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Abstract—Distributed stochastic optimization, arising in the crossing and integration of traditional stochastic optimization, distributed
computing and storage, and network science, has advantages of high efficiency and a low per-iteration computational complexity in
resolving large-scale optimization problems. This paper concentrates on resolving a large-scale convex finite-sum optimization problem
in a multi-agent system over unbalanced directed networks. To tackle this problem in an efficient way, a distributed consensus
optimization algorithm, adopting the push-sum technique and a distributed loopless stochastic variance-reduced gradient (LSVRG)
method with uncoordinated triggered probabilities, is developed and named Push-LSVRG-UP. Each agent under this algorithmic
framework performs only local computation and communicates only with its neighbors without leaking their private information. The
convergence analysis of Push-LSVRG-UP is relied on analyzing the contraction relationships between four error terms associated with
the multi-agent system. Theoretical results provide an explicit feasible range of the constant step-size, a linear convergence rate, and
an iteration complexity of Push-LSVRG-UP when achieving the globally optimal solution. It is shown that Push-LSVRG-UP achieves
the superior characteristics of accelerated linear convergence, fewer storage costs, and a lower per-iteration computational complexity
than most existing works. Meanwhile, the introduction of an uncoordinated probabilistic triggered mechanism allows Push-LSVRG-UP
to facilitate the independence and flexibility of agents in computing local batch gradients. In simulations, the practicability and improved
performance of Push-LSVRG-UP are manifested via resolving two distributed learning problems based on real-world datasets.

Index Terms—Distributed optimization, unbalanced directed networks, distributed learning problems, distributed gradient descent
algorithms, multi-agent systems, variance-reduced stochastic gradients.

✦

1 INTRODUCTION

D ISTRIBUTED optimization has found extensive applica-
tions in various fields such as machine learning [1], [2],

deep learning [3], power systems [4], [5], signal processing
[6], resource allocation [7], and distributed model predictive
control [8], [9] thanks to its advantages of alleviating the
computational burden for the agents, high efficiency for
the multi-agent system, and guaranteed privacy for each
agent in a peer-to-peer network. However, when facing a
category of large-scale optimization problems, distributed
batch gradient methods still suffer from a high per-iteration
computational complexity result from the local batch gradi-
ent computation at each iteration. A way of avoiding such
issue is to design stochastic gradient methods. Therefore,
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this paper aims at studying the following generic finite-sum
optimization problem

min
z̃∈Rn

f̃ (z̃) :=
1

m

m∑
i=1

fi (z̃), fi (z̃) =
1

qi

qi∑
j=1

fi,j (z̃), (1)

where fi : Rn → R is the local objective function and can be
further decomposed as qi component functions fi,j in many
machine learning or deep learning problems [2], [3], [10],
[11], [12], [13]. The decision variable is z̃ and the mutual goal
of all agents is to seek the optimal solution z̃∗ to problem (1)
through exchanging information with its neighbors.

1.1 Literature review
Distributed first-order optimization methods can be di-

vided into two categories from the perspective of gradient
computation, one of which is the distributed batch gradient
methods. Early distributed batch gradient methods include
the distributed gradient descent (DGD) algorithm [14] and
the distributed dual averaging algorithm [15], both of which
achieve the globally optimal solution at sub-linear exact
convergence rates. Then, EXTRA [16] adopting a constant
step-size achieves linear exact convergence when the local
objective functions are strongly convex and have Lipschitz
gradients via considering two consecutive gradients of the
local objective function. To further facilitate the conver-
gence of EXTRA, DIGing [17] is designed via adopting the
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gradient-tracking (GT) technique [18], which is a combine-
then-adapt variant of Aug-DGM [18]. Both Aug-DGM [18]
and DIGing [17] are basically two variants of GT-DGD
methods. Therefore, [19] unifies [16], [17], [18] into a general
primal-dual framework. Nevertheless, the above mentioned
distributed algorithms can only work in undirected net-
works due to the employment of doubly-stochastic weight
matrices. In common broadcast-based communication pro-
tocols, agents in the system may broadcast at diverse power
levels, which indicates the communication capability in one
direction while not in the other [20]. Here, a simple example
that declares the difference between directed communica-
tion and undirected communication is exemplified in Fig.
1. It is clear from Fig. 1(a) that each agent in the system
may focus on transmitting its information in one direction,
while Fig. 1(b) indicates the necessity of bidirectional infor-
mation exchange. Therefore, some outstanding distributed

(a) A directed structure. (b) An undirected structure.

Fig. 1: Directed network (a) vs undirected network (b).

optimization algorithms over unbalanced directed networks
are developed. An earlier work [21] incorporates a surplus-
based technique into DGD [14] to realize a sub-linear ex-
act convergence rate. DEXTRA [22] combines a push-sum
method [23] with EXTRA [16] to achieve linear exact conver-
gence under the standard strong convexity assumption with
the step-size lying in some non-trivial interval. Based on the
push-sum method and GT technique, Push-DIGing [17] and
ADD-OPT [24] employ a column-stochastic weight matrix
to achieve accelerated linear exact convergence. Then, [20]
based on the push-sum method and the GT technique
designs a row-stochastic weight matrix based distributed
optimization algorithm. Follow-up papers [25], [26], [27]
employ both row- and column-stochastic weight matrices to
further explore the generality and novelty in both commu-
nication networks and algorithm structures. Although the
above mentioned distributed batch gradient methods enjoy
fast linear exact convergence under some necessary assump-
tions, they require each agent in the system computing local
batch gradients at each iteration. This inevitably incurs an
expensive per-iteration computational complexity for each
agent and may also increase the burden of the whole multi-
agent system.

Therefore, in another category, distributed stochastic gra-
dient algorithms inspired by centralized stochastic gradient
methods receive extensive attention. Based on a decentral-
ized SAGA [28] method, DSA [29] is the first distributed
stochastic optimization algorithm, which replaces the batch
gradients in EXTRA [16] with stochastic variance-reduced

gradients. Then, [30] gives an edge-based variant of DSA. S-
DIGing [31] and GT-SAGA [12] combine the decentralized
SAGA method with GT-DGD [17], [18] to achieve accel-
erated convergence. Recent work PMGT-SAGA [11] com-
bines a proximal gradient method with a Fast-Mix multi-
consensus [32] technique to extend GT-SAGA for convex
composite optimization problems considering a possibly
non-smooth term. However, when facing optimization prob-
lem (1), SAGA-based algorithms suffer from an expensive
storage cost of O (nqi) for each agent i as a result of the
requirement of the gradient storage table at each iteration.
Moreover, when the optimization problem becomes large-
scale or high dimensions. That is to say, when qi or n become
larger, the storage cost and the whole multi-agent system
may be unbearable. Therefore, GT-SVRG [12] incorporates a
decentralized SVRG [33] method into GT-DGD [17], [18],
which is indeed a double-loop distributed stochastic op-
timization algorithm and the decentralized SVRG method
enjoys both lower storage costs (almost storage-free) and
reduced variance. However, the double-loop SVRG [33]
method brings in a global parameter known as the inner-
loop iteration number into the distributed algorithm, which
requires the multi-agent system paying additional commu-
nication to coordinate it in practical unmanned applications.
Furthermore, some analytical and estimated issues [34],
especially for more complex networks, are also incurred.
Therefore, [34] provides a loopless variant of SVRG [33],
which removes the inner-loop iteration in GT-SVRG via
introducing a probabilistic mechanism. The probabilistic
mechanism can trigger the local batch gradient computation
in a predefined probability. LSVRG is shown in [34] to have
the same convergence rate with SVRG without requiring
any additional assumptions. Then, PMGT-LSVRG [11] ex-
tends LSVRG [34] to a decentralized setting.

Nevertheless, the above decentralized SVRG [33] or
LSVRG [34] based stochastic algorithms can only work over
undirected networks due to the employment of doubly-
stochastic weight matrices. As explained before, this may
restrict GT-SVRG [12] and PMGT-LSVRG [11] in some
practical applications with communication capability in one
direction while not in the other. Thus to address the issue,
this paper devises a distributed stochastic optimization al-
gorithm named Push-LSVRG-UP, which employs the push-
sum technique to cancel the imbalance incurred by unbal-
anced information exchange, thereby available to handle
large-scale optimization problems over unbalanced directed
networks. Considering that all agents in the system are
restrictive to one common triggered probability, we further
introduce the uncoordinated probabilistic triggered mech-
anism into Push-LSVRG-UP to improve the independence
and flexibility of agents. The main contributions of this
paper are summarized in the following four aspects.

1.2 Statement of Contributions

1) This paper not only extends a centralized state-
of-art variance-reduced stochastic gradient method
LSVRG to a decentralized setting, but designs
the first LSVRG-based distributed stochastic al-
gorithm Push-LSVRG-UP for distributed multi-
agent optimization over unbalanced directed net-
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works. Owing to the employment of a column-
stochastic weight matrix, Push-LSVRG-UP is avail-
able to distributed stochastic optimization over un-
balanced directed networks, which is more prac-
tical than the existing distributed stochastic opti-
mization algorithms DSA [29], Diffusion-AVRG [35],
S-DIGing [31], GT-SAGA/GT-SVRG [12], PMGT-
SAGA/PMGT-LSVRG [11], and [30] over undi-
rected networks. In theoretical aspects, Push-
LSVRG-UP is proved to converge linearly to the
globally optimal solution under some common as-
sumptions. In simulations, the improved perfor-
mance of Push-LSVRG-UP is shown through mak-
ing comparisons with existing well-known algo-
rithms when resolving two machine learning prob-
lems based on real-world datasets.

2) Compared with the expensive storage-required
SAGA-based distributed stochastic algorithms DSA
[29], S-DIGing [31], GT-SAGA [12], Push-SAGA [36],
and [30], Push-LSVRG-UP eliminates a storage cost
of O (nqi) for each agent i. Especially, when fac-
ing large-scale and high-dimensional optimization
problems, such as machine learning or deep learn-
ing problems with extensive local samples and fea-
tures, this storage cost will be significantly expen-
sive. Furthermore, from a perspective of theoretical
aspects, the main challenge is how to design the con-
traction relationships of the LSVRG-based method
over unbalanced directed networks. To overcome
this challenge, we present a unified sketch of the
proof in Section 4.2.

3) Although there are a large amount of notable dis-
tributed batch gradient methods [7], [17], [20], [21],
[22], [23], [24], [27], [37] over unbalanced directed
networks, they all suffer from a high per-iteration
computational complexity caused by computing
local batch gradients at each iteration. Especially,
when the local sample qi is significantly large, the
computational cost for agent i may be burdensome.
Therefore, Push-LSVRG-UP is more superior to han-
dling large-scale optimization problems over un-
balanced directed networks. Even when compared
with distributed stochastic gradient algorithms [3],
[38], DSGT [13], S-AB [39], and S-ADDOPT [40],
Push-LSVRG-UP shows its superiority for achieving
an explicitly exact linear convergence rate. Since
these noise-based algorithms [3], [13], [38], [39], [40]
do not employ any variance-reduced techniques,
they can only converge to the globally optimal so-
lution with sub-linear convergence rates, or achieve
inexact linear convergence to an error ball around
the globally optimal solution.

4) Considering that all agents in the system are restric-
tive to one common triggered probability [11], [12],
Push-LSVRG-UP adopts an uncoordinated prob-
abilistic triggered mechanism to improve the in-
dependence and flexibility of each agent in the
system. This improvement has certain engineering
significance since agents are not necessary to ad-
here the same coordinated probability to trigger the
local batch gradient computation. Therefore, Push-

LSVRG-UP is more superior than GT-SVRG [12] and
PMGT-LSVRG [11] in practice.

1.3 Organization

The remainder of this paper is organized here. Some
preliminaries including the basic notations, the communica-
tion network model, and the problem reformulation are pre-
sented in Section 2. Section 3 develops Push-LSVRG-UP and
discusses its superior characteristics in contrast to existing
distributed optimization algorithms. The linear convergence
rate and the iteration complexity of Push-LSVRG-UP are
analyzed in Section 4. Section 5 compares Push-LSVRG-UP
with existing well-known algorithms based on two different
distributed learning problems. We draw a conclusion and
state our future work in Section 6. Some detailed derivations
for the main results are placed in Section A.

2 PRELIMINARIES

2.1 Basic Notations

In this section, we give some essential notations that
are frequently used in this paper. Note that all vectors are
recognized as column vectors if no otherwise stated. some
specific definitions are presented in Table 1. Notice that
nonnegative vectors or matrices indicate all elements of the
vectors or matrices are nonnegative.

Symbols Definitions
R, Rn, Rm×n the set of real numbers, n-dimensional column

real vectors, m× n real matrices, respectively
E [sk|Fk] the expectation of a random variable sk condi-

tioned on a filter Fk

:= the definition symbol
In the n× n identity matrix
1m an m-dimensional column vector of all ones
x⊤ transpose of vector x
A⊤ transpose of matrix A
diag {x} a diagonal matrix with all the elements of vector

x laying on its main diagonal
X ≤ Y each element in Y − X is nonnegative, where

X and Y are two vectors or matrices with same
dimensions

X ⊗ Y the Kronecker product of matrices X and Y
ρ(X) the spectral radius for matrix X
∥·∥2 the standard 2-norm for vectors and matrices
∥·∥π a weighted-norm such that ∀b ∈ Rm, ∥b∥π :=∥∥∥(diag

{√
π
})−1

b
∥∥∥
2

or ∀B ∈ Rm×m, ∥B∥π :=∥∥∥(diag
{√

π
})−1

B
(
diag

{√
π
})∥∥∥

2

TABLE 1: Basic notations.

2.2 Communication Network Model

Consider an unbalanced directed network G = (V, E),
where V = {1, . . . ,m} is the set of agents and E ⊆ V × V is
the collected ordered pairs. Moreover, if (j, i) ∈ E , there
exists aji > 0 and aji = 0 otherwise. Specifically, for
arbitrary two agents, i, j ∈ V , if aji > 0, then agent i can
send information to agent j and aji = 0 otherwise. The in-
neighbors of agent i is denoted as N in

i , i.e., the set of agents
sending information to agent i. Similarly, the out-neighbors
of agent i is denoted as N out

i , i.e., the set of agents receiving
information from agent i. The network G is considered



4

to be balanced if
∑

j∈N out
i

aji =
∑

j∈N in
i
aij , i ∈ V , and

unbalanced otherwise. Both N in
i and N out

i include agent i.

Assumption 1. The weight matrix A = [aij ]1≤i,j≤m ∈ Rm×m

associated with the unbalanced directed network G is primitive
and column-stochastic, which means that there exists an integer
K > 0 such that AK is a positive matrix and 1⊤mA = 1⊤m.

Remark 1. A feasible way of designing the weight matrix can
be found in [27, Remark 2]. Moreover, under Assumption 1,
it is straightforward from [41, Theorem 8.5.1] that the weight
matrix A has a unique positive right eigenvector π with respect
to eigenvalue 1, with 1⊤mπ = 1 and A∞ := limk→∞Ak = π1⊤m.
Let π̄ and π denote the maximum element and the minimum
element in vector π, respectively. For any vector x ∈ Rn, it
can be derived according to the norm equivalence property that
∥x∥π ≤ π−0.5∥x∥2 and ∥x∥2 ≤ π̄0.5∥x∥π . Moreover, it can
be verified that ∥A∥π = ∥A∞∥π = ∥Im −A∞∥π = 1 under
Assumption 1.

2.3 Problem Reformulation
To resolve problem (1) in a decentralized manner, we

introduce zi, i ∈ V , as local copies of decision variable z̃,
and reformulate problem (1) as follows:

min
z∈Rmn

f (z) :=
1

m

m∑
i=1

fi
(
zi
)
, fi

(
zi
)
=

1

qi

qi∑
j=1

fi,j
(
zi
)
,

s.t. zi = zj , (i, j) ∈ E .
(2)

In the sequel, we use qmax := maxi∈Vqi and qmin :=
mini∈Vqi to denote respectively the maximum number and
the minimum number among local samples.

Assumption 2. (µ-strongly convex [12, Assumption 1]) For i ∈
V , each local objective functions fi is µ-strongly convex, such that
∀a, b ∈ Rn, we have

µ∥a− b∥22 ≤ (∇fi(a)−∇fi(b))
⊤(a− b), (3)

where µ > 0.

Assumption 3. (L-smoothness [12, Assumption 2]) For i ∈ V ,
each component function fi,h, h ∈ {1, . . . , qi}, has a Lipschitz
continuous gradient, such that ∀a, b ∈ Rn, there exists

∥∇fi,h(a)−∇fi,h(b)∥2 ≤ L∥a− b∥2, (4)

where L > 0.

Remark 2. Note that Assumptions 1-3 are not uncommon in
recent literature [25], [27], [36]. Furthermore, it can be obtained
from [42, chaper 3] that 0 < µ ≤ L. Under Assumption 2, we
know that the globally optimal solution z∗ ∈ Rmn to problem (2)
exists uniquely. If we define the category of µ-strongly convex and
L-smooth functions as S , then fi ∈ S , i ∈ V , and thus it can be
verified that f̃ ∈ S .

3 ALGORITHM DEVELOPMENT

In this section, we develop a distributed LSVRG-based
stochastic optimization algorithm named Push-LSVRG-UP
for resolving large-scale optimization problems, especially
for optimization problems with a large number of local sam-
ples (qi is large). In contrast to SAGA-based methods DSA
[29], GT-SAGA [12], and Push-SAGA [36], Push-LSVRG-UP

does not require an expensive storage cost O (nqi) for each
agent i, i ∈ V , thanks to the employment of the LSVRG
method. Inspired by the push-sum method [17], [24], the
GT technique [18] and the decentralized LSVRG method
[11], we design Push-LSVRG-UP to resolve large-scale opti-
mization problems over unbalanced directed networks and
the execution details of Push-LSVRG-UP are presented in
Algorithm 1.

Algorithm 1 Push-LSVRG-UP

Initialization: Each agent i, i ∈ V , initializes the variables
zi0 = xi

0 ∈ Rn, wi
0 = zi0, vi0 = gi0 = ∇fi

(
zi0
)
∈ Rn, yi0 =

1, the uncoordinated triggered probabilities pi ∈ (0, 1],
and a proper constant step-size α > 0.

For k = 0, 1, . . . ,do:
For j ∈ Ni, each agent i, i ∈ V , chooses the weights
aji ≥ 0 such that

∑
j∈Ni

aji = 1, and then executes in
parallel the following steps:

1: Local stochastic gradient estimation: gik+1 =
∇fi,sik

(
zik
)
−∇fi,sik

(
wi

k

)
+∇fi

(
wi

k

)
2: Choosing sik uniformly randomly from the local sample

set {1, . . . , qi}, and then following an uncoordinated

probabilistic triggered mechanism: wi
k+1 =

{
zik, pi

wi
k, 1− pi

3: Local gradient-descent step: xi
k+1 =

∑
j∈Ni

aijx
j
k − αvik

4: Eigenvector vector estimation: yik+1 =
∑

j∈Ni

aijy
j
k

5: State transformation: zik+1 = xi
k+1/y

i
k+1

6: Local GT step: vik+1 =
∑

j∈Ni

aijv
j
k + gik+1 − gik

End

Remark 3. Since the inner loop number in SVRG-based dis-
tributed stochastic optimization algorithms, for example GT-
SVRG [12], is a global parameter, it is adverse to the dis-
tributed implementation. Thus, different with the stochastic
double-loop distributed algorithm GT-SVRG [12], Push-LSVRG-
UP described in Algorithm 1 not only removes the inner loop via
applying a probabilistic triggered mechanism, but is available to
work in a class of generic unbalanced directed networks. Another
advantage of Push-LSVRG-UP in contrast to other LSVRG-based
algorithms [11], [34], [43], is the introduction of the uncoordi-
nated triggered probabilistic mechanism, which not only improves
the independence and flexibility of each agent i in optimization
procedures, but is helpful for its distributed execution. However,
this incorporated mechanism also incurs some challenges in deriv-
ing the explicit linear convergence and an iteration complexity of
Push-LSVRG-UP, which has been well-addressed in Section 4.

Remark 4. (A lower per-iteration computational complexity).
In the algorithmic of distributed batch gradient algorithms, such
as [7], [17], [20], [21], [22], [23], [24], [27], [37], each agent
i, i ∈ V , suffers from a per-iteration computational complexity
of O (qi) for computing the local batch gradients. Nevertheless,
Push-LSVRG-UP inherits a merit from the centralized LSVRG-
based method [34], which allows each agent i to calculate only two
component gradients ∇fi,sik+1

(
zik+1

)
and ∇fi,sik+1

(
wi

k

)
, and

thus the corresponding per-iteration computational complexity of
Push-LSVRG-UP is O (1) if the local batch gradient-computation
is not triggered. This reduction in the per-iteration computational
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complexity is more significant when qi becomes larger and the
uncoordinated triggered probabilities satisfy 0 < pi < 1.

For the convenience of the subsequent convergence anal-
ysis, some important definitions are given by ∀k ≥ 0:

xk =
[(
x1
k

)⊤
,
(
x2
k

)⊤
, . . . , (xm

k )
⊤
]⊤

,

yk =
[
y1k, y

2
k, . . . , y

m
k

]⊤
,

zk =
[(
z1k
)⊤

,
(
z2k
)⊤

, . . . , (zmk )
⊤
]⊤

,

gk =
[(
g1k
)⊤

,
(
g2k
)⊤

, . . . , (gmk )
⊤
]⊤

,

vk =
[(
v1k
)⊤

,
(
v2k
)⊤

, . . . , (vmk )
⊤
]⊤

,

A =A⊗ In,

A∞ = lim
k→∞

Ak =
(
π1⊤m

)
⊗ In,

Yk =diag {yk} ⊗ In,

Y =supk∥Yk∥2 ≥ 1,

Ỹ =supk

∥∥Y −1
k

∥∥
2
≥ 1.

Based on the above definitions, we now give the vector-
matrix form of Algorithm 1 as follows:

xk+1 =Axk − αvk, (5a)
yk+1 =Ayk, (5b)

zk+1 =Y −1
k xk+1, (5c)

vk+1 =Avk + gk+1 − gk. (5d)

Based on (5), the following useful notations are defined

x̄k =
1

m

(
1⊤m ⊗ In

)
xk,

v̄k =
1

m

(
1⊤m ⊗ In

)
vk,

∇F (zk) =
[(
∇f1

(
z1k
))⊤

,
(
∇f2

(
z2k
))⊤

, . . . , (∇fm (zmk ))
⊤
]⊤

,

h̄k =
1

m

(
1⊤m ⊗ In

)
∇F (zk) ,

ḡk =
1

m

(
1⊤m ⊗ In

)
gk,

p̃k =
1

m

(
1⊤m ⊗ In

)
∇F (1m ⊗ x̄k) .

4 CONVERGENCE ANALYSIS

In this section, the iteration complexity and the linear
convergence rate of Algorithm 1 are derived. Moreover, the
step-size condition is also provided when Push-LSVRG-UP
converges linearly to the globally optimal solution. In what
follows, let p̄ and p represent respectively the maximum
value and minimum value of the uncoordinated triggered
probabilities pi, i ∈ V , where 0 < p ≤ p̄ ≤ 1.

4.1 Main Results
Before presenting the main results of this paper, we

denote the condition number of functions in S as Q := L/µ
such that Q ≥ 1 and define the matrix norm σ :=
∥A−A∞∥π such that 0 < σ < 1 can be guaranteed under
Assumption 1 (see [39, Lemma 1] and [36, Section IV] for
details).

Theorem 1. Suppose that Assumptions 1-3 hold. Considering
Algorithm 1 and for a directivity constant δ ≥ 1 defined in
Lemma 3, if the step-size satisfies

0 < α ≤ min

{
(1− σ) p

6µ
,
(1− σ)

2
p

480δLQp̄

}
, (6)

then the sequence {zk}k≥0 generated by Algorithm 1 converges
linearly to the optimal solution z̃∗ at the rate of O((η + ζ)

k
),

where 0 < η < 1 is defined in Lemma 7 and ζ is an arbi-
trarily small positive constant such that 0 < η + ζ < 1. This
means that Push-LSVRG-UP achieves an ϵ-accurate solution, i.e.,
E
[
∥zk − 1m ⊗ z̃∗∥22

]
≤ ϵ in at least

k ≥ O
(
max

{
1

(1− σ) p
,

δQ2p̄

(1− σ)
2
p

}
ln

1

ϵ

)
(7)

iterations (component gradient computations) at each agent.

Proof. The detailed proof of Theorem 1 is placed in Section
A to enhance coherence of the paper.

Remark 5. One may be aware that the step-size condition (6)
contains the network information σ, which is indeed a global
information engendered by the conservative convergence analysis.
However, the fully distributed running of Push-LSVRG-UP can
be still available via exerting a notion of sufficiently small but
positive step-size, which is not uncommon in literature [22], [24].

Algorithm Convergence Rate
DSGT [13], S-AB [39] and S-ADDOPT [40] linear but inexact convergence

DSA [29] O
(
max{qmaxQ, Q4

1−σ
, 1
(1−σ)2

} ln 1
ϵ

)
Push-SAGA [36] O

(
max{qmax,

qmax
qmin

δQ2

(1−σ)2
} ln 1

ϵ

)
GT-SAGA [12] O

(
max{qmax,

qmaxQ
2

qmin(1−σ)2
} ln 1

ϵ

)
GT-SVRG [12]

O
(
(qmax + Q2 logQ

(1−σ2)2
) ln 1

ϵ

)
with

inner-loop number T = O
(

Q2 logQ
(1−σ)2

)
ADD-OPT [24], Push-Pull [27], Diffusion-AVRG [35], and [30] linear (no explicit convergence rate)

PMGT-SAGA/PMGT-LSVRG [11] O
(
max

{
Q, 1

p

}
ln 1

ϵ

)
with p = 1/qmax

Push-LSVRG-UP (this work) O
(
max{ 1

(1−σ)p
, δQ2p̄

(1−σ)2p
} ln 1

ϵ

)

TABLE 2: Convergence performance comparison.

Remark 6. In a big data framework, each agent maintains a
large number of data, which leads to the fact that qmax ≈
qmin ≫ δQ2(1− σ)

−2 with δ ≥ 1 and Q ≥ 1. Therefore,
Push-LSVRG-UP achieves a network-independent computational
complexity of O

(
qmax ln

1
ϵ

)
via setting p = 1/qmax(1− σ) and

p̄ = 1/qmin(1− σ), which shares the same convergence results
with PMGT-SAGA/PMGT-LSVRG [11], GT-SAGA [12], and
Push-SAGA [36] under the big data framework. This convergence
rate is m times faster than the centralized stochastic algorithms
SAGA [28], SVRG [33], and LSVRG [34]. Furthermore, this
improvement under the big data framework may have the potential
to be further advanced via setting a pair of different values for
triggered probabilities p and p̄ according to the requirements
in practice. Another improvement is the theoretical results of
Push-LSVRG-UP available for more generic unbalanced directed
networks, while the convergence rates of some elegant distributed
stochastic methods, such as DSA [29], Diffusion-AVRG [35], GT-
SAGA/GT-SVRG [12], PMGT-SAGA/PMGT-LSVRG [11], and
[30] are only available for undirected networks, and moreover the
convergence rate of PMGT-LSVRG [11] is based on a coordinated
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triggered probability, i.e., p := p1 = p2 = · · · = pm = 1/qi,
i ∈ {1, . . . ,m}, under the assumption of q1 = q2 = · · · = qm.
In a general data framework, as shown in Table 2, an explicit
linear convergence rate of Push-LSVRG-UP for strongly convex
objective functions is still meaningful for distributed stochastic
optimization over unbalanced directed networks.

4.2 Sketch of The Proof

To establish the linear convergence of Push-LSVRG-UP,
we need to analyze the following four error terms:

1) the network agreement error: ∥xk −A∞xk∥2π ,

2) the convergence error: m ∥x̄k − z̃∗∥22,

3) the gradient-learning error: ∆k with ∆k :=∑m
i=1 (1/qi)

∑qi
j=1

∥∥∇fi,j
(
wi

k

)
−∇fi,j (z̃

∗)
∥∥2
2
,

4) the GT error: ∥vk −A∞vk∥2π .

Specifically, we aim to systematically construct a discrete
linear time invariant (DLTI) system associated with the
above four error terms, see Proposition 1. Then, the linear
convergence can be obtained through solving for a specific
interval of the constant step-size α to guarantee strictly the
spectral radius of the system matrix less than 1.

4.3 Auxiliary Results

The following lemma describes the contraction property
of primitive and column-stochastic weight matrix A.

Lemma 1. Suppose that Assumption 1 holds. Then ∀x ∈ Rmn,
we have

∥Ax−A∞x∥π ≤ σ∥x−A∞x∥π, (8)

Proof. According to compatibility of matrix norms, we have

∥Ax−A∞x∥π =∥(A−A∞) (x−A∞x)∥π
≤∥A−A∞∥π∥x−A∞x∥π,

(9)

where the proof is ended by setting σ = ∥A−A∞∥π .

The next lemma derives the upper bounds on the net-
work agreement error.

Lemma 2. Suppose that Assumption 1 holds. Considering the
sequence {xk}k≥0 generated by Algorithm 1, then ∀k ≥ 0, there
hold

E
[
∥xk+1 −A∞xk+1∥2π

]
≤1 + σ2

2
E
[
∥xk −A∞xk∥2π

]
+

2α2

1− σ2
E
[
∥vk −A∞vk∥2π

]
,

(10)
and

E
[
∥xk+1 −A∞xk+1∥2π

]
≤2E

[
∥xk −A∞xk∥2π

]
+ 2α2E

[
∥vk −A∞vk∥2π

]
.

(11)

Proof. According to (5a), we have for r > 0,

∥xk+1 −A∞xk+1∥2π
= ∥Axk −A∞xk∥2π + α2 ∥vk −A∞vk∥2π

− 2α⟨Axk −A∞xk, vk −A∞vk⟩π
≤σ2 ∥xk −A∞xk∥2π + α2 ∥vk −A∞vk∥2π

+ 2σα∥xk −A∞xk∥π∥vk −A∞vk∥π
≤ (1 + r)σ2 ∥xk −A∞xk∥2π+

(
1 + r−1

)
α2 ∥vk −A∞vk∥2π ,

(12)
where the first inequality follows Lemma 1 and the last
inequality employs the Young’s Inequality. The proof is
completed by setting r =

(
1− σ2

)
/2σ2 and r = 1, respec-

tively.

The next lemma captures the contraction property of
Yk. This is not necessary in the convergence analysis of
DSA [29], Diffusion-AVRG [35], GT-SAGA/GT-SVRG [12],
PMGT-SAGA/PMGT-LSVRG [11], and [30] since these al-
gorithm are only available to undirected networks and not
involved in imbalanced information exchange.

Lemma 3. Suppose that Assumption 1 holds. Recalling the
definition of Yk and denoting Y∞ = limk→∞Yk, we have ∀k ≥ 0

∥Yk − Y∞∥2 ≤ Tσk, (13)

where T :=
√
ϑ∥1m −mπ∥2 with ϑ := π̄/π > 1.

Proof. To explore the upper bound of ∥Yk − Y∞∥2, we need
to define y∞ := A∞yk according to (5b). Then, ∀k ≥ 0, there
holds

∥Yk − Y∞∥2 =∥diag {yk} ⊗ In − diag {y∞} ⊗ In∥2
≤∥yk − y∞∥2
≤π̄0.5σ∥yk−1 − y∞∥π

≤
(
π̄

π

)0.5

∥1m −mπ∥2σ
k,

(14)

where the first inequality applies the definitions of standard
2-norm for vectors and matrices, and the last inequality is
owing to the fact that y0 = 1m and y∞ = mπ. The proof is
ended by setting ϑ = π̄/π > 1 and T =

√
ϑ∥1m −mπ∥2.

The next lemma derives the upper bound on the con-
vergence error. We define a directivity constant δ :=
Y (1 + T )ϑỸ 2 and denote Fk as the filter of the history of
the dynamical system yielded by the sequence

{
sik
}i=1,...,m

k≥0
.

Lemma 4. Suppose that Assumptions 1-3 hold. Recalling
the definition of x̄k, if the step-size satisfies 0 < α ≤
min

{
1/L,mµ/8L2

}
, then ∀k ≥ 0, we have

E
[
m ∥x̄k+1 − z̃∗∥22

]
≤
(
1− µα

2

)
E
[
m ∥x̄k−z̃∗∥22

]
+
2δπ̄αL2

µ
E
[
∥xk −A∞xk∥2π

]
+

2α2

m
E [∆k] +

2δTαL2σk

µ
E
[
∥xk∥22

]
,

(15)
and

E
[
m ∥x̄k+1 − z̃∗∥22

]
≤3E

[
m ∥x̄k − z̃∗∥22

]
+ 6δπ̄L2α2E

[
∥xk −A∞xk∥2π

]
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+
2α2

m
E [∆k] + 6δTL2α2σkE

[
∥xk∥22

]
. (16)

Proof. Recall the definition of x̄k, considering (5a), we have

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
=E

[
∥x̄k − αḡk − z̃∗∥22

]
= ∥x̄k − z̃∗∥22 − 2αE [⟨x̄k − z̃∗, ḡk⟩ |Fk] + α2E

[
∥ḡk∥22 |Fk

]
= ∥x̄k − z̃∗∥22 − 2α ⟨x̄k − z̃∗, p̃k⟩+ 2α

〈
x̄k − z̃∗, p̃k − h̄k

〉
+ α2E

[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
+ α2

∥∥h̄k − p̃k + p̃k
∥∥2
2

= ∥x̄k − αp̃k − z̃∗∥22 + α2
∥∥p̃k − h̄k

∥∥2
2

+ 2α
〈
x̄k − αp̃k − z̃∗, p̃k − h̄k

〉
+ α2E

[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
≤(1−αµ)

2 ∥x̄k−z̃∗∥22+α2
∥∥p̃k−h̄k

∥∥2
2
+α2E[∥ḡk−h̄k∥22|Fk]

+ α (1− αµ)

(
µ ∥x̄k − z̃∗∥22 +

1

µ

∥∥p̃k − h̄k

∥∥2
2

)
=(1− αµ) ∥x̄k − z̃∗∥22+

α

mµ
∥∇F (1m ⊗ x̄k)−∇F (zk)∥22

+ α2E
[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
≤ (1− αµ) ∥x̄k − z̃∗∥22 +

(
αL2

mµ

)
∥zk − 1m ⊗ x̄k∥22

+ α2E
[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
,

(17)
where the first inequality employs both a well-known con-
traction theorem [12, Lemma 1] provided that the step-size
satisfies 0 < α ≤ 1/L for the first term and the Young’s
Inequality for the last term. The last inequality uses the L-
smoothness, i.e., the Lipschitz continuity, of the local objec-
tive functions. We proceed to handle E

[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
as

follows:

E
[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
=

1

m2
E

∥∥∥∥∥
m∑
i=1

(
gik −∇fi

(
zik
))∥∥∥∥∥

2

2

|Fk


=

1

m2
E

[
n∑

i=1

∥∥gik −∇fi
(
zik
)∥∥2

2
|Fk

]

=
1

m2
E
[
∥gk −∇F (zk)∥22 |Fk

]
,

(18)
where the first equality is obtained from the definitions
of ḡk and h̄k, and the second equality is owing to the

fact that E

[∑
i ̸=j

〈
gik −∇fi

(
zik
)
, gjk −∇fj

(
zjk

)〉
|Fk

]
= 0.

In the next step, we continue to seek the upper bound on
the expectation of variance term E

[
∥gk −∇F (zk)∥22 |Fk

]
.

Before deriving the upper bound, we first define a :=
∇fi,sik

(
zik
)
−∇fi,sik (z̃

∗) and b := ∇fi,sik
(
wi

k

)
−∇fi,sik (z̃

∗),
and then recall the definition of gik such that

E
[∥∥gik −∇fi

(
zik
)∥∥2

2
|Fk

]
=E

[∥∥∥∇fi,sik (zik)−∇fi,sik
(
wi

k

)
+∇fi

(
wi

k

)
−∇fi

(
zik
)∥∥∥2

2
|Fk

]
=E

[
∥a− E [a|Fk]− (b− E [b|Fk])∥22 |Fk

]
≤2E

[
∥a− E [a|Fk]∥22 |Fk

]
+ 2E

[
∥b− E [b|Fk]∥22 |Fk

]

=2E
[∥∥∥∇fi,sik

(
zik
)
−∇fi,sik (z̃

∗)
∥∥∥2
2
|Fk

]
+ 2E

[∥∥∥∇fi,sik
(
wi

k

)
−∇fi,sik (z̃

∗)
∥∥∥2
2
|Fk

]
− 2

∥∥∇fi
(
wi

k

)
−∇fi (z̃

∗)
∥∥2
2
− 2

∥∥∇fi
(
zik
)
−∇fi (z̃

∗)
∥∥2
2

≤2E
[∥∥∥∇fi,sik

(
zik
)
−∇fi,sik (z̃

∗)
∥∥∥2
2
|Fk

]
+ 2E

[∥∥∥∇fi,sik
(
wi

k

)
−∇fi,sik (z̃

∗)
∥∥∥2
2
|Fk

]
=

2

qi

qi∑
j=1

∥∥∇fi,j
(
zik
)
−∇fi,j (z̃

∗)
∥∥2
2

+
2

qi

qi∑
j=1

∥∥∇fi,j
(
wi

k

)
−∇fi,j (z̃

∗)
∥∥2
2︸ ︷︷ ︸

:=2∆i
k

≤4L2
(∥∥zik − x̄k

∥∥2
2
+ ∥x̄k − z̃∗∥22

)
+ 2∆i

k,

(19)
where the last inequality uses the L-smoothness of ∇fi,j .
Summing (19) over i and taking the total expectation yield

E
[
∥gk −∇F (zk)∥22 |Fk

]
≤4L2

(
∥zk − 1m ⊗ x̄k∥22 +m ∥x̄k − z̃∗∥22

)
+ 2∆k.

(20)

Plugging (20) into (18) obtains

E
[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
≤4L2

m2
∥zk − 1m ⊗ x̄k∥22 +

4L2

m
∥x̄k − z̃∗∥22 +

2

m2
∆k.

(21)

Combining (17) with (21) reduces to

E
[
∥x̄k+1−z̃∗∥22|Fk

]
≤(1−αµ+

4L2α2

m
) ∥x̄k−z̃∗∥22+

2α2

m2
∆k

+(
αL2

mµ
+
4L2α2

m2
) ∥zk − 1m ⊗ x̄k∥22 .

(22)
We next handle ∥zk − 1m ⊗ x̄k∥22 as follows:

∥zk − 1m ⊗ x̄k∥22
=
∥∥Y −1

k (xk−Y∞ (1m ⊗ x̄k))+
(
Y−1
k Y∞−Imn

)
(1m ⊗ x̄k)

∥∥2
2

≤
∥∥Y−1

k (xk−Y∞ (1m⊗x̄k))
∥∥2
2
+
∥∥(Y−1

k Y∞−Imn)(1m⊗x̄k)
∥∥2
2

+2
∥∥Y −1

k (xk−Y∞ (1m⊗x̄k))
(
Y −1
k Y∞−Imn

)
(1m⊗x̄k)

∥∥
2

≤Ỹ 2 ∥xk −A∞xk∥22 +
∥∥(Y −1

k Y∞ − Imn

)
(1m ⊗ x̄k)

∥∥2
2

+ 2Ỹ ∥xk −A∞xk∥2
∥∥(Y −1

k Y∞ − Imn

)
(1m ⊗ x̄k)

∥∥
2

≤Ỹ 2 ∥xk −A∞xk∥22 + 2TσkỸ 2∥xk −A∞xk∥2∥xk∥2
+
(
Ỹ Tσk

)2
∥xk∥22

≤π̄ (1 + T ) Ỹ 2 ∥xk −A∞xk∥2π + T (T + 1) Ỹ 2σk ∥xk∥22 ,
(23)

where the third inequality applies Lemma 3 and the last
inequality uses the fact that 0 < σ < 1. Via defining d1 :=
(1 + T ) Ỹ 2 and d2 := T (T + 1) Ỹ 2, one can attain

∥zk − 1m ⊗ x̄k∥22 ≤ π̄d1 ∥xk −A∞xk∥2π+d2σ
k ∥xk∥22 . (24)
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Recalling the definition of δ, we know d1 ≤ δ and d2 ≤ δT .
Plugging (24) into (22) yields

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤
(
1− αµ+

4L2α2

m

)
∥x̄k − z̃∗∥22 +

(
αL2

mµ
+

4L2α2

m2

)
d1π̄

×∥xk−A∞xk∥2π+
2α2

m2
∆k+

(
αL2

mµ
+
4L2α2

m2

)
d2σ

k∥xk∥22.
(25)

If one picks 0 < α ≤ m/ (4µ) on the final term, then there
holds

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤
(
1−αµ+

4L2α2

m

)
∥x̄k−z̃∗∥22 +

2π̄d1αL
2

mµ
∥xk−A∞xk∥2π

+
2L2α2

m2
∆k +

2d2αL
2σk

mµ
∥xk∥22 .

(26)
If one further chooses 0 < α ≤ mµ/

(
8L2

)
, it holds

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤
(
1− µα

2

)
∥x̄k − z̃∗∥22 +

2π̄d1αL
2

mµ
∥xk −A∞xk∥2π

+
2α2

m2
∆k +

2d2αL
2σk

mµ
∥xk∥22 .

(27)

Recall that Y ≥ 1 and Ỹ ≥ 1. Then, we have

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤
(
1− µα

2

)
∥x̄k − z̃∗∥22 +

2δπ̄αL2

mµ
∥xk −A∞xk∥2π

+
2α2

m2
∆k +

2δTαL2σk

mµ
∥xk∥22 .

(28)

Taking the total expectation on the both sides of the above
inequality yields

E
[
m ∥x̄k+1 − z̃∗∥22

]
≤
(
1−µα

2

)
E
[
m ∥x̄k−z̃∗∥22

]
+
2δπ̄αL2

µ
E
[
∥xk −A∞xk∥2π

]
+

2α2

m
E [∆k] +

2δαTL2σk

µ
E
[
∥xk∥22

]
.

(29)
In the another technical line, if we modify the first inequality
in (17) as follows:

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤(1−αµ)

2 ∥x̄k−z̃∗∥22+ α2
∥∥p̃k−h̄k

∥∥2
2
+ α2E[∥ḡk−h̄k∥22|Fk]

+ (1− αµ)
(
∥x̄k − z̃∗∥22 + α2

∥∥p̃k − h̄k

∥∥2
2

)
≤2 ∥x̄k−z̃∗∥22+

2α2L2

m
∥zk−1m⊗x̄k∥22+α2E[∥ḡk−h̄k∥22|Fk]

≤
(
2 +

4L2α2

m

)
∥x̄k − z̃∗∥22 +

6L2α2

m
∥zk − 1m ⊗ x̄k∥22

+
2α2

m2
∆k

≤
(
2 +

4L2α2

m

)
∥x̄k − z̃∗∥22 +

6π̄d1L
2α2

m
∥xk −A∞xk∥2π

+
2α2

m2
∆k +

6d2L
2α2

m
σk ∥xk∥22 , (30)

where the third inequality uses (21) and the last in-
equality applies (24), then via choosing the step-size
0 < α ≤

√
m/ (2L), the above inequality further becomes

E
[
∥x̄k+1 − z̃∗∥22|Fk

]
≤3 ∥x̄k − z̃∗∥22 +

6π̄d1L
2α2

m
∥xk −A∞xk∥2π +

2α2

m2
∆k

+
6d2L

2α2

m
σk ∥xk∥22 .

(31)

Finally, multiplying m to the both sides of (31) and taking
the total expectation yield another useful bound as follows:

E
[
m ∥x̄k+1 − z̃∗∥22

]
≤3E

[
m ∥x̄k − z̃∗∥22

]
+ 6δπ̄L2α2E

[
∥xk −A∞xk∥2π

]
+

2α2

m
E [∆k] + 6δTL2α2σkE

[
∥xk∥22

]
,

(32)

which is useful in the following steps.

In the next lemma, we seek an upper bound on the
gradient-learning error of Push-LSVRG-UP, which is an
important result for distributed stochastic optimization over
unbalanced directed netowrks distinguished from the ex-
isting distributed stochastic gradient work, such as DSA
[29], GT-SAGA/GT-SVRG [12], DSGT [13], S-ADDOPT [40],
Push-SAGA [36], PMGT-SAGA/PMGT-LSVRG [11], and
[30].

Lemma 5. Suppose that Assumptions 1 and 3 hold. Recalling the
definition of ∆k, we have

E [∆k+1]

≤
(
1− p

)
E [∆k] + 2p̄π̄d1L

2E
[
∥xk −A∞xk∥2π

]
+ 2mp̄L2E

[
∥x̄k − z̃∗∥22

]
+ 2p̄d2L

2σkE
[
∥xk∥22

]
.

(33)

Proof. Recalling the definition of ∆i
k+1, we have

E
[
∆i

k+1|Fk

]
=

1

qi
E

 qi∑
j=1

∥∥∇fi,j
(
wi

k+1

)
−∇fi,j (z̃

∗)
∥∥2
2
|Fk


=
1− pi
qi

qi∑
j=1

∥∥∇fi,j
(
wi

k

)
−∇fi,j (z̃

∗)
∥∥2
2

+
pi
qi

qi∑
j=1

∥∥∇fi,j
(
zik
)
−∇fi,j (z̃

∗)
∥∥2
2

=(1− pi)∆
i
k +

pi
qi

qi∑
j=1

∥∥∇fi,j
(
zik
)
−∇fi,j (z̃

∗)
∥∥2
2

≤
(
1− p

)
∆i

k + p̄L2
∥∥zik − z̃∗

∥∥2
2
,

(34)

where the last inequality follows the L-smoothness of ∇fi,j .
Summing (34) over i yields

E [∆k+1|Fk]

≤
(
1− p

) m∑
i=1

∆i
k + p̄L2

m∑
i=1

∥∥zik − z̃∗
∥∥2
2

≤
(
1− p

)
∆k + 2p̄L2 ∥zk − 1m ⊗ x̄k∥22 + 2mp̄L2 ∥x̄k − z̃∗∥22
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≤
(
1− p

)
∆k+2p̄π̄d1L

2 ∥xk−A∞xk∥2π+2mp̄L2 ∥x̄k − z̃∗∥22
+ 2p̄d2L

2σk ∥xk∥22 ,
(35)

where the last inequality uses the result (24). The proof is
completed by taking the total expectation on the both sides
of (35).

The upper bound on the GT error is sought in the next
lemma.

Lemma 6. Suppose that Assumptions 1 and 3
hold. Considering the sequence {vk}k≥0 generated
by Algorithm 1, if the step-size satisfies 0 < α ≤

min

{
1

2L
√
6
, 1

2LY
√

3(3Ỹ 2+16d2)
, 1−σ2

2L
√

2ϑ(9Ỹ 2+16d1+48d2)

}
,

then ∀k ≥ 0, we have

E
[
∥vk+1 −A∞vk+1∥2π

]
≤
(
3+σ2

4

)
E
[
∥vk−A∞vk∥2π

]
+
194δL2

1−σ2
E
[
∥xk−A∞xk∥2π

]
+

169π−1L2

1− σ2
E
[
m ∥x̄k − z̃∗∥22

]
+

110π−1

3 (1− σ2)
E [∆k]

+
194π−1Tδ2L2σk

1− σ2
E
[
∥xk∥22

]
.

(36)

Proof. According to (5d), we have

E
[
∥vk+1 −A∞vk+1∥2π |Fk

]
=E

[
∥Avk −A∞vk + (Imn −A∞) (gk+1 − gk)∥2π |Fk

]
≤1+σ2

2
E
[
∥vk−A∞vk∥2π |Fk

]
+

2

1−σ2
E
[
∥gk+1−gk∥2π |Fk

]
,

(37)
where the inequality applies Lemma 1 and the Young’s
Inequality. We next handle E

[
∥gk+1 − gk∥2π |Fk

]
as follows:

E
[
∥gk+1 − gk∥2π |Fk

]
≤2E

[
∥gk+1 − gk −∇F (zk+1) +∇F (zk)∥2π |Fk

]
+ 2 ∥∇F (zk+1)−∇F (zk)∥2π

≤2π−1L2 ∥zk+1 − zk∥22 + 4π−1E
[
∥gk −∇F (zk)∥2π |Fk

]
+ 4π−1E

[
E
[
∥gk+1 −∇F (zk+1)∥2π |Fk+1

]
|Fk

]
.

(38)
It follows from (20) that

E
[
∥gk −∇F (zk)∥2π |Fk

]
≤4π̄d1L

2 ∥xk −A∞xk∥2π + 4mL2 ∥x̄k − z̃∗∥22 + 2∆k

+ 4d2L
2σk ∥xk∥22 ,

(39)

where the inequality applies (24). Similarly,

E
[
E
[
∥gk+1 −∇F (zk+1)∥2π |Fk+1

]
|Fk

]
≤4L2 ∥zk+1 − 1m ⊗ x̄k+1∥22 + 4mL2 ∥x̄k+1 − z̃∗∥22
+ 2E [∆k+1|Fk]

≤4d1π̄L
2 ∥xk+1 −A∞xk+1∥2π + 4d2L

2σk+1 ∥xk+1∥22
+ 4mL2 ∥x̄k+1 − z̃∗∥22 + 2E [∆k+1|Fk]

≤8π̄d1L
2α2E

[
∥vk−A∞vk∥2π |Fk

]
+4mL2 (3+p̄) ∥x̄k−z̃∗∥22

+ 4π̄d1L
2
(
6L2α2 + p̄+ 2

)
∥xk −A∞xk∥2π

+ 2

(
4L2α2

m
+
(
1− p

))
∆k + 8d2L

2α2σkE
[
∥vk∥22 |Fk

]
+ 4d2L

2
(
6L2α2 + p̄+ 2

)
σk ∥xk∥22 ,

(40)
where the last inequality uses the results from Lemmas 2,
4-5. Considering 0 < p ≤ p̄ ≤ 1 and picking the step-size as

0 < α ≤ 1/
(
2L

√
6
)

, one can further obtain

E
[
E
[
∥gk+1 −∇F (zk+1)∥2π |Fk+1

]
|Fk

]
≤13π̄d1L

2 ∥xk−A∞xk∥2π+16mL2 ∥x̄k − z̃∗∥22+
6m+1

3m
∆k

+ 8π̄d1L
2α2 ∥vk −A∞vk∥2π + 13d2L

2σk ∥xk∥22
+ 8d2L

2α2σkE
[
∥vk∥22 |Fk

]
.

(41)
We continue to handle ∥zk+1 − zk∥22 in (38) as follows:

∥zk+1 − zk∥22
=
∥∥Y −1

k+1 (A− Imn)xk − αY −1
k+1vk +

(
Y −1
k+1 − Y −1

k

)
xk

∥∥2
2

≤
∥∥Y −1

k+1 (A− Imn) (xk −A∞xk)
∥∥2
2
+ Ỹ 2α2 ∥vk∥22

+
∥∥Y −1

k (Yk − Yk+1)Y
−1
k+1

∥∥2
2
∥xk∥22

+ 2
∥∥Y −1

k+1 (A− Imn)xk

∥∥
2

∥∥αY −1
k+1vk

∥∥
2

+ 2
∥∥αY −1

k+1vk
∥∥
2

∥∥Y −1
k+1 − Y −1

k

∥∥
2
∥xk∥2

+ 2
∥∥Y −1

k+1 (A− Imn)xk

∥∥
2

∥∥Y −1
k+1 − Y −1

k

∥∥
2
∥xk∥2

≤12π̄Ỹ 2 ∥xk −A∞xk∥2π + 3Ỹ 2α2 ∥vk∥22
+ 12T 2Ỹ 4σ2k ∥xk∥22 ,

(42)
where the last inequality applies Lemma 2 and the results
from [24, Lemma 8]. Then, taking the total expectation on
the both sides of (42) yields

E
[
∥zk+1 − zk∥22

]
≤12π̄Ỹ 2E

[
∥xk −A∞xk∥2π

]
+ 3Ỹ 2α2E

[
∥vk∥22 |Fk

]
+ 12T 2Ỹ 4σ2kE

[
∥xk∥22

]
.

(43)

We next handle E
[
∥vk∥22 |Fk

]
in both (41) and (43) as

follows:

E
[
∥vk∥22 |Fk

]
≤3E

[
∥vk − Y∞ (1m ⊗ ḡk)∥22 |Fk

]
+ 3 ∥Y∞ (1m ⊗ p̃k)∥22

+ 3E
[
∥Y∞ (1m ⊗ ḡk)− Y∞ (1m ⊗ p̃k)∥22 |Fk

]
≤3π̄E

[
∥vk −A∞vk∥2π |Fk

]
+ 6mY 2E

[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
+ 6mY 2

∥∥h̄k − p̃k
∥∥2
2
+ 3mY 2

∥∥∥p̃k −∇f̃ (z̃∗)
∥∥∥2
2

≤3π̄E
[
∥vk −A∞vk∥2π |Fk

]
+ 6mY 2E

[∥∥ḡk − h̄k

∥∥2
2
|Fk

]
+ 6L2Y 2 ∥zk − 1m ⊗ x̄k∥22 + 3L2Y 2 ∥x̄k − z̃∗∥22

≤3π̄E
[
∥vk −A∞vk∥2π |Fk

]
+ 30π̄d1L

2Y 2 ∥xk −A∞xk∥2π

+ 27L2Y 2 ∥x̄k − z̃∗∥22 +
12Y 2

m
∆k + 30d2L

2Y 2σk ∥xk∥22 ,
(44)
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where the third inequality uses the L-smoothness of the
local objective functions, and the last inequality applies (21)
and (24). Then, combining (44) and (41) obtains

E
[
E
[
∥gk+1 −∇F (zk+1)∥2π |Fk+1

]
|Fk

]
≤π̄d1L

2
(
13 + 240d2Y

2α2L2σk
)
∥xk −A∞xk∥2π

+ 8L2
(
2m+ 27d2Y

2α2L2σk
)
∥x̄k − z̃∗∥22

+
1

m

(
6m+ 1

3
+ 96d2Y

2L2α2σk

)
∆k

+ 8π̄L2α2
(
d1 + 3d2σ

k
)
∥vk −A∞vk∥2π

+ d2L
2
(
13 + 240d2Y

2α2L2σk
)
σk ∥xk∥22 ,

(45)

and plugging (44) into (42) gives

E
[
∥zk+1 − zk∥22 |Fk

]
≤6π̄Ỹ 2

(
2 + 15d1L

2Y 2α2
)
∥xk −A∞xk∥2π+

36Y 2Ỹ 2α2

m
∆k

+81L2Y 2Ỹ 2α2 ∥x̄k−z̃∗∥22+9π̄Ỹ 2α2E[∥vk−A∞vk∥2π|Fk]

+ 6Ỹ 2
(
15d2L

2Y 2α2 + 2T 2Ỹ 2σk
)
σk ∥xk∥22 .

(46)
Then, plugging (39), (45), and (46) into (38) reduces to

E
[
∥gk+1 − gk∥2π |Fk

]
≤ϑL2

(
24Ỹ 2 + 68d1 + 60d1L

2Y 2
(
3Ỹ 2 + 16d2

)
α2
)

×
∥∥∥xk −A∞xk

∥∥∥2
π

+ π−1L2
(
80m+ 54L2Y 2

(
3Ỹ 2+16d2

)
α2
)
∥x̄k − z̃∗∥22

+
4π−1

m

(
12m+ 1

3
+
(
18Ỹ 2 + 96d2

)
L2Y 2α2

)
∆k

+ ϑ
(
9Ỹ 2 + 16d1 + 48d2

)
L2α2E

[
∥vk −A∞vk∥2π |Fk

]
+
(
24T 2Ỹ 4σk + 68d2 + 60d2L

2Y 2
(
3Ỹ 2 + 16d2σ

k
)
α2
)

× π−1L2σk ∥xk∥22 ,
(47)

where the inequality uses the fact that 0 < σ < 1. Then,
combing (37) with (47) obtains

E
[
∥vk+1 −A∞vk+1∥2π |Fk

]
≤

1 + σ2

2
+

2ϑ
(
9Ỹ 2 + 16d1 + 48d2

)
L2α2

1− σ2


× E

[
∥vk −A∞vk∥2π |Fk

]
+

48Ỹ 2 + 136d1
1− σ2

+
120d1

(
3Ỹ 2 + 16d2

)
L2Y 2α2

1− σ2


× ϑL2 ∥xk −A∞xk∥2π

+

(
160m

1−σ2
+
108(3Ỹ 2+16d2)L

2Y 2α2

1− σ2

)
π−1L2 ∥x̄k−z̃∗∥22

+

 96m+ 8

3m (1− σ2)
+

24
(
3Ỹ 2 + 16d2

)
L2Y 2α2

m (1− σ2)

π−1∆k

+

48T 2Ỹ 4 + 136d2
1− σ2

+
120d2

(
3Ỹ 2 + 16d2

)
L2Y 2α2

1− σ2


× π−1L2σk ∥xk∥22 .

(48)

Via choosing 0 < α ≤ 1/

(
2LY

√
3
(
3Ỹ 2 + 16d2

))
for the first term and 0 < α ≤(
1− σ2

)
/

(
2L

√
2ϑ
(
9Ỹ 2 + 16d1 + 48d2

))
for the rest

terms in the left-hand-side of (48), one can obtain

E
[
∥vk+1 −A∞vk+1∥2π |Fk

]
≤
(
3 + σ2

4

)
E
[
∥vk −A∞vk∥2π |Fk

]
+

(
48Ỹ 2 + 146d1

1− σ2

)

× ϑL2∥xk −A∞xk∥2π +

(
160m+ 9

1−σ2

)
π−1L2∥x̄k − z̃∗∥22

+

(
48T 2Ỹ 4 + 146d2

1− σ2

)
π−1L2σk ∥xk∥22 .

(49)
Recalling the definitions of d1, d2, and δ, it holds that ϑỸ 2 ≤
ϑd1 ≤ δ. Therefore, one can rewrite (49) as follows:

E
[
∥vk+1 −A∞vk+1∥2π |Fk

]
≤
(
3+σ2

4

)
E
[
∥vk−A∞vk∥2π |Fk

]
+
194δL2

1−σ2
∥xk−A∞xk∥2π

+
169mπ−1L2

1− σ2
∥x̄k − z̃∗∥22 +

110π−1

3 (1− σ2)
∆k

+
194π−1Tδ2L2σk

1− σ2
∥xk∥22 .

(50)
Taking the total expectation on the both sides of (50) com-
pletes the proof.

Based on Lemmas 2, 4-6, it is straightforward to build a
DLTI system in the following proposition.

Proposition 1. Suppose that Assumptions 1-3 hold. If the step-
size satisfies 0 < α ≤

(
1− σ2

)√
p/ (28LQδ

√
p̄), then ∀k ≥ 0,

the following DLTI system inequality holds

tk+1 ≤ Hαtk +Gkτk, (51)

where the inequality is taken element-wise and the vectors are
defined as:

tk :=


E
[
∥xk −A∞xk∥2π

]
E
[
m ∥x̄k − z̃∗∥22

]
E [∆k]

E
[
∥vk −A∞vk∥2π

]

 , τk :=


E
[
∥xk∥22

]
0
0
0

 ,
and the matrices are indicated by

Hα :=


1+σ2

2 0 0 2α2

1−σ2

2π̄δαL2

µ 1− µα
2

2α2

m 0

2p̄π̄d1L
2 2mp̄L2 1− p 0

194δL2

1−σ2
169π−1L2

1−σ2
110π−1

3(1−σ2)
3+σ2

4

 ,
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Gk :=


0 0 0 0

2δαL2

µ 0 0 0

2p̄d2L
2 0 0 0

194π−1L2δ2

1−σ2 0 0 0

Tσk.

With the help of Proposition 1, we aim at solving for a
specific range of the constant step-size α to guarantee that
ρ (Hα) < 1 (see Appendix), which is a necessary condition
to establish the linear convergence of Algorithm 1. Note that
Gk decays linearly at the rate of σ.

5 EXPERIMENTAL RESULTS

To manifest the effectiveness and practicability of Push-
LSVRG-UP, we provide two case studies to compare them
with existing state-of-art distributed algorithms over both
unbalanced directed networks and undirected networks.
The total number of training samples is denoted as N ,
which is randomly and evenly allocated among m agents.
Then, each agent i, i ∈ V , maintains qi = N/m local
samples. We denote cij ∈ Rn as the j-th training sample,
and bij ∈ {+1,−1} is the corresponding label accessed only
by agent i, i ∈ V . In the following simulations, the optimal
gap is indicated by residual: (1/m)

∑m
i=1

∥∥zik − z̃∗
∥∥
2
, and

each epoch indicates an effective pass of the local samples.
To investigate extensively the convergence performance of
Push-LSVRG-UP, we also consider the special case of Push-
LSVRG-UP, i.e., fixing the uncoordinated triggered proba-
bilities pi as a coordinated one with pi = p, i ∈ V . This spe-
cial case of Push-LSVRG-UP is named Push-LSVRG in the
sequel. Throughout the simulations, The coordinated trig-
gered probabilities of Push-LSVRG is fixed as p = 1/Q and
the uncoordinated triggered probability of Push-LSVRG-UP
is randomly selected in an interval: 1/Q ≤ pi ≤ m/Q,
i ∈ V . All simulations are carried out in MATLAB on a
Dell PowerEdge R740 with 2.10 GHz, 26 Cores, 52 Threads,
Intel Xeon Gold 6230R processor and 256GB memory.

Fig. 2: An unbalanced directed network with m = 30.

5.1 Case Study One: Distributed Logistic Regression
In the first case study, Push-LSVRG, Push-LSVRG-UP

and the other tested distributed algorithms are utilized to

identify whether a mushroom is poisonous or not according
to its different features, such as “gill-color”, “stalk-root”,
“veil-type”,“cap-shape”, “habitat” and so on. Each feature
may contains several options, for example, the options of
“cap-shape” are varied from “bell”, “conical”, “convex”,
“flat”, “knobbed”, and “sunken”. Mushroom dataset pro-
vided by UCI Machine Learning Repository [44] contains a
total number of 8124 samples and each sample has n = 112
dimensions that indicate different features. We randomly
choose N = 6000 samples from the total samples to train
the discriminator and the rest of samples are used for
testing. Specifically, a network of m = 30 agents train

0 10 20 30 40 50 60 70 80 90 100

Epochs

10-10

10-8

10-6

10-4

10-2

100

R
e
si

d
u
a
l

Mushroom

2200 2250 2300 2350 2400 2450 2500
10-4

10-2

(a) Training performance.

0 10 20 30 40 50 60 70 80 90 100

Epochs

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

A
cc

u
ra

cy

Mushroom

0 0.5 1 1.5 2 2.5 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Testing performance.

Fig. 3: Performance comparison over epochs.
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(b) Testing performance.

Fig. 4: Performance comparison over CPU running time.

cooperatively a regularized logistic regression model for
binary classification as follows:

min
z̃∈Rn

f̃ (z̃) :=
β

2
∥z̃∥22+

1

m

m∑
i=1

1

qi

qi∑
j=1

log
(
1+exp

(
−bijc

⊤
ij z̃
))

,

(52)
where β is the regularized constant and we set β = 5
in this case study. Note that bij = +1 when the sample
cij is poisonous while bij = −1 when the sample cij is
edible. To solve (52) in a distributed framework, we con-
duct the simulation in a multi-agent system with strongly-
connected unbalanced directed networks and each agent
has 6 out-neighbors as shown in Fig. 2. Through utilizing
a powerful ”centrality” function in Matlab, Fig. 2 maps
different ”authorities” of agents to various color. Further-
more, the number of the total training samples is allocated
equally to all agents. Therefore, each agent i maintains
qi = N/m = 200 training samples. Figs. 3(a)-4(a) and
Figs. 3(b)-4(b) show respectively the training performance
and testing performance of all the tested algorithms. From
Figs. 3-4, one can apparently see that Push-LSVRG and
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Push-LSVRG-UP achieve higher accuracy faster than all
the other tested algorithms in terms of both epochs and
CPU running time over an unbalanced directed network
as shown in Fig. 2. In Fig. 4, even though S-ADDOPT [40]
also reaches this highest accuracy in a fast way, it is rela-
tively unstable when achieving the highest testing accuracy.
This phenomenon is understandable since S-ADDOPT is
an inexact distributed stochastic algorithm. To further ex-
plore the impact of network sizes towards the convergence
performance, we compare all the tested algorithms over
three exponential networks [45] as shown in Figs. 5(a)-5(c).
These exponential networks only differ on the number of
agents and they share the same network structure. It is

(a) m = 4. (b) m = 8. (c) m = 16.

Fig. 5: Exponential unbalanced directed networks with dif-
ferent agents.
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Fig. 6: Convergence performance comparison over epochs
with different network sizes.
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Fig. 7: Convergence performance comparison over CPU
running time with different network sizes.

worth mentioning that when the network size m changes,
the studied optimization problem also changes according to
(1), which means that the global optimal solutions of all the
tested algorithms over Figs 5(a)-5(c) are different. Therefore,
we cannot simply compare the convergence performance
of all the tested algorithms over different network sizes.
Nevertheless, some interest results can still be obtained from

Figs. 6-7. Specifically, when the network size is increased
from Fig. 5(a) to Fig. 5(c), Figs. 7(a)-7(c) show that Push-
LSVRG-UP has certain acceleration than the other tested
algorithms regarding CPU running time with different net-
work sizes. We note that Push-LSVRG-UP does not require
any additional storage, which is an important advantage
to SAGA-based algorithms, for instance Push-SAGA [36],
since these algorithms requires an expensive storage cost of
O (nqi) under the same structured large-scale optimization
problem. However, even though Push-LSVRG-UP shows its
priority in both CPU running time and a less requirement of
storage to Push-SAGA, Figs. 6(a)-6(c) demonstrate that the
convergence performance comparison in terms of epochs
between Push-LSVRG-UP and Push-SAGA is on a case-by-
case basis. In some cases, Push-SAGA can achieve certain
accelerated convergence in terms of epochs than Push-
LSVRG-UP at the expense of expensive storage costs.

5.2 Case Study Two: Distributed Support Vector Ma-
chine with Smoothed Hinge Loss

In the second case study, we show the accelerated con-
vergence of Push-LSVRG-UP in contrast to the existing
notable distributed optimization algorithms in a large-scale
multi-agent system over undirected networks.

Fig. 8: An undirected net-
work with m = 100.

Fig. 9: 100 random samples
from MNIST dataset.

Specifically, a network of m = 100 agents cooperatively
solve for a support vector machine model to train a separat-
ing hyperplane via optimizing the following nonlinear cost
function

min
ω∈Rn,υ∈R

f̃ (ω, υ) :=
1

2

(
∥ω∥22 + υ2

)
+

1

m

m∑
i=1

λ

qi

qi∑
j=1

h
(
bij
(
c⊤ijω + υ

))
,

(53)
where λ is a penalty constant in this simulation; the hinge
loss function h (u) is initially introduced in [46] as follows:

h (u) =


−0.5− u, if u < 0,

0.5(1− u)
2
, if 0 ≤ u < 1,

0, if 1 ≤ u.

(54)

To solve (54) in a distributed manner, we need to define

z̃ =
[
ω⊤, υ

]⊤ ∈ Rn+1 and c̃ij =
[
c⊤ij , 1

]⊤
∈ Rn+1. The sim-

ulation is based on a multi-agent system over a randomly-
generated undirected network as depicted in Fig. 8 with
network connectivity ratio 0.2. A total number of 12000
samples of number 1 and 7 is randomly chosen from the
MNIST dataset [47], from which we randomly select 8000
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Fig. 10: Performance comparison over epochs.
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Fig. 11: Performance comparison over CPU running time.

samples from the total samples for training the separating
hyperplane, and the rest samples are used for testing. Note
that bij = +1 when the sample cij is number 7 while
bij = −1 when the sample cij is number 1. Fig. 9 visualizes
100 samples randomly selected from the MNIST dataset
and each sample is quantified as a n = 784-dimensional
vector. We set the penalty parameter as λ = 0.01 and the
total training samples are allocated evenly to each agent in
Fig. 8. Therefore, each agent i maintains qi = N/m = 80
training samples. Via employing a powerful ”centrality”

(a) A ring network. (b) A mesh network.

(c) A symmetric exponential net-
work.

(d) A full-connected network.

Fig. 12: Different network topologies with m = 8 agents.

function in Matlab, Fig. 8 maps different ”closeness” of each
agent with the other agents to various color. From Figs. 10-
11, one can see that Push-LSVRG-UP achieves accelerated
convergence than the other tested algorithms in terms of
both epochs and CPU running time over an undirected
network as shown in Fig. 8. Especially when compared with
the batch gradient algorithms EXTRA [16] and GT-DGD
[17], [18], the accelerated performance is more obvious. Note
that the inner loop number of GT-SVRG [12] is set as Q. To
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Fig. 13: Convergence performance comparison under differ-
ent network topologies.
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Fig. 14: Convergence performance comparison under differ-
ent numbers of samples.

further investigate the impact of network topologies on the
convergence performance of Push-LSVRG-UP, four different
network topologies are constructed as shown in Figs. 12(a)-
12(d) and these network topologies are not uncommon in
practice. Figs. 13(a)-13(b) show the convergence of Push-
LSVRG-UP over these four different network topologies in
terms of both epochs and CPU running time. From these two
figures, one can see that Push-LSVRG-UP converges faster
over symmetric exponential network Fig. 12(c) in terms of
epochs and ring network Fig. 12(a) in terms of CPU running
time, respectively. However, the performance difference of
Push-LSVRG-UP over these four network topologies is not
obvious. To study the convergence performance of Push-
LSVRG-UP under different numbers of samples, we uti-
lize a set of N = 2000, 4000, 6000, 8000, 10000 samples
to compare the convergence performance of Push-LSVRG-
UP over symmetric exponential network Fig. 12(c). Fig. 14
shows that when the number of samples becomes larger, the
convergence of Push-LSVRG-UP regarding epochs becomes
faster while the convergence of Push-LSVRG-UP regarding
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CPU running time becomes slower. These results are under-
standable since when the number of samples becomes larger
and the other parameters of Push-LSVRG-UP remain un-
changed, each epoch indicates more gradient computation
and each agent needs to spend more time on computing the
local batch gradients than before.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we first proposed a distributed stochastic
optimization algorithm named Push-LSVRG-UP to resolve
large-scale optimization problems over unbalanced directed
networks in a consensus manner. In theoretical aspects, a
linear exact convergence rate, the iteration complexity and
an explicit feasible step-size interval are derived, which
are the first results of the LSVRG-type method in multi-
agent systems over generic unbalanced directed networks.
In simulations, we provided two case studies to mani-
fest the effectiveness and practicability of Push-LSVRG-UP.
The results of these two case studies also demonstrated
the improved performance of Push-LSVRG-UP over both
undirected networks and unbalanced directed networks.
However, Push-LSVRG-UP is not perfect and the robustness
of Push-LSVRG-UP has potential to be enhanced as Push-
LSVRG-UP depends on certain network synchrony at each
iteration and is also not immune to possible failures of
communication links.

APPENDIX
PROOF OF THEOREM 1

Before establishing the linear convergence of Algorithm
1, we first show stability of the DLTI system matrix Hα in
the sequel lemma.

Lemma 7. Suppose that Assumptions 1-3 hold. If the step-size
satisfies 0 < α ≤ (1− σ)

2
pmin

{
1/6µ, 1/480δµQ2p̄

}
, then

we have

0 < ρ (Hα) ≤ ∥Hα∥θ∞ ≤ η := 1− µα

4
< 1, (55)

where ∥Hα∥θ∞ is a matrix norm induced by
its corresponding max-vector norm and θ =[
1, 9π̄δQ2, 60π̄δL2Q2p̄/p, 20165p̄ϑδL2Q2/

(
p
(
1− σ2

)2)]⊤
is one of the feasible choices.

Proof. To begin with, similar with [37], we aim at solving
for a proper interval of the step-size α and a positive vector
θ = [θ1, θ2, θ3, θ4]

⊤ such that Hαθ ≤ ηθ, then ρ (Hα) ≤
∥Hα∥θ∞ ≤ η with η = 1− µα/4, which is equivalent to

1 + σ2

2
θ1 +

2α2

1− σ2
θ4≤

(
1− µα

4

)
θ1, (56a)

2π̄δαL2

µ
θ1 +

(
1− µα

2

)
θ2 +

2α2

m
θ3≤

(
1− µα

4

)
θ2, (56b)

2p̄π̄d1L
2θ1 + 2mp̄L2θ2 +

(
1− p

)
θ3≤

(
1− µα

4

)
θ3, (56c)

194δL2θ1
1− σ2

+
169π−1L2θ2

1− σ2
+
110π−1θ3
3(1−σ2)

+
3+σ2

4
θ4≤(1−

µα

4
)θ4.

(56d)

To proceed, we rearrange (56) as follows:

2α2

1− σ2
θ4 +

µα

4
θ1 ≤ 1− σ2

2
θ1, (57a)

2α

m
θ3 ≤ µ

4
θ2 −

2π̄δL2

µ
θ1, (57b)

2p̄π̄d1L
2θ1 +

µα

4
θ3 ≤ pθ3 − 2mp̄L2θ2, (57c)

µα

4
θ4≤

1−σ2

4
θ4 −

110π−1

3 (1− σ2)
θ3−

169π−1L2

1−σ2
θ2−

194δL2

1−σ2
θ1.

(57d)

Notice that if the right-hand-side of (57) is positive, then one
can always find some feasible range of step-size to satisfy
the relationships. We first need to determine the positive
vector θ as follows:

θ2 > 8π̄δQ2θ1 > 0, (58a)

θ3 > 6L2θ2
p̄

p
> 0, (58b)

θ4 >
4

1−σ2

(
110π−1

3 (1−σ2)
θ3+

169π−1L2

1−σ2
θ2+

194δL2

1−σ2
θ1

)
> 0.

(58c)

Although there are many feasible vectors θ, here we can
pick a feasible one as follows: θ1 = 1, θ2 = 9π̄δQ2, θ3 =

22mπ̄δL2Q2p̄/p, and θ4 = 25300p̄ϑδL2Q2/
(
p
(
1− σ2

)2).
Then, according to (57a)-(57d), one can find respectively

0 < α ≤
mp

480p̄µQ2
, (59a)

0 < α ≤
p
(
1− σ2

)
5µp̄

, (59b)

0 < α ≤
p
(
1− σ2

)2
300p̄LQ

√
1

ϑδ
, (59c)

0 < α ≤
p

6µ
. (59d)

Since 1− σ < 1− σ2, 0 < p ≤ p̄ ≤ 1, and m ≥ 1, combining
(59) with the step-size condition given in Proposition 1, then
one can choose a more tight feasible range as follows:

0 < α ≤ (1− σ)
2
pmin

{
1

6µ
,

1

480δµQ2p̄

}
, (60)

which determines 0 < η = 1− µα/4 < 1.

Base on Lemma 7, the following lemma establishes the
linear convergence of Push-LSVRG-UP and the iteration
complexity with respect to ϵ-accurate solution.

Lemma 8. Suppose that Assumptions 1-3 hold. If one sets
0 < α ≤ (1− σ) pmin {1/6µ, (1− σ) /480δLQp̄}, then

∥tk∥2 converges linearly to zero at the rate of O
(
(η + ζ)

k
)

,
where 0 < η + ζ < 1 and ζ is arbitrary small.

Proof. Via writing recursively (51), one can attain

tk ≤ Hk
αt0 +

k−1∑
l=0

Hk−l−1
α Glτl. (61)

Taking the norm on the both sides of (61) yields

∥tk∥2 ≤ ∥t0∥2
∥∥∥Hk

α

∥∥∥
2
+

k−1∑
l=0

∥∥∥Hk−l−1
α Gl

∥∥∥
2
∥τl∥2. (62)
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There exist some constants γ̃1 > 0 and γ2 > 0 such that∥∥Hk
α

∥∥
2
≤ γ̃1η

k and ∥Gk∥2 = γ2σ
k. Then, different from

[24], [36], [40], here we let 0 < α ≤ 4 (1− σ) /µ such that
0 < σ ≤ η and further define γ := γ̃1γ2/η such that for
0 ≤ l ≤ k − 1, it holds

∥tk∥2 ≤
(
∥t0∥2γ̃1 + γ

k−1∑
l=0

∥τl∥2

)
ηk

=

(
γ1 + γ

k−1∑
l=0

∥τl∥2

)
ηk,

(63)

where γ1 := ∥t0∥2γ̃1. Moreover, it can be verified that

∥xl∥22 = ∥xl −A∞xl +A∞xl − Y∞z∗ + Y∞z∗∥22
≤3π̄ ∥xl−A∞xl∥2π+3mY 2 ∥x̄l− z̃∗∥22+3mY 2 ∥z̃∗∥22 ,

(64)
which gives

E
[
∥xl∥22

]
≤ 3

(
π̄ + Y 2

)
E [∥tl∥2] + 3mY 2E

[
∥z̃∗∥22

]
. (65)

Then, via setting b := 3γ
(
π̄ + Y 2

)
and c :=

3γmY 2E
[
∥z̃∗∥22

]
, we have

∥tk∥2 ≤
(
γ1 + kc+ b

k−1∑
l=0

∥tl∥2

)
ηk. (66)

Let uk =
∑k−1

l=0 ∥tl∥2, ck := (γ1 + kc) ηk, and bk := bηk, and
then it can be verified that

∥tk∥2 = uk+1 − uk ≤ (γ1 + kc+ buk) η
k, (67)

which gives
uk+1 ≤ (1 + bk)uk + ck. (68)

Since {uk}k≥0, {bk}k≥0, and {ck}k≥0 are nonnegative se-
quences, together with

∑∞
k=0 bk < ∞ and

∑∞
k=0 ck < ∞,

it follows from [23, Lemma 7] that the sequence {uk}k≥0
converges and is thus bounded. Therefore, via choosing
∀ϖ ∈ (η, 1), one can obtain

lim
k→∞

∥tk∥2
ϖk

≤ lim
k→∞

(γ1 + kc+ buk) η
k

ϖk
= 0. (69)

That is to say ∥tk∥2 = O
(
ϖk
)
, which means that there exists

some constant χ > 0 such that ∀k ≥ 0,

∥tk∥2 ≤ χ(η + ζ)
k
, (70)

where ζ is an arbitrarily small positive constant satisfying
0 < η+ζ < 1. One can utilize the above results to derive the
iteration complexity of Push-LSVRG-UP in the following. To
begin with, recalling (5), we have

E
[
∥zk − 1m ⊗ z̃∗∥22

]
≤3Ỹ 2E

[
∥xk −A∞xk∥22

]
+ 3Ỹ 2Y 2E

[
m ∥x̄k − z̃∗∥22

]
+ 3m

∥∥Y −1
k Y∞ − Imn

∥∥2
2
E
[
∥z̃∗∥22

]
≤3π̄Ỹ 2∥tk∥2 + 3Ỹ 2Y 2∥tk∥2 + 3mY 2T 2σ2kE

[
∥z̃∗∥22

]
≤3Ỹ 2

(
π̄ + Y 2

)
χ(η + ζ)

k
+ 3mY 2T 2(η + ζ)

kE
[
∥z̃∗∥22

]
,

(71)

where the last inequality uses the fact that 0 < σ ≤ η < 1.
Via defining φ := 3Ỹ 2

(
π̄ + Y 2

)
χ+ 3mY 2T 2E

[
∥z̃∗∥22

]
, we

have
E
[
∥zk − 1m ⊗ z̃∗∥22

]
≤ φ(η + ζ)

k
. (72)

Then, to attain an ϵ-accurate solution, i.e.,
E
[
∥zk − 1m ⊗ z̃∗∥22

]
≤ ϵ, one needs

E
[
∥zk − 1m ⊗ z̃∗∥22

]
≤ φ(1− (1− (η + ζ)))

k ≤ ϵ. (73)

For ϕ ∈ (0, 1), we always have 1− ϕ ≤ e−ϕ. Therefore, one
can solve for a sufficient condition as follows:

(1− (1− (η + ζ)))
k ≤ e−(1−(η+ζ))k ≤ ϵ

φ
, (74)

which leads to (7) according to (55).
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