0247e−2.005d + 0.1286e−0.1302d. (20)

Then, we can give the entropy of Bitcoin

H(d) = (0.0247e−2.005d + 0.1286e−0.1302d)
×log(0.0247e−2.005d + 0.1286e−0.1302d).

(21)

C. Simulation results

On the basis of theoretical analysis, we test the performance
of entropy-based DSNs under various downsampling factors
M .

On June 17, 2019, we simulated entropy-based DSNs with
the 6057 transaction inputs of the Bitcoin. It can be seen from
Fig. 4 that even if the downsampling factor reaches 1000,
the DSN can obtain an average broadcast accuracy of 80%
or more. When the downsampling factor is 100, the average
broadcast accuracy of DSNs is over 90%. If the downsampling
factor is 10, the loss of average broadcast accuracy is only
about 3%.

Then, we investigate the real-time broadcast accuracy for
each block. We test 78 blocks from block heights 581101 to
581178 of the Bitcoin. As show in Fig. 5, when processing
the transactions of each block in real-time, even if the down-
sampling factor reaches 1000, DSNs can obtain the real-time
broadcast accuracy more than 70%. When the downsampling

100 101 102 103 104

Downsampling factor, M

0.85

0.9

0.95

1

P
or

tio
n

of
 S

uc
ce

ss
fu

lly
 V

er
ifi

ed
 In

pu
ts

Figure 4. Average broadcast accuracy of entropy-based DSNs under various
downsampling factors.

5.811 5.81102 5.81104 5.81106 5.81108 5.8111 5.81112

Block Height 105

0.7

0.75

0.8

0.85

0.9

0.95

1

P
or

tio
n

of
 S

uc
ce

ss
fu

lly
 V

er
ifi

ed
 In

pu
ts

M=1
M=10
M=100
M=1000

Figure 5. Real-time broadcast accuracy of entropy-based DSNs under
different downsampling factors.

factor is 100, the real-time broadcast accuracy of DSNs is over
80%. If the downsampling factor is 10, the real-time broadcast
accuracy of DSNs is over 95%.

In short, DSNs can significantly reduce the storage over-
head, while keeping high broadcast accuracy both on average
and in real-time.

D. Security analysis

Since a DSN stores all block headers and part of bodies, its
security is always better than SPV nodes. Moreover, because
of the sequential feature of blockchain, it can be determined
whether a transaction output is UTXO if all blocks after that
transaction output are known. An invalid transaction could not
pass the verification process of DSNs, proved by the following
theorems and lemma.

Theorem 1. If Tk+1, Tk+2, Tk+3, . . . , Tt do not use a output
of Tk as the transaction input, this output is UTXO.

Proof. Assume that an output of Tk has already been used.

∵ T ini 6= T outk ,∀i ∈ {k + 1, k + 2, k + 3, . . . , t}, (22)

as the transaction cannot use its own output as input,

∴ T ini = T outk ,∃i < k, (23)

which contradicts the time sequence of the blockchain system.
Thus, the assumption is not true, and this output is UTXO.

Similarly, it is easy to prove the following theorem.

Theorem 2. If Tk+1, Tk+2, Tk+3, . . . , Tt use a output of Tk
as the transaction input, this output is not UTXO.

In addition, because transactions in blocks are continuous,
it comes to the following lemma.

Lemma 1. If there are Bk+1, Bk+2, Bk+3, . . . , Bt, the gen-
erated set of UTXOs σk+1

t ⊆ σt.

Therefore, an invalid transaction can neither jeopardize the
security of payment nor the security of broadcasting.

V. BLOCKCHAIN RECOVERY WITH DSNS

In this section, we investigate the recovery of blockchain
with DSNs. Besides downsampling in terms of blocks, we can
downsample in terms of transactions. Since transactions are the
smallest units of blockchain state transition, recovery in terms
of transactions is flexible and efficient. Thus, here we further
investigate recovery of blockchain in terms of transactions.

A. DSNs with random transparent coding

From the probability analysis [11], after N balls are inde-
pendently and randomly thrown into K bins, and K is large
enough, the probability that all bins have a ball is 1− ε when

N > K loge
K

ε
. (24)

In other words, K transactions could be recovered with
probability 1 − ε, if K loge

K
ε transactions are randomly

stored. Usually, we use erasure coding to ensure data recovery.
However, parity symbols of erasure coding can not be verified
by hash in the blockchain. It brings serious issues in security
and availability.

In order to make data on each node directly be verified and
used, we propose to transparently store data, and only encode
during data recovery as follows.

The storage algorithm of a node P , which is the downsam-
pling algorithm with transparent coding, can be described as
Algorithm 6. This algorithm constructs a spatial distribution
of transactions on the blockchain network.

When a node P ′ needs a transaction T ′, it can request
the transaction via Algorithm 7. The probability that the
transaction T ′ cannot be found is (1 − loge

K
ε)M, if all

neighbor nodes are encoded with γ̄ = loge
K
ε , where M is

the number of neighbor nodes and γ̄ is the average of γ.
In addition, when a node P ′ needs to recover all transactions

of a block, although Algorithm 7 can be used in parallel, it
will waste bandwidth, meaning that O(K ln(k/ε)) transactions
need to be propagated. This problem can be solved by trans-
mitting the bitwise sum, modulo 2, of γi transactions of each
node. The codeword sent by node P i is

ci = T1 ⊕ T2 ⊕ T3 ⊕ · · · ⊕ Tγi , (25)

Algorithm 6 Downsampling with transparent coding
1: // P stores the set of entire block headers H and the set

of the identifier (hash value) I of every transaction.
2: P : STORE(H, I);
3: // P generates a positive integer random variable γ with a

mean of loge
K
ε .

4: γ = RANDOMI(1,K, loge
K
ε);

5: P : uniformly and randomly select γ distinct identifiers
I1, I2, ..., Iγ ∈ I;

6: for j=1 to γ do
7: P : get transaction Tj , where the identifier of Tj is Ij ;
8: P : STORE(Tj);
9: end for

Algorithm 7 Recovery of a transaction
Input:

The set of neighbor nodes of node P ′, {P 1, P 2, . . . , PM};
The identifier of the transaction T ′, IT ′ ;

Output: The transaction T ′;
1: for i=1 to M do
2: //P ′ sends IT ′ to P i.
3: P ′ → P i: IT ′ ;
4: if P i → P ′: T ′ then return T ′

5: end if
6: end for

where γi is the degree of the codeword. Since the average
degree γ̄ is significantly less than K, we can decode these
codewords like decoding a sparse-graph code over an erasure
channel. Here we use the message passing algorithm, which
is described in detail in Algorithm 8.

Algorithm 8 Decoding of transparent coding
1: Get G; // Get the coding matrix.
2: repeat
3: find a codeword ci that is connected to only one

transaction Tj ;
4: if ci == null then return false;
5: end if
6: Tj = ci;
7: for all i′ such that Gi′j == 1 do
8: ci

′
= ci

′ ⊕ Tj ;
9: Gi′j = 0

10: end for
11: until all Tj are determined

B. DSNs with robust soliton distribution transparent coding

Although coding can reduce bandwidth consumption, in
practice the random selection of degrees performs poorly
because it is very likely that there is no codeword with the
degree-one at some point in the decoding. So the choice of the
degree distribution is very important. Therefore, inspired by
fountain codes [12], we find that the robust soliton distribution
can be used as the probability distribution of the random

0 200 400 600 800 1000 1200 1400

number received

0

200

400

600

800

1000
nu

m
be

r
de

co
de

d

Figure 6. Performance of robust soliton distribution transparent blockchain
codes.

variable in Algorithm 6, which ensures that the expected
number of codewords with the degree-one is around

S ≡ c loge(K/ε)
√
K, (26)

where ε is the probability that the node P ′ could not decode all
transactions after K ′ = KZ codewords have been received,
and c is a constant of order 1. The robust soliton distribution
is

µ(γ) =
ρ(γ) + τ(γ)

Z
, (27)

where

ρ(1) = 1/K
ρ(γ) = 1

γ(γ−1) for γ = 2, 3, . . . ,K,
(28)

τ(γ) =

S
K

1
γ for γ = 1, 2, . . . , (K/S)− 1

S
K log(S/ε) for γ = K/S
0 for γ > K/S

,

(29)
and

Z = Σγ(ρ(γ) + τ(γ)). (30)

In this case, the decoding algorithm of transparent
blockchain codes is the same as the decoding algorithm
of fountain codes. Therefore, any K + O

(√
K ln2(K/ε)

)
codewords from different nodes can recover the K original
transactions with probability 1− ε, and each node only needs
to store O(ln(K/ε)) transactions on average. Figure 6 shows
three different decoding runs of transparent blockchain codes,
where c = 0.05, ε = 0.05,K = 1000, γ̄ = 10.40. The
original block could be recovered when the number of received
codewords is around 1300.

C. Security analysis

DSNs with transparent coding have two following properties
to meet the requirement of safety:
• Anti-fraud: it is computationally infeasible to defraud a

DSN to trust a forged transaction.

• Anti-obstruction: it is computationally infeasible to have
a DSN spend much more than normal to verify a trans-
action.

These two properties could be formalized in terms of two
games that we play with two adversaries, respectively.

In the anti-fraud game, there is an adversary who claims
that he can defraud a DSN to trust a forged transaction and
a challenger that will test this claim. Here the DSN is the
challenger. We are going to allow the adversary to run the
hash function of his choice inputs, for as long as he wants, as
long as the number of guesses is plausible. Once the adversary
is satisfied that he has tried enough inputs, then the adver-
sary picks a transaction and attempts to forge a transaction.
However, since the hash function is collision resistant, the
challenger will detect the inconsistency between the forged
transaction and the hash identifier. Thus, the challenger will
win the game.

In addition, in the anti-congestion game, there is an ad-
versary who claims that he can have a DSN spend much
more than normal to verify a transaction and a challenger
that will test this claim. Here the DSN is the challenger. We
are going to allow the adversary to send any codeword to
the challenger, for as long as the number of codewords is
plausible. The adversary attempts to obstruct the challenger
to verify transactions. However, since the maximum degree of
the codeword is K, the challenger will be able to decode any
codeword within K − 1 bitwise sums, modulo 2. Therefore,
the challenger will win the game.

VI. CONCLUSION

In this paper, we proposed to downsample history data to
reduce the storage overhead of blockchain. It demonstrates
that entropy based downsampling can provide high verification
and broadcast accuracy. Moreover, in order to recover data
in a practical way, we proposed to transparently store data
following robust soliton distribution, and only encode during
data recovery. It demonstrates that our proposed transparent
coding provides reliability with low bandwidth consumption.
In short, our transparent downsampling blockchain algorithm
has good scalability in independency and recovery.

REFERENCES

[1] L. Quan, Q. Huang, S. Zhang, and Z. Wang, “Downsampling blockchain
algorithm,” in IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), Paris, France, April
2019, pp. 342–347.

[2] L. Quan and Q. Huang, “Transparent coded blockchain,” in ACM

CoNEXT 2019 - ACM International Conference on Emerging Network

Experiment and Technologies Student Workshop (CoNEXT Student).
Orlando, FL, USA: ACM, December 2019.

[3] S. Nakamoto. (2008, Mar.) Bitcoin: A peer-to-peer electronic cash
system. Online. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[4] D. Leung, A. Suhl, Y. Gilad, and N. Zeldovich, “Vault : fast bootstrap-
ping for cryptocurrencies,” IACR Cryptology ePrint Archive, vol. 2018,
p. 269, 2018.

https://bitcoin.org/bitcoin.pdf

[5] T. P. Dryja, “Utreexo: A dynamic hash-based accumulator optimized for
the bitcoin utxo set.” IACR Cryptology ePrint Archive, vol. 2019, p. 611,
2019.

[6] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based low
storage blockchain node,” in 2018 IEEE International Conference on

Internet of Things (iThings) and IEEE Green Computing and Commu-

nications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData). Halifax, Canada: IEEE,
July 2018, pp. 1622–1627.

[7] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-

coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton University Press, 2016.

[8] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[9] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-

rencies. O’Reilly Media, Inc., 2014.
[10] G. Wood. (2019, Oct.) Ethereum: A secure decentralised generalised

transaction ledger. Online. [Online]. Available: https://ethereum.github.
io/yellowpaper/paper.pdf

[11] D. J. C. MacKay, “Fountain codes,” IEE Proceedings - Communications,
vol. 152, no. 6, pp. 1062–1068, Dec 2005.

[12] M. Luby, “Lt codes,” in The 43rd Annual IEEE Symposium on Founda-

tions of Computer Science, 2002. Proceedings., Vancouver, BC, Canada,
Nov 2002, pp. 271–280.

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	I Introduction
	II Background
	III Downsampling Nodes of Blockchain
	IV Entropy-Based Downsampling and Independency of DSNs
	IV-A Entropy-based downsampling
	IV-B Entropy of Bitcoin
	IV-C Simulation results
	IV-D Security analysis

	V Blockchain Recovery with DSNs
	V-A DSNs with random transparent coding
	V-B DSNs with robust soliton distribution transparent coding
	V-C Security analysis

	VI Conclusion
	References

