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Abstract

Graph representation learning (Graph embedding) aims at encoding a graph into a lower-

dimensional feature space. Deep representation learning on the attributed graph utilizes

both the graph structure and the graph attributes, which has shown significance in graph

learning. Rich information in a graph can be expressed by attributes from different

perspectives, which is employed as attributed views in the research field. Taking the social

networks as an example, a user’s profiles and its posted contents can be regarded as

two separate attributed views. The majority of existing attributed graph representation

learning methods focus on single attributed view, which inherently limits the capability of

the techniques to multi-attributed-view graphs. In this work, we present a novel model

for generating representations with graphs containing multiple attributed views. The

model, deep Multi-attributed-view graph Convolutional Autoencoder model (MagCAE), is

built based on an unsupervised autoencoder framework with graph convolutional neural

network layers. In addition, a novel multi-attributed-view proximity measurement and

similarity loss function are proposed to further improve the effectiveness of generated

embeddings. Extensive experiments and comparisons with 10 baselines on 5 real-world

multi-attributed-view graphs demonstrate the superiority of MagCAE for link prediciton

with respect to average precision (AP) and area under the ROC curve (AUC), and node

classification with respect to Micro and Macro F1-scores.
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1
Introduction

Many of the real-world networks that are valuable to contemporary data analytics are rep-

resented as graphs [1–3]. For instance, a social network can be presented as a graph where

the users are the nodes and the relationships between them are the edges. Accordingly,

this makes it possible to visualise communities, identify key entities and patterns, and

statistically analyse metrics such as distance, centrality, and co-occurrence. As humans,

we find it easier to understand complex relationships when we can digest the information

visually from the graph. For machines, graphs offer unique and efficient mathematical

constructs for processing data. Because of the efficiency of graphs in both storing and

representing network data, graph data mining has become one of the hottest topics in

data science in recent years and researchers have been producing promising results in

a huge range of downstream applications, including social recommendation, anomaly

detection, cybersecurity, and more.

1



2 INTRODUCTION

However, the complexity of many networks today is beyond the capability of traditional

machine learning techniques. To store the graph structure, the most convenient and

widely-adopted method is using one-hot vectors. Given a real-world network with millions

of nodes and edges, the one-hot vector representation would have a large number of

dimensions and it is impossible to use it directly for data mining under computational

constraints. This motivates the work of graph representation learning to encode graphs

into a lower-dimensional space.

The linking nature of graphs also makes them particularly ill-suited to parallel comput-

ing. In traditional machine/deep learning research fields, the data items are assumed to

follow an independent and identical distribution (i.e., i.i.d.), which means each data item

can be processed independently and in parallel. By contrast, nodes are linked to each other

in graphs and hence not independent and identically distributed. These dependencies

render parallel computing with graph data extremely difficult.

There have been numerous attempts to tackle these challenges with new types of data

representations and new embedding methods specifically designed for graphs. Those

works, known as graph representation learning/graph embedding/network embedding,

aim to represent a graph in a lower-dimensional space while retaining as much valuable

information as possible. With the lower-dimensional representation, traditional machine

learning and deep learning can then be applied to perform downstream graph analysis,

such as link prediction and node classification [4, 5].

Among the most successful embedding methods are the ones that encode the graph

structure into a low-dimensional latent feature space [6, 7] using either deep learning

models [8] or graph neural networks [1, 9]. Early graph representation learning meth-

ods, such as Laplacian eigenmaps [10], LPP [11], DeepWalk [12], Node2Vec [13], and

LINE [14] take the graph structure as input and output node embeddings in return.

However, a graph’s structure is not the only valuable information it can contain. The

attributes of the nodes and edges, e.g., a user’s hobbies or the length of time two users

have been friends, are very useful information for graph representations [7, 15–18]. To

explore this knowledge, attributed graph embedding models take the graph structure, the

nodes’ attributes as well as other side information as inputs. For example, TADW [15]
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(a) Each node in a single-attributed-view graph is represented by attributes from a unique perspective

– for example, a user profile in an online social network. (b) By contrast, in a multi-attributed-view

graph, each node is represented from a number of different perspectives – for example, a user profile

and a collection of posted reviews, resulting in graphs with multiple attributed views.

FIGURE 1.1: Attributed graphs.

which is based on DeepWalk, further considers contextual information associated with

each node to learn node embeddings, while ASNE [7] takes two types of side information,

i.e., structural proximity and attribute proximity, additionally into account to train a deep

neural network. These two proximities are quantified based on the graph structure and

nodes’ attributes, respectively. Graph convolutional network (GCN) models [19] and

other state-of-the-art methods [20–22] also aggregate neighbourhood information into

the targeting node’s representation via graph neural networks and have achieved more

effective representations to support graph analytics.

“Attributed views” is a further aspect of graph mining. An attributed view is a collection

of features that form a way of viewing a network, i.e., a perspective [1, 23–26]. For

instance, the features associated with user profiles is one perspective, while the content

they post is another. The attributes associated with different views are usually collected

from different sources. Using Twitter as an example, user profile information would be

gathered from the registration information, while their historical tweets would be taken

from published posts as shown in Figure 1.1(b).

Although multiple attributed views describe the graph attribute information from

different perspectives and provide more comprehensive information to graph data mining,

the graph representation learning techniques discussed above are only designed to work
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with graphs containing a single attributed view (shown in Figure 1.1(a)). In order to

learn graph representations from multiple attributed views, one straightforward approach

is to concatenate different attributed views into a single attributed view and then apply

one of the single-view techniques. However, this approach implicitly assumes that each

attributed view has the same significance on the learned representations and downstream

graph analysis tasks, which is not always the case. As a concrete example, in online

social networks, both users’ demographic information and historical posts (those are two

distinctive attributed views) influence the links formed between them, but, in most cases,

historical posts are more influential than users’ demographic information because people

are more interested in the posted content.

To this end, graph representation learning with multiple attributed views have not been

well explored yet. The known challenges are thus: different attributed views have different

impacts on the learned representation. Consequently, to create a truly effective model,

each view must be weighted accordingly. Besides, this weighting must be a trainable

parameter that can adjust automatically during the process to fit different networks and

application scenarios. Moreover, other side information, e.g., node attribute proximity,

that could benefit graph representation learning needs to be explored and utilized to

improve the learning result.

To tackle these challenges, this work proposes a novel deep learning model called

Multi-attributed-view graph Convolutional AutoEncoder, or MagCAE for short. The model

inherits the advantages of the autoencoder framework and graph convolutional neural

network (GCN) to learn graph representations in an unsupervised manner. Moreover,

MagCAE explores pairwise-node proximity information and proposes a specially-designed

pairwise similarity loss function to boost the performance of the generated graph repre-

sentations.

The main contributions of this work include:

• We formulate the problem of multi-attributed-view graph representation learning

by distinguishing various attributed views on node attributes. To the best of our

knowledge, it is the first time to consider the impact of different attributed views

on the learned graph representations and jointly optimise the multi-attributed-view



5

graph representation learning as well as the weights of attributed views through an

effective deep unsupervised graph neural network.

• We propose a novel multi-attributed-view proximity measurement for representation

learning. The measure explores node attribute similarity across different attributed

views and provides meaningful side information to improve the effectiveness of the

learned representations.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed

model by comparison with 10 baselines on 5 real-world multi-attributed-view graphs

and show the superiority of MagCAE on link prediction with respect to average

precision (AP) and area under the ROC curve (AUC), and node classification with

respect to Micro and Macro F1-scores.

Hereinafter, graph embedding and graph representation learning are used interchange-

ably. The rest of this thesis is organized as follows. Chapter 2 reviews existing works on

graph representation learning and autoencoder. Chapter 3 presents the basic concepts and

notations. Chapter 4 provides the details of MagCAE and its key components. Chapter 5

presents the experiments, performance evaluations and baseline comparisons. Chapter 6

concludes this work with a brief summary of MagCAE and our intentions for future work.
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2
Literature Review

This chapter begins with an introduction to graph representation learning in Section 2.1,

followed by a brief review of the state-of-the-art graph representation learning methods in

Sections 2.2 and 2.3. Section 2.2 covers plain graphs. Section 2.3 focusses on attributed

graphs.

2.1 Graph Representation Learning

As mentioned in the prior chapter, the conventional graph representation has introduced

significant challenges to graph data mining and has become a bottleneck in graph analysis.

To alleviate those problems, graph representation learning has been committed to embed-

ding network nodes into a low-dimensional feature space/embedding space where nodes

are distributed independently, and their dependencies are captured by their distances in

7
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the embedding space instead of using explicit edges [1].

One of the benefits of graph representation learning is that the low-dimensional node

representations/node embeddings reduce the computation cost of graph data signifi-

cantly. Downstream graph analysing methods will take less space to store graph data and

consume less on computing when graphs are represented by low-dimensional vectors.

Graph representation learning also makes traditional machine learning and deep learning

techniques convenient for solving graph problems. Taken the lower-dimensional node

representations as inputs, powerful machine learning techniques such as support vector

machine (SVM) and k-nearest neighbours can be trained to identify node clusters, classify

nodes, and predict links in a reasonable time.

In order to generate more effective node embeddings to support graph analytics,

substantial efforts have been put into exploring different types of information that are

contained in real-world networks. Some of the existing works generate node embeddings

using the graph structure information, while more recent works also take into account

nodes’ attributes and other side information to meet the goal. From this perspective, exist-

ing techniques can be categorized into plain graph representation learning methods and

attributed graph representation learning methods depending on the types of information

leveraged for representation learning.

2.2 Plain Graph Representation Learning

Plain graph representation learning methods generate node embeddings by leveraging a

graph’s topological information. These methods generally take a graph’s adjacency matrix

or degree matrix as the input, and the output embeddings for nodes usually preserve

the structural information. The general process of existing plain graph representation

learning techniques is shown in Figure 2.1.

Earlier graph embedding methods, such as Laplacian Eigenmaps [10] and Locality

preserving projection (LPP) [11], explore a graph’s geometric structure and attempt to

discover and represent the graph by the most structure-related features. Node embeddings
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FIGURE 2.1: The process of plain graph representation learning.

generated by these methods can preserve useful local structure information and show

promising performance on graph analysis tasks, such as node clustering. However, the

price of these benefits is the high computation cost associated with computing eigenvalues

and eigenvectors. As such, these methods are only suitable for small, relatively simple

networks; their scalability to large networks is constrained by computational complexity.

To overcome the high computational overhead of eigen-decomposition operation and

motivated by the success of deep learning in natural language processing, DeepWalk [12]

generalises the idea of contextual word embeddings to graphs. The basic ideas of DeepWalk

are to treat collections of nodes as sentences and embed a node in a vector given its

neighbouring nodes. One of the keys to DeepWalk is that the generated node sentences

should preserve the dependencies between nodes, and the random walk provides a

feasible and convenient solution. In practice, DeepWalk generates node sentences through

independent random walks that start from different nodes. Each node sentence can

be regarded as a fixed-length depth-first-search on the graph, and it can effectively

preserve the network relationships. Further, truncated random walks provide an avenue to

parallel computing because each walk is independent. DeepWalk’s success with multi-label

classification and its efficiency has since inspired many other plain graph representation

learning methods.

Inspired by DeepWalk, LINE [14] adopts a breadth-first-search strategy to generate

node sequences and proposes a solution for learning node embeddings that preserve
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Breadth-First-Search Direction

Depth-First-Search Direction

FIGURE 2.2: Different random walk directions.

both local and global structure information with large-scale networks. Another technique

inspired by DeepWalk is Node2vec [13], which generates node sequences and learns

embeddings by following a more comprehensive process that obeys two principles. First,

nodes in the same network community should have similar embeddings. Second, nodes

that have similar structural roles should also have similar embeddings. Those are achieved

by biased random walks that move in both depth-first-search and breadth-first-search

directions. Depth-first-search could reveal the graph’s global structure and nodes’ roles,

while breadth-first-search reveals the local community structure (as shown in Figure 2.2).

Each random walk can be treated as a combination of depth-first-search and breadth-first-

search on the input graph. Hence, the generated node sequences preserve more structural

information than that in DeepWalk and result in more effective node embeddings for

graph analytics.

2.3 Attributed Graph Representation Learning

With the emergence of attributed graphs, analysts were given access to information

beyond the simple existence of a relationship between two nodes – for example, the

year a user joined a social network or the research field of a scientific paper in a citation

network. Those attributes provide comprehensive character information about entities,

and previous studies on homophily theory [27] suggest that a node’s attributes influence
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FIGURE 2.3: The process of attributed graph representation learning.

which relationships it will form with other nodes. As a result, significant efforts have

been put into utilizing both the graph structure and nodes’ attributes to generate more

effective node embeddings. As shown in Figure 2.3, existing works typically take both the

adjacency matrix and attribute matrix of real-world networks as inputs and output node

embeddings by adopting machine learning or deep learning techniques. Following, the

most representative methods are briefly described.

TADW [15] is one of the earliest attributed graph embedding methods. It proves

that DeepWalk’s learning process is equivalent to factorising a transition matrix M that

reflects the random walk process. And, motivated by this, TADW attempts to incorporate

additional text information associated with each node to perform matrix factorisation on

the same matrix M by finding a local minimum. Experiments on real-world attributed

networks show that TADW achieves higher node classification accuracy than models that

only consider structural information and on par with DeepWalk.

Another earlier technique, ASNE [7] is introduced after TADW, which pays great

attention to online social networks. It aims to embed each user into a latent space such

that not only linked users are close to each other, but also users with similar attributes are

located closely. ASNE takes both the structure information of each node, a one-hot vector,

and the attribute information, a feature vector that contains all the attributes e.g., gender,

location, as inputs to train a deep neural network, and it generates node embeddings that

accomplish the goal.

To generate node embeddings for unseen data, GraphSAGE [28] proposes an inductive
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framework that is capable of handling this problem. For each node, GraphSAGE samples a

set of its local neighbours and then aggregates those neighbours’ features to its embeddings.

The traditional mean-pooling, max-pooling, and concatenation are potential candidates

for the aggregation function. However, different aggregation functions result in different

node embeddings that perform distinctively on graph analytics. This framework has

shown promising performance on node classification tasks concerning the classification

accuracy.

Apart from GraphSAGE, scalable incomplete network embedding (SINE) [29] is de-

signed to handle large-scale networks with missing information. This method is less

sensitive to the scale networks and is robust to incomplete and noisy data. With the

node’s position information (represented as a one-hot vector) as input, SINE learns a

predictive model that could predict its neighbours and its own observable attributes.

Further experiments on node classification and link prediction tasks in the literature show

that SINE achieves decent results while consuming comparable running time to that of

DeepWalk and LINE.

Recently, the application of convolutional neural networks to graph representation

has been a highly successful strategy [30]. GAE/VGAE [31] are two examples in this

vein. Both are built based on the autoencoder framework with graph convolutional

neural network layers. The difference between those two models is that VGAE takes a

Gaussian distribution prior to node embeddings, while GAE is non-probabilistic. Both

models generate node representations using a convolution operation based on graph

signal processing [32], and both have shown promising performance on link prediction

tasks with citation networks.

There are many techniques which aim to reduce the memory cost of graph data, from

which Binarized attributed network embedding [21] is a representative model. It involves

learning binary representations of nodes instead of continuous values in Euclidean space.

A novel Weisfeiler-Lehman proximity matrix that captures the relationship between edges

and node attributes is defined in this work, and by factorising this matrix, a binary matrix

is extracted. Each node corresponds to a vector in this matrix, and the vector has only 1

or 0 in each dimension.



3
Preliminaries

This chapter provides preliminaries of the deep autoencoder framework, different kinds of

graphs, and defines proximity measurements used in this work. A detailed list of symbols

and notations is in the List of Symbols.

3.1 Autoencoder

In real scenarios, deep learning tasks might face training data without any labeled infor-

mation when acquiring labels cost too much, or labeling the data is non-trivial for the lack

of prior knowledge. To tackle this problem, various unsupervised learning techniques have

been introduced to digest valuable information from the unlabeled data. Autoencoder,

which is developed based on deep neural network, is at the forefront of those unsupervised

deep learning methods [33] and has shown advancement in dimensionality reduction

13
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Encoder Decoder

Input
X

Low Dimensional Representation
Z = Encoder(X)

Autoencoder

Output
 X' = Decoder(Z)

Forward Propagation Backward Propagation

Loss = L(X, X')

FIGURE 3.1: The framework of Autoencoder.

and feature extraction.

An autoencoder is a deep neural network that is trained to reconstruct its inputs and

its general framework is shown in Figure 3.1. As illustrated, an autoencoder contains two

main components, namely, the encoder and the decoder. The encoder maps the input data

into a lower-dimensional space, while the decoder tends to produce the input data from

the latent representations. The training process follows the conventional feed-forward

and backward propagation. To be specific, in the forward propagation, the autoencoder

first encodes the input X into a lower-dimensional representation Z via encoding neural

network layers, then Z is passed through the decoder, and an approximation of X , X ′, is

generated. In the backward propagation, each trainable variable is optimized accordingly

to minimize a well-defined, task-oriented loss function L(·). The autoencoder framework

is simple, and it shows no advancement to other deep neural network models. However,

instead of focusing on the decoder’s output, people typically expect the encoder’s output,

Z , to preserve valuable properties to support downstream applications.

3.2 Plain Graph

Definition 1 (Plain Graph). A plain graph G = {V, E} consists of a node set V and an

edge set E. The graph structure of a plain graph is formed by nodes V = {vi}n1 and edges
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E = {ei, j} where n denotes the number of nodes, and ei, j = (vi, v j) represents an edge

between the nodes vi and v j. An adjacency matrix A= [ai, j]n×n stores the graph structure,

where ai, j = 1 if an edge exists between node vi and v j, and 0 otherwise.

3.3 Attributed Graph

Definition 2 (Single-attributed-view Graph/Attributed Graph). A single-attributed-

view graph, or attributed graph for short, G = {V, E, X } consists of a node set V , an edge

set E and an attribute set X . The structure of an attributed graph is formed by the nodes

V = {vi}n1 and the edges E = {ei, j}, where n denotes the number of nodes, and ei, j = (vi, v j)

represents an edge between nodes vi and v j. An adjacency matrix A= [ai, j]n×n stores the

graph structure, where ai, j = 1 if an edge exists between node vi and v j, and 0 otherwise.

The attribute set X = {xi}n1 consists of vectors of each nodes’ attributes, where xi is the

attribute vector associated with node vi.

Definition 3 (Multi-attributed-view Graph). A multi-attributed-view graph GM =

{V, E,X} consists of a node set V , an edge set E and a multi-attributed-view setX . Given

m attributed views in X = {X1, X2, . . . , Xm}, each attributed view Xξ ∈ X consists of

vectors of each nodes’ attributes in the corresponding attributed view, ξ. If m = 1, the

graph is a traditional attributed graph with a single attributed view.

3.4 Pairwise-node Proximity

In this work, three levels of proximity measures are employed to quantify the similarities

between pairwise entities. Specifically, the single-attributed-view proximity, or attribute

proximity for short, (Definition 3), the multi-attributed-view proximity (Definition 4), and

embedding proximity (Definition 5) are considered for pairwise similarities between nodes

from the aspects of a single attributed view, multiple attributed-views, and the learned

embeddings respectively.

Definition 4 (Single-attributed-view Proximity/Attribute Proximity). Given a pair

of nodes vi and v j, and their attributes xi and x j in the same attributed view, the attribute
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proximity is denoted as sa
i, j ∈ Sa. Sa presents the attribute proximity over the attributed

graph. In this work, the attribute proximity between each pair of nodes is measured as

pairwise attribute proximity at the node level in the same attributed view.

Definition 5 (Multi-attributed-view Proximity). In a multi-attributed-view graph,

the attributes of a node vi are stored in m attributed views. Multi-attributed-view proximity

measures the pairwise similarity between nodes over multiple attributed views, denoted

as sv
i, j ∈ Sv, where sv

i, j is quantified based on attribute proximity sa
i, j.

Definition 6 (Embedding Proximity). Embedding proximity is a measure of the

similarity between two nodes according to the output embeddings of a multi-attributed-

view graph. With d-dimensional embeddings, the embedding proximity of nodes vi and

v j is denoted as se
i, j ∈ Se, where Se is the embedding proximity matrix.



4
Multi-attributed-view Graph

Convolutional Autoencoder

Inspired by the success of graph convolutional neural network [34–36] and autoencoder,

MagCAE aims to learn low-dimensional representations for nodes in multi-attributed-

view graphs in an unsupervised manner. Section 4.1 introduces the general framework.

Section 4.2 and Section 4.3 respectively cover the two main components of MagCAE,

the multi-attributed-view graph convolutional encoder, and the multi-attributed-view

graph decoder. Section 4.4 presents three levels of proximity. Section 4.5 and Section 4.6

formulate the loss function and optimising strategy.

17
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FIGURE 4.1: The framework of MagCAE: a convolutional autoencoder for multi-attributed-view
graphs.

4.1 The Overall Framework

The MagCAE model, as shown in Figure 4.1, is built based on the conventional autoencoder

framework and generates the low-dimensional representations of nodes that are stored in

Z . Similar to other deep learning models, MagCAE is trained through the forward and

backward propagation. There are five major steps in the forward propagation. Precisely, in

step 1, the multi-attributed-view proximity Sv is measured with regard to nodes’ attributes

across all attributed views. Then, the multi-attributed-view graph convolutional encoder

takes both the adjacency matrix A and the set of multiple attributed viewsX 3 Xξ as inputs

and generates m node embeddings, i.e., Z1, . . . , Zm, by each single attributed view through

step 2 and step 3, respectively. The aggregation layer, which contains trainable view

weights, aggregates all those intermediate embeddings and generates the low-dimensional

node representations Z consequently in step 4. After that, MagCAE constructs the new

adjacency matrix A′ by employing an inner product decoder and quantifies the embedding

proximity Se based on Z . The backward propagation, on the other hand, fine-tunes all

trainable variables to minimise both the reconstruction loss and the pairwise similarity loss

that are formulated in Section 4.5 according to the optimisation strategy in Section 4.6.
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4.2 Multi-attributed-view Graph Convolutional Encoder

By taking a multi-attributed-view graph GM as input, the multi-attributed-view graph

convolutional encoder is proposed to generate node embeddings that could preserve both

the graph structural information and nodes’ attributes. It comprises several independent

encoders, each of which learns node embeddings from a single attributed view, and an

aggregation layer.

To be specific, if the input multi-attributed-view graph has m views, the multi-attributed-

view graph convolutional encoder will contain m independent single-attributed-view

encoders. In particular, each single-attributed-view encoder learns node embeddings from

a single attributed view as shown in Figure 4.2.

Denoting the ξ-th single-attributed-view encoder, which works on attributed view ξ,

as Encoderξ, its output, Zξ, is generated by

Z t+1
ξ
= φξ(ÃZ t

ξ
W t
ξ
), (4.1)

where φξ(·) is the activate function, Ã= D−1/2AD−1/2 is the normalized symmetric adja-

cency matrix, W t
ξ

contains all the trainable variables in layer t, Z t
ξ

is the output of the

t-th layer in Encoderξ, and Z0
ξ
= Xξ ∈ Rn×kξ .

...

A

Single-attributed-view Encoder

Single attributed view

...

...
Xξ 

Z ξ 

FIGURE 4.2: Single-attributed-view Encoder.

Moreover, an aggregation layer is applied to generate the node embeddings Z and
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quantify the weights of different attributed views. This aggregation layer takes the

weighted aggregation of all the intermediate node embeddings, Z1, · · · , Zm, and generates

Z concerning the weights of different attributed views. The process can be represented as

Z =ψ(w1 · Z1, · · · , wm · Zm), (4.2)

where ψ(·) is a weighted aggregation function, and wξ is the weight of attributed view

ξ. Hence, the learned embeddings Z is a weighted concatenation of all the learned

embeddings from the single attributed views.

4.3 Multi-attributed-view Graph Decoder

The traditional inner product decoder [37] is flexible and efficient to use. Therefore,

MagCAE takes it to reconstruct the graph structure from the learned embeddings and

perform link prediction via

A′ = σ(Z · Z T ), (4.3)

where A′ denotes the reconstructed adjacency matrix, and σ(·) is a Sigmoid activation

function that determines the likelihood of two nodes in A′ being connected.

4.4 Three Levels of Proximity: Single-view, Multi-view,

and Embedding

This work quantifies pairwise-node proximity at three levels. First, the single-attributed-

view proximity (attribute proximity for short) is measured between two nodes in a single

attributed view, then across multiple views (multi-attributed-view proximity), and finally

within the concatenated embedding (embedding proximity) [38].

4.4.1 Single-attributed-view Proximity (Attribute Proximity)

The attribute proximity for two nodes vi and v j in attributed view ξ can be denoted as

sa,ξ
i, j = P(xa,ξ

j |x
a,ξ
i ). (4.4)
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In this work, the attribute proximity is quantified via P(·) based on two RBF kernels,

RBF(xa,ξ
i ,xa,ξ

j ):

sa,ξ
i, j = RBF(xa,ξ

i ,xa,ξ
j ) = exp(−γξ||x

a,ξ
j − xa,ξ

i )||
2), (4.5)

where γξ = 1/kξ. Hence, the attribute proximity gets a large value (sa,ξ
i, j → 1) when the

pairwise nodes share similar attributes; otherwise, sa,ξ
i, j → 0.

Other proximity measurements, for instance, the cosine similarity, L1 and L2 distances,

are also available to apply to quantify hierarchical levels of pairwise node proximities.

This research uses the RBF kernel for its convenience and follows previous works in this

research direction. [38].

4.4.2 Multi-attributed-view Proximity

The multi-attributed-view proximity measures the pairwise node proximity across all

attributed views. In this work, the multi-attributed-view proximity is quantified based

on the assumption that the data distribution of each attributed view is independent

and different because those attributed views are collected from diverse sources. This is

calculated as

sv
i, j =

m
∏

ξ

P(xa,ξ
j |s

a,ξ
i, j ,xa,ξ

i ). (4.6)

A high value in multi-attributed-view proximity indicates the homogeneous attribute

distribution in m attributed views and vice versa.

4.4.3 Embedding Proximity

In addition to attribute proximity and multi-attributed-view proximity that are measured

to illustrate the similarities between different entities within the input data space, MagCAE

also measures their proximity in the embedding space, so-called, embedding proximity,

and it is calculated as

se
i, j = exp(−

1
d
||z j − zi||2). (4.7)

Similarly, if se
i, j has a high value, then node i and j’s learned embeddings zi, z j are similar

in the embedding space.
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The above multi-attributed-view proximity and node embedding proximity capture

additional mutual similarity information between nodes to guide the representation

learning and are reflected in the novel loss function proposed below.

4.5 The Loss Function

Because MagCAE learns representations that preserve both structural proximity and multi-

attributed-view proximity, the framework contains two loss functions. The structural

proximities are mapped with the conventional reconstruction loss function (Lres) in [33].

Designed for autoencoders, this function measures the likelihood between the input

multi-attributed-view graph A and the reconstructed graph A′. The multi-attributed-view

proximities are mapped with a novel function designed by us called pairwise node similarity

loss (Lsim). The function preserves multi-attributed-view proximity information in the

embeddings by maximising the likelihood between the multi-attributed-view proximity

and the embedding proximity over pairwise nodes.

During the training process, Lres and Lsim are jointly measured in the following overall

loss function L:

L = Lres +λLsim, (4.8)

where the parameter λ is used to normalize both losses.

The reconstruction loss function Lres for the structural proximities exploits Sigmoid

cross-entropy (CE) to control the graph convolutions:

Lres =
1
n2

∑

i

∑

j

CE(ai, j, a′i, j), (4.9)

where ai, j ∈ A and a′i, j ∈ A′.

The pairwise node proximity loss function Lsim is measured over the multi-attributed-

view proximity Sv and the embedding proximity Se:

Lsim =
1
n2

∑

i

∑

j

|sv
i, j − se

i, j|, (4.10)

where sv
i, j ∈ Sv is calculated by Eq. (4.6), and se

i, j ∈ Se is calculated by Eq. (4.7).
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4.6 Optimisation

MagCAE’s optimisation objective is to minimise the loss function in Eq. (4.8). In this work,

we adopt the adaptive moment estimation (Adam) algorithm to fine-tune all the variables

W , W ⊃Wξ, in GCN and attributed view weights wξ over t iterations. Setting m views

with m separate graph convolutional encoders, Adam adapts the learning rate for the

attributed view weights wξ as per Eq. (4.11) and each variable Wξ as per Eq. (4.12):

wt
ξ
= wt−1

ξ
−αv

∂ L t

∂ Z t

∂ Z t

∂ wt
ξ

, (4.11)

W t
ξ
=W t−1

ξ
−αξwt

ξ

∂ L t

∂ Z t
ξ

∂ Z t
ξ

∂W t
ξ

, (4.12)

where αv denotes the learning rate of attributed view weights, and αξ denotes the learning

rate of Encoderξ.

4.7 Algorithm and Complexity Analysis

The core algorithm of the proposed framework is summarised in Algorithm 1. It strictly

follows the representation learning process shown in Figure 4.1. In general, this algorithm

takes the multi-attributed-view graph GM and a predefined hyper-parameter value γ as

inputs and outputs the latent representation of each node.

Given a multi-attributed-view graph GM(V, E,X ) with the graph structure represented

by the adjacency matrix A and node attribute information restored in X , the initialization

of this algorithm contains two main parts. First, it randomly initializes all trainable

variables, including variables in the multi-attributed-view graph convolutional encoder,

W 0
ξ

, and attributed view weights, w0
ξ
, respectively. Second, it calculates the normalized

symmetric adjacency matrix Ã of the input graph GM , Ã= D−1/2AD−1/2, and measures the

multi-attributed-view proximity Sv following Eq. (4.5) and Eq. (4.6).

After initialization, MagCAE is trained consequently to minimize the loss function

described in prior sections. In each training epoch, all trainable variables are fine-tuned

with regard to the loss caused by the new generated latent representation of each node
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Algorithm 1: MagCAE
Input : Multi-attributed-view graph GM(V, E,X ),

Parameter of γ in loss function

Output : Node embeddings Z

1 Initialization: Ã← normalized symmetric adjacency matrix;

2 for m do

3 W 0
ξ
← initialized variables for Encoderξ;

4 Z0
ξ
= Xξ← initialized embeddings;

5 Sa
ξ
← apply Eq. (4.5) for attributed proximity;

6 end

7 w0
ξ
← initialized attributed view weight for each attributed view;

8 Sv ← apply Eq. (4.6) for multi-attributed-view proximity;

9 while Autoencoder do

10 for t do

11 for m do

12 Z t+1
ξ
← update embeddings by Eq. (4.1);

13 end

14 end

15 Z ← aggregate embeddings by Eq. (4.2);

16 A′← reconstructed adjacency matrix via Eq. (4.3);

17 Se← embedding proximity applying Eq. (4.6);

18 L← update loss function with Lres and Lsim, applying Eqs. (4.8)-(4.10);

19 W ← update graph convolutional variables;

20 wξ← update attributed view weights;

21 break on minimized L

22 end
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and they are updated to minimize the loss function following the strategies denoted by

Eq. (4.11) and Eq. (4.12). Specifically, the new node embeddings, Z , is generated by

aggregating node embeddings learned from each single attributed view by Eq. (4.2). The

training process terminates until a local minimum is reached and the node embeddings

for the input graph G can be generated accordingly.

As a result, the proposed MagCAE could generate node embeddings that preserve both

the graph structural information and pairwise node attribute proximity information across

all attributed views. Given two nodes vi and v j, their multi-attributed-view proximity is

maintained after multi-attributed-view graph convolutional encoding that is represented

by features in Z . The high proximity indicates the similarity between nodes vi and v j.

In other words, the embedding proximity should be close to the multi-attributed-view

proximity. Otherwise, a lower embedding proximity value leads to a larger varies between

node-pairwise embedded features.

The computational cost and complexity of graph embedding methods are also of great

concern to their downstream applications. With regard to the input data and the model’s

training procedure, the computational cost of the proposed MagCAE can be divided into

the cost of calculating hierarchical levels of the pairwise node similarities and the cost of

training. Given a multi-attributed-view graph G with n nodes and m attributed views, the

cost of calculating the pairwise node proximity from a single attributed view would be

O (n2), and the cost will be O (m ∗ n2) for measuring the multi-attributed-view proximity.

The training cost of the MagCAE is determined by calculations related to the generation

of node embeddings (line 12 in Algorithm 1) and measuring the embedding proximity

(line 17 in Algorithm 1). In each training iteration, the cost of graph convolution in

line 12 is O (n ∗ d), where d is the dimension of node embeddings, and calculating the

embedding proximity costs O (n2). In real-world scenarios, the embedding dimension d

and the number of attributed views m are far smaller than the number of nodes n. Hence,

the overall computation complexity of this model is approximately O (n2).
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5
Experiments

To evaluate MagCAE, we have conducted an extensive series of comparative experiments

with representative alternative methods on two common downstream analysis tasks: link

prediction and node classification. The experiments are reproducible, and the model is

open-sourced and available to download at https://github.com/MagCAE/magcae.

5.1 Datasets

We select five publicly-available real-world datasets, which have frequently been used for

similar evaluations. Three, Cora, Citeseer, and ACM, are citation networks, and two are

from well-known customer review sites. Further details follow.

• Cora1 is a citation network of scientific publications. Each node represents a paper,

27



28 EXPERIMENTS

and each edge represents a citation. The node attributes are encoded as one-

hot vectors – one per node – where 0/1 indicates the absence/presence of the

corresponding word in the corpus. For our experiments, we constructed a multi-

attributed-view graph with three views, based on inherent distinctions between all

the attributes. The node label indicates the research topic of the paper.

• Citeseer1 is another widely-used scientific citation network. We pre-processed the

raw data to remove nodes with missing attributes and constructed a multi-attributed-

view graph with three views based on three given research areas given as one-hot

node labels.

• The ACM2 citation network is commonly used to test network embedding perfor-

mance. We extracted three attributed views from the raw dataset using Doc2Vec [39]

– paper title, abstract, and reference titles – and assigned labels to the papers based

on the venue they were published in.

• Epinions3 is a consumer review site where users submit reviews of their own and

rate the reviews of others. We processed the raw data4 using Doc2vec [39] and and

constructed a multi-attributed-view graph with users as nodes, trust relationships

as edges, and three different categories of information as attributed views: user

reviews, review ratings, and registration information. The node labels indicate the

product category the review is about [40].

• Ciao4 is another consumer review site. We followed the same techniques to extract

node features, graph structures, and node labels to result in the same configurations

as the Epinions dataset.

Statistics of the five datasets are provided in Table 5.1, including the number of nodes,

edges, and attributed views.

1https://linqs.soe.ucsc.edu/data
2https://www.aminer.org/citation
3http://www.epinions.com/
4https://www.cse.msu.edu/ tangjili/trust.html
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TABLE 5.1: Dataset statistics

# Nodes # Edges # Views # Label Classes

Cora 2607 5429 3 7

Citeseer 3312 4660 3 6

ACM 7152 12487 3 7

Epinions 36497 215043 3 28

Ciao 10948 99038 3 67

5.2 Baselines

The experiment evaluates the performance of MagCAE in two-stage: the loss function with

only the reconstruction loss (MagCAE-res) and the loss function with the reconstruction

loss and the pairwise similarity loss (MagCAE). They are further compared with the

following baselines.

• Node2Vec [13] is a graph embedding model based on a biased random walk guided

by two hyperparameters p and q. This method only embeds structural features.

• LINE [14] is a graph embedding model for large-scale networks that encodes first-

and second-order structural proximities into the representations.

• TADW [15] is a DeepWalk-style model that learns graph representations by factoris-

ing text features from a matrix and combines the result with random walk-based

graph structures.

• ASNE [7] is a single-view method that learns node embeddings based on both

structural and attributed proximity.

• MUSAE [20] captures a node’s information from the attributes of its neighbours

and encodes the embeddings with a multi-scale approach.

• SINE [29] is another attributed graph embedding model that learns node represen-

tations from incomplete graph structures based on similarity evaluations.
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• BANE5 [21] learns binary node representations by capturing data dependence

between edges and attributes and aggregating the information from neighbor nodes.

• ANRL6 [22] represents nodes via an autoencoder neural network equipped with

attribute-aware Skip-gram, and formulates the correlations between nodes and

(in)direct neighbours through an attribute encoder.

• GAE [31] is a single-view unsupervised graph convolutional autoencoder that creates

embeddings with both structure and attributes. It is the superior choice for link

prediction tasks.

• VGAE [31] is a probabilistic variant of GAE that employs Gaussian prior for varia-

tional learning.

5.3 Experiment and Parameter Settings

5.3.1 Training, Validation, and Test set

Our treatment of the data is different for the two different tasks. For the link prediction

experiments, each dataset is split into a training, validation, and test set. The training

set contains all node features and 85% of the existing edges. The validation set, which is

used for hyper-parameter optimisation, contains 5% of the existing edges plus the same

number of new edges added between randomly selected nodes. The test set contains

the remaining 10% of the existing edges and a further equivalent number of additional

random edges. For the node classification trials, we randomly sample 80% of the labelled

nodes for the training set, and the rest of the nodes are used for the testing set.

5.3.2 Experiment Settings

For a fair comparison, we preprocess all five multi-view datasets based on two different

testing scenarios.

5https://github.com/benedekrozemberczki/BANE
6https://github.com/cszhangzhen/ANRL



5.4 LINK PREDICTION RESULTS 31

• Scenario A (a single concatenated view) concatenates all node attributes from

multiple attribute views into a single-attributed view. For plain graph embedding

methods, Node2Vec, and LINE, we input the graph structure and ignore node

attributes for testing. For attributed graph embedding methods, TADW, ASNE, SINE,

MUSAE, BANE, ANRL, GAE, and VGAE, they are trained with all node attributes.

• Scenario B (best of multiple views) trains all attributed graph embedding baselines

with node attributes in each attributed view separately and the best result is reported.

Because plain graph embedding methods do not utilize nodes’ attributes in the learning

process and for simplicity, their test results are reported in Scenario A only. The parameters

for all methods are set following the recommendations in the original papers or published

implementation.

5.3.3 Evaluation Metrics

The link prediction results are measured in terms of average precision (AP) and area

under the ROC curve (AUC) [30]. The node classification task [12] involved applying

linear SVM7 [41] to the learned node embeddings. The results are evaluated in terms of

both Micro and Macro F1-scores following 10-fold cross-validation.

5.4 Link Prediction Results

The results of the link prediction tasks appear in Tables 5.2 – 5.5. Across the two scenarios,

we make the following observations.

• In general, the proposed MagCAE model outperforms other baselines with respect to

both evaluation matrices. The results illustrate that embedding from multi-attributed

views can improve the link prediction performance of learned representations.

• The models that use GCN layers are generally more competitive, significantly outper-

forming the methods that do not in most cases. This result is credited to the graph

7https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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convolutional algorithm [19, 30] and its ability to encode neighbors’ information

into the learned embedding as the training progresses.

• MagCAE shows superiority over MagCAE-res on all test datasets, demonstrating the

effectiveness of our proposed pairwise similarity loss on improving the embedding

performance.

• In comparing the results for Scenarios A and B, we notice that the link prediction

performance is not proportional to the number of input node features. Although

a concatenation of all node features from different attributed views to a single at-

tributed view extends each node’s feature vector, it does not improve the embedding

performance. This is a clear demonstration of the motivation behind our work, i.e.,

that not all attributed views are equal; producing high-quality embeddings requires

each to be weighted individually.

TABLE 5.2: Link prediction results on citation networks in scenario A

Method Input
Cora Citeseer ACM

AP AUC AP AUC AP AUC

Node2Vec A 80.93±1.4 75.00±0.2 73.41±0.4 61.72±0.3 82.16±0.2 73.04±0.2

LINE A 74.15±0.7 69.11±0.6 76.44±0.6 65.26±1.1 77.35±0.2 68.17±0.1

TADW A & Xcon 76.92±0.4 73.04±0.5 72.18±0.2 65.77±0.5 69.74±0.2 64.46±0.3

ASNE A & Xcon 52.22±0.2 52.82±0.1 49.68±0.1 50.37±0.1 50.52±0.1 50.62±0.1

SINE A & Xcon 75.20±0.4 70.76±0.3 70.30±0.4 62.34±0.3 79.29±0.3 69.86±0.2

BANE A & Xcon 50.62±1.8 51.89±1.7 59.78±1.4 55.42±1.4 48.70±1.6 47.29±2.6

MUSAE A & Xcon 74.08±0.3 67.06±0.4 60.50±0.5 52.52±0.3 83.55±0.2 73.80±0.3

ANRL A & Xcon 51.27±0.3 51.20±0.2 59.58±0.7 59.28±1.6 51.70±0.1 51.08±0.3

GAE A & Xcon 92.17±0.8 91.10±0.6 91.54±1.0 90.80±0.8 67.00±1.9 65.72±1.1

VGAE A & Xcon 92.23±0.6 91.46±0.8 92.50±0.9 91.28±1.0 69.60±0.5 66.89±0.7

MagCAE-res A & X 92.21±0.8 92.56±0.4 92.41±0.6 91.86±0.7 63.70±0.6 63.72±1.1

MagCAE A & X 92.83±0.7 93.02±0.6 94.78±0.5 94.58±0.6 73.10±0.7 69.78±0.5

1 A = Adjacency matrix. X con = Concatenated single attributed view. X = Multiple attributed views.

2 (left) Mean score. (right) Standard deviations. The best result appears in bold.
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TABLE 5.3: Link prediction results on citation networks in scenario B

Method Input
Cora Citeseer ACM

AP AUC AP AUC AP AUC

TADW A & Xbest 75.81±0.2 71.19±0.2 73.04±0.4 68.19±0.7 69.22±0.2 64.76±0.2

ASNE A & Xbest 52.16±0.1 52.80±0.1 49.67±0.1 50.37±0.1 51.55±0.1 51.34±0.2

SINE A & Xbest 80.07±0.4 75.14±0.4 74.62±0.4 65.29±0.3 74.93±0.4 66.27±0.3

BANE A & Xbest 58.94±1.6 57.48±1.3 62.15±1.5 57.80±1.4 54.78±2.2 53.23±1.8

MUSAE A & Xbest 74.50±0.3 68.20±0.3 58.38±0.5 50.44±0.4 83.90±0.1 74.14±0.2

ANRL A & Xbest 49.24±0.3 51.75±0.2 47.67±0.2 52.92±0.3 60.65±0.1 60.69±0.2

GAE A & Xbest 91.65±0.5 89.54±0.7 92.98±0.5 91.19±0.9 68.63±0.2 68.33±0.2

VGAE A & Xbest 92.09±0.3 90.35±0.5 92.52±0.7 90.77±0.8 66.68±0.2 65.38±0.3

MagCAE-res A & X 92.21±0.8 92.56±0.4 92.41±0.6 91.86±0.7 63.70±0.6 63.72±1.1

MagCAE A & X 92.83±0.7 93.02±0.6 94.78±0.5 94.58±0.6 73.10±0.7 69.78±0.5

1 A = Adjacency matrix. X best = Single attributed view with best performance. X = Multiple attributed

views.

2 (left) Mean score. (right) Standard deviations. The best result appears in bold.

TABLE 5.4: Link prediction results on customer review networks in scenario A

Method Input
Epinions Ciao

AP AUC AP AUC

Node2Vec A 45.84±0.1 50.65±0.1 63.32±0.1 66.73±0.1

LINE A 85.54±0.2 81.40±0.2 90.96±0.1 89.49±0.1

TADW A & Xcon 79.17±0.1 78.08±0.1 80.06±0.1 78.74±0.1

ASNE A & Xcon 55.77±0.2 56.90±0.3 51.84±0.2 52.87±0.2

SINE A & Xcon 39.34±0.1 35.42±0.1 37.05±0.2 26.81±0.5

BANE A & Xcon 55.51±5.4 58.73±7.3 51.31±3.1 52.45±5.4

MUSAE A & Xcon OOM OOM 80.97±0.3 81.98±0.3

ANRL A & Xcon 49.85±0.1 50.22±0.1 64.04±0.1 65.73±0.2

GAE A & Xcon 92.97±0.3 89.54±0.4 89.41±0.2 87.48±0.5

VGAE A & Xcon 91.95±1.1 89.26±0.3 83.33±0.3 85.17±0.2

MagCAE-res A & X 93.02±0.8 90.45±1.7 90.94±0.5 89.37±0.3

MagCAE A & X 93.66±0.9 91.28±1.8 91.21±0.1 89.64±0.2

1 A = Adjacency matrix. X con = Concatenated single attributed view. X = Multiple attributed views.

2 (left) Mean score. (right) Standard deviations. The best result appears in bold. OOM = Out of memory.
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TABLE 5.5: Link prediction results on customer review networks in scenario B

Method Input
Epinions Ciao

AP AUC AP AUC

TADW A & Xbest 77.08±0.1 79.89±0.1 77.50±0.1 80.02±0.1

ASNE A & Xbest 80.64±0.2 79.99±0.2 69.31±0.2 70.81±0.2

SINE A & Xbest 43.15±0.2 44.71±0.4 66.19±0.2 68.17±0.2

BANE A & Xbest 73.99±3.9 74.98±2.4 70.34±6.1 72.18±5.7

MUSAE A & Xbest 76.02±0.1 76.31±0.1 81.54±0.1 81.54±0.1

ANRL A & Xbest 49.55±0.4 50.86±0.5 50.21±0.2 50.33±0.2

GAE A & Xbest 92.95±0.4 89.68±0.6 90.29±0.3 88.39±0.5

VGAE A & Xbest 92.82±0.6 88.66±0.8 90.11±0.3 88.19±0.4

MagCAE-res A & X 93.02±0.8 90.45±1.7 90.94±0.5 89.37±0.3

MagCAE A & X 93.66±0.9 91.28±1.8 91.21±0.1 89.64±0.2

1 A = Adjacency matrix. X best = Single attributed view with best performance. X = Multiple attributed

views.

2 (left) Mean score. (right) Standard deviations. The best result appears in bold.

5.5 Node Classification Results

Tables 5.6 - 5.9 show the Micro and Macro F1-scores for the node classification task.

Similar to link prediction, the result analysis is as follows.

• MagCAE and MagCAE-res significantly outperform other baseline models on the Cora

and Citeseer datasets with scores around 1.2% higher and generally above-average

scores with the remaining datasets.

• Most of the attributed graph embedding methods outperform Node2Vec and LINE,

indicating that using both graph structural information and node attributes improves

the classification accuracy.

• Comparing Scenarios A and B, we again see little difference between embedding

the individual views and concatenating all the views into one embedding.
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TABLE 5.6: Node classification results on citation networks in scenario A

Method Input
Cora Citeseer ACM

Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

Node2Vec A 27.56±3.1 11.17±2.3 19.82±2.8 16.34±2.0 19.82±1.6 10.66±0.9

LINE A 29.74±2.1 6.55±0.4 19.91±2.5 13.75±1.8 20.71±1.7 10.97±1.0

TADW A & Xcon 46.46±3.4 40.47±4.6 39.97±5.1 36.81±5.4 39.50±2.3 35.36±2.1

ASNE A & Xcon 29.74±2.1 6.55±0.4 30.53±3.7 25.81±3.2 34.65±2.6 28.07±2.3

SINE A & Xcon 25.44±2.6 11.39±2.1 60.66±2.2 56.52±2.1 20.06±1.3 10.77±0.9

BANE A & Xcon 24.70±3.8 11.58±2.9 18.67±2.4 13.19±1.8 21.32±1.5 10.88±1.5

MUSAE A & Xcon 20.28±2.5 14.61±2.8 28.05±2.0 26.07±1.9 18.10±2.2 12.50±1.4

ANRL A & Xcon 47.21±2.7 36.03±2.8 61.81±3.5 54.80±3.9 43.29±3.2 41.61±3.1

GAE A & Xcon 78.25±2.9 76.68±3.1 60.27±5.0 52.62±4.0 25.64±2.3 13.39±1.0

VGAE A & Xcon 79.17±2.7 77.32±3.2 60.71±3.7 53.37±2.6 27.94±2.6 14.49±1.1

MagCAE-res A & X 88.19±2.4 86.97±3.1 72.29±3.8 69.85±3.8 27.73±2.1 19.97±1.8

MagCAE A & X 85.98±2.4 84.41±2.8 73.66±4.0 70.16±3.8 34.30±2.4 29.48±2.4

A = Adjacency matrix. X con = Concatenated single attributed view. X = Multiple attributed views.

(left) Mean score. (right) Standard deviations. The best result appears in bold.

TABLE 5.7: Node classification results on citation networks in scenario B

Method Input
Cora Citeseer ACM

Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

TADW A & Xbest 40.20±3.1 34.77±4.3 35.61±5.0 31.51±4.9 45.20±1.9 41.57±2.4

ASNE A & Xbest 29.74±2.1 6.55±0.4 30.56±3.4 25.86±3.0 43.14±1.8 37.23±1.9

SINE A & Xbest 53.25±2.6 49.66±4.2 53.50±3.0 49.69±2.6 21.66±1.6 11.65±0.8

BANE A & Xbest 29.74±2.1 6.55±0.4 20.27±2.2 15.19±2.3 21.20±2.0 9.15±1.5

MUSAE A & Xbest 24.69±4.7 19.38±4.2 25.20±3.2 23.71±3.3 18.87±1.4 12.75±1.1

ANRL A & Xbest 29.74±2.1 6.55±0.4 43.12±3.6 33.11±2.3 47.34±3.5 46.72±3.2

GAE A & Xbest 76.85±2.3 75.02±3.3 62.17±4.5 54.39±4.1 32.29±1.8 20.65±2.1

VGAE A & Xbest 75.81±2.9 74.61±4.7 62.34±4.1 54.70±3.6 32.52±1.9 21.16±1.7

MagCAE-res A & X 88.19±2.4 86.97±3.1 72.29±3.8 69.85±3.8 27.73±2.1 19.97±1.8

MagCAE A & X 85.98±2.4 84.41±2.8 73.66±4.0 70.16±3.8 34.30±2.4 29.48±2.4

A = Adjacency matrix. X best = Single attributed view with best performance. X = Multiple attributed

views.

(left) Mean score. (right) Standard deviations. The best result appears in bold.
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TABLE 5.8: Node classification results on customer review networks in scenario A

Method Input
Epinions Ciao

Mic-F1 Mac-F1 Mic-F1 Mac-F1

Node2Vec A & Xcon 11.54±0.3 1.43±0.1 14.56±1.0 1.76±0.2

LINE A & Xcon 11.29±0.6 1.36±0.1 14.71±1.6 1.70±0.2

TADW A & Xcon 16.84±1.0 4.24±0.1 29.14±2.8 13.56±2.9

ASNE A & Xcon 12.43±0.6 1.58±0.1 25.08±0.9 8.76±1.3

SINE A & Xcon 11.62±0.6 1.44±0.1 14.83±1.2 1.97±0.3

BANE A & Xcon 11.56±0.4 1.59±0.1 15.14±1.8 1.56±0.3

MUSAE A & Xcon OOM OOM 11.39±1.2 3.29±0.5

ANRL A & Xcon 13.32±2.7 1.77±2.0 28.08±1.7 13.50±6.2

GAE A & Xcon 11.72±0.7 0.94±0.1 15.61±2.1 1.20±0.4

VGAE A & Xcon 12.69 ± 1.0 1.89±0.3 19.03±2.1 3.79±0.4

MagCAE-res A & X 13.86±0.6 2.14±0.1 16.54±2.1 2.53±0.3

MagCAE A & X 14.66±1.1 3.67±0.4 29.43±1.8 13.84±0.5

A = Adjacency matrix. X con = Concatenated single attributed view. X = Multiple attributed views.

(left) Mean score. (right) Standard deviations. The best result appears in bold. OOM = Out of memory.

TABLE 5.9: Node classification results on customer review networks in scenario B

Method Input
Epinions Ciao

Mic-F1 Mac-F1 Mic-F1 Mac-F1

TADW A & Xbest 14.60±0.8 3.46±0.3 41.91±1.8 25.87±2.6

ASNE A & Xbest 12.52±0.6 1.59±0.1 25.17±1.4 10.43±1.1

SINE A & Xbest 12.90±0.7 2.10±0.5 17.07±1.3 3.90±0.9

BANE A & Xbest 11.56±0.7 1.26±0.4 15.13±1.7 1.67±0.4

MUSAE A & Xbest 10.61±0.6 2.29±0.3 12.17±1.1 3.05±0.5

ANRL A & Xbest 14.32±2.1 2.30±0.3 15.50±2.0 1.04±0.1

GAE A & Xbest 12.37±0.9 1.47±0.1 19.69±1.4 4.44±0.3

VGAE A & Xbest 12.56±0.8 1.53±0.1 22.17±1.6 5.75±0.6

MagCAE-res A & X 13.86±0.6 2.14±0.1 16.54±2.1 2.53±0.3

MagCAE A & X 14.66±1.1 3.67±0.4 29.43±1.8 13.84±0.5

A = Adjacency matrix. X best = Single attributed view with best performance. X = Multiple attributed

views.

(left) Mean score. (right) Standard deviations. The best result appears in bold. OOM = Out of memory.
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5.6 Discussion

5.6.1 MagCAE’s Effectiveness

Although all attributed graph embedding baseline models utilize node features from all

attributed views and achieve decent performance in test Scenario B, they are not capable

of digesting the inter-correlations between different attributed views. In comparing the

results for Scenarios A and B, it is clear that applying a simple aggregation method like

concatenation, which treats each attributed view equally important, generally leads to

lesser performance because it ignores the weight of each attributed view. MagCAE shows

its superiority by learning the weights of multiple attributed views in an adaptive manner.

5.6.2 Convergence Analysis

We assess MagCAE’s convergence by measuring its link prediction result on the validation

set. As shown in Figure 5.1, performance improves rapidly over the first 25 training

iterations and begins to converge after 50 epochs. The chosen Adam algorithm tunes each

trainable variables and manages to find the sub-optimal result in about 65 training loops.

5.6.3 Robustness to Incomplete Graphs

To evaluate the robustness of our proposed model on incomplete graphs, we conduct

a series of experiments with edges removed from the training set. More specificly, we

set the training edges ratio to {0.5,0.6,0.7,0.8,0.85} and repeat the test ten times for

each setting. The average results are reported in Figure 5.2. As can be seen, MagCAE

achieves respectable link prediction performance with only 50% training edges. The

average precision score and area under curve score are above 90% on both the Cora and

Citeseer datasets. This outstanding performance may be because the correlations between

multiple attributed views contribute to the formation of edges between node pairs and

MagCAE is capable of leveraging such information for the embedding. Thus, our model

shows robustness to incomplete multi-attributed-view graphs.
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FIGURE 5.1: The training curve of MagCAE.
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FIGURE 5.2: Training ratios v.s. link prediction performance.
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5.7 Parameter Analysis

5.7.1 Hidden Layer Dimensionality

Instead of fixing the dimensions of hidden neural network layers, in MagCAE, we set the

number of neurons in each hidden layer to different proportions of the input attribute

dimension. Denote the portion as p, then the size of the embedding layer and the

first hidden layer is set to p ∗ m, and 2 ∗ p ∗ m, where m is the input attributed view

dimension, respectively. Figure 5.3 shows the effect of different values of p. On the whole,

performance remains stready, peaking at p = 0.3.
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FIGURE 5.3: p Embedding dimensions v.s. link prediction performance.

5.7.2 λ Coefficient Sensitivity

The coefficient λ determines the weight of pairwise similarity loss versus the total training

error. We set λ to 0.1, 0.5, 1, 1.5, and 2 and investigate its impact on our model, noting that

at λ is 0, MagCAE becomes MagCAE-res. Figure 5.4 shows the results. Here, we observe

that a heavier weight of pairwise similarity loss function leads to a better performance

up to a tipping point. For the Cora dataset, that point is λ= 1, and 1.5 for the Citeseer

dataset.
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FIGURE 5.5: Node visualization results of different graph embedding models on Cora.

5.8 Visualization of the Node Embeddings

We visualize the embedding results of our approach in a two-dimensional space by

applying t-SNE [42], as shown in Figure 5.5. Due to space constraints, we have only

included visualizations for two of the representative baselines with the Cora dataset. From

these, we can see that the graph convolutional autoencoder is generally able to generate

distinguishable node embeddings. However, MagCAE’s embeddings are better separated -

nodes are more evident with less overlap and the boundaries between different groups

are more explicit.



6
Conclusion and Future Works

Learning low dimensional representations of graphs can bring in benefits for downstream

applications and graph analysis tasks. However, existing works have not paid enough

attention to the impact of multiple attributed views on the learned embeddings. In this

work, we studied the multi-attributed-view graph representation learning problem and

proposed a novel model MagCAE to learn node embeddings from multiple attributed

views. We adopted graph convolutional neural network to form a multi-attributed-view

graph convolutional autoencoder and proposed a novel loss function to preserve multi-

attributed-view proximity in graph embeddings. Extensive experiments on five real-world

datasets validated the effectiveness of MagCAE by comparisons with ten state-of-the-art

models.

While this work has shown promising performance beyond existing works, graph

41



42 CONCLUSION AND FUTURE WORKS

representation learning still faces great challenges due to real-world networks’ com-

plexity. Consequently, one of our future works will be focusing on developing more

effective deep graph learning models for dynamic [43], large-scale [44], and heteroge-

neous graphs [45, 46]. Moreover, we tend to explore potential downstream applications

of this research, for instance, utilizing multi-attributed-view graph representation learning

for social recommendation, anomaly detection, cybersecurity, etc.
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