
HKUST SPD - INSTITUTIONAL REPOSITORY

Title An Incentive-Compatible Mechanism for Decentralized Storage Network

Authors Vakilinia, Iman; Wang, Weihong; Xin, Jiajun

Source IEEE Transactions on Network Science and Engineering, February 2023, article number
10045808

Version Accepted Version

DOI 10.1109/TNSE.2023.3245326

Publisher IEEE

Copyright © 2023 IEEE.

License Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

This version is available at HKUST SPD - Institutional Repository (https://repository.hkust.edu.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1109/TNSE.2023.3245326
https://repository.hkust.edu.hk

1

An Incentive-Compatible Mechanism for
Decentralized Storage Network

Iman Vakilinia, Senior Member, IEEE, Weihong Wang, and Jiajun Xin,

Abstract—The dominance of a few big companies in the storage market arising various concerns including single point of failure,

privacy violation, and oligopoly. To eliminate the dependency on such a centralized storage architecture, several Decentralized Storage

Network (DSN) schemes such as Filecoin, Sia, and Storj have been introduced. DSNs leverage blockchain technology to create a

storage platform such that the micro storage providers can also participate in the storage market. To verify the accurate data storage by

the storage providers during a storage contract, DSNs apply a Proof of Storage (PoS) scheme to continuously inspect the storage

service. However, continuous verification of the storage provider imposes an extra cost to the network and therefore end-users.

Moreover, DSN’s PoS verification is vulnerable to a service denying attack in which the storage provider submits valid PoS to the

network while denying the service to the client.

Considering the benefits and existing challenges of DSNs, this paper introduces a novel incentive-compatible DSN scheme. In this

scheme, the PoS is conducted only if the client submits a challenge request. We model the storage service as a non-cooperative

repeated dynamic game and set the players’ payoffs such that the storage provider’s dominant strategy is to honestly follow the storage

contract. Our proposed mechanism leverages the smart-contract and oracle network to govern the storage agreement between the

client and storage provider efficiently. Furthermore, our scheme is independent of a specific blockchain platform but can be plugged

into any blockchain platform with smart-contract execution capability. As a proof of concept, we have implemented our scheme using

solidity language and chainlink oracle network. The performance analysis demonstrates the applicability of our scheme.

The outcome of this paper is a new incentive-compatible mechanism designed carefully for the blockchain-based DSN. The proposed

mechanism utilizes different tools including game-theory, smart-contract, oracle network, and Merkle tree to improve the security and

performance of storage verification in DSN.

Index Terms—Decentralized Storage Network, Blockchain, Smart Contract, Mechanism Design

✦

1 INTRODUCTION

NOWADAYS giant companies dominate the data storage
market. The centralized architecture of such storage

providers arises a number of concerns. First, data centers
are more vulnerable to the single point of failure causing
the data breach, data outage, and facilitating censorship.
Second, such companies misuse clients’ personal data to
earn more profit. Third, prices and rules are dictated by
a few big players causing oligopoly. This is due to the
lack of competitiveness and the small number of service
providers [1].

The Decentralized Storage Network (DSN) has offered
a storage platform where micro storage providers can also
participate in the storage market. DSNs leverage blockchain
technology to facilitate the management of the storage
service. Blockchain applies the distributed ledger to store
transaction histories, and the information is stored across a
network of computers instead of on a single server. Utilizing
the smart contract, various incentivization mechanisms can
be developed on top of the blockchain to automatically
moves digital assets following arbitrary pre-specified rules.

DSNs provide an algorithmic storage market to clients
and storage providers. The client can outsource the data
storage by making a payment to the network. On the other

• I.Vakilinia is with the School of Computing, University of North Florida,
Jacksonville, FL, 32224.
E-mail: i.vakilinia@unf.edu

• W.Wang and J.Xin are with The Hong Kong University of Science and
Technology.

hand, the storage providers share their storage resources
with the network in return for a premium. To satisfy data
confidentiality, clients’ data is encrypted end-to-end at the
client side and storage providers do not have access to
the decryption keys. This can offer enhanced security and
privacy by eliminating the central entity that controls the
data. Moreover, micro storage providers can rent out their
excessive storage resources, improve the network through-
put and reduce the maintenance cost of data centers. As
a result, the storage service can be delivered cheaper with
more players and options.

One of the main challenges in the decentralized storage
network is to verify the correct storage of data by the storage
provider. To this end, a DSN platform should be equipped
with a Proof of Storage (PoS) scheme to monitor the honest
behavior of the storage provider for storing the outsourced
data intact [2]. Currently, DSNs perform PoS periodically
during the storage contract to ensure the accurate storage of
the data by the storage provider [3], [4], [5]. However, such
a continuous verification is costly and it is vulnerable to a
malicious storage provider that submits PoS to the DSN’s
nodes while refusing service to the client.

To improve the DSN’s performance and protect the client
from service denying attack, in this paper, we present and
analyze a novel decentralized storage scheme in which
it is not required to verify the storage service constantly
but only once challenged. To this end, we design a new
Incentive-Compatible mechanism such that players achieve
their best outcomes by choosing their actions truthfully.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

2

More specifically, we design a non-cooperative repeated
dynamic game such that the storage provider’s strategy
for honestly sharing the stored data is the only subgame-
perfect equilibrium. We utilize the smart contract and oracle
network to enforce the rules of our proposed storage game.
Eliminating the continuous storage verification improves
the performance of DSN significantly. On the other hand,
our incentive design supports clients from the service deny-
ing attack as we explain further in next sections.

To achieve these goals, first we model a storage contract
as a non-cooperative repeated dynamic game. Then, we set
the players’ payoffs such that the dominant strategy of the
storage provider is to provide the storage service honestly.
Finally, we implement our proposed scheme using a smart-
contract and oracle network. To the best of our knowledge,
this work is the first to investigate an incentive-compatible
challenge-based decentralized storage mechanism utilizing
the smart-contract and oracle network.

The main contribution of this work are the three parts,
as described below:

• We highlight the inefficiency of current DSN
platforms in their continuous storage verification
schemes. We also highlight a service denying vul-
nerability in the current DSNs such that the storage
provider submits PoS to DSN while refusing service
to the client.

• We design an incentive-compatible mechanism for
DSN in which the storage provider’s dominant
strategy is to truthfully provide the storage service
while the storage client’s best response strategy is
to not submit a storage verification challenge to the
network. Such a mechanism improves performance
by relaxing the requirement of having continuous
storage verification in DSN. Moreover, our design
protects DSN from service denying vulnerability.

• We develop a suitable blockchain-based protocol uti-
lizing smart-contract, oracle network, and Merkle-
tree-based proof of storage to satisfy the require-
ments of our proposed DSN. We publicly share our
implementation as a proof of concept.

The rest of the paper is organized as follows. The next
section reviews major works in the field of the decentralized
storage network. In section 3, we overview the decentralized
storage network’s components. Details of our proposed
mechanisms are described in section 4. The experiment re-
sults have been discussed in section 5. Finally, we conclude
our paper in section 6.

2 RELATED WORK

2.1 Decentralized Storage Network

Filecoin [3], sia [4], storj [5], and swarm [6] are the most well-
known platforms utilizing the blockchain technology to
implement the DSN. Such platforms leverage the blockchain
asset management capabilities to enforce incentive models
for clients and storage providers.

Filecoin [3] runs on a blockchain with a native protocol
token (also called “Filecoin”) which miners earn by provid-
ing storage to clients. Clients spend Filecoin hiring miners
to store or distribute data. Filecoin miners compete to mine

blocks with sizable rewards, but Filecoin mining power is
proportional to active storage, which directly provides a
useful service to clients. To earn Filecoin, storage providers
must prove they are storing the data properly. The Filecoin
network verifies that data is stored securely through cryp-
tographic proofs. Storage providers submit their storage
proofs in new blocks to the network and validate new
blocks sent from the network. Filecoin applies the Proof-
of-Spacetime, where a verifier can check if a prover is
storing the outsourced data for a range of time. Filecoin
works as an incentive layer on top of the Interplanetary File
System (IPFS). IPFS [7] is a p2p storage network. Content
is accessible through peers located anywhere in the world.
These nodes relay information, store it, or do both. IPFS uses
content addressing rather than location based addressing to
find data. A content identifier, or CID, is a label used to point
to material in IPFS. It doesn’t indicate where the content is
stored, but it forms a kind of address based on the content
itself.

Storj [5] is another well-known DSN. Storj utilizes a
service called satellite to manage the decentralized stor-
age system. Satellites are responsible for verifying storage,
data repair service, receiving and distributing payments,
managing storage nodes, account management and autho-
rization system, and storing storage metadata. Storj ex-
tends the probabilistic nature of common per-file proofs-
of-retrievability to range across all possible files stored by
a specific node. Figueiredo et al. [1] have investigated the
security of the Storj network and explored a DoS vulnera-
bility within Storj’s dev./test environment which was exper-
imentally evaluated to be highly feasible. The attack results
in the inability of developers to access their test data and
storage providers missing out on their payments. However,
the authors pointed out that Storj’s production system is not
vulnerable to such an attack as long as multiple satellites
running on load-balanced clusters of servers.

Sia [4] is also a famous DSN. Sia runs its own blockchain.
Sia’s blockchain stores the file contract. This contract in-
cludes the terms of the storage agreement such as pricing
and uptime commitment. Sia divides files into 30 segments
and uploads each segment in different nodes. This distri-
bution assures that no one host represents a single point of
failure and reinforces overall network uptime and redun-
dancy.

Swarm [6] is a distributed storage platform and content
distribution service. The primary objective of Swarm is to
provide a decentralized and redundant store of Ethereum’s
public record, in particular, to store and distribute decen-
tralized applications’ code and data as well as blockchain
data. From an economic point of view, it allows participants
to efficiently pool their storage and bandwidth resources in
order to provide these services to all participants. The goal
is a peer-to-peer serverless hosting, storage, and serving
solution that is DDoS-resistant, has zero downtime, is fault-
tolerant and censorship-resistant as well as self-sustaining
due to a built-in incentive system.

Table 1 summarizes the differences of storage verification
in DSN frameworks compared with our proposed scheme.

Our proposed scheme has the following benefits com-
pared with the existing DSNs:

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

3

TABLE 1: Summary of Storage Verification Differences in Decentralized Storage Network Frameworks

Decentralized Storage
Network

Proof of Storage Scheme
Storage Verification
Schedule

Vulnerable
to Service
Denying Attack

Filecoin [3] Proof of Spacetime Continuous Yes
Sia [4] Based on Merkle Tree Continuous Yes

Storj [5]
Satelites perform auditing using probabilistic
erasure coding methods

Continuous Yes

This work
Using Oracle Network and based on Merkle
Tree

Only when challenged
by the client

No

• Current DSNs require continuous proof from the
storage provider to ensure that the data is stored ac-
curately. This process is costly and causes a waste of
energy. However, in our scheme, the storage provider
does not need to continuously prove the correct stor-
age but only when the client challenges the storage
provider.

• Current DSNs require adding third-party services
or a new blockchain platform to intervene in the
examination of honest behavior of client and storage
providers. However, our proposed mechanism does
not require a new service but it is pluggable on any
blockchain with smart-contract execution capability
(e.g., Ethereum).

• The proof of storage in the current DSNs requires
storage providers to proof the storage to DSN’s net-
work nodes. This can cause a service denying attack
such that a dishonest storage provider only provides
proof to the network nodes while rejecting service to
the client. This threat is not credible in our scheme as
we discuss later on.

• Current DSNs are unable to manage the number of
data requests from clients. As a result, a dynamic
pricing model such as pay-as-you-go cannot be im-
plemented. We discuss how our proposed model can
manage the number of requests to support diverse
storage services based on the volume of retrieval
requests.

2.2 Proof of Storage

One of the main challenges for having a robust DSN is
to audit that the storage provider is honestly storing data
intact. To this end, a Proof of Storage (PoS) scheme is used.
A similar notion of PoS is Proof of Data Possession (PDP).
If the storage provider fails to provide the proof, then it will
be penalized by the DSN.

PoS schemes have been studied widely in the literature
for centralized setting [8], [9], [10], [11]. However, such
schemes are not necessarily applicable in the DSNs as in the
decentralized setting the verification must be cheap, and the
proof and public parameters must be succinct.

Filecoin has introduced a new proof scheme, called Proof
of Spacetime (PoSt), where a verifier can check if a prover
has indeed stored the outsourced data they committed to
over space (i.e., storage) and over a period of time. In
PoSt, the prover generates sequential PoS and recursively
composes the executions to generate a short proof. Filecoin’s
PoSt applies zk-SNARKs [12] to generate succinct proofs
which are short and easy to verify [3].

Storj [5] introduces the satellite component as a third
party to audit the storage service. However, using such a

third party service weakens the decentralized architecture.
Moreover, storj utilizes the reputation based system for
storage providers based on the history of their service.

Sia [4] uses a Merkle tree based auditing scheme such
that the host is required to demonstrate the possession of a
random segment. A storage provider must present a certain
number of proofs to the network within the time frames
specified in the file contract to get fully paid.

Recently, several research studies have investigated new
methods to improve the proof of storage for DSNs [2], [13],
[14]. Du et al. [14] have proposed a new framework for
auditing the data in the DSNs using pairing based cryp-
tography and zero-knowledge proof. Yu et al. [15] have de-
signed a data-time sampling strategy that randomly checks
the integrity of multiple files at each time slot with high
checking probability. Furthermore, this research proposes a
fair sampling strategy by designing an arbitration algorithm
with a verifiable random function.

Besides, Vector Commitments (VCs) can also serve as
a PoS solution. VCs can commit to a list of values to a
digest, and later provide succinct proof to prove one value
is the committed value in some specific location. However,
vector commitment has different limitations. RSA based
VCs require a trusted setup for the hidden order group [13],
[16], [17], [18]. A class group [19] can be used to generate
the hidden order group instead of the trusted setup, but
it is still not practical due to calculation overheads. Bilinear
groups based VCs [16], [20], [21], [22] require at least a linear
number of public parameters as common reference strings
which limits its adoption in decentralized settings. Lattice
based VCs [23] have the pros of post-quantum security,
simple setup, and cons of larger communication as well as
computation overhead due to the lattice itself.

A relative notion is Proof of Retrievability (PoR) [24],
[25], [26], [27], [28], [29]. PoR guarantees that only if a
server stores entire files without loss, it can provide a valid
proof. While in PoS, the server can still provide a valid PoS
proof with some part of the file lost with non-negligible
probability. However, the stronger guarantees come with a
price. Most PoR schemes require heavy cryptography tools,
assumptions, or large overhead.

2.3 Game Theory

Several research studies have investigated the application
of game-theory in decentralized networks. Rzadka et al. [30]
have investigated the problem of maximization of data
availability in a decentralized data replication system. They
propose a game-theoretic mechanism that reduces the price
of anarchy and at the same time provides incentives to
agents to be highly available. The resulting game is mod-
eled as an extensive game in which agents change their

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

4

replication agreements. They also show that in the unique
subgame-perfect equilibrium, agents will form replication
agreements with agents of similar availability.
Wang et al. [31] have designed an incentive-compatible con-
sensus mechanism for the proof of stake based blockchain
to encourage the cache helpers to actively provide ser-
vice. They have modeled the interaction between the cache
helpers and the content providers as a Chinese restaurant
game.
Dong et al. [32] have utilized game theory to address sce-
narios where a client outsources a computation task to two
clouds. To this end, they have designed two smart contracts
(the Prisoner’s contract and the Traitor’s contract). The
contracts guarantee that the two clouds, if they are rational,
will behave honestly even though they have the opportunity
to collude together and cheat. They proved that for the two
clouds, both being honest and not colluding is the unique
sequential equilibrium of the game.
Manshaei et al. [33] have studied the strategic behavior
of rational processors within committees in a shard-based
consensus protocol. They analyzed the Nash equilibria in
an N-player static game model of the sharding protocol.
Further they shown that depending on the reward shar-
ing approach employed, processors can potentially increase
their payoff by unilaterally behaving in a defective fashion
resulting in a social dilemma. To solve this issue, they pro-
posed an incentive-compatible reward sharing mechanism
to promote cooperation among processors.

2.4 Motivation

Inspired by the previous schemes, in this paper we present
a novel game-theoretic challenge-based storage contract
mechanism for DSNs. To this end, our proposed mechanism
allows the client to submit a challenge request indicating
that the storage provider has not shared the outsourced
data. Once the challenge request is received, smart-contract
and oracle network conduct the storage verification. In con-
trast with previous works, our scheme is designed such that
it does not require a continuous verification of storage but
it only executes once the client submits a challenge request.
The mechanism is designed such that the dominant strategy
for the storage provider is to honestly store and share data
with the client. On the other hand, the client’s dominant
strategy is to not submit a challenge request if the storage
service has been delivered accurately. Moreover, our scheme
prevents the dishonest storage provider to deliver PoS to the
DSN while refusing the storage service to the client. This
design significantly decreases verification overhead costs in
the current DSNs. We leverage the oracle network to alle-
viate the DSN’s execution cost. Furthermore, our proposed
scheme is independent of an underlying blockchain layer
and can be executed on top of every generic blockchain with
smart-contract execution capabilities such as Ethereum and
Bitcoin. Our scheme leverages the Merkle tree for the PoS as
we describe in section 4.

3 OVERVIEW

In this section, we review the system architecture of the
storage service in a decentralized storage network utilizing
blockchain technology.

A DSN provides a platform for a storage provider to
offer the storage service to clients. A client aims to purchase
the storage service to store and access her data for a spec-
ified time period. On the other hand, a storage provider
aims to sell his storage service to host the client’s data in
return for a premium. In a nutshell, a DSN is equipped with
two main components of payment settlement and storage
verification. In the payment settlement module, the DSN
charges the client for the storage service and makes the
payment to the storage provider. Moreover, in case the stor-
age provider fails to provide the committed storage service,
the DSN penalizes the storage provider and compensates
the client accordingly. In the verification module, the DSN
verifies that the storage provider is delivering the storage
service accurately. To this end, the storage provider should
submit proof of storage to the DSN, and DSN verifies the
correctness of such proofs.

Once the client and the storage provider agree on a stor-
age service, they enroll in a storage contract. This contract
conveys the storage Service Level Agreement (SLA) which
specifies the storage service including the duration of the
contract, premium, quality of service, and compensation
rates.

DSNs leverage public blockchain technology to enforce
storage contracts. Blockchain technology has offered an
agreeable platform for parties to make payments with-
out a single trusted third party. Blockchains are managed
by a peer-to-peer network to manage a digital ledger.
Recorded data on a public blockchain is publicly accessible
and tamper-resistant. A smart contract is a code in the
blockchain that automatically enforces a contract between
two parties without any help from a single third party.
Therefore, there is no need for an intermediary between
contracting entities to enforce the contract. Accordingly, in a
blockchain enabled DSN scheme, there is not a single party
controlling any storage contract.

In a DSN storage service, the client may encrypt her
data before submitting it to the storage provider to protect
the confidentiality of her data. Moreover, DSNs can provide
redundancy, high-availability, and fail-over by storing the
data in multiple nodes in the network.

Note that the details of storage techniques that the stor-
age provider is using to store the client’s data are out of the
scope of this paper. In other words, we assume the storage
provider manages his storage resources including redun-
dancy, server location, backup services, network bandwidth,
etc to maximize his payoff following the SLA.

The overall scheme of a Blockchain-based DSN is de-
picted in Figure 1.

3.1 Design Goal

The primary goal of DSN’s mechanism design is to ensure
that the storage provider stores the client’s data and returns
it upon the client’s request following the SLA. The storage
service should be examined, and the client should be com-
pensated in case of a storage failure. The client should pay
the storage provider if the storage service has been deliv-
ered flawlessly. We aim to improve the current methods of
PoS in DSNs by eliminating the requirement of continuous
verification of the data storage on the storage provider.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

5

Blockchain

Network

Storage

Provider

Client

Storage Contract
Verification and

Payment

Data Storage

and Retrieval

Fig. 1: The overall scheme of a Blockchain-based Decentral-
ized Storage Network

The mechanism should be incentive-compatible such that
the players can earn their best outcome by choosing their
actions truthfully.

Moreover, we consider the following side features in our
design goal:

• Blockchain platform independent. Current DSN
systems work on their own customized blockchain
platforms. This causes an extra overhead cost for
the DSN. We aim to propose a compatible stor-
age scheme that is pluggable to available generic
blockchain platforms with smart-contract execution
compatibility (e.g., Ethereum).

• Prevent service denying attack. Currently available
DSNs are vulnerable to a service denying attack such
that a dishonest storage provider denies providing
the expected service to the client while successfully
submitting PoS to the DSN network. In this case, the
storage provider receives the service fee while the
client has not received the expected service. We aim
to protect the DSN network from such a fraudulent
storage provider.

• On-chain efficiency. On-chain storage and compu-
tation are costly. Therefore, the proposed scheme
should minimize the on-chain storage and compu-
tation without compromising security expectations.

• Counting requests. Many storage services expect
to count the number of requests from the client to
dynamically calculate the cost of service. So far, the
available DSNs do not provide storage services based
on the number of requests. We will discuss how our
proposed mechanism can accomplish this task.

4 AN INCENTIVE-COMPATIBLE MECHANISM FOR

THE STORAGE CONTRACT

In this section, we discuss our proposed incentive-
compatible mechanism for the blockchain-based decentral-
ized storage network. First, we model and analyze the stor-
age contract as a non-cooperative repeated dynamic game.
Then, we discuss the design of the storage contract to satisfy
the requirements of our proposed mechanism. To this end,
we utilize the smart-contract and oracle network. Finally, we
study a Merkle tree based PoS scheme for the verification of
storage suitable for our proposed mechanism.

4.1 Storage Contract As a Non-Cooperative Repeated

Dynamic Game

The objective of our mechanism design is to place a set of
rules for the storage service in DSN to meet the require-
ments as mentioned earlier. A mechanism can be specified
by a game g : M → X where M is the set of possible
input messages and X is the set of possible outputs of
the mechanism. In the storage system model, players are
the storage provider and the storage client. We assume
players are rational self-interested such that they aim to
maximize their profit. A rational player chooses his strategy
to increase his/her utility. The utility of a storage client
player is defined based on the premium paying for the
storage service, and the cost/benefit of data accessibility
after outsourcing the storage to the storage provider. On the
other hand, the storage provider’s utility is defined based
on the premium receiving for the storage service providing
to the storage client, the cost of storage service maintenance,
and the penalty of loosing the data or lack of service quality.
In the following we elaborate such a game to satisfy our goal
requirements. Specifically, we complete this storage game
with strategies for the players to reach our suitable outcome
for the game.

In the design of a mechanism for decentralized storage
network, the following questions need to be answered:

• How the mechanism can verify the storage
provider’s honest behavior of sharing data?

• What is the payment channel for the service?
• How the mechanism can charge the client for the

service?
• How the mechanism can penalize the storage

provider for loss of data or low quality service?

A naive model is to have a Trusted Third Party (TTP)
mediating between the client and storage provider. In this
case, the client requests data from TTP, and TTP receives
data from the storage provider. TTP can check the integrity
of data by storing the hash of data and verifying it whenever
receiving data from the storage provider, and then forward
it to the client. Upon successful execution of the service,
TTP charges the client and pays the storage provider. On the
other hand, if the storage provider fails to provide data back
to the client, TTP charges the storage provider and pays the
client for the data loss or low quality service according to the
contract. Although this model ensures the storage service
expectations, it is inefficient, expensive, and not scalable
due to the requirement of having a TTP as a middleman
for every request and response. On the other hand, finding
such a TTP is impractical, and such a design resembles a
centralized architecture where the TTP acts as a central party
and can be potentially bribed.

To solve this problem, DSNs rely on a blockchain plat-
form to act as a TTP to remove a single central entity
for managing the system. Moreover, DSNs minimize TTP
intervention in the data recovery process such that the client
retrieves data from the storage provider directly. However,
DSN continuously verifies the proof of storage from the
storage provider to ensure the storage provider is storing the
data truthfully. DSNs utilize blockchain asset management
features to deliver the fees among players. Although this

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

6

method notably improves the naive solution mentioned
above, there are two main issues that remain:

• First, the continuous verification of storage is costly
for the network.

• Second, a dishonest storage provider can successfully
submit the proof of storage to DSNs while refusing
the service to the client.

To solve these issues, in our model, DSN does not con-
tinuously verify the storage service but whenever the client
submits a challenge request. In our model, the client directly
requests data from the storage provider, and the storage
provider sends back data directly to the client. However,
as a dishonest storage provider might refuse to provide
data back or send back incorrect data, the mechanism is
equipped with a challenging option. In this case, the client
can send a challenge request to the TTP, and TTP verifies
the data that the storage provider returns back. Therefore,
in our mechanism, the interaction between the client and
the storage provider can be modeled as a non-cooperative
repeated dynamic game. Once the storage contract starts, in
the first stage of the game, the storage provider can choose
between Sharing data or Not Sharing data strategies. Here,
sharing means that the storage provider honestly follows
the storage contract and shares the client’s data upon the
client’s data request. On the other hand, not sharing, indi-
cates that the storage provider refuses the service to return
data upon the client’s request.

Afterward, the client can choose Challenging or Not Chal-
lenging the storage provider. Challenging means that the
client submits a challenge request to DSN indicating that
the storage provider has not shared data. Not challenging
indicates that the client does not submit a challenge request.
Upon receiving the challenge request, DSN performs the
storage verification.

Once the storage provider is challenged, then his strat-
egy set is to Proof of storage or Not Proof of storage. Proof
means that the storage provider submits the proof of storage
to DSN. Not Proof means that the storage provider does not
submit the proof of storage or fails to submit the accurate
proof of storage to DSN. This game is depicted in Figure 2.

The goal of our mechanism design is to ensure that the
subgame-perfect-equilibrium of this non-cooperative repeated
dynamic game is {Share, No Challenge}. In other words, we
aim to design a mechanism in which storing and sharing
data is the storage provider’s dominant strategy, and the
client’s dominant strategy is to not submit a challenge
request. Therefore, the proposed mechanism should be
incentive-compatible such that players can achieve their best
outcome only by acting based on their true preferences. To
achieve this goal, first, we investigate the players’ payoffs in
the leaf nodes, and then we set payoffs such that the Sharing
and No Challenge strategies are the dominant strategies for
the storage provider and the client, respectively.

As can be seen in Figure 2, there are six possible out-
comes for our storage contract game. The terminal nodes
demonstrate the players’ payoffs. Let PC and PS represent
the client’s strategy and storage provider’s strategy, respec-
tively. We can represent the client’s and storage provider’s
utility functions in our proposed dynamic game of storage
contract as follows:

UC(PC , PS)→ {C1, C2, C3, C4, C5, C6} (1)

US(PC , PS)→ {S1, S2, S3, S4, S5, S6} (2)

Storage Provider

Not ShareShare

ChallengeNo Challenge

Client

(S4, C4)

Proof

Storage

Provider

 No Proof

(S5, C5) (S6, C6)

No ChallengeChallenge

(S3, C3)

Proof

Client

No Proof

(S2, C2)(S1, C1)

Storage

Provider

Fig. 2: Dynamic Game of the storage contract

At the first stage of the game, the storage provider’s
action set is {Share, No Share}. Note that although the client
can be the first player to submit a Challenge request even
before a data request, we will see that such an action is an
non-credible threat, and therefore for simplicity and without
loss of generality, we will consider the storage provider as
the first player in the game. The goal of our mechanism
is to ensure that the Sharing action is the best strategy for
the storage provider. However, Sharing is costly because
of the cost of storage, data retrieval, backup, and network
bandwidth required for successful sharing.

In the second stage, the client action set is {Challenge,
No Challenge}. By choosing the Challenge strategy, the client
claims that the storage provider has not shared data. If the
client chooses to challenge, then the storage provider has
two options as {Proof, Not Proof}. If the storage provider
chooses Proof, then it should provide the proof of storage,
otherwise, if the storage provider fails to proof, then the
storage provider will be penalized according to the contract.

We assume the data has a value for the client. In other
words, the client receives compensation in return for the
data loss caused by the storage provider. Note that, failure
of proof is the worst outcome for the storage provider as
the storage provider will be penalized the compensation
amount, therefore, we should have:

Si∈{1,3,4,6} >> Sj∈{2,5} (3)

Following the backward induction, the storage provider
would choose proof action unless it lost data or cannot
provide the service. This is because the cost of No Proof is
the cost of compensation for the client, and we have:

S1 >> S2 , S6 >> S5 (4)

As the mechanism’s goal is to ensure that the storage
provider chooses the Sharing strategy, the cost of Proof
should be higher than the cost of Sharing. Therefore, we
should have:

S3 >> S1 , S4 >> S6 (5)

On the other hand, as the mechanism’s goal is to en-
sure that the client chooses No challenge when the storage

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

7

provider honestly shared data, then we should have the
following:

C3 > C1 (6)

To this end, the mechanism should make the Challenging
request costly for the client. Let X represent this cost.

On the other side, as we want the storage provider
chooses Sharing, the client should choose Challenge when the
data has not been shared by the storage provider. To achieve
this goal, the mechanism should motivate the client for
choosing the challenge once the data has not been shared.
However, the challenge request is costly as we discussed
earlier. To cover the cost of the challenge, our mechanism
is designed such that the Proof strategy enforces a copy of
data to be sent out to the client to improve the payoff of the
challenge strategy in case of not sharing. On the other hand,
once the data has not been shared, there is a possibility that
the storage provider cannot provide the storage service (e.g.,
due to the data loss). Let P represent the probability that
the storage provider cannot present the storage service. Let
V represent the value of accessing data for the client. Then,
the client’s expected utility for choosing the challenge can
be modeled as:

Cc = P.(C5) + (1− P).(V)−X (7)

The mechanism should set Cc > 0 by making sure that
P.(C5) + (1 − P).(V) > X . On the other hand, we have
C4 < 0 (the client’s payoff is negative when the storage
service is not delivered). Therefore, we have Cc > C4. Using
the backward induction, it can be seen that the subgame-
perfect-equilibrium of this game is {Share, No Challenge}
strategy profile.
Example

In this section, we provide an example to clarify the
proposed mechanism. For simplicity, we consider the utility
of players as a number without the declaration of a specific
currency.

Consider that the compensation cost is indicated as
“1, 000” in the storage contract. In other words, if the storage
provider is unable to retrieve the client’s data, then the
storage provider should pay the client “1, 000”. Let the cost
of losing data for the client be “500”, and the client’s benefit
of reading data is “5”. The cost of requesting the challenge is
“1”, and the cost of proof of storage for the storage provider
is “3”. Finally, let the benefit of not sharing data with the
client is “2”, and the benefit of sharing data be “1” for
the storage provider (note that this is the payoff that the
storage provider earns by charging the client for providing
the correct storage service). Therefore, the dynamic game
tree of this game can be depicted as Figure 3.

Using the backward induction, it can be seen that the
{Share, No Challenge} is the subgame nash equilibrium of
the game.

4.2 Scheme details

Identifying the storage contract requirements and the play-
ers’ payoffs, now we discuss the design architecture to
satisfy the design goal.

Storage Provider

Not ShareShare

ChallengeNo Challenge

Client

(2, -500)

Proof

Storage

Provider

 No Proof

(-998, 500) (-1, 4)

No ChallengeChallenge

(1, 5)

Proof

Client

No Proof

(-1000, 1005)(-2, 4)

Storage

Provider

Fig. 3: Dynamic Game of the example storage contract

We utilize the smart-contract to act as a TTP to manage
the agreement between the client and the storage provider.
Smart-contract is powered by blockchain technology. The
blockchain is managed by a peer-to-peer network to manage
a digital ledger. A smart-contract is a code in the blockchain
that automatically enforces a contract between two parties
without any help from a third party. Therefore, there is no
need for an intermediary between contracting entities to
enforce the contract. A public blockchain network capable
of executing the smart-contract is used as a platform for
developing DSN.

In our proposed model, first the client and storage
provider reach a storage agreement. This agreement in-
cludes the following information: Length of contract, Merkle
root of data, premium, delivery time, and compensation.
For example, a storage provider makes an agreement with a
client to store her 1 TB data for the length of 1 year for the
premium of $20, if the storage provider fails to return data,
then the storage provider will be penalized by $40, and the
time window for delivering data after client’s request is 20
minutes.

This agreement will be specified in the smart-contract
and deployed on the blockchain. Note that, the Merkle root
of data is stored on-chain which will be used for verification
of data. Storing the whole data on the blockchain is too
costly, therefore Merkle tree is used to minimize the cost
of the storage verification process as we discuss later on.
Moreover, the smart-contract includes the client’s premium
as well as the storage provider’s collateral asset. Upon the
successful storage service, the premium will be automati-
cally transferred to the storage provider. On the other hand,
if the storage provider fails to provide the storage service,
the client will be automatically compensated through the
collateral asset of the storage provider following the contract
details.

Note that the blockchain platform is an isolated network,
and it cannot pull in or push data out to any external
system. This problem is known as the oracle problem [34],
[35]. To solve this problem, the oracle network has been
presented. Oracle network provides a trusted source for
accessing off-chain data to the blockchain. Moreover, it can
perform arbitrary programs more efficiently compared with
the smart-contract, due to the fact that fewer resources are
needed to execute the code. Leveraging the oracle network,
the challenge request in our scheme works as follows:

The client submits a challenge request by calling the challenge
function of the smart-contract with the specific data segment

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

8

number to be challenged. Once the challenge request has been
received by the smart-contract, the oracle network will submit a
challenge to the storage provider. Upon receiving the challenge
request from the oracle network, the storage provider should send
the challenged data along with the Merkle path to the oracle.
In the next step, the oracle network first calculates the Merkle
root and compares it with the Merkle root in the storage contract
stored on-chain. If they match, then the oracle sends a copy of
the data to the client. Otherwise, the oracle sends a fail signal
to the smart-contract, and the smart-contract will transfer the
compensation fund from the storage provider account to the client
account following the pre-specified agreement.

The interaction between different components of our
scheme is depicted in Figure 4.

Blockchain

Network

Oracle

Network

Storage

Provider

Client

Smart Contract

Off-Chain

 Data Transfer

Off-Chain

Verification

Challenge

Fig. 4: Interaction of different components in the proposed
challenge based DSN storage contract

As can be seen, the data transfer is done off-chain. The
only on-chain operation is the challenge request. Note that
in this scheme, the storage provider should send the chal-
lenged data to the oracle network, and the oracle network
forwards the data back to the client. There are two main
reasons for this design.

• First, it prevents the service denying attack which
we explained earlier. This is due to the fact that
if the storage provider refuses service to the client,
the client receives a copy of data with the challenge
request if the storage provider can pass the proof.
Therefore, the storage provider cannot deny service
to the client while proofing the storage to DSN.

• Second, when the storage provider has not shared
data, the mechanism should provide incentives for
the client to submit the challenge. By forwarding
the data, we add the value to the client’s payoff
for choosing the challenge strategy to achieve our
desired subgame perfect equilibrium as we discussed
in the previous section.

Challenge Level
To improve the efficiency of the scheme, we consider

different levels for the challenge request. Let us motivate
this feature by an example. Assume the client outsourced
a very large dataset of 100 TB to a storage provider. If
there is no challenge level option for the system, the storage
provider should forward the whole data back to the client
upon the challenge request submitted by the client. This can
be a resource consuming task. To solve this problem, we
consider that the client and storage provider agree to split
data into a specific number of segments. In the challenging

phase, the client can submit challenges for a set of segments.
The price of challenge requests is an increasing function of
the size and number of the data segments being challenged.
For example, assume the outsourced data of size 100 TB is
divided into 100,000 segments of 1 GB size. The client can
submit challenges for any number of segments, however,
submitting a challenge for larger data is more costly for the
client to deter a malicious client to cause a denial of service
attack on the storage provider. We explain how our proof of
storage scheme can handle this feature in the next section.

4.2.1 Proof of Storage

Proof of Storage (PoS) scheme allows a verifier to check if a
storage provider is storing the client’s data at the time of
the challenge. We follow the definitions from [9] with minor
modifications.

Definition 1. Given security parameter λ, the PoS scheme is
a tuple of four probabilistic polynomial-time (PPT) algorithms
(Setup, Challenge, Prove, Verify):

• (d, h)← Setup(1λ,D, sz). This algorithm takes as input
the security parameter λ, outsourced data D, and segment
size sz. The algorithm outputs a digest of data d which is
used to verify the proof and the maximum data segments
number h. We denote the data segment with number i as

Di and its complementary data segment as D̂i such that

Di ∪ D̂i = D.
• c ← Challenge(h). This algorithm takes as input the

maximum data segments number h and outputs a chal-
lenge number c.

• π ← Prove(Dc, c). This algorithm takes as input the
corresponding data segment Dc and the challenge number
c. The algorithm outputs a proof π to prove the storage of
data segments corresponding to the challenged number c.

• 0/1 ← Verify(d, h, c, π). This algorithm takes as input
the digest d, the Merkle tree height h, the challenge
number c, and the proof π. It outputs 1 if the proof π
is a valid proof, and it outputs 0 otherwise.

The first property we require from a PoS scheme is com-
pleteness, i.e., a proof output by the scheme algorithms, for
a valid statement is verified correctly with all but negligible
probability. It can be formulated as below.

Definition 2. Completeness. A PoS scheme is complete if

Pr









(d, h)← Setup(1λ,D, sz)
c← Challenge(h)
π ← Prove(Dc, c) :
1← Verify(d, h, c, π)









> 1− negl(λ).

The second property is challenge soundness which cap-
tures that a malicious challenger cannot generate a challenge
c′ which cannot be answered even if the prover holds the
whole file. It can be formulated as below.

Definition 3. Challenge Soundness. A PoS scheme is challenge
sound if

Pr









(d, h)← Setup(1λ,D, sz)
c′ ← Challenge(h)
π ← Prove(D, c′) :
0← Verify(d, h, c, π)









< negl(λ).

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

9

The third property is proof soundness which captures
that a malicious prover cannot generate a valid proof if it
does not hold the challenged file segment even with all the

other file segments. We denote the complementary D̂c It can
be formulated as below.

Definition 4. Proof Soundness. A PoS scheme is proof sound if

Pr









(d, h)← Setup(1λ,D, sz)
c← Challenge(h)

π ← Prove(D̂c, c) :
1← Verify(d, h, c, π)









< negl(λ).

Cryptographic building blocks
Cryptographic secure hash function. We use a cryptographic
secure hash function H ← Hash(x) that is collision resistant
and pre-image hard.
Digital signature. We use the standard EU-CMA secure
digital signature function [36] that contains three func-
tions: 1) (pk, sk) ← KeyGen:(1λ); 2) σ ← Sign(sk,m); 3)
1/0← Verify(pk,m, σ).
Our construction

• Setup(1λ,D, sz): this algorithm divides data D into

a set of segments S = {s1, . . . , sh} where each
segment has the size of sz. This algorithm further
builds a textbook Merkle tree based on Hash function
Hash. The hash of each segment Hash(si) builds the
leaves of the Merkle tree. Output:(d, h).

• Challenge(h): this algorithm picks a uniform ran-

dom number c in [1, h] as the challenge number.
Output:(c).

• Prove(Dc, c): this algorithm outputs the sibling nodes
of the challenged node’s Merkle path and the preim-
age sc (corresponding data segment) to calculate the
challenged hash result as the proof π. Output:(π).

• Verify(d, h, c, π): this algorithm checks if the node
generated by the segments has a valid Merkle path
towards the Merkle root d.

Theorem 1. Let Hash be a collision resistant and pre-image
hard hash function. The construction presented above is complete,
challenge sound and proof sound.

Proof. Completeness comes directly from the protocol. Chal-
lenge soundness comes from the authenticated maximum
challenge number from the setup function. Proof soundness
comes from that Hash is a collision resistant and pre-
image hard hash function. It is clear to check if there is an
Adversary that break the proof soundness, we can use this
Adversary to break the collision resistant property of Hash,
which contradicts with the assumption.

For example, assume a Merkle tree as depicted in Figure
5. Here, the challenged number is 2. The authenticated
maximum challenge number is 8. Nodes 9 14 are numbered
to illustrate the example. The proof π includes the raw data
of segment s2 to generate leaf node 2, and the sibling nodes
of the Merkle path for node 2, which includes node numbers
1, 10, and 14. In order to verify the proof π, the verifier first
calculates the leaf node based on the data of segment s2
received from the prover. Then, it calculates node 9 using
nodes 1 and 2, calculates node 13 using nodes 9 and 10, and
calculates root node using nodes 13 and 14. Finally, it checks

if the calculated root is the same as the Merkle root stored
on-chain.

8

13 149 10 11 121 2 3 4 5 6 7
Root

Fig. 5: Merkle tree example.

The process of storing the Merkle root of data on-
chain is as follows. First, the client and storage provider
generate their public/private key pairs. Let (pkc, skc) and
(pksp, sksp) to denote their public/private key pairs respec-
tively. Client runs Setup, signs the Merkle root and Merkle
Tree height, and passes (d, h, Sign(skc, d||h)) to the storage
provider. The storage provider runs Setup separately, and
if it gets the same result, he then signs (d, h), and sends
(d, h, Sign(skc, d||h), Sign(sksp, d||h)) to the smart-contract.
The smart-contract verifies signatures and stores d on-chain
for future proof of storage verification.
Discussion

Based on our definition of PoS, several different tentative
solutions can be applied. Various cryptographic accumula-
tors [18], [37] and vector commitments [13], [16], [17], [18]
are valid solutions. However, we choose the Merkel tree to
construct the PoS based on mainly two reasons.

Firstly, in the decentralized settings, we desire no trusted
setup and less public parameters which limits the use of
RSA and bilinear pairing based solutions.

Secondly, the cost of the proof and verification has been
considered in the incentive layer. The major concern of our
scheme is the digest size because the digest needs to be
stored on-chain. On this point, the Merkle tree is a good
solution as we only need to store the Merkle root on-chain
which is a hash value.

4.2.2 Counting the number of requests

The number of requests for retrieving data during the stor-
age contract is an important factor in pricing the storage
service. This is due to the fact that the number of retrieval
requests directly impacts the storage provider’s workload.
For example, consider that a client demands a service with
a maximum of 5 retrieval times in a year. On the other
hand, another client demands 1000 retrieval times in a year.
Therefore, the storage service should be able to dynamically
charge clients based on the number of reading requests.
Currently, DSNs do not support the number of requests in
the storage service.

A naive approach is to apply request counting. In this
case, the client first signs a request for data and sends it
to the storage provider. The storage provider then veri-
fies the signature and sends the data back to the client.
However, as a malicious storage provider might refuse to
send data, the client should send back a signed acknowl-
edgment message upon successful delivery of data. On the
other hand, a malicious client refuses to send back the
signed acknowledgment message. To solve this issue, one
simple approach is to split the data into smaller pieces and

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

10

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

0.5

1

1.5

2
F

il
e

re
ad

in
g
 t

im
e

(m
s)

10
4

10MB

50MB

100MB

0

500

1000

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

500

1000

1500

2000

2500

M
er

k
le

 p
at

h
 g

en
er

at
io

n
 t

im
e

(m
s)

10MB

50MB

100MB

0

20

40

60

80

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

500

1000

1500

2000

2500

M
er

k
le

 r
o
o
t

ca
lc

u
la

ti
n
g
 t

im
e

(m
s)

10MB

50MB

100MB

0

20

40

60

80

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

M
er

k
le

 p
at

h
 v

er
if

ic
at

io
n

 t
im

e
(m

s)

10MB

50MB

100MB

Fig. 6: Computation cost of File reading, Merkle path generation, merkle root calculation, and Merkle path verification for
files of 10MB, 50MB, and 100MB with varying segment size

send the next portion of data upon receiving the previous
message acknowledgment. Although such an approach is
appropriate in the network layer with TCP protocol, in
the application layer this approach is too costly as every
acknowledgment message should be signed and verified.
Moreover, there is no guarantee that the client sends the last
message acknowledgment.

To solve the naive approach, in our scheme we fol-
low our proposed non-cooperative repeated dynamic game-
theoretic approach for challenging the storage provider. In
our model, the client only sends a signed request message.
The storage provider has two options, whether send or not
to send the data. Then, it is the client’s choice to challenge
or not challenge. Following our dynamic game tree, the
best outcome will be reached through sharing and not
challenging strategies.

For cashing out the number of requests, the storage
provider only needs to submit the last signed request mes-
sage. Note that the request message includes a counter
indicating the number of requests so far that have been
submitted by the client.

5 IMPLEMENTATION

In this section, we first describe the details of our imple-
mentation, then discuss the performance evaluation of our
proposed mechanism. We use the Solidity (version 0.8.7)
programming language to implement our smart contract.
In the part of the blockchain solution, we select Kovan, an
Ethereum test network for smart contract development. We
use Remix IDE to develop, deploy and administer the smart
contract. In our implementation, we use Chainlink’s ora-
cle [38], which is currently the most famous oracle network
and has the majority share of the oracle market [39]. We
have shared our implementation in a GitHub repository1.

Considering gas fees and expensive on-chain calculation
costs, we only record the basic information including the
premium, duration of the contract, compensation rates, and
the Merkle root value of the file on-chain. The storing of
the original outsourced data and the verification process are
done by the storage provider and the external adapter off-
chain, respectively. The contract has two main functions as
we described below.

1. https://github.com/podiumdesu/ICM-DSN

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

11

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

0.5

1

1.5

2

2.5
F

il
e

re
ad

in
g

 t
im

e
(m

s)
10

5

100MB

500MB

1GB

0

5000

10000

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

0.5

1

1.5

2

2.5

M
er

k
le

 p
at

h
 g

en
er

at
io

n
 t

im
e

(m
s)

10
4

100MB

500MB

1GB

0

200

400

600

800

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0

0.5

1

1.5

2

2.5

M
er

k
le

 r
o
o
t

ca
lc

u
la

ti
n
g
 t

im
e

(m
s)

10
4

100MB

500MB

1GB

0

200

400

600

800

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B

16
KB

32
KB

64
KB

12
8K

B

Segment size (Byte)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
er

k
le

 p
at

h
 v

er
if

ic
at

io
n
 t

im
e

(m
s)

100MB

500MB

1GB

Fig. 7: Computation cost of File reading, Merkle path generation, merkle root calculation, and Merkle path verification for
files of 100MB, 500MB, and 1GB with varying segment size

Recording a storage task. After the commitment be-
tween the client and the storage provider, the contract will
record the basic information signed by both sides on-chain
according to the designed data structure.

Resolving a challenge request. Once the client submits
an on-chain request challenging a storage provider for one
specific file segment, we need to build a connection with the
off-chain data. We are going to introduce how to construct
an oracle request.

A basic oracle request model includes four parts: Chain-
link client, oracle contract, off-chain oracle node, and exter-
nal adapters.

Chainlink client is a parent contract that enables smart
contracts to construct and make a request “sendChain-
linkRequestTo” to a known Chainlink oracle. Our smart
contract inherits from Chainlink client. A complete request
needs an oracle address, the job ID, and the callback func-
tion. Through job ID, the oracle knows which tasks to per-
form; after finishing the tasks, the oracle sends the response
to the callback function.

Oracle contract will handle on-chain requests and emit
an event containing information about the request. The off-

chain oracle node will monitor the event. Once the oracle
contract receives the result of the job, it will return the result
to the Chainlink Client using the callback function. In our
implementation, we use the oracle supporting the ”EthBool”
adapter, which makes an HTTP GET request, takes the given
values, and formats them for the Ethereum blockchain in a
boolean value.

Off-chain oracle node runs alongside oracle contracts.
It listens to events emitted by the on-chain oracle contract
and performs a job with the data emitted. Here, this node
will make a GET request to our external adapter and get the
result of whether the storage provider passes the challenge
or not, then submits the boolean result in a transaction back
to the oracle contract.

External adapter. By making it an API, we can customize
the off-chain computation the way we want. Here, the
external adapter sends a request to the storage provider with
the parameters of the file ID and the specific data segment
number chosen by the client. The storage provider will
send the challenged piece of data along with the calculated
Merkle path back to our external adapter. The external
adapter processes the response using the Merkle path and

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

12

the hash value of that piece of data to calculate the Merkle
root and compares it to the on-chain stored value. After that,
it submits the challenge result to the oracle. The external
adapter is written in JavaScript programming language and
runs as an HTTP Server in Node.js (version 16.13.1).

Besides, on the side of the storage provider, we simulate
it as an HTTP server in Node.js (version 16.13.1). It provides
external APIs for calculating Merkle root, giving access to
the original file, and generating the Merkle path. The storage
provider divides the file with the segment size chosen by
the client. The slices’ hash values are the Merkle tree’s leaf
nodes. Therefore, we can build the Merkle tree, calculate the
Merkle root, and receive the Merkle path.

The cost of storage contract deployment, recording a
storage task, and submitting a challenge request is depicted
in Table 2. Note that once the storage contract is deployed,
different storage tasks can be recorded on top of it. More-
over, to decrease the cost of on-chain deployment, a pooling
approach can be applied [40] without affecting the integrity
of the scheme.

TABLE 2: Gas cost for the storage contract

Operation Gas units

Contract on-chain Deployment 2,491,606
Recording a Storage Task 202,001

Challenge Request 192,101

5.1 Performance analysis

In the subsequent experiments, we have used a macOS
(version 12.0.1) laptop with an Apple M1 Pro CPU and 32
GB of memory for the performance analysis of our scheme.
We conducted our evaluation over files with various sizes of
10MB, 50MB, 100MB, 500MB, and 1GB. The computing time
is calculated with varying segment sizes for the files. We
included various settings for our evaluation. Specifically, we
look at comparisons between four dimensions of file reading
time, Merkle root calculating time, Merkle path generation
time, and Merkle path verification time. Figures 6 demon-
strate the computation cost of file reading time, Merkle
root calculation, Merkle path generation, and Merkle path
verification for files with sizes of 10MB, 50MB, and 100MB.
Figures 7 demonstrates the same settings for files with sizes
of 100MB, 500MB, and 1GB.

As can be seen, with the increase in segment size, the
computation cost for file reading time, Merkle root cal-
culation, and Merkle path generation is decreasing at a
decreasing rate. Merkle path verification is fast, and its time
is also decreasing with the increase of the segment size.

When the file sizes of the same segment size increase,
the time of file reading, Merkle root calculating and Merkle
path generation has the same growth. In contrast, the time
of Merkle path verification time is almost the same at a very
small value.

5.2 Discussion

In this subsection, we discuss the results of our experiments.
Our evaluation demonstrates the applicability of our pro-
posed mechanism. Our proposed scheme is implemented
in two layers which are the incentive layer and the PoS
layer. In the incentive layer, players are motivated to play

the storage game truthfully. To this end, we have used the
smart contract to enforce the rules of the game to make it
incentive-compatible as we discussed earlier.

On the other hand, in the PoS layer, the system verifies
the storage service once the client submits a challenge
request. This verification module is implemented using the
oracle network in the smart contract. It is worth mention-
ing that the security of our scheme relies on the security
of the smart contract and the oracle network. The oracle
networks are designed to provide a secure service to the
smart contract. The oracle network provides tamper-proof
inputs, outputs, and computations to support advanced
smart contracts on any blockchain. However, discussing the
security features of the oracle network is out of the scope
of this paper. We have used Chainlink oracle network [38]
which is currently the most adopted oracle network [39].
The requirement of having the oracle network in our design
can be considered as a limitation of our scheme. This is
mainly due to the fact that the security of our scheme relies
on the security of the oracle network.

As can be seen from the evaluation results, the costs
of deployment of the smart contract, recording a storage
task, and submitting a challenge request are small mak-
ing our proposed scheme practical. On the other hand,
the computation cost for PoS on the storage provider and
storage verifier is low and negligible. Note that one of the
main benefits of our proposed scheme is that the network
does not continuously verify the storage service but only
once the storage client submits a challenge request. This
can significantly improve the performance as the network
and the storage provider do not need to consume resources
for PoS. As the dominant strategies of players are sharing
data and not submitting a challenge request for the storage
provider and the storage client respectively, it is expected
that the system does not need to execute PoS during the
contract unless the storage provider fails to provide the
storage service.

Note that for every update request (changing data), the
Merkle root stored on-chain should be updated as well. In
this case, the smart-contact should verify the client’s and
storage provider’s signatures to ensure that both parties are
agreed with the update. Such an update is equivalent to
recording a new storage task in our current implementation.
Therefore, our proposed scheme works best for storing the
archived data, and it is inefficient for storing data with
frequent change requests. Improving the scheme to handle
update requests more efficiently can be considered as a
future work.

6 CONCLUSION

In this paper, we have introduced a novel game-theoretic
mechanism for the decentralized storage network allowing
the client to challenge the storage provider. This allows
us to eliminate the requirement of having continuously
verifying the storage provider which in turn improves the
performance of DSNs. Moreover, the client is protected from
service denying attack where a dishonest storage provider
submits proof of storage to the network while refusing
service to the client. Our proposed model is pluggable into

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

13

any blockchain platform with smart contract execution ca-
pability. We leverage the smart contract and oracle network
to govern the rules of the storage contract. We have imple-
mented our scheme using Solidity language and Chainlink
oracle network. The performance result demonstrates the
applicability of our scheme.

REFERENCES

[1] S. de Figueiredo, A. Madhusudan, V. Reniers, S. Nikova, and
B. Preneel, “Exploring the storj network: a security analysis,” in
Proceedings of the 36th Annual ACM Symposium on Applied Comput-
ing, pp. 257–264, 2021.

[2] G. Ateniese, L. Chen, M. Etemad, and Q. Tang, “Proof of storage-
time: Efficiently checking continuous data availability,” in Proceed-
ings of the 25th network and distributed system security symposium
(NDSS), pp. 1–15, Internet Society, 2020.

[3] “Filecoin: A decentralized storage network,” tech. rep., Protocol
Labs, 2017.

[4] D. Vorick and L. Champine, “Sia: Simple decentralized storage,”
tech. rep., 2014.

[5] “Storj: A decentralized cloud storage network framework,” tech.
rep., Storj Labs, Inc., 2018.

[6] V. Tron, A. Fischer, D. N. A, Z. Felföldi, and N. Johnson, “swap,
swear and swindle: incentive system for swarm,” tech. rep., Ether-
sphere, 2016. Ethersphere Orange Papers 1.

[7] IPFS, “Interplanetary file system.”
[8] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs

of space,” in Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II (R. Gennaro and M. Robshaw, eds.), vol. 9216
of Lecture Notes in Computer Science, pp. 585–605, Springer, 2015.

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and commu-
nications security, pp. 598–609, 2007.

[10] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks, pp. 1–10, 2008.

[11] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dy-
namic provable data possession,” ACM Transactions on Information
and System Security (TISSEC), vol. 17, no. 4, pp. 1–29, 2015.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“Snarks for c: Verifying program executions succinctly and in zero
knowledge,” in Annual cryptology conference, pp. 90–108, Springer,
2013.

[13] M. Campanelli, D. Fiore, N. Greco, D. Kolonelos, and L. Nizzardo,
“Incrementally aggregatable vector commitments and applica-
tions to verifiable decentralized storage,” in International Confer-
ence on the Theory and Application of Cryptology and Information
Security, pp. 3–35, Springer, 2020.

[14] Y. Du, H. Duan, A. Zhou, C. Wang, M. H. Au, and Q. Wang,
“Enabling secure and efficient decentralized storage auditing with
blockchain,” IEEE Transactions on Dependable and Secure Computing,
2021.

[15] H. Yu, Q. Hu, Z. Yang, and H. Liu, “Efficient continuous big data
integrity checking for decentralized storage,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 1658–1673, 2021.

[16] D. Catalano and D. Fiore, “Vector commitments and their applica-
tions,” in International Workshop on Public Key Cryptography, pp. 55–
72, Springer, 2013.

[17] R. W. Lai and G. Malavolta, “Subvector commitments with appli-
cation to succinct arguments,” in Annual International Cryptology
Conference, pp. 530–560, Springer, 2019.

[18] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accu-
mulators with applications to iops and stateless blockchains,” in
Annual International Cryptology Conference, pp. 561–586, Springer,
2019.

[19] J. Buchmann and H. C. Williams, “A key-exchange system based
on imaginary quadratic fields,” Journal of Cryptology, vol. 1, no. 2,
pp. 107–118, 1988.

[20] B. Libert and M. Yung, “Concise mercurial vector commitments
and independent zero-knowledge sets with short proofs,” in The-
ory of Cryptography Conference, pp. 499–517, Springer, 2010.

[21] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang, “Pointproofs:
Aggregating proofs for multiple vector commitments,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2007–2023, 2020.

[22] S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, and
Y. Zhang, “Hyperproofs: Aggregating and maintaining proofs in
vector commitments,” Cryptology ePrint Archive, 2021.

[23] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi, “Streaming
authenticated data structures,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 353–
370, Springer, 2013.

[24] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
International Conference on the Theory and Application of Cryptology
and Information Security, pp. 90–107, Springer, 2008.

[25] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security, pp. 584–597, Acm, 2007.

[26] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability:
Theory and implementation,” in Proceedings of the 2009 ACM
workshop on Cloud computing security, pp. 43–54, 2009.

[27] D. Cash, A. Küpçü, and D. Wichs, “Dynamic proofs of retrievabil-
ity via oblivious ram,” Journal of Cryptology, vol. 30, no. 1, pp. 22–
57, 2017.

[28] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability
via hardness amplification,” in Theory of Cryptography Conference,
pp. 109–127, Springer, 2009.

[29] B. Fisch, J. Bonneau, N. Greco, and J. Benet, “Scaling proof-
of-replication for filecoin mining,” tech. rep., Technical report,
Stanford University, 2018. https://web. stanford. edu . . . , 2018.

[30] K. Rzadca, A. Datta, G. Kreitz, and S. Buchegger, “Game-theoretic
mechanisms to increase data availability in decentralized storage
systems,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 10, no. 3, pp. 1–32, 2015.

[31] W. Wang, D. Niyato, P. Wang, and A. Leshem, “Decentralized
caching for content delivery based on blockchain: A game theo-
retic perspective,” in 2018 IEEE International Conference on Commu-
nications (ICC), pp. 1–6, IEEE, 2018.

[32] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel,
“Betrayal, distrust, and rationality: Smart counter-collusion con-
tracts for verifiable cloud computing,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pp. 211–227, 2017.

[33] M. H. Manshaei, M. Jadliwala, A. Maiti, and M. Fooladgar,
“A game-theoretic analysis of shard-based permissionless
blockchains,” IEEE Access, vol. 6, pp. 78100–78112, 2018.

[34] Chainlink, “What is the blockchain oracle problem?,” tech. rep.,
2020.

[35] A. Egberts, “The oracle problem-an analysis of how blockchain or-
acles undermine the advantages of decentralized ledger systems,”
Available at SSRN 3382343, 2017.

[36] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
press, 2020.

[37] E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and
N. Triandopoulos, “Zero-knowledge accumulators and set alge-
bra,” in Advances in Cryptology - ASIACRYPT 2016 - 22nd Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part II (J. H. Cheon and T. Takagi, eds.), vol. 10032 of Lecture
Notes in Computer Science, pp. 67–100, 2016.

[38] “Chainlink 2.0: Next steps in the evolution of decentralized stor-
age networks,” tech. rep., Chainlink Labs, 2021.

[39] M. Kaleem and W. Shi, “Demystifying pythia: A survey of chain-
link oracles usage on ethereum,” in International Conference on
Financial Cryptography and Data Security, pp. 115–123, Springer,
2021.

[40] I. Vakilinia, S. Vakilinia, S. Badsha, E. Arslan, and S. Sengupta,
“Pooling approach for task allocation in the blockchain based de-
centralized storage network,” in 2019 15th International Conference
on Network and Service Management (CNSM), pp. 1–6, IEEE, 2019.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

14

Iman Vakilinia (Senior Member, IEEE) received
the PhD degree in computer science and en-
gineering from University of Nevada Reno, in
2019. He is currently an Assistant Professor
with the School of Computing in the University
of North Florida. His research interests include
Cybersecurity, and Game-Theory.

Weihong Wang received a Master’s degree in
Computer Science and Engineering from the
Hong Kong University of Science and Technol-
ogy in 2022, and a bachelor’s degree in Cyber
Security and Engineering from the Huazhong
University of Science and Technology in 2020.
She will be pursuing a Ph.D. degree in computer
science at KU Leuven. Her research interests
include blockchain systems and privacy.

Jiajun Xin received his Master’s in computer
science and engineering from the University of
Nevada Reno, in 2017 and his Bachelor’s from
the Dalian University of Technology, in 2015.
He is currently a Ph.D. student at the Hong
Kong University of Science and Technology.
His research interests include Cryptography and
blockchain.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3245326

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2023 at 03:38:44 UTC from IEEE Xplore. Restrictions apply.

