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Abstract—In this paper, an event-triggered Reinforcement
Learning (RL) method is proposed for the optimal attitude con-
sensus of multiple rigid body networks with unknown dynamics.
Firstly, the consensus error is constructed through the attitude

dynamics. According to the Bellman optimality principle, the
implicit form of the optimal controller and the corresponding
Hamilton-Jacobi-Bellman (HJB) equations are obtained. Because
of the augmented system, the optimal controller can be obtained
directly without relying on the system dynamics. Secondly, the
self-triggered mechanism is applied to reduce the computing and
communication burden when updating the controller. In order
to address the problem that the HJB equations are difficult to
solve analytically, a RL method which only requires measurement
data at the event-triggered instants is proposed. For each agent,
only one neural network is designed to approximate the optimal
value function. Each neural network is updated only at the
event-triggered instants. Meanwhile, the Uniformly Ultimately
Bounded (UUB) of the closed-loop system is obtained, and the
Zeno behavior is also avoided. Finally, the simulation results on
a multiple rigid body network demonstrate the validity of the
proposed method.

Index Terms—Optimal attitude consensus, multiple rigid body
networks, event-triggered control, reinforcement learning

I. INTRODUCTION

CONSENSUS control, as a fundamental form of coordi-
nation problem in multi-agent systems, aims to design a

control protocol for each agent to drive the states of all agents
to be synchronized [1]–[3], [5]. Over recent decades, the atti-
tude consensus problem of multiple rigid body networks has
received increasing attention [4] because it plays a significant
role in the development of many fields, such as formation
in three-dimensional space [6], [7], cooperation of multi-
manipulators [8] and satellite networks [9], etc. At present,
some results have been proposed, which can be classified
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into two categories, the leaderless attitude consensus [10]–
[12] and the leader-follower attitude consensus [13]–[15]. Note
that none of them have considered the performance cost when
achieving the attitude consensus.

In practical application scenarios, the performance cost
is a factor that must be considered, which affects the effi-
ciency of mission completion and the endurance of limited
resources. The optimal attitude consensus control, which not
only makes the attitude of all rigid body systems tend to
be synchronized, but also minimizes the performance cost.
In general, the optimal control problem can be transformed
into solving the Hamilton-Jacobi-Bellman (HJB) equations.
Nevertheless, it is very difficult to find the analytic solutions
to the HJB equations. With the popularity of reinforcement
learning technology [16], [17], [18] and the rapid development
of the computing capacity of processors, some reinforcement
learning based researches on solving the optimal consensus
problem have emerged. As far as we know, the vast majority of
the research objects are linear systems [19]–[21] or first-order
nonlinear systems [22]. In the above results, the knowledge of
system dynamics is required in [19], [22], and the researches in
[20] and [21] circumvent the dependence on system dynamics.
However, the implementation of algorithms in [20] and [21]
requires the acquisition of measurement data in advance and
a lot of tedious integration operations are involved, which
obviously increases the computational burden of the system
[46]. At present, there are relatively few results concentrating
on the reinforcement learning based method to realize the
optimal attitude consensus for multiple rigid body networks.
In [23], a model-free algorithm is proposed to deal with the
optimal consensus for multiple rigid body networks, in which
the model of each rigid body is expressed in the form of Euler-
Lagrange equation. However, an extra neural network-based
observer is designed to estimate the system dynamics, which
imposes additional computational burden. Motivated by these
factors, we aim to design a method that only needs real-time
measurement data to achieve the optimal attitude consensus of
multiple rigid body networks with unknown dynamics.

Updating the controller and the neural networks at each
sampling instant based on the reinforcement learning method
will take up a lot of computing and communication resources,
especially when the system scale is huge. Therefore, it is
particularly necessary to integrate the event-triggered mech-
anism into the reinforcement learning method to reduce the
consumption of resources. In recent years, the event-triggered
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control scheme is widely studied to save the control cost
and energy resources [41], [42]. In [24]–[27], the event-
triggered mechanism is introduced to solve the optimal control
of an individual system. The optimal consensus of multi-
agent systems is considered in [28]–[30] by using the event-
triggered reinforcement learning method. However, the event-
triggered conditions in all of the above event-triggered rein-
forcement learning methods [24]–[30] include the continuous
information. Therefore, all agents need to obtain the state
information of themselves and their neighbors in real-time
to determine whether the event-triggered condition is satis-
fied, which inevitably increases the communication resources.
Inspired by [31]–[33], we aim to design an event-triggered
reinforcement learning method under the self-triggered mech-
anism, thereby greatly reducing the consumption of computing
and communication resources. Compared with the common
linear system and first-order nonlinear system [19]–[22], it is
challenging to combine the self-triggered mechanism with the
reinforcement learning method to solve the optimal attitude
consensus problem of multiple rigid body networks, since the
dynamic model of a rigid body is a second order system
with state coupled characteristics and the underlying attitude
configuration space is non-Euclidean.

In this paper, we deal with the optimal attitude consensus
problem for multiple rigid body networks with unknown sys-
tem dynamics. The dynamic event-triggered mechanism is first
introduced, which can significantly reduce the consumption of
computing resources caused by updating the controller. Based
on the discussion of the dynamic event-triggered condition, a
sufficient self-triggered condition is proposed. Under the self-
triggered mechanism, the continuous communication between
rigid bodies can be avoided. Moreover, a reinforcement learn-
ing method is used to obtain the optimal policy. In detail, a
rigid body only needs a neural network to approximate the op-
timal value function because of the existence of the augmented
system [43]. Each neural network is updated only when the
self-triggered condition is violated. The main contributions are
as follows:

1) By using only the measurement data at the event-
triggered instants, we achieve the optimal attitude consensus of
multiple rigid body networks with unknown system dynamics.
No additional actor neural network [20], [21] or additional
neural network-based observer [23] is used in this paper,
which obviously reduces the complexity of the algorithm
implementation.

2) Compared with the results in [23] and [34], both a dy-
namic event-triggered condition and a self-triggered condition
are integrated into the proposed reinforcement learning based
method to solve the optimal attitude consensus of multiple
rigid body networks. Under the self-triggered mechanism,
the neural networks are updated only at the event-triggered
instants. Meanwhile, the continuous communication is also
avoided. Therefore, the consumption of computing and com-
munication resources would be greatly reduced.

The following layout of this paper is as follows. In Section
II, we introduce the notations used in this paper and the basics
of graph theory. The model-free optimal attitude consensus
problem is described in Section III. Meanwhile, the event-

triggered mechanism is also introduced. We design an event-
triggered reinforcement learning method in Section IV. The
feasibility of this method is verified through a simulation in
Section V. Section VI gives the conclusion.

II. PRELIMINARIES

A. Notations

Throughout this paper, R represents the set of all real
numbers, R>0 represents the set of all positive real numbers,
N represents the set of all non-negative integers, and N>0

is the set of all positive integers, i.e., R = (−∞,+∞),
R>0 = (0,+∞), N = {0, 1, 2, ...} and N>0 = {1, 2, ...}.
x ∈ Rn indicates an n-dimensional vector, In indicates
an n-dimensional identity matrix, A ∈ Rn×m indicates an
n × m dimensional matrix. For a vector x, its Euclidean
norm is defined as ‖x‖ =

√
xTx. For a square matrix

B = [bij ] ∈ Rn×n, its trace is defined as tr(B) =
∑n
i=1 bii,

its Frobenius norm is defined as ‖B‖ =
√∑n

i=1

∑n
j=1 |bij |2.

Define λmin(B) and λmax(B) as the minimum eigenvalue and
maximum eigenvalue, respectively. B > 0 (B ≥ 0) indicates
that B is positive (semi-positive) definite.

For any two vectors ξ = [x1, y1, z1]> ∈ R3 and ζ =
[x2, y2, z2]> ∈ R3, their cross product is expressed as follows:

ξ × ζ =

y1z2 − y2z1

x2z1 − x1z2

x1y2 − x2y1

 ∈ R3.

B. Graph Theory

Let G = (V, E) represent the directed communication graph
among N ∈ N>0 rigid bodies, where V = {1, 2, ..., N}
indicates the set of all rigid bodies and E ⊆ V × V indicates
the communication relationship between any two rigid bodies.
For the rigid body i, we use Ni = {j ∈ V|(j, i) ∈ E} to
represent the set of its neighbors. For any two rigid bodies,
if there is always a direct path between them, we call this
communication graph strongly connected. In this paper, we
suppose that all directed communication graphs are strongly
connected.

In order to express the communication relationship be-
tween all rigid bodies more clearly, the weighted adjacency
matrix A = [aij ] ∈ RN×N is introduced. If the rigid
body i can receive the data transmitted by the rigid body
j, aij > 0 and aij = 0 otherwise. The in-degree matrix
of the directed communication graph can be expressed as
D = diag{d1, d2, ..., dN} ∈ RN×N , where di =

∑
j∈Ni

aij .
Let L = D−A = [lij ] represent the Laplacian matrix, where
lii = di, and lij = −aij when i 6= j.

III. MODEL-FREE EVENT-TRIGGERED OPTIMAL
ATTITUDE CONSENSUS

A. Model-Free Optimal Attitude Consensus

We consider a multiple rigid body network with N nodes,
where the attitude of each node can be expressed by Modified
Rodriguez Parameters (MRPs) [35]. For the rigid body i, the
attitude is represent by σi = [σ1

i , σ
2
i , σ

3
i ]> = Ψitan Φi

4 ∈ R3,
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where Ψi ∈ R3 indicates the Euler axis, and Φi ∈ [0, π)
denotes the angle respective to the Euler axis.

Then, the attitude dynamics of each rigid body is given in
the following form:

σ̇i = G(σi)ωi, (1a)
Jiω̇i = −ωi × (Jiωi) + τi, i = 1, 2, ..., N, (1b)

where ωi ∈ R3, Ji ∈ R3×3 and τi ∈ R3 indicate the angular
velocity vector, the inertia matrix and the control input torque,
respectively. The matrix G(σi) = 1

2 (σ×i +σiσ
>
i +

1−σ>i σi

2 I3) ∈
R3×3, where

σ×i =

 0 −σ3
i σ2

i

σ3
i 0 −σ1

i

−σ2
i σ1

i 0

 .
Definition 1: Given that the communication topology of a

multiple rigid body network (1) is strongly connected, the
attitude consensus is said to be achieved when the following
conditions hold:

lim
t→∞

∥∥σi(t)− σj(t)∥∥ = 0, (2a)

lim
t→∞

∥∥ωi(t)− ωj(t)∥∥ = 0, ∀i, j ∈ V. (2b)

Considering the communication topology among these N
rigid bodies, we can define the following form of consensus
error for the rigid body i:

δi =
∑
j∈Ni

aij(ωi − ωj) + αi
∑
j∈Ni

aij(σi − σj), (3)

where αi ∈ R>0. When limt→∞ δi = 0, i = 1, 2, ..., N , we
can easily obtain that σ1 = σ2 = ... = σN and ω1 = ω2 =
... = ωN with t → ∞. That is to say, the attitude consensus
is achieved.

The dynamics of δi can be obtained by taking the derivative
of Eq. (3), which is described as follows:

δ̇i =
∑
j∈Ni

aij(ω̇i − ω̇j) + αi
∑
j∈Ni

aij(σ̇i − σ̇j)

= Γi(δi) + liiJ
−1
i τi −

∑
j∈Ni

aijJ
−1
j τj , (4)

where Γi(δi) = αi
∑
j∈Ni

aij(σ̇i − σ̇j) +
∑
j∈Ni

aij

[
−

J−1
i

((
G−1(σi)σ̇i

)
×
(
JiG

−1(σi)σ̇i
))

+J−1
j

((
G−1(σj)σ̇j

)
×(

JjG
−1(σj)σ̇j

))]
.

In order to overcome the dependence on model information,
a compensator is introduced, which can be expressed by the
following affine differential equation:

τ̇i = f(τi) + liig(τi)ui −
∑
j∈Ni

aijg(τj)uj , (5)

where f(·) : R3 → R3, g(·) : R3 → R3×3 are two functions
to be designed later, and ui ∈ R3 is the control input of the
compensator. We need to choose appropriate functions f(·)
and g(·) to ensure that the compensator is controllable. In this
paper, a feasible pair of f(·) and g(·) is given as follows:

f(τi) = −2τi, (6a)

g(τi) = diag{cos2(τ1
i ), cos2(τ2

i ), cos2(τ3
i )}. (6b)

By combining the consensus error δi and the control input
torque τi, we define an augmented consensus error, which is
expressed as ei = [δ>i , τ

>
i ]> ∈ R6. According to Eq. (4)

and Eq. (5), we can use the following augmented system to
describe the dynamics of the augmented consensus error:

ėi = Xi(ei) + liiYi(ei)ui −
∑
j∈Ni

aijYj(ej)uj , (7)

where Xi(ei) and Yi(ei) are represented as follows:

Xi(ei) =

[
Γi(δi) + liiJ

−1
i τi −

∑
j∈Ni

aijJ
−1
j τj

f(τi)

]
∈ R6,

Yi(ei) =

[
0

g(τi)

]
∈ R6×3.

Assumption 1: The matrix Xi(ei) is bounded, i.e., ∀i ∈ V ,
‖Xi(ei)‖ ≤ XM‖ei‖ is satisfied, where XM ∈ R>0.

In order to measure the performance cost of implementing
the attitude consensus, a performance function is defined in
the following form:

Fi(ei(0), ui, u−i) =

∫ ∞
0

(
e>i Qiei + u>i Riui

)
dt, (8)

where u−i = {uj |j ∈ Ni} indicates the set of control inputs
for the neighbors of the rigid body i, Qi ∈ R6×6, Qi ≥ 0,
Ri ∈ R3×3 and Ri > 0. According to Eq. (7), we can conclude
that ei is driven by ui and u−i. Therefore, the left side of Eq.
(8) also contains u−i.

According to (8), the value function can be defined as

Vi(ei(t)) =

∫ ∞
t

(
ei(v)>Qiei(v) + ui(v)>Riui(v)

)
dv. (9)

By taking the derivative of Eq. (9), we can obtain the
Hamiltonian function in the following form:

Hi(ei,∇Vi, ui, u−i)

= e>i Qiei + u>i Riui +∇V >i
(
Xi + liiYiui −

∑
j∈Ni

aijYjuj

)
= 0, (10)

where ∇Vi = ∂Vi

∂ei
.

The implicit solution of the model-free optimal controller
u∗i can be derived from ∂Hi

∂ui
= 0, which is represented as

u∗i = −1

2
liiR

−1
i Y >i ∇V ∗i , (11)

where V ∗i indicates the optimal value function and ∇V ∗i =
∂V ∗i
∂ei

.
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Combining (10) and (11), we can derive the HJB equation
for the rigid body i as follows:

Hi(ei,∇V ∗i , u∗i , u∗−i)
= e>i Qiei + (u∗i )

>Riu
∗
i

+ (∇V ∗i )>
(
Xi + liiYiu

∗
i −

∑
j∈Ni

aijYju
∗
j

)
= e>i Qiei −

1

4
l2ii(∇V ∗i )>YiR

−1
i Y >i ∇V ∗i

+ (∇V ∗i )>
(
Xi +

1

2

∑
j∈Ni

aij ljjYjR
−1
j Y >j ∇V ∗j

)
= 0. (12)

From Eq. (11), we can observe that the optimal controller
contains Yi and V ∗i . According to the definition of the aug-
mented system (7), we can obtain Yi which overcomes the
dependence on system dynamics. Therefore, we only need to
obtain the optimal value function V ∗i from Eq. (12) to achieve
the optimal controller.

B. Dynamic Event-Triggered Mechanism

For the purpose of reducing the computational burden
when updating the controller, the event-triggered mechanism
is introduced. Under the event-triggered mechanism, we only
update the controller at a series of discrete instants {thi }h∈N,
where thi < th+1

i holds with ∀h ∈ N and the initial instant is
set as t0i = 0.

To define the difference between the augmented consensus
error at the last event-triggered instant and in real-time as the
measurement error Ei(t) ∈ R6, which is expressed as

Ei(t) = ei(t
h
i )− ei(t), ∀t ∈ [thi , t

h+1
i ). (13)

For the rigid body i, the controller ui is only updated at
the event-triggered instants thi , and remains unchanged until
a new event is triggered. During the event-triggered intervals
[thi , t

h+1
i ), the neighbor j of the rigid body i might update its

controller at some instants th
′

j , which performs as a piecewise
constant. Letting µj indicate the event-triggered times of the
neighbor j, we have th

′

j ∈ {t0j , t1j , ..., t
µj

j } and t0j = thi .
Therefore, the ei-dynamics (4) during [thi , t

h+1
i ) is repre-

sented as follows:

ėi = Xi + liiYiûi −
∑
j∈Ni

aijYj ûj , (14)

where ûi = ui(t
h
i ) and ûj = uj(t

h′

j ) are the control input
vectors at the event-triggered instants.

Definition 2 (Event-Triggered Admissible Control): If the
following conditions are met: ui is piecewise continuous,
ui(0) = 0, ei-dynamics (14) is stable, and the performance
function (8) is finite, then ui is called event-triggered admis-
sible control.

Depending on the form of optimal controller (11), we can
obtain the event-triggered optimal controller as follows:

û∗i = u∗i (t
h
i )

= −1

2
liiR

−1
i Y >i ∇V̂ ∗i , ∀t ∈ [thi , t

h+1
i ), (15)

where ∇V̂ ∗i =
∂V ∗i
∂ei

(thi ).
By combining (12) and (15), the event-triggered HJB equa-

tion for the rigid body i is given as follows:

Hi(ei,∇V̂ ∗i , û∗i , û∗−i)

= e>i Qiei −
1

4
(∇V̂ ∗i )>YiR

−1
i Y >i ∇V̂ ∗i

+ (∇V̂ ∗i )>
(
Xi +

1

2

∑
j∈Ni

aij ljjYjR
−1
j Y >j ∇V̂ ∗j

)
= 0. (16)

The following assumption is proposed for proving the
stability of system (14).

Assumption 2 [36]: The controller ui is Lipschitz contin-
uous during the time interval [thi , t

h+1
i ), and there exists a

constant P that satisfies the following inequality:∥∥ui(ei(thi )
)
− ui

(
ei(t)

)∥∥ ≤ P‖Ei(t)‖, (17)

where P indicates the Lipschitz constant. In the actual engi-
neering applications, the selection of P should not be smaller
than the maximum value of ‖∂ui/∂e>i ‖.

For the event-triggered control, it is necessary to ensure
that Zeno-behavior does not occur in the proposed event-
triggered mechanism. Therefore, we introduce a dynamic
event-triggered mechanism inspired by [31] to exclude the
Zeno-behavior implicitly. Firstly, a dynamic variable yi(t) is
defined as follows:

ẏi(t) =− γiyi(t) + κi

(
$iλmin(Qi)

∥∥ei(t)∥∥2

− λmax(Ri)P
2
∥∥Ei(t)∥∥2

)
, (18)

where yi(0) ∈ R≥0, γi ∈ R>0, κi ∈ [0, 1
2 ] and $i ∈ [0, 1].

Then, we can obtain the event-triggered instants through the
following dynamic event-triggered condition:

t0i = 0,

th+1
i = max

r≥thi

{
r ∈ R : yi(t) + θi

(
$iλmin(Qi)

∥∥ei(t)∥∥2

− λmax(Ri)P
2
∥∥Ei(t)∥∥2

)
≥ 0,∀t ∈ [thi , r]

}
, (19)

where θi ∈ R>0 will be determined later in the proof analysis.
Lemma 1: Assuming that the event-triggered instants thi are

determined by (19), yi(t) ≥ 0 always holds for ∀t ∈ [0,+∞)
if the given initial value yi(0) ≥ 0.

Proof : For ∀t ∈ [0,+∞), the event-triggered condition (19)
guarantees the following inequality:

yi(t) + θi

(
$iλmin(Qi)

∥∥ei(t)∥∥2 − λmax(Ri)P
2
∥∥Ei(t)∥∥2

)
≥ 0.

(20)

Since the selection of θi must satisfy θi > 0, the inequality
(20) becomes

$iλmin(Qi)
∥∥ei(t)∥∥2 − λmax(Ri)P

2
∥∥Ei(t)∥∥2 ≥ − 1

θi
yi(t).

(21)
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By combining (18) and (21), we can easily obtain that for
∀t ∈ [0,+∞),

ẏi(t) ≥ −(γi +
κi
θi

)yi(t). (22)

According to the comparison lemma in [37], we can deduce
that

yi(t) ≥ yi(0)exp{−(γi +
κi
θi

)t}. (23)

Therefore, yi(t) ≥ 0 always holds for ∀t ∈ [0,+∞). The
complete proof is given. �

Theorem 2: Consider a multiple rigid body network with N
nodes under a strongly connected communication topology.
Supposed that Assumption 2 holds, the performance function
and the event-triggered optimal controller are given by (8)
and (15), respectively. If the event-triggered instants are de-
termined by the dynamic event-triggered condition (19), then
the following two conclusions can be obtained:

1) The ei-dynamics (14) is asymptotically stable, i.e., the
optimal attitude consensus is achieved.

2) The Zeno behavior is excluded, i.e., the interval between
th+1
i and thi , ∀i ∈ V has a positive lower bound.

Proof : 1) Firstly, we prove that the ei-dynamics (14) is
asymptotically stable. Choosing Πi(t) = V ∗i

(
ei(t)

)
+ yi(t)

as the Lyapunov function, which contains the optimal value
function V ∗i

(
ei(t)

)
in (9) and the dynamic variable yi(t) is

governed by (18).
By taking the first-order derivative of V ∗i (ei) with respect

to t along with the consensus error ei, we derive

V̇ ∗i (ei) = (∇V ∗i )>ėi

= (∇V ∗i )>
(
Xi + liiYiû

∗
i −

∑
j∈Ni

aijYj û
∗
j

)
. (24)

During the event-triggered intervals [thi , t
h+1
i ), assuming

that the neighbors of the rigid body i execute û∗j = u∗j (t
h′

j ).
According to (11) and (12), it can be easily obtained that

(∇V ∗i )>Xi =− e>i Qiei − (u∗i )
>Riu

∗
i − (∇V ∗i )>liiYiu

∗
i

+ (∇V ∗i )>
∑
j∈Ni

aijYj û
∗
j (25)

and

(∇V ∗i )>liiYi = −2(u∗i )
>Ri. (26)

Thus, Eq. (24) can be redescribed as

V̇ ∗i (ei) =− e>i Qiei − (u∗i )
>Riu

∗
i

+ (∇V ∗i )>liiYi(û
∗
i − u∗i )

=− e>i Qiei + (u∗i )
>Riu

∗
i − 2(u∗i )

>Riû
∗
i

=− e>i Qiei − (û∗i )
>Riû

∗
i

+ (u∗i − û∗i )>Ri(u∗i − û∗i )

≤− λmin(Qi)
∥∥ei(t)∥∥2

+ λmax(Ri)P
2
∥∥Ei(t)∥∥2

. (27)

According to (18) and (27), we can obtain the first-order
derivative of Πi(t) as follows:

Π̇i(t) =V̇ ∗i (ei) + ẏi(t)

≤− λmin(Qi)
∥∥ei(t)∥∥2

+ λmax(Ri)P
2
∥∥Ei(t)∥∥2

− γiyi(t) + κi

(
$iλmin(Qi)

∥∥ei(t)∥∥2

− λmax(Ri)P
2
∥∥Ei(t)∥∥2

)
≤− (1−$i)λmin(Qi)

∥∥ei(t)∥∥2 − γiyi(t)

+ (κi − 1)
(
$iλmin(Qi)

∥∥ei(t)∥∥2

− λmax(Ri)P
2
∥∥Ei(t)∥∥2

)
. (28)

Substituting the dynamic event-triggered condition (19) into
(28), Π̇i(t) becomes

Π̇i(t) ≤− (1−$i)λmin(Qi)
∥∥ei(t)∥∥2 − γiyi(t)

+ (κi − 1)(− 1

θi
)yi(t)

≤− (1−$i)λmin(Qi)
∥∥ei(t)∥∥2 − (γi +

κi − 1

θi
)yi(t).

(29)

Since $i ∈ [0, 1], we have Π̇i(t) ≤ 0 if θi ∈ [ 1−κi

γi
,+∞).

Therefore, we can select appropriate γi ∈ R>0, κi ∈ [0, 1
2 ],

$i ∈ [0, 1] and θi ∈ [ 1−κi

γi
,+∞) to ensure that the ei-

dynamics (14) is asymptotically stable under the dynamic
event-triggered condition (19).

2) Then, we prove that the Zeno behavior is excluded.
According to (23), we can deduce a sufficient condition of

the dynamic event-trigger condition (19) when $ is selected
as zero, which is expressed as follows:

th+1
i = max

r≥thi

{
r ∈ R :

∥∥Ei(t)∥∥ ≤
√

yi(0)

θiλmax(Ri)P 2

× exp{−1

2
(γi +

κi
θi

)t},∀t ∈ [thi , r]

}
. (30)

According to the definition of Yi, we can conclude that Yi
is bounded. That is to say, Yi ≤ YM is satisfied, where YM ∈
R>0. With Assumption 1 and the definition of measurement
error Ei(t), we can obtain that for ∀t ∈ [thi , t

h+1
i ),

∥∥Ėi(t)∥∥ =
∥∥ėi(thi )− ėi(t)

∥∥
=
∥∥Xi

(
ei(t)

)
+ liiYiui(t

h
i )−

∑
j∈Ni

aijYjuj(t
h′

j )
∥∥

≤ XM

∥∥ei(t)∥∥+
∑
j∈Ni

aijYM
(∥∥ui(thi )

∥∥+
∥∥uj(th′j )

∥∥)
≤ XM

∥∥Ei(t)∥∥+XM

∥∥ei(thi )
∥∥

+
∑
j∈Ni

aijYM
(∥∥ui(thi )

∥∥+
∥∥uj(th′j )

∥∥). (31)
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Since Ei(thi ) = 0 is satisfied at the event-triggered instants,
we can derive the following inequality by using the compari-
son lemma [37]:∥∥Ei(t)∥∥ ≤ exp{XM (t− thi )}Ei(thi )

+
1

2

∫ t

thi

exp{XM (t− v)}
(
XM

∥∥ei(thi )
∥∥

+
∑
j∈Ni

aijYM
(∥∥ui(thi )

∥∥+
∥∥uj(th′j )

∥∥))dv
≤ 1

2

∫ t

thi

exp{XM (t− v)}
(
XM

∥∥ei(thi )
∥∥

+
∑
j∈Ni

aijYM
(∥∥ui(thi )

∥∥+
∥∥uj(th′j )

∥∥))dv. (32)

Let t̃h+1
i indicate the next event-triggered instant determined

by the sufficient condition (30). According to (32), the suffi-
cient condition (30) can be divided into two situations during
the time interval [thi , t̃

h+1
i ), which contains: 1) there is no

events occuring for all rigid bodies in Ni, and 2) there exists
at least one event for the rigid body j ∈ Ni.

Situation 1: For all rigid bodies in Ni, there is no event-
triggered instants during [thi , t̃

h+1
i ). Therefore, we can deduce

the following inequality:√
yi(0)

θiλmax(Ri)P 2
exp{−1

2
(γi +

κi
θi

)t̃h+1
i }

≤
XM

∥∥ei(thi )
∥∥+

∑
j∈Ni

aijYM
(∥∥ui(thi )

∥∥+
∥∥uj(th′j )

∥∥)
2XM

×
(

exp{XM (t̃h+1
i − thi )} − 1

)
. (33)

Situation 2: For the rigid body j ∈ Ni, there exists
µj ∈ N>0 event-triggered instants during [thi , t̃

h+1
i ). By

using t0j , t
1
j , ..., t

µj

j to indicate the event-triggered instants and
t0j = tki , we can deduce√

yi(0)

θiλmax(Ri)P 2
exp{−1

2
(γi +

κi
θi

)t̃h+1
i }

≤
XM

∥∥ei(thi )
∥∥+

∑
j∈Ni

aijYM
∥∥ui(thi )

∥∥
2XM

×
(

exp{XM (t̃h+1
i − thi )} − 1

)

+

∑
j∈Ni

aijYM
µj−1∑
s=0

∥∥uj(tsj)∥∥
2XM

×
(

exp{XM (ts+1
j − tsi )} − 1

)
+

∑
j∈Ni

aijYM
∥∥uj(tµj

j )
∥∥

2XM

×
(

exp{XM (t̃h+1
i − tµj

j )} − 1
)
. (34)

Combining (33) and (34), we can obtain the unified form
of the two situations, which is expressed as follows:√

yi(0)

θiλmax(Ri)P 2
exp{−1

2
(γi +

κi
θi

)t̃h+1
i }

≤
XM

∥∥ei(thi )
∥∥+ Θi

2XM

(
exp{XM (t̃h+1

i − thi )} − 1
)
, (35)

where Θi =
∑
j∈Ni

aijYM

(∥∥ui(thi )
∥∥+ max

s=0,...,µj

{∥∥uj(tsj)∥∥}).

Since t̃h+1
i is determined by the sufficient condition (30),

and let th+1
i indicate the next event-triggered instant deter-

mined by (19), we can obtain the interval between two adjacent
event-triggered instants:

th+1
i − thi ≥ t̃h+1

i − thi

≥ 1

XM
log

(
2XM

√
yi(0)(

XM

∥∥ei(thi )
∥∥+ Θi

)√
θiλmax(Ri)P 2

× exp{−1

2
(γi +

κi
θi

)t̃h+1
i }+ 1

)
> 0. (36)

Therefore, the Zeno behavior can be excluded. The complete
proof is given. �

C. Self-Triggered Mechanism

Under the dynamic event-triggered mechanism, we have to
obtain the continuous consensus error ei(t) and the continuous
measurement error Ei(t) to judge whether the dynamic event-
triggered condition (19) is violated. Therefore, it is necessary
to continuously communicate with neighbors to obtain their
absolute attitude information, or to measure continuous rel-
ative attitude information with the help of sensors such as
cameras. In order to overcome this problem, a self-triggered
condition is proposed in this subsection.

Letting κi = 0, Eq. (18) becomes

ẏi(t) = −λiyi(t). (37)

Therefore, we can obtain that yi(t) = yi(0)exp{−λit}, ∀t ∈
[0,+∞).

Then, letting $i = 0, the dynamic event-triggered condition
(19) becomes

th+1
i = max

r≥thi

{
r ∈ R :

∥∥Ei(t)∥∥ ≤
√

yi(0)

θiλmax(Ri)P 2

× exp{−1

2
λit},∀t ∈ [thi , r]

}
, (38)

where θi ∈ [ 1
γi
,+∞).

According to (35), the self-triggered measurement error is
defined in the following form:∥∥∆i(t)

∥∥ =
XM

∥∥ei(thi )
∥∥+ Θi

2XM

(
exp{XM (t− thi )} − 1

)
,

(39)

which is the upper bound of
∥∥Ei(t)∥∥.
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Thus, we can obtain a new sufficient condition of the
dynamic event-triggered condition (19) as follows:

th+1
i = max

r≥thi

{
r ∈ R :

∥∥∆i(t)
∥∥ ≤√ yi(0)

θiλmax(Ri)P 2

× exp{−1

2
λit},∀t ∈ [thi , r]

}
. (40)

According to (39), we can calculate the value of
∥∥∆i(t)

∥∥
without using the continuous information. Therefore, the con-
tinuous communication is avoided.

Remark 1: Since the self-triggered condition (40) is a
sufficient condition for the dynamic event-triggered condition
(19), the number of triggered times by using (40) will be
higher than using (19). Our original intention of introducing
the self-triggered mechanism is to reduce the consumption of
communication resources, which will inevitably increase the
number of triggered times. That is to say, we can exchange a
large amount of communication resources with a small amount
of computing resources.

Remark 2: Compared with the time-triggered methods in
[19]–[23], the event-triggered mechanism significantly saves
computing resources and communication resources. Note that
the event-triggered attitude stabilization problem is studied
based on the sliding mode control in [40], however, the
performance cost has not been consided in the controller
design.

IV. MAIN RESULTS

Up to now, we have already derived the form of the optimal
controller (15), which contains the optimal value function V̂ ∗i .
However, it is very difficult to obtain the analytic solutions
to the event-triggered HJB equations (16). In this section,
we first introduce an event-triggered Reinforcement Learning
(RL) algorithm to obtain the optimal policy. In order to
implement the event-triggered RL algorithm online, a critic
neural network is used to approximate the optimal value
function V̂ ∗i . Only measurement data at the event-triggered
instants are needed in the event-triggered RL algorithm, which
obviously reduces the computation burden.

A. Model-Free Event-Triggered RL Algorithm

This section presents a model-free event-triggered algorithm
based on reinforcement learning, which is used to seek the
optimal policy. The RL algorithm involves two parts: policy
evaluation and policy improvement. By repeating these two
steps at the event-triggered instants, we know that the optimal
policy is obtained when the policy improvement does not
change the control policy.

Next, we give a theorem to show the convergence of the
model-free event-triggered RL algorithm.

Theorem 2: Supposed that agent i updates the control policy
according to Algorithm 1, the value function converges to
the optimal value function, i.e., limh→∞ V̂ hi = V̂ ∗i and the
control policy converges to the optimal control policy, i.e.,
limh→∞ ûhi = û∗i .

Algorithm 1: Model-Free Event-Triggered RL Algo-
rithm.

1 Initialize the event-triggered admissible controllers
ui(0) = 0, i = 1, ..., N and set h = 0;

2 for the rigid body i ∈ V do
3 if the rigid body i receives information uj(t)

transmitted by the rigid body j, where j ∈ Ni
then

4 Set h′ = h′ + 1 and th
′

j = t;
5 Update uj(th

′

j ) = uj(t);
6 end
7 else
8 ûh

′

j = uj(t
h′

j ) remains unchanged;
9 end

10 Calculate the self-triggered measurment error∥∥∆i(t)
∥∥;

11 if the self-triggered condition (40) is violated then
12 Set th+1

i = t;
13 Step 1 (Policy evaluation):

Hi(ei,∇V̂ h+1
i , ûhi , û

h′

−i)

=e>i Qiei + (ûhi )>Riû
h
i +

(
∇V̂ (h+1)

i

)>(
Xi

+ liiYiû
h
i −

∑
j∈Ni

aijYj û
h′

j

)
= 0, (41)

where ∇V̂ h+1
i = ∇Vi(th+1

i ), ûhi = ui(t
h
i ) and

ûh
′

−i = ûh
′

j = uj(t
h′

j ), j ∈ Ni;
14 Step 2 (Policy Improvement):

ûh+1
i = −1

2
liiR

−1
i Y >i ∇V̂ h+1

i , (42)

where ûh+1
i = ui(t

h+1
i );

15 Set h = h+ 1;
16 end
17 else
18 ûhi = ui(t

h
i ) remains unchanged;

19 end
20 end

Proof : According to Eq. (41), we can obtain that

(
∇V̂ hi

)>[
Xi + liiYiû

h−1
i −

∑
j∈Ni

aijYj û
h′−1
j

]
= −e>i Qiei −

(
ûh−1
i

)>
Riû

h−1
i , (43)

and

(
∇V̂ h+1

i

)>[
Xi + liiYiû

h
i −

∑
j∈Ni

aijYj û
h′

j

]
= −e>i Qiei −

(
ûhi
)>
Riû

h′

i . (44)

By applying the transformation to Eq. (43), the following
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equation holds:(
∇V̂ hi

)>[
Xi + liiYiû

h
i −

∑
j∈Ni

aijYj û
h′

j

]
= −e>i Qiei −

(
ûh−1
i

)>
Riû

h−1
i +

(
∇V̂ hi

)>
liiYi

(
ûhi − ûh−1

i

)
−
(
∇V̂ hi

)> ∑
j∈Ni

aijYj
(
ûh
′

j − ûh
′−1
j

)
. (45)

In the model-free event-triggered RL algorithm, we update
the control policy of the rigid body i when the self-triggered
condition (40) is violated. Under the distributed asynchronous
update pattern, the control policy of the rigid body j remains
invariant, where j ∈ Ni. Considering the trajectory of the
consensus error driven by uhi , i.e., ėi = Xi + liiYiû

h
i −∑

j∈Ni
aijYj û

h′

j , we have

V̂ h+1
i − V̂ hi

=

∫ ∞
t

[(
∇V̂ hi

)>
ėi −

(
∇V̂ h+1

i

)>
ėi

]
dv

=

∫ ∞
t

[(
ûhi
)>
Riû

h
i −

(
ûh−1
i

)>
Riû

h−1
i

+
(
∇V̂ hi

)>
liiYi

(
ûhi − ûh−1

i

)]
dv. (46)

According to Eq. (42), it can be easily obtained that(
∇V̂ hi

)>
liiYi = −2

(
ûhi
)>
Ri. (47)

Then, Eq. (46) becomes

V̂ h+1
i − V̂ hi

=

∫ ∞
t

[(
ûhi
)>
Riû

h
i −

(
ûh−1
i

)>
Riû

h−1
i

− 2
(
ûhi
)>
Ri
(
ûhi − ûh−1

i

)]
dv

=

∫ ∞
t

[
−
(
ûhi − ûh−1

i

)>
Ri
(
ûhi − ûh−1

i

)]
dv

≤ 0. (48)

Therefore, V̂ h+1
i ≤ V̂ hi is always satisfied. According to the

Weierstrass theorem [38], the positive definite value function
V̂ hi converges to the optimal value function V̂ ∗i with h→∞.
Meanwhile, the control policy ûhi converges to the optimal
control policy û∗i . The complete proof is given. �

B. Implementation of Event-Triggered PI Algorithm

In this section, we implement Algorithm 1 by using a critic
neural network to approximate the optimal value function V̂ ∗i .

We first define the following neural network of each agent:

V̂i(ei) = Ŵ>c,iφi(ei), ∀t ∈ [thi , t
h+1
i ), (49)

where Ŵc,i indicates the critic estimated weight at the event-
triggered instant thi , and φi(ei) indicates the critic activation
function.

According to Eq. (16), the estimated error of the critic NN
can be defined as

ec,i = eiQiei + û>i Riûi + Ŵ>c,i∇φiėi, (50)

where ∇φi = ∂φi(ei)/∂e
>
i . For a given event-triggered

admissible controller ûi, the update rule of Ŵc,i is to minimize
the following objective function:

Ec,i =
1

2
e>c,iec,i. (51)

According to the gradient descent method, we can derive
the update law of the following form:
˙̂
Wc,i = 0, t ∈ (thi , t

h+1
i ), (52a)

Ŵ+
c,i = Ŵc,i − lc,iki(k>1,iŴc,i + e>i Qiei + û>i Riûi), t = thi ,

(52b)

where lc,i > 0 indicates the learning rate of the critic NN,
k1,i = ∇φiėi and ki = k1,i/(k

>
1,ik1,i + 1)2.

Letting W̃c,i = Ŵc,i −Wc,i, we can deduce

˙̃Wc,i = 0, t ∈ (thi , t
h+1
i ), (53a)

W̃+
c,i = W̃c,i − lc,iki(k>1,iW̃c,i + εc,i), t = thi , (53b)

where Wc,i denotes the critic target weight, W̃c,i is the critic
weight error and εc,i = eiQiei + û>i Riûi +W>c,i∇φiėi is the
critic residual error.

Therefore, the optimal controller can be obtained by (42)
and (49), which is expressed in the following form:

ûi = −1

2
liiR

−1
i Y >i (∇φi)>Ŵc,i. (54)

Through the above critic NN framework, we can obtain the
optimal controller with only measurement data at the event-
triggered instants. Therefore, the need for system dynamics is
obviously avoided. In addition, the neural network is only up-
dated at the event-triggered instants thi , which are determined
by the self-triggered condition (40).

Assumption 3: In the critic NN framework, the target weight
matrix, the activation function, the critic residual error are
bounded with positive constants WcM , φM , and εcM , i.e.,
‖Wc,i‖ ≤WcM , ‖φi‖ ≤ φM , and ‖εc,i‖ ≤ εcM .

Theorem 3: Consider the consensus error dynamics (14), the
critic neural network is given as (49). If the estimated weight
matrix Ŵc,i is updated with (52), the consensus error ei and
the critic estimation error W̃c,i are UUB.

Proof : Two different situations are considered, including
during the event-triggered intervals and at the event-triggered
instants.

Situation 1: During the event-triggered intervals, i.e., t ∈
(thi , t

h+1
i ).

Fig. 1: A strongly connected graph with six nodes.
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(a) (b)

Fig. 2: (a) The norms of attitude errors and angular velocity errors. The trajectories indicate the norms of attitude errors between
the rigid body 1 and the rigid body i ∈ {2, 3, 4, 5, 6}. (b) The consensus errors of each rigid body δi. Three subfigures show
three components of the consensus error vector δi of each agent, respectively.

(a) (b)

Fig. 3: (a) The original control inputs τi of each rigid body. Three subfigures show three components of the control input τi
of each agent, respectively. (b) The control inputs ui of the augmented systems. Three subfigures show three components of
the control input ui of augmented systems of each agent, respectively.

Consider the Lyapunov function of the following form:

Li = Li,1 + Li,2, (55)

where Li,1 = e>i ei + Vi(ei), Li,2 =
tr(W̃>c,iW̃c,i)

lc,i
.

According to (53), we can obtain

L̇i,2 =
2tr(W̃>c,i

˙̃Wc,i)

lc,i
= 0. (56)

Therefore, the first-order derivative of Li can be expressed

as follows:

L̇i = L̇i,1 = 2e>i ėi + V̇i(ei)

= 2e>i
(
Xi(ei) + liiYiûi −

∑
j∈Ni

aijYj ûj
)

− e>i Qiei − û>i Riûi
≤ ‖ei‖2 +

∥∥Xi(ei) + liiYiûi −
∑
j∈Ni

aijYj ûj
∥∥2

− λmin(Qi)‖ei‖2 − λmin(Ri)‖ûi‖2

≤
(
1 + 3X2

M − λmin(Qi)
)
‖ei‖2 + 3l2iiY

2
M‖ûi‖2

+ 3
∑
j∈Ni

a2
ijY

2
M‖ûj‖2 − λmin(Ri)‖ûi‖2. (57)

In order to ensure L̇i < 0, the following inequality should
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be satisfied:

‖ei‖ >

√
Φi

λmin(Qi)− 1− 3X2
M

, (58)

where Φi = 3l2iiY
2
M‖ûi‖2 + 3

∑
j∈Ni

a2
ijY

2
M‖ûj‖2 −

λmin(Ri)‖ûi‖2.
Hence, the consensus error ei is UUB. During the event-

triggered intervals, the critic estimation error W̃c,i remains
unchanged, which means W̃c,i is also UUB.

Situation 2: At the event-triggered instants, i.e., t = thi .
Choosing the same Lyapunov function as (55), we can

obtain:

∆Li = ∆L1,i + ∆L2,i. (59)

Since the trajectory of ei is continuous, i.e., e+
i = ei.

Therefore, one has

∆L1,i = (e+
i )>e+

i + Vi(e
+
i )− e>i ei − Vi(ei) = 0. (60)

Next, according to (53), we have

∆L2,i =
tr
[
(W̃+

c,i)
>W̃+

c,i

]
lc,i

−
tr(W̃>c,iW̃c,i)

lc,i

=
1

lc,i
tr
[(
W̃c,i − lc,iki(k>1,iW̃c,i + εc,i)

)>
×
(
W̃c,i − lc,iki(k>1,iW̃c,i + εc,i)

)
− W̃>c,iW̃c,i

]
= lc,itr

[(
ki(k

>
1,iW̃c,i + εc,i)

)>(
ki(k

>
1,iW̃c,i + εc,i)

)]
− 2tr(W̃>c,ikik

>
1,iW̃c,i)− 2tr(W̃>c,ikiεc,i)

= lc,i‖kik>1,iW̃c,i + kiεc,i‖2 − 2k>i k1,i‖W̃c,i‖2

− 2‖W̃>c,ikiεc,i‖. (61)

From the definition of k1,i and ki, we can obtain the
following inequalities:

αk ≤ k>1,iki ≤ βk, (62)

‖ki‖ ≤KM , (63)

where βk > αk > 0 and KM > 0.

Fig. 4: The critic estimated weight matrices. The trajectories
show the norm of weight matrices of each agent.

Substituting (62) and (61) into (61), ∆L2,i becomes

∆L2,i ≤ 2lc,iβ
2
k‖W̃c,i‖2 + 2lc,iε

2
cMK

2
M − 2αk‖W̃c,i‖2

+ εcM (‖W̃c,i‖2 +K2
M )

≤ −(2αk − 2lc,iβ
2
k − εcM )‖W̃c,i‖2

+ (2lc,iε
2
cM + εcM )K2

M . (64)

Combining (60) and (64), ∆Li can be transformed into the
following form:

∆Li = ∆L1,i + ∆L2,i

≤ −(2αk − 2lc,iβ
2
k − εcM )‖W̃c,i‖2

+ (2lc,iε
2
cM + εcM )K2

M . (65)

In order to simplify the expression, some auxiliary variables
are defined as follows:

Ai = 2αk − 2lc,iβ
2
k − εcM ,

Γi = (2lc,iε
2
cM + εcM )K2

M .

Therefore, it can be deduced ∆Li < 0 when ‖W̃c,i‖ >√
Γi/Ai, which signifies that ei and W̃c,i are UUB at the

event-triggered instants.
Combing situation 1 with situation 2, it can be proved that

the consensus error ei and the critic estimation error W̃c,i are
UUB. The complete proof is given. �

Remark 3: The attitude consensus problem of multiple rigid
body networks has been widely studied in the literature [12],
[13], [14], [15]. However, the attitude consensus protocol
proposed in [12], [13], [14], [15] are all based on the known
rigid body dynamics, which is a major limitation in practical
applications. In this work, a model-free RL algorithm is
proposed to solve the HJB equation of the optimal atti-
tude consensus of multiple rigid body networks. Moreover,
compared with the existing results on model-free consensus
problem of multi-agent networks [20], [21], [23], an event-
triggered RL algorithm is proposed, which is further extended
to the self-triggered RL algorithm. Based on Algorithm 1,
we know that the control update action and the information
interaction among agents are only executed on the triggering
instants. Hence, the computation and communication resource
can be obviously reduced compared with the continuous-time
approaches [20], [21], [23].

V. SIMULATION

This section presents a numerical simulation to verify the
effectiveness of the proposed event-triggered reinforcement
learning method. We consider a multiple rigid body network
with six nodes under the strongly connected communication
topology. The communication relationship between any two
nodes can be seen in Fig. 1. The Laplacian matrix is selected
as follows:

L =


4 0 0 0 0 −4
−4 8 0 0 0 −4
0 −4 8 −4 0 0
0 0 −4 8 0 −4
0 0 0 −4 4 0
0 0 0 0 −4 4

 .
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(a) (b)

Fig. 5: (a) Triggering instants of dynamic event-triggered control of each agent. (b) Triggering instants of self-triggered control
of each agent.

(a) (b)

Fig. 6: (a) The self-triggered measurement errors and their upper bound of each agent. (b) Comparisons of the total number of
triggering times and minimum triggering intervals between the dynamic event-triggered control and the self-triggered control
of each agent.

The rigid body i ∈ {1, 2, 3, 4, 5, 6} can be modeled using the
following equations:

σ̇i = G(σi)ωi,

Jiω̇i = −ωi × (Jiωi) + τi,

in which σi = [σ
(1)
i , σ

(2)
i , σ

(3)
i ]> indicates the attitude vector,

ωi = [ω
(1)
i , ω

(2)
i , ω

(3)
i ]> indicates the angular velocity vector,

Ji indicates the inertial matrix. Here, the inertial matrix of
each rigid body is selected as follows:

J1 = J3 = [1.0 0.1 0.1; 0.1 1.0 0.1; 0.1 0.1 1.0],

J2 = J4 = [1.2 0.1 0.1; 0.1 0.9 0.1; 0.1 0.1 1.1],

J3 = J6 = [1.1 0.2 0.1; 0.2 1.0 0.3; 0.1 0.3 1.3].

In this simulation, the total duration is set to 40 seconds
and the sampling period is 0.01 seconds. We selected the

parameters as follows: αi = 0.5, P = 1, the weight matrices
Qi = 4I6, Ri = I3, and the learning rate lc,i = 0.6. In the
dynamic event-triggered condition (19), yi(0) = 4, γi = 0.5,
κi = 0.5, $i = 0.6, θi = 2. In the self-triggered condition
(40), the parameters remain the same except κi = 0 and
$i = 0. The initial states of each rigid body are given by:

σi =

 0.05i
−0.05i
0.05i

 , ωi = ω̇i =

0
0
0

 , i = 1, 2, 3, 4, 5, 6.

The critic activation function is designed as:

φi(ei) = [(e1
i )

2 e1
i e

2
i e1

i e
3
i e1

i e
4
i e1

i e
5
i e1

i e
6
i

(e2
i )

2 e2
i e

3
i e2

i e
4
i e2

i e
5
i e2

i e
6
i (e3

i )
2

e3
i e

4
i e3

i e
5
i e3

i e
6
i (e4

i )
2 e4

i e
5
i e4

i e
6
i

(e5
i )

2 e5
i e

6
i (e6

i )
2]> ∈ R21.
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By using the model-free event-triggered RL method pro-
posed above, the optimal attitude consensus problem for
multiple rigid body networks is solved. Fig. 2(a) shows the
norms of attitude errors and angular velocity errors between
the rigid body 1 and the rigid body i ∈ {2, 3, 4, 5, 6}. From
Fig. 2(a), we can conclude that the optimal attitude consensus
is achieved. The same conclusion can be obtained from Fig.
2(b), which shows the trajectories of the consensus errors. Fig.
3(a) and Fig. 3(b) show the original control inputs of each
rigid body and the control inputs of the augmented systems,
respectively. It is worth noting that the control inputs of the
augmented systems are only updated at the event-triggered
instants, and remain unchanged during the event-triggered
intervals.

Fig. 4 demonstrates the critic estimated weight matrix of
each rigid body. It can be clearly seen that the neural net-
works are only updated at the event-triggered instants, which
obviously reduces the consumption of computing resources.
The triggering instants of dynamic event-triggered control and
self-triggered control are illustrated in Figs. 5(a) and 5(b),
respectively. It is clearly shown that control update actions
and communication frequencey are both significantly reduced
compared with the continous-time control approaches [20],
[21], [23]. Fig. 6(a) shows the self-triggered measurement
errors and their upper bound, which determines the event-
triggered instants. Fig. 6(b) represents the triggered times
and the minimum triggered interval under the dynamic event-
triggered condition and the self-triggered condition, respec-
tively. Since the self-triggered measurement error ∆i(t) is
the upper bound of the measurement error Ei(t), the trig-
gered times under the self-triggered mechanism are more than
uner the dynamic event-triggered mechanism. Therefore, we
can conclude that the self-triggered mechanism leads to an
inevitable increase in the number of triggered times without
continuing to communicate with neighbors.

VI. CONCLUSION

In this paper, a model-free event-triggered RL method is
proposed to deal with the optimal attitude consensus for multi-
ple rigid body networks, which only requires the measurement
data at the event-triggered instants. In order to solve the
HJB equations, an event-triggered PI algorithm is proposed to
obtain the optimal policy. Meanwhile, the critic NN framework
is used to approximate the optimal value function online. The
critic neural network is updated only when the event-triggered
condition is violated, which greatly reduces the consumption
of computing and communication resources. The UUB of the
consensus error and the weight estimation error is proved
and the Zeno behavior is excluded. A numerical simulation
for a multiple rigid body network with six nodes shows the
feasibility of the proposed method.

In the future, we will further improve this work from
the following perspectives. One consideration is to relax the
condition of communication topologies, such as from strongly
connected graphs to directed spanning trees or even switching
topologies [44]. Due to the actuator failure could happen in
real applications of rigid body such as intelligent cars and

quadrotor aircrafts [45], it is well motivated to consider the
optimal cooperative control of rigid body systems with the
actuator failure.
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control of multiple quadrotor aircraft based on nonsmooth consensus
algorithms,” IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 342-
353, Jan. 2019.

[7] Z. Li, Y. Tang, T. Huang and J. Kurths, “Formation control with
mismatched orientation in multi-agent systems,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 314-325, 1 Jul.
2019.

[8] X. Jin, W. Du, W. He, L. Kocarev, Y. Tang and J. Kurths, “Twisting-
based finite-time consensus for Euler-Lagrange systems with an event-
triggered strategy,” IEEE Transactions on Network Science and Engi-
neering, vol. 7, no. 3, pp. 1007-1018, Jul. 2020.

[9] H. Zhang and P. Gurfil, “Cooperative orbital control of multiple satel-
lites via consensus,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 54, no. 5, pp. 2171-2188, Oct. 2018.

[10] K. Zhang and M. A. Demetriou, “Adaptation of consensus penalty
terms for attitude synchronization of spacecraft formation with unknown
parameters,” 52nd IEEE Conference on Decision and Control, Florence,
pp. 5491-5496, 2013.

[11] H. Qu, F. Yang, Q. Han and Y. Zhang, “Distributed H∞-consensus filter-
ing for attitude tracking using ground-based radars,” IEEE Transactions
on Cybernetics, to be published.

[12] A. Abdessameud and A. Tayebi, “Attitude synchronization of a group
of spacecraft without velocity measurements,” IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2642-2648, Nov. 2009.

[13] H. Cai, and J. Huang, “Leader-following attitude consensus of multiple
rigid body networks by attitude feedback control,” Automatica, vol. 69,
pp. 87-92, Jul. 2016.

[14] H. Gui, and A.H.J. de Ruiter, “Global finite-time attitude consensus
of leader-following spacecraft systems based on distributed observers,”
Automatica, vol. 91, pp. 225-232, May 2018.

[15] M. Lu and L. Liu, “Leader-following attitude consensus of multiple
rigid spacecraft systems under switching networks,” IEEE Transactions
on Automatic Control, vol. 65, no. 2, pp. 839-845, Feb. 2020.

[16] B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S. Liu, N. Xiong,
”Deep Matrix Factorization With Implicit Feedback Embedding for
Recommendation System,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 8, pp. 4591-4601, Aug. 2019.

[17] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. Xiong, J. L. Mauri,
”A Time-Driven Data Placement Strategy for a Scientific Workflow
Combining Edge Computing and Cloud Computing,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 4254-4265, July 2019.

[18] J. Sun, X. Wang, N. Xiong and J. Shao, ”Learning Sparse Representation
With Variational Auto-Encoder for Anomaly Detection,” IEEE Access,
vol. 6, pp. 33353-33361, 2018.

[19] K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent
differential graphical games: Online adaptive learning solution for syn-
chronization with optimality,” Automatica, vol. 48, no. 8, pp. 1598-1611,
Aug. 2012.



13

[20] J. Li, H. Modares, T. Chai, F. L. Lewis and L. Xie, “Off-policy rein-
forcement learning for synchronization in multiagent graphical games,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 10, pp. 2434-2445, Oct. 2017.

[21] J. Qin, M. Li, Y. Shi, Q. Ma and W. X. Zheng, “Optimal synchroniza-
tion control of multiagent systems with input saturation via off-policy
reinforcement learning,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 1, pp. 85-96, Jan. 2019.

[22] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779-791, May 2005.

[23] H. Zhang, J. H. Park and W. Zhao, “Model-free optimal consensus
control of networked Euler-Lagrange systems,” IEEE Access, vol. 7,
pp. 100771-100779, 2019.

[24] L. Dong, X. Zhong, C. Sun and H. He, “Event-triggered adaptive
dynamic programming for continuous-time systems with control con-
straints,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 8, pp. 1941-1952, Aug. 2017.

[25] X. Zhong and H. He, “An event-triggered ADP control approach for
continuous-time system with unknown internal states,” IEEE Transac-
tions on Cybernetics, vol. 47, no. 3, pp. 683-694, Mar. 2017.

[26] Y. Zhu, D. Zhao, H. He and J. Ji, “Event-triggered optimal control
for partially unknown constrained-input systems via adaptive dynamic
programming,” IEEE Transactions on Industrial Electronics, vol. 64, no.
5, pp. 4101-4109, May 2017.

[27] Q. Zhang, D. Zhao and D. Wang, “Event-based robust control for
uncertain nonlinear systems using adaptive dynamic programming,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 1, pp. 37-50, Jan. 2018.

[28] W. Zhao and H. Zhang, “Distributed optimal coordination control for
nonlinear multi-agent systems using event-triggered adaptive dynamic
programming method,” ISA Transactions, vol. 91, pp. 184-195, Aug.
2019.

[29] W. Zhao, W. Yu and H. Zhang, “Event-triggered optimal consensus
tracking control for multi-agent systems with unknown internal states
and disturbances,” Nonlinear Analysis Hybrid Systems, vol. 33, pp. 227-
248, Aug. 2019.

[30] Z. Shi and C. Zhou, “Distributed optimal consensus control for nonlinear
multi-agent systems with input saturation based on event-triggered adap-
tive dynamic programming method,” International Journal of Control,
to be published.

[31] A. Girard, “Dynamic triggering mechanisms for event-triggered control,”
IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1992-1997,
Jul. 2015.

[32] X. Yi, K. Liu, D. V. Dimarogonas and K. H. Johansson, “Dynamic
event-triggered and self-triggered control for multi-agent systems,” IEEE
Transactions on Automatic Control, vol. 64, no. 8, pp. 3300-3307, Aug.
2019.

[33] X. Jin, Y. Shi, Y. Tang and X. Wu, “Event-triggered attitude consensus
with absolute and relative attitude measurements,” Automatica, vol. 122,
Art. No. 109245, Dec. 2020.

[34] S. Wang, X. Jin, S. Mao, A. V. Vasilakos and Y. Tang, “Model-free event-
triggered optimal consensus control of multiple Euler-Lagrange systems
via reinforcement learning,” IEEE Transactions on Network Science and
Engineering, to be published.

[35] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems,
American Institute of Aeronautics and Astronautics, 2009.

[36] M. Lemmon, Networked Control Systems, Springer London, 2010.
[37] H. K. Khalil, Nonlinear Systems, Upper Saddle River, NJ, USA: Prentice

Hall, 2002.
[38] Z. Jiang and Y. Jiang. “Robust adaptive dynamic programming for linear

and nonlinear systems: An overview,” European Journal of Control, vol.
19, no. 5, pp. 417-425, Sept. 2013.

[39] W. Fang, X. Yao, X. Zhao, J. Yin and N. Xiong, ”A Stochastic
Control Approach to Maximize Profit on Service Provisioning for
Mobile Cloudlet Platforms,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 4, pp. 522-534, Apr. 2018.

[40] Y. Liu, B. Jiang, J. Lu, J. Cao and G. Lu, ”Event-Triggered Sliding
Mode Control for Attitude Stabilization of a Rigid Spacecraft,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no.
9, pp. 3290-3299, Sept. 2020.

[41] B. Li, Y. Liu, K. I. Kou and L. Yu, ”Event-Triggered Control for the
Disturbance Decoupling Problem of Boolean Control Networks,” IEEE
Transactions on Cybernetics, vol. 48, no. 9, pp. 2764-2769, Sept. 2018.

[42] S. Zhu, Y. Liu, Y. Lou, et al., ”Stabilization of logical control networks:
an event-triggered control approach,” Science China Information Sci-
ences, vol. 63 no. 1, pp. 1-11, 2020.

[43] Y. -J. Liu, Q. Zeng, S. Tong, C. L. P. Chen and L. Liu, ”Adaptive Neural
Network Control for Active Suspension Systems With Time-Varying
Vertical Displacement and Speed Constraints,” IEEE Transactions on
Industrial Electronics, vol. 66, no. 12, pp. 9458-9466, Dec. 2019.

[44] L. Liu, Y.-J. Liu, A. Chen, S. Tong, C. L. P. Chen, ”Integral Barrier Lya-
punov function-based adaptive control for switched nonlinear systems,”
Science China Information Sciences, vol. 63, no.3, 2020.

[45] Y. -J. Liu, Q. Zeng, S. Tong, C. L. P. Chen and L. Liu, ”Actuator
Failure Compensation-Based Adaptive Control of Active Suspension
Systems With Prescribed Performance,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 8, pp. 7044-7053, Aug. 2020.

[46] Y. Qu and N. Xiong, ”RFH: A Resilient, Fault-Tolerant and High-
Efficient Replication Algorithm for Distributed Cloud Storage,” 2012
41st International Conference on Parallel Processing, pp. 520-529,
2012.

Xin Jin received the B.S. degree in school of
automation from the Guangdong University of Tech-
nology, Guangzhou, China, in 2016. He was an
exchange Ph.D. student at University of Victoria,
Victoria, Canada from Sept. 2019 to Sept. 2020.
He is currently working toward the Ph.D. degree
from the East China University of Science and
Technology. His research interests include rigid body
systems, multi-agent systems, event-triggered con-
trol and their applications.

Shuai Mao received the B.S. degree in school of
control science and engineering from East China
University of Science and Technology, in 2017.
He is currently pursuing the Ph.D. degree from
East China University of Science and Technology.
His research interests include multi-agent systems,
distributed optimization and their applications in
practical engineering.

Ljupco Kocarev (Fellow, IEEE) is currently a mem-
ber of the Macedonian Academy of Sciences and
Arts, a Full Professor with the Faculty of Computer
Science and Engineering, Ss. Cyril and Methodius
University, Skopje, Macedonia, the Director of the
Research Center for Computer Science and Infor-
mation Technologies, Macedonian Academy, and a
Research Professor with the University of California
at San Diego. His work has been supported by
the Macedonian Ministry of Education and Science,
the Macedonian Academy of Sciences and Arts,

NSF, AFOSR, DoE, ONR, ONR Global, NIH, STMicroelectronics, NATO,
TEMPUS, FP6, FP7, Horizon 2020, and agencies from Spain, Italy, Germany
(DAAD and DFG), Hong Kong, and Hungary. His scientific interests include
networks, nonlinear systems and circuits, dynamical systems and mathematical
modeling, machine learning, and computational biology.



14

Chen Liang is currently working as a Research
Assistant at Key Laboratory of Smart Manufacturing
in Energy Chemical Process, Ministry of Education
and a Faculty Member of School of Information at
East China University of Science and Technology.
She got her Master Degree in Computer Applied
Technology at Shanghai Normal University in 2013.
Her research interests include multi-agent systems,
reinforcement learning and network.

Saiwei Wang received the B.S. degree in school
of control science and engineering from East China
University of Science and Technology, Shanghai,
China, in 2018. He is currently pursuing the M.S.
degree from East China University of Science and
Technology. His research interests include multi-
agent systems, reinforcement learning and their ap-
plications.

Yang Tang (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in electrical engineering
from Donghua University, Shanghai, China, in 2006
and 2010, respectively. From 2008 to 2010, he
was a Research Associate with The Hong Kong
Polytechnic University, Hong Kong. From 2011 to
2015, he was a Post-Doctoral Researcher with the
Humboldt University of Berlin, Berlin, Germany,
and with the Potsdam Institute for Climate Impact
Research, Potsdam, Germany. Since 2015, he has
been a Professor with the East China University of

Science and Technology, Shanghai. His current research interests include
distributed estimation/control/optimization, cyber-physical systems, hybrid
dynamical systems, computer vision, reinforcement learning and their appli-
cations.

Prof. Tang was a recipient of the Alexander von Humboldt Fellowship and
the ISI Highly Cited Researchers Award by Clarivate Analytics from 2017. He
is a Senior Board Member of Scientific Reports, an Associate Editor of IEEE
Transactions on Neural Networks and Learning Systems, IEEE Transactions
on Emerging Topics in Computational Intelligence, IEEE Transactions on
Circuits and Systems I: Regular Papers and IEEE Systems Journal, etc.


