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Abstract—This paper is concerned with the issue of improving video subscribers’ quality of experience (QoE) by deploying a multi-

unmanned aerial vehicle (UAV) network. Different from existing works, we characterize subscribers’ QoE by video bitrates, latency, and

frame freezing and propose to improve their QoE by energy-efficiently and dynamically optimizing the multi-UAV network in terms of

serving UAV selection, UAV trajectory, and UAV transmit power. The dynamic multi-UAV network optimization problem is formulated

as a challenging sequential-decision problem with the goal of maximizing subscribers’ QoE while minimizing the total network power

consumption, subject to some physical resource constraints. We propose a novel network optimization algorithm to solve this challenging

problem, in which a Lyapunov technique is first explored to decompose the sequential-decision problem into several repeatedly optimized

sub-problems to avoid the curse of dimensionality. To solve the sub-problems, iterative and approximate optimization mechanisms

with provable performance guarantees are then developed. Finally, we design extensive simulations to verify the effectiveness of the

proposed algorithm. Simulation results show that the proposed algorithm can effectively improve the QoE of subscribers and is 66.75%

more energy-efficient than benchmarks.

Index Terms—Video transmission, QoE, multi-UAV network, network optimization, energy efficiency

✦

1 INTRODUCTION

COMPARED to traditional terrestrial wireless networks,
unmanned aerial vehicle (UAV) networks can provide

a more rapid and flexible networking capability and have
stronger resistance to natural disasters. In the case that
terrestrial base stations (BSs) in hot spots are insufficient to
handle burst flows or terrestrial communication infrastruc-
ture in remote areas cannot provide effective coverage, UAV
networks with UAVs acting as aerial access points or relay
nodes have been considered as a significant complement
to terrestrial wireless networks [2]–[5]. UAVs can actively
establish line-of-sight (LoS) propagation links among them
and terrestrial subscribers such that the network transmis-
sion performance can be significantly enhanced. Overall,
UAV networks are widely employed in emergency commu-
nications and some dynamic traffic demand scenarios due
to the UAV endurance improvement, the cost reduction, the
advantages of flexible deployment, and the rapid recovery
of communication services [6]–[8]. Besides, UAV networks
have been considered as significant components of the air-
space-ground integrated information network, which is rec-
ognized as a crucial development direction for 6G [9].

Consequently, UAV networks have recently received ex-
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tensive attention from both academia and industry, and a
large number of studies on UAV-assisted communications
in terrestrial networks have been proposed during the past
several years [10]–[16]. UAV networks can provide various
types of services, among which video streaming media has
been the preferred and dominant way of presenting infor-
mation, particularly in the field of emergency rescue [17].
Additionally, with the development of broadband mobile
networks and the proliferation of smart mobile devices,
video streaming accounts for an increasing share of network
traffic. Predictably, the share will rise further in the coming
6G era. Therefore, the research on video transmission in
UAV networks is not only important for the rapid popu-
larization of UAV networks in emergency communications,
but also has theoretical guidance and practical reference
significance for promoting the application and development
of 6G.

Video transmission is characterized by the transmission
of a large amount of information and the sequential play-
back, which leads to high requirements on the network for
high throughput and low latency, especially in light of the
trend toward high definition. The quality of video streaming
transmission is closely related to the performance of net-
works. However, the uncertainty of the link quality of UAV
networks caused by dynamic network topology, complex
signal interference, and time-varying channel fading pose
a great challenge to video transmission research in UAV
networks [18].

1.1 State of the Art

Many recent studies on UAV network optimization for effec-
tive video transmission have been conducted. For example,
in [19], the authors introduced a relay placement mechanism

http://arxiv.org/abs/2307.12264v1
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to find the ideal locations for UAVs acting as relay nodes,
and thus avoided the effects of UAV movements on the
video dissemination. The authors in [20] investigated the
joint optimization of UAV trajectory and transmission rate
allocation for reliable video streaming delivery in UAV net-
works. In [21], the authors considered the joint optimization
of the UAV deployment and the content placement of a
cache-enabled UAV for the maximization of link throughput
when delivering multimedia data. In conclusion, the above
works of transmitting video streams using UAV networks
mainly focused on improving the link throughput by op-
timizing the UAVs’ locations, trajectories, and network re-
sources without considering the proprietary characteristics
of video streaming.

QoE, which can effectively capture the unique char-
acteristics of video streaming, is an important measure
of the performance of video transmission. Recently, many
researchers have paid attention to the QoE-driven UAV
network optimization. For instance, in [22], the authors
created a QoE utility model and studied an average QoE
maximization problem for video transmission in a UAV re-
lay system by optimizing the system bandwidth and power
allocation. However, the work assumed that QoE depended
only on the video transmission rate. In [23], the authors
proposed a QoE-driven dynamic pseudo analog wireless
video broadcasting scheme, and the goal was to maximize
the peak signal-to-noise ratio (PSNR) of a subscriber’s re-
constructed videos by jointly optimizing the UAV’s transmit
power and trajectory. Nevertheless, the evaluation metric
(exactly, PSNR), which does not consider the overall video
sequences, is typically used to quantify the distortion degree
of video images. For video streaming, the key performance
indicators include video bitrates, frame freezing, and la-
tency.

To this end, the authors in [17] studied a scenario of
the UAV-assisted live video streaming transmission and
modeled the QoE using latency, video resolution, and
smoothness. The authors in [24] presented a QoE-guided
content delivery framework for providing subscribers with
on-demand content in a multi-UAV network and aimed to
maximize the QoE by improving the average end-to-end
delay for each subscriber and the average throughput of
each UAV. The work in [25] proposed to model QoE by
the bitrate together with the frozen time of videos and
formulated a problem of optimizing the system bandwidth
along with UAVs’ transmit power to maximize the total
long-term QoE. Compared with the previous works [22],
[23], the studies in [17], [24], [25] exploited more indicators
in constructing a QoE model. However, the energy efficiency
of the UAV networks were not investigated in [17], [22]–
[25]. Compared to traditional BSs, UAVs are sharply energy-
sensitive, and then it is essential to optimize the energy
consumption of the UAV networks.

Therefore, the work in [26] jointly optimized video level
selection and power allocation to maximize the energy
efficiency of a UAV network, which was defined as the ratio
of video bitrate to UAV power consumption. The authors in
[27] jointly optimize subscriber communication scheduling,
UAV trajectory, transmit power, and bandwidth allocation
to maximize the energy efficiency of the UAV network and
satisfy subscribers’ QoE requirements. Besides, the issue

of energy-efficient trajectory optimization for aerial video
surveillance under QoS constraints was investigated in [28].
Although the issue of energy-efficient UAV video streaming
was investigated in [26]–[28], they just discussed the case
of deploying a single UAV, which had restricted coverage,
limited communication capacity, and stringent energy limi-
tation. The availability of a single UAV network is also not
guaranteed during the entire mission. In contrast, multiple
or a swarm of UAVs can serve subscribers collaboratively
to achieve communications of higher throughput and lower
latency. The availability and efficiency of communications
can also be improved by deploying a multi-UAV network.
Nevertheless, the scheduling of communication resources of
a multi-UAV network is much more challenging than that
of a single UAV network [29]. The problem of deploying
a multi-UAV network to provide efficient services for sub-
scribers by jointly optimizing the association among UAVs
and subscribers, UAVs’ trajectories, and UAVs’ transmit
power was investigated in [30]. However, this work did
not look into the particularities of video transmission. The
authors in [31] designed an intelligent and distributed allo-
cation mechanism to allocate uplink bandwidth for multi-
UAV video streaming. Nevertheless, they just aimed to re-
solve the insufficiency of wireless channel resources when a
cluster of UAVs executed the video shooting and uploading
mission, nor did they consider the interference between
UAVs.

1.2 Motivations and Contributions

From the above works [17]–[28], we observe that optimizing
the resource allocation to improve the video transmission
performance of UAV networks has become an important
and popular research topic. However, the issue of improv-
ing subscribers’ QoE, including video bitrates, latency, and
frame freezing by controlling a multi-UAV network is not
investigated. This paper proposes to completely control
multiple UAVs in terms of their trajectories, transmit power,
and serving UAV selection to proactively alter downlink
video transmission channels. In this way, it is desired to
achieve a significant improvement in the video transmission
performance of the multi-UAV network, including higher
video bitrates, lower latency, and alleviated frame freezing.
The main contributions of this paper are summarized as
follows:

1) We mathematically model the QoE of subscribers
based on the comprehensive analysis of the characteristics
of the multi-UAV network and video transmission. In par-
ticular, a novel video streaming utility model adaptively
matching the video bitrate and the playback bitrate require-
ments of subscribers is designed. Besides, the time-varying
startup and rebuffering latency is investigated and modeled,
and a constraint on the minimum time-averaged achievable
bitrate is enforced to alleviate frame freezing.

2) A dynamic multi-UAV network is desired to be de-
ployed to deliver video streams to subscribers, considering
the restricted UAV communication coverage. To this end, we
formulate the problem of dynamically deploying a multi-
UAV network to deliver video streams to subscribers as a
sequential-decision problem. The goal of this problem is to
maximize the QoE of subscribers and minimize the total
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TABLE 1
SUMMARY OF IMPORTANT ACRONYMS

Acronyms Meaning

2D Two-dimensional

6G Sixth-Generation mobile networks

AtG Air-to-ground

BSs Base stations

CUMTP
Circular UAV trajectory with the maximum transmit

power

CUTR Circular UAV TRajectory

LoS Line-of-sight

NNAS Nearest Neighbor ASsociation

NLoS Non-line-of-sight

NP-hard Non-deterministic Polynomial hard

PSNR Peak signal-to-noise ratio

QoE Quality of experience

RHS Right-hand-side

SUMTP Stationary UAV with maximum transmit power

SUDE Stationary UAV DEployment

UAV Unmanned aerial vehicle

VSS Video source station

power consumption of the multi-UAV network through
the joint optimization and control of UAV transmit power,
serving UAV selection, and UAV trajectory. The formulated
problem is confirmed to be NP-hard or non-tractable, and
solving the sequential-decision problem as a whole encoun-
ters the curse of dimensionality.

3) Considering the advantages of the Lyapunov tech-
nique in tackling sequential-decision optimization prob-
lems, we develop a Lyapunov-based network optimization
algorithm with provable performance guarantees to solve
the optimization problem. First, we decompose the opti-
mization problem into several repeatedly optimized sub-
problems to avoid the curse of dimensionality. Nevertheless,
the sub-problems are still difficult to solve as they are
mixed-integer and non-convex. We then introduce the key
idea of iterative optimization to tackle the mixed-integer
issue and explore Taylor expansions to identify the convex
approximation of the non-convex feasible regions of the sub-
problems.

4) Finally, we compare the proposed algorithm with
various benchmarks to verify its effectiveness and design
extensive simulations to discuss the impact of diverse pa-
rameters on the performance of the algorithm. Simulation
results show that the proposed algorithm can effectively
improve the QoE of subscribers and is 66.75% more energy-
efficient than benchmarks.

2 SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

This paper considers an application scenario for provid-
ing high-quality video streaming services for a number of
ground subscribers by deploying a multi-UAV network,
as shown in Fig. 1. In the considered scenario, there is a
ground content provider acting as a video source station
(VSS), several ground BSs, a multi-UAV network consist-
ing of N flying UAVs, the set of which is denoted by
K = {1, 2, 3, . . . , N}, and M subscribers, the set of which

UAV Communication

Coverage

Video Subscriber

BS Communication

Coverage

Ground Base

Station(BS)

UAV and Energy State
Video Source 

Station(VSS)

Wireless link between 

UAV and BS

Link of BS to VSS
Interference between 

UAVs

, ,  

, ,  

, ,  

,  

,

,  

Fig. 1. Video transmission with a multi-UAV network.

is I = {1, 2, 3, . . . ,M}. The content provider has the ca-
pabilities of video collection, video transcoding, as well as
video streaming push and can provide adaptive streaming
services for subscribers. In this scenario, we investigate the
issue that subscribers cannot directly access the VSS through
BSs, mainly because of severe signal blocking. Considering
that UAVs can establish LoS links with BSs, we propose
to dynamically deploy a multi-UAV network with UAVs
acting as flying relays to forward video streams from BSs
to subscribers.

To facilitate the mathematical model of the video trans-
mission task, the time domain is discretized into a sequence
of time slots, denoted by t = {1, 2, . . .}. As the communica-
tion coverage of UAVs is limited, the trajectories of UAVs
will be continuously optimized to provide transmission
services for subscribers fairly. We denote the time-varying
two-dimensional (2D) horizontal coordinate of UAV k at

time slot t by qk (t) = [x
(u)
k (t) , y

(u)
k (t)]T, 1 ≤ k ≤ N .

Denote the location of subscriber i at time slot t by

si (t) =
[

x
(s)
i (t) , y

(s)
i (t)

]T
, 1 ≤ i ≤ M . All UAVs are

deployed at the same altitude, H , and the altitudes of all
subscribers are negligible compared to H . Thus, the distance
between UAV k and subscriber i at time slot t can be

given by Dik (t) =
√

H2 + ‖qk (t)− si (t)‖
2
. Considering

the stringent QoE requirements of subscribers, it is critical
to provide video streaming services via air-to-ground (AtG)
LoS links. The reliability and the throughput of non-line-of-
sight (NLoS) propagation links cannot be guaranteed for
video streaming services. High energy consumption will
also be required to compensate for attenuation of NLoS
propagation [32], [33]. Besides, according to the research
results in [34], the probability of LoS propagation can exceed
90% when the elevation angle between a UAV and a ground
subscriber is greater than a threshold θ, which is related to
the propagation environment, such as rural area, urban area,
and dense urban. Therefore, the following condition can be
held in order to approximate the establishment of a LoS link
between a UAV and a ground subscriber.

‖qk (t)− si (t)‖ ≤ Htan−1θ, ∀i, k, t (1)

The channel gain of an AtG LoS link can be calculated by

the free-space path loss model [18], hik(t) =
gT
ikg

R
ikc

2

(4πfcDik(t)/D0)
2

where hik(t) denotes the channel gain from UAV k to
subscriber i at time slot t, gTik and gRik respectively represent
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TABLE 2
LIST OF SOME IMPORTANT NOTATIONS

Notation Description Notation Description

K, I Set of UAVs and set of subscribers qk (t) Horizontal location of UAV k at time slot t

[x
(u)
k

(t) , y
(u)
k

(t)]
2D horizontal coordinate of

UAV k at time slot t
Dik (t) Distance between UAV k and subscriber i at time slot t

si (t) Location of subscriber i at time slot t hik (t) Channel gain from UAV k to subscriber i at time slot t

sinrik (t)
Signal-to-interference-plus-noise ratio

experienced by subscriber i at time slot t
Iik (t)

Interference signal received by subscriber i from other

UAVs except for serving UAV k at time slot t

cik (t)
Indicator of whether subscriber i can select UAV

k as its serving UAV
ri (t) Achievable bitrate of subscriber i at time slot t

r̄i (t)
Time-averaged achievable bitrate of subscriber i

during the first t time slots
pk (t) Instantaneous transmit power of UAV k at time slot t

p̄k (t)
Time-averaged transmit power of UAV k during

the first t time slots
dmin Minimum safety distance between any two UAVs

ptot
k

(t)
Total communication power consumption of

UAV k at time slot t
smax UAV’s maximum flight distance in a time slot

Ri Required playback bitrate of subscriber i rth
i

Threshold of time-averaged achievable bitrate of

subscriber i

δt Duration of a time slot d (t) Total latency for all subscribers i ∈ I at time slot t

transmitting and receiving antenna gains, c is the speed
of light, fc is the carrier frequency, and D0 is a far-field

reference distance. Let ωik =
gT
ikg

R
ikc

2D2
0

(4πfc)
2 , hik(t) can be

rewritten as

hik(t) =
ωik

H2 + ‖qk (t)− si (t)‖
2 (2)

Owing to the movement of UAVs and their limited
coverage, a subscriber’s serving UAV will be time-varying.
We denote the serving UAV selection set at time slot t
as C(t). For any cik (t) ∈ C(t), cik (t) = 1 indicates that
subscriber i can select UAV k as its serving UAV at time slot
t; otherwise, cik (t) = 0. We assume that at time slot t, a
subscriber can select at most one UAV as its serving UAV,
and a UAV is allowed to deliver video streams to at most
one subscriber. Mathematically, we have

0 ≤
∑

k∈K
cik (t) ≤ 1, 0 ≤

∑

i∈I
cik (t) ≤ 1 (3)

As all UAVs share the frequency resource in the consid-
ered scenario, a subscriber i will receive its intended signal
from UAV k and interference caused by other UAVs at each
time slot. For subscriber i, the strength of its received inter-
ference can be calculated by Iik (t) =

∑

j∈K\{k}

pj (t)hij (t)

where pj (t) denotes the instantaneous transmit power of
UAV j at time slot t. Then, the signal-to-interference-plus-
noise ratio (SINR) experienced by subscriber i at time slot t

can be given by sinrik (t) =
pk(t)hik(t)
σ2+Iik(t)

, where σ2 is the noise
power. According to Shannon’s channel capacity formula,
we can calculate the achievable bitrate of subscriber i at time
slot t by

ri (t) =
∑

k∈K
cik (t) log2 (1 + sinrik (t)) (4)

For subscriber i, its time-averaged achievable bitrate
during the first t time slots can be given by r̄i (t) =
1
t

∑t
τ=1 ri (τ).

It is worth noting that the onboard energy of UAVs is
limited and needs to be efficiently utilized. In this paper, we
mainly consider the communication power consumption of

UAVs (exactly, for forwarding video streams) and model the
total communication power consumption of UAV k at time
slot t as [32]

ptotk (t) = pk (t) + pck (5)

where pck is the onboard circuit power consumption of UAV
k. The time-averaged transmit power of UAV k in the first

t time slots can be computed by p̄k (t) = 1
t

t∑

τ=1
pk (τ).

Accordingly, the time-averaged total communication power
consumption of UAV k in the first t time slots can be written
as p̄totk (t) = p̄k (t) + pck. The upper-bounded constraints
of ptotk (t) and p̄totk (t) can be written as ptotk (t) ≤ p̂k and
p̄totk (t) ≤ p̃k, ∀k, t, where p̂k and p̃k denote the maximum
instantaneous total power consumption and the maximum
time-averaged total power consumption of UAV k, respec-
tively [35].

At any time slot t, to avoid the UAV collision, the
distance between any two UAVs must be greater than a
value [29], [36], i.e.,

‖qk (t)− qj (t)‖
2
≥ d2min, ∀k, k 6= j, t (6)

where dmin denotes the minimum safety distance.
In addition, limited by the flight speed, the moving

distance of a UAV in a time slot is constrained [29], [36],
i.e.,

‖qk (t)− qk (t− 1)‖
2
≤ s2max, ∀k, t (7)

where smax denotes the UAV’s maximum flight distance in
a time slot.

2.2 QoE Model

QoE has become an acknowledged performance evaluation
standard in video streaming services. The accurate analy-
sis of the key factors influencing QoE will be beneficial
for enhancing subscriber satisfaction and improving the
utilization of network resources. In the research field of
video streaming, high resolution, fluency, low latency, and
smoothness of video streaming are four universal factors
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affecting QoE. These influencing factors, however, are chal-
lenging to be optimized simultaneously, especially in a
time-varying multi-UAV network. Meanwhile, the domi-
nant influencing factors are diverse for various network
services. For example, some applications are sensitive to
latency, while others are greatly affected by packet loss ratio.
The smoothness of video streaming is closely related to
subscribers’ switching strategies towards video streaming
of diverse quality and cannot be directly optimized by
controlling the multi-UAV network. Considering the time-
varying characteristics of the multi-UAV network and the
continuous playback requirements of video streaming, we
create a novel QoE model incorporating the video bitrate,
the latency, and the frame freezing in this paper.

The decoding capabilities and screen sizes of subscriber
terminals may be different, and their playback bitrate re-
quirements for the same video streaming may be diverse. In
this case, implementing adaptive transmission and playback
of video streaming is an effective way of improving QoE.
Based on the throughput of the multi-UAV network and the
receiving capabilities of subscribers, we design an adaptive
video streaming utility model that implements the adaptive
matching between subscribers’ required playback bitrates
and video bitrates. For a subscriber, its available video bi-
trate is upper-bounded by its achievable bitrate; otherwise,
packet loss or frame freezing will occur. Therefore, the video
streaming utility model φ (r̄ (t)) for all subscribers i ∈ I,
which also represents the profit of the multi-UAV network,
can be written as

φ (r̄ (t)) = α
M∑

i=1

log2β(1 +
Br̄i (t)

Ri
) (8)

where r̄ (t) = (r̄1 (t) , . . . , r̄M (t)), Ri represents the re-
quired playback bitrate of subscriber i, B represents the
total bandwidth, and α, β are both positive values that are
different for various types of applications.

Latency, especially the startup latency and the rebuffer-
ing latency in video streaming, is a crucial factor affect-
ing QoE. The startup latency and the rebuffering latency
are closely related to subscribers’ achievable bitrates. The
greater the achievable bitrate, the shorter the latency to
receive a sufficient amount of video data. Latency is also
greatly affected by a subscriber’s selection of serving UAV
in the considered application scenario. Hence, the startup
and rebuffering latency (briefly, latency) model di (t) for any
subscriber i ∈ I at time slot t is given by

di (t) =
∑

k∈K

Lcik (t)

Blog2 (1 + sinrik (t))
+ (1−

∑

k∈K

cik (t))δt

(9)
where δt denotes the duration of a time slot, and L is the
length of transmitted video data in a time slot. According
to (9), we will obtain the latency di (t) =

L
Blog2(1+sinrik(t))

,

when subscriber i can select a certain UAV k as its serving
UAV at time slot t; otherwise, the latency di (t) is δt, namely
the interval of one time slot. d (t) =

∑

i di (t) denotes the
total latency of all subscribers i at time slot t.

The exhaustion of resources in a subscriber’s playback
buffer will lead to annoying frame freezing. When the
playback bitrate remains unchanged, either the decrease of
link throughput or the link interruption can result in the

Fig. 2. Pareto frontier and dominated solutions of (11).

exhaustion of buffer resources. To tackle this issue, it is
essential to constrain the time-averaged achievable bitrate
r̄i (t) by

r̄i (t) ≥ rthi , ∀i (10)

where, rthi denotes the threshold of time-averaged achiev-
able bitrate of subscriber i. In order to meet this constraint,
the optimization of UAV trajectories and network resources
is desired and should be investigated.

2.3 Problem Formulation

Considering that UAVs are energy-sensitive, our goal is to
maximize subscribers’ QoE and minimize the total power
consumption of the multi-UAV network. To achieve this
goal, we propose to jointly optimize the serving UAV se-
lection C(t), the UAVs’ trajectories Q(t), and the UAVs’
transmit power P(t). According to the above analysis, the
optimization problem can be mathematically formulated as
follows

Maximize
C(t),P(t),Q(t)

lim inf
t→∞

φ (r̄ (t))− ρ2
∑

k∈K

p̄totk (t)−

ρ1
∑

i

(
∑

k∈K

Lcik (t)

Blog2 (1 + sinrik (t))
+ (1−

∑

k∈K

cik (t))δt)

(11a)

s.t. lim inf
t→∞

r̄i (t) ≥ rthi , ∀i (11b)

lim sup
t→∞

p̄totk (t) ≤ p̃k, ∀k (11c)

ptotk (t) ≤ p̂k, ∀k, t (11d)

pk (t) ≥ pmin
k , ∀k, t (11e)

cik (t) ∈ {0, 1}, ∀i, k, t (11f)

constraints (1), (3), (6), (7) are satisfied (11g)

where ρ1 and ρ2 are both positive values that reflect the
trade-off among the network profit, the total latency, and
the total power consumption. One can choose ρ1 and ρ2
based on preferences of network operators and subscribers
and the Pareto frontier of the formulated multi-objective
optimization problem, as depicted in Fig. 2.

The formulated problem is confirmed to be a sequential-
decision optimization problem, the solution of which is
highly challenging. The video streaming utility model in the
objective function is a logarithm function of time-averaged
achievable bitrates of subscribers during the first t time slots,
which not only makes the problem highly time-coupled but
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also greatly increases the computational complexity of solv-
ing the problem. For example, the number of time-varying
decision variables of the problem will grow exponentially
with the increase of time slot t. As a result, to solve this
problem directly by exploring some conventional optimiza-
tion algorithms is unacceptable in terms of computational
complexity. Besides, this optimization problem includes the
summation term of 2-norm, complex fractional terms, con-
tinuous and integer variables, logarithmic-quadratic func-
tions, and non-convex constraints. Thus, the formulated
problem is also a mixed-integer non-convex optimization
problem that may be NP-hard or even undecidable [37].

To alleviate this highly challenging problem, we first
employ the Jensen’s inequality to decouple the time-coupled
objective function. Next, considering the advantages of
Lyapunov optimization approach in tackling time-averaged
problems, we decompose the sequential-decision problem
into multiple repeatedly optimization sub-problems at dif-
ferent time slots using the Lyapunov approach. In this way,
the curse of dimensionality can be effectively tackled, and
the computational complexity of solving the original prob-
lem can be greatly reduced. Next, we transform the complex
fractional terms into rotated quadratic cones by introducing
some slack variables. Finally, alternative and approximate
optimization mechanisms with provable performance guar-
antees are explored to handle the mixed-integer and the
non-convex properties of the sub-problems, respectively.

3 LYAPUNOV-BASED OPTIMIZATION FRAMEWORK

Observe that there is a logarithmic term of the time-
averaged achievable bitrates in the objective function, which
significantly hinders the theoretical analysis of the for-
mulated problem. To tackle this issue, we introduce a
set of auxiliary variables to transform the logarithmic
term. In particular, define an auxiliary vector λ (t) =
(λ1 (t) , . . . , λM (t)), let 0 ≤ λi (t) ≤ rmax

i , ∀i, t, and

lim inf
t→∞

[
r̄i (t)− λ̄i (t)

]
= 0, ∀i, where λ̄i (t) = 1

t

t∑

τ=1
λi (τ),

we then have lim inf
t→∞

φ
(
λ̄i (t)

)
= lim inf

t→∞
φ (r̄i (t)). In addi-

tion, we define an auxiliary function a (t) = φ (λ (t)) =

α
M∑

i=1
log2β(1 +

Bλi(t)
Ri

). By the Jensen’s inequality, the fol-

lowing expression holds, ā (t) = 1
t

t∑

τ=1
a (τ) ≤ φ

(
λ̄ (t)

)
.

Based on this inequality, the original problem (11) can be
transformed into the following problem.

Maximize
C(t),P(t),Q(t),λ(t)

lim inf
t→∞

ā (t)− ρ1
∑

i

di (t)− ρ2
∑

k∈K

p̄totk (t)

(12a)

s.t. lim inf
t→∞

[
r̄i (t)− λ̄i (t)

]
= 0, ∀i (12b)

lim inf
t→∞

[

r̄i (t)− rthi

]

≥ 0, ∀i (12c)

lim sup
t→∞

[
p̃k − p̄totk (t)

]
≥ 0, ∀k (12d)

constraints (11d), (11e), (11f), (11g) are satisfied. (12e)

Remark 1: On one hand, owing to the utilization of
Jensen’s inequality, the maximum value of the objective
function of (12) is not greater than that of (11). On the other

hand, (12a) can obtain the maximum value of (11a) by letting
λ̄i (t) = r̄∗i (t) , ∀i ∈ I, t, with {r̄∗1 (t) , r̄

∗
2 (t) , . . . r̄

∗
M (t)} be-

ing a collection of optimal time-averaged achievable bitrates
in (11). Therefore, (12) and (11) are equivalent.

The transformed problem (12), however, is still difficult
to be solved due to the existence of time-averaged terms.
To this end, the Lyapunov drift-plus-penalty technique is
explored to handle the time-averaged terms. We introduce
three sets of virtual queues {Xi (t)}, {Zi (t)}, {Yk (t)}, and
define

Xi (t) = Xi (t− 1) + rthi − ri (t− 1) , ∀i, t (13)

Zi (t) = Zi (t− 1) + λi (t− 1)− ri (t− 1) , ∀i, t (14)

Yk (t) = Yk (t− 1) + ptotk (t− 1)− p̃k, ∀k, t (15)

In this way, to enforce the three groups of time-averaged
constraints (12b), (12c), and (12d), the following stability
requirement should be satisfied.

lim
t→∞

E {max {f (t) , 0}}
/

t = 0 (16)

where f(t) ∈ {Xi(t), Zi(t), Yk(t); ∀i, k}.
According to the Lyapunov optimization approach, the

Lyapunov function L (t), which is nonnegative and can
be regarded as a scalar measure of constraint violation at
time slot t, is usually defined as the sum of square of all
virtual queues. For the convenience of calculation, L (t) is

defined as L (t)
∆
= 1

2

∑

i ([Xi(t)]
+
)
2
+ 1

2

∑

i ([Zi(t)]
+
)
2
+

1
2

∑

k∈K ([Yk(t)]
+)

2
.

Correspondingly, the expression of Lyapunov drift-plus-
penalty can be written as ∆(t) − V (a (t) − ρ1

∑

i
di (t) −

ρ2
∑

k∈K
ptotk (t)), where ∆(t) = L (t+ 1) − L (t) is a Lya-

punov drift, −(a (t) − ρ1
∑

i
di (t) − ρ2

∑

k∈K

ptotk (t)) is a

penalty function, and V is a non-negative coefficient, weigh-
ing a trade-off between the constraint violation and optimal-
ity. Thus, V can be chosen properly to ensure that the time
average of the penalty function is arbitrarily close to the
optimum. According to (13), (14), and (15), we can obtain
the following expressions

1
2 ([Xi(t+ 1)]+)2 = 1

2 ([Xi(t)]
+)2+

[Xi(t)]
+(rthi − ri(t)) +

1
2 (r

th
i − ri(t))

2 (17)

1
2 ([Zi (t+ 1)]

+
)2 = 1

2 ([Zi (t)]
+
)2+

[Zi (t)]
+ (λi (t)− ri (t)) +

1
2 (λi (t)− ri (t))

2 (18)

1
2 ([Yk (t+ 1)]

+
)2 = 1

2 ([Yk (t)]
+
)2+

[Yk (t)]
+ (pk (t) + pck − p̃k) +

1
2 (pk (t) + pck − p̃k)

2 (19)

With (17)-(19) and ∆(t) = L (t+ 1) − L (t), the upper
bound of the drift-plus-penalty function at time slot t can be
given by

∆(t)− V (a (t)− ρ1
∑

i
di (t)− ρ2

∑

k∈K
ptotk (t))

≤
∑

i
(rmax

i )
2
+
∑

k∈K

(p̂k)
2

2 +
∑

i
[Xi (t)]

+
rthi −

∑

k∈K
[Yk (t)]

+
(p̃k − pck) + V ρ2

∑

k∈K
pck − V φ (λ (t))+

∑

i
[Zi (t)]

+
λi (t) +

∑

k∈K

{

V ρ2 + [Yk (t)]
+
}

pk (t)−

∑

i

{

[Xi (t)]
+ + [Zi (t)]

+
}

ri (t) + V ρ1
∑

i
di (t)

(20)
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As a consequence, the minimization of the drift-plus-
penalty item can be approximated by minimizing its upper
bound, i.e., the right-hand-side (RHS) expression of (20).
Then, the optimization problem can be greedily solved
by minimizing the upper bound of the drift-plus-penalty
function at each time slot. From (20), we can also observe
that its RHS expression can be decomposed into three types
of independent items, including constant items, auxiliary
variable-related items, and resource optimization-related
items (exactly, the UAVs’ transmit power P(t), the UAVs’
trajectories Q(t), and the serving UAV selection C(t)).

In summary, the Lyapunov-based optimization frame-
work of mitigating (12) can be decomposed into the follow-
ing repeated optimization sub-problems of a two-layered
structure.

• Auxiliary-variable-layer optimization: Optimize
(21) to obtain the optimal λi (t) for ∀i ∈ I.

Minimize
λ(t)

−V φ (λ (t)) +
∑

i

[Zi (t)]
+
λi (t) (21a)

s.t. 0 ≤ λi (t) ≤ rmax
i , ∀i ∈ I, t (21b)

• Resource-layer optimization: The serving UAV se-
lection, the UAVs’ transmit power, and the UAVs’
trajectories will be obtained by solving the following
multi-objective optimization sub-problem.

Minimize
C(t),P(t),Q(t)

∑

k∈K

{

V ρ2 + [Yk (t)]
+
}

pk (t)−

∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ri (t) + V ρ1
∑

i

di (t)

(22a)

s.t. constraint (12e) is satisfied. (22b)

4 PROBLEM SOLUTION AND ALGORITHM DESIGN

4.1 Solution to the Auxiliary-Variable-Layer Sub-

problem

As the auxiliary function φ (λ (t)) is the total of all indi-
vidual logarithmic functions, we can then divide this sub-
problem into M individually optimized sub-problems, each
of which can be formulated as

Minimize
λi(t)

−V αlog2β(1 +
Bλi (t)

Ri
) + [Zi (t)]

+λi (t) (23a)

s.t. 0 ≤ λi (t) ≤ rmax
i , ∀i ∈ I, t (23b)

(23a) is a convex function of λi (t), and its closed-form
solution can be obtained by calculating the derivative. Let

∂f
∂λi(t)

= [Zi (t)]
+ − V α

β(Ri
B

+λi(t)) ln 2
= 0, we can obtain

λi (t) =







rmax
i , [Zi (t)]

+
= 0

min

{[
V α ln−1 2
[Zi(t)]

+β
− Ri

B

]+
, rmax

i

}

, otherwise

(24)

4.2 Solution to the Resource-Layer Sub-problem

It can be observed that (22) includes some logarithmic-
quadratic terms and non-convex constraints. It is also a
multi-objective optimization problem involving both inte-
ger and continuous decision variables. As a result, (22)
is difficult to be solved directly. To this end, an iterative
optimization scheme is adopted to solve (22) in this paper.

4.2.1 Solution to serving UAV selection sub-problem

Given UAVs’ trajectories Q(t) and UAVs’ transmit power
P(t), the serving UAV selection C(t) at time slot t can be
optimized by solving the following sub-problem.

Maximize
C(t)

∑

i

{

[Xi (t)]
+ + [Zi (t)]

+
}

×

∑

k∈K

cik (t) log2 (1 + sinrik (t))− V ρ1×

∑

i

(
∑

k∈K

Lcik (t)

Blog2 (1 + sinrik (t))
+ (1−

∑

k∈K

cik (t))δt)

(25a)

s.t. constraints (1), (3), (11f) are satisfied. (25b)

It can be confirmed that (25) is an integer linear program-
ming problem, and some optimization tools such as MOSEK
can be employed to alleviate this sub-problem effectively.

4.2.2 Solution to the UAVs’ transmit power control sub-

problem

For any given serving UAV selection C(t), UAVs’ trajectories
Q(t), and UAVs’ transmit power P(t − 1) at the previous
time slot t − 1, the UAVs’ transmit power P(t) can be
optimized by solving the following sub-problem.

Minimize
P(t)

∑

k∈K

{

V ρ2 + [Yk (t)]
+
}

pk (t)+

V ρ1
∑

i

L

Bri (t)
−
∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ri (t) (26a)

s.t. constraints (11d), (11e) are satisfied. (26b)

To simplify the expression of the objective function, we
introduce the slack variable ηi (t), and let ηi (t) ≤ ri (t).
Moreover, we can observe that (26a) includes a latency-
related item with ri (t) being the denominator of the frac-
tion, which greatly hinders the theoretical analysis of (26).
To tackle this issue, we introduce the slack variable ξi (t) and
let L

Bξi(t)
≤ ηi (t). Specifically, we can transform the latency-

related sub-problem in (26a) into the following optimization
problem.

Minimize
P(t),ξi(t),ηi(t)

∑

i

ξi (t) (27a)

s.t. ξi (t) ηi (t) ≥
L

B
, ∀i, t (27b)

ηi (t) ≤ ri (t) , ∀i, t (27c)

ηi (t) ≥ 0, ξi (t) ≥ 0, ∀i, t (27d)

According to (4) and (27), the UAVs’ transmit power
optimization sub-problem (26) can be reformulated as

Maximize
P(t),ξi(t),ηi(t)

−
∑

k∈K

{

V ρ2 + [Yk (t)]
+
}

pk (t)+

∑

i

{

[Xi (t)]
+ + [Zi (t)]

+
}

ηi (t)− V ρ1
∑

i

ξi (t) (28a)

s.t.
∑

k∈K

cik (t) log2(1 +
pk (t) hik (t)

σ2+
∑

j∈K\{k}

pj (t)hij (t)
)

≥ ηi (t) , ∀i, t (28b)

constraints (26b), (27b), (27d) are satisfied. (28c)
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The constraint (28b), however, is non-convex, and thus
(28) is a non-convex optimization sub-problem. To solve
this problem effectively, we need to approximate the non-
convex constraint as a convex constraint [38]. The following
Proposition presents the approximation results.

Proposition 1. Given a local point P
(r)
j (t), ∀j, t, one can

approximately transform the non-convex constraint (28b)
into the following convex one

∑

k∈K

cik (t) (Λ̂i (t)− F
(r)
ik (t))−

∑

k∈K
(cik (t)

∑

j∈K\{k}

G
(r)
ik (t) (pj (t)− p

(r)
j (t)))

≥ ηi (t) , ∀i, t

(29)

where, Λ̂i (t) = log2(σ
2 +

∑

j∈K
pj (t)hij (t)),

F
(r)
ik (t) = log2(σ

2+
∑

j∈K\{k}

p
(r)
j (t)hij (t)), and

G
(r)
ik (t) =

hij(t)

(σ2+
∑

j∈K\{k}

p
(r)
j

(t)hij(t)) ln 2
=

hij(t)

2F
(r)
ik

(t) ln 2
.

Proof. Please refer to Appendix A.

Based on the relaxation transformation results and the
approximation results in Proposition 1, (26) can be approxi-
mately transformed into a convex sub-problem. To facilitate
the optimization of the approximated convex sub-problem
using some convex optimization tools such as MOSEK, we
further transform it into a conic problem in the following
Lemma.

Lemma 1. Based on the above approximation results, (26)
can be approximately transformed into the following conic
problem by introducing a family of auxiliary variables.

Maximize
P(t),ξi(t),ηi(t)

−
∑

k∈K

{

V ρ2 + [Yk (t)]
+
}

pk (t)+

∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ηi (t)− V ρ1
∑

i

ξi (t) (30a)

subject to :

linear constraints : (26b), (27d), (41a), (41b), (41c)
(30b)

exponential cone constraint : (42) (30c)

rotated quadratic cone constraint : (43) (30d)

Further, the opposite value of the maximum value of
(30a) is the upper bound of the optimal objective value of
(26).

Proof. Please refer to Appendix B.

4.2.3 Solution to the UAV trajectory optimization sub-

problem

Given serving UAV selection C(t), UAVs’ transmit power
P(t), and UAVs’ trajectories Q(t − 1) at the previous time
slot t − 1, the UAVs’ trajectories Q(t) can be optimized by
mitigating the following problem

Maximize
Q(t)

∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ri (t)−

V ρ1
∑

i

L

Bri (t)
(31a)

s.t. constraints (1), (6), (7) are satisfied. (31b)

Similar to the derivation in subsection 4.2.2, after intro-
ducing the slack variables ηi (t) and ξi (t), the optimization
problem (31) can be reformulated as

Maximize
Q(t),ηi(t),ξi(t)

∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ηi (t)−

V ρ1
∑

i

ξi (t) (32a)

s.t.
∑

k∈K

cik (t) log2(1 +
pk (t)hik (t)

σ2+
∑

j∈K\{k}

pj (t)hij (t)
)

≥ ηi (t) , ∀i, t (32b)

constraints (27b), (27d), (31b) are satisfied. (32c)

(32) is not convex due to the existence of non-convex
constraints (6) and (32b). Therefore, it is quite difficult to
obtain its optimal solution.

For constraint (6), it is non-convex. Similar to the anal-
ysis and derivation in Proposition 1, the first-order Taylor
expansion can be performed to calculate the lower bound of
its left-hand-side (LHS) term.

‖qk (t)− qj (t)‖
2
≥ −

∥
∥
∥q

(r)
k (t)− q

(r)
j (t)

∥
∥
∥

2

+2
(

q
(r)
k (t)− q

(r)
j (t)

)T
(qk (t)− qj (t))

(33)

where q
(r)
k (t) and q

(r)
j (t) denote the 2D horizontal location

of the k-th and j-th UAV at the r-iteration of the approxi-
mation method explored in Proposition 1, respectively.

For the non-convex constraint (32b), it is much more
complex than (6). The following Proposition presents its
approximated constraints.

Proposition 2. Given a local point q
(r)
j (t), ∀j, t, by intro-

ducing a slack variable Bij(t) ≤ ||qj(t)− si(t)||
2, we can

approximately transform the non-convex constraint (32b)
into the following convex constraints

∑

k∈K

cik (t)(D
(r)
i (t)−

∑

j∈K
E

(r)
ij (t) (‖qj (t)− si (t)‖

2−

∥
∥
∥q

(r)
j (t)− si (t)

∥
∥
∥

2
)) +

∑

k∈K

cik (t) Λ̃ik (t) ≥ ηi (t) , ∀i, t

(34)
∥
∥
∥q

(r)
j (t)− si (t)

∥
∥
∥

2
+ 2(q

(r)
j (t)− si (t))

T×

(qj (t)− si (t)) ≥ Bij(t)
(35)

where D
(r)
i (t)=log2(σ

2 +
∑

j∈K

pj(t)ωij

H2+
∥

∥

∥q
(r)
j

(t)−si(t)
∥

∥

∥

2 ),

E
(r)
ij (t)=

pj(t)ωij
(

H2+
∥

∥

∥q
(r)
j

(t)−si(t)
∥

∥

∥

2
)2

D
(r)
i (t) ln 2

, and

Λ̃ik (t) = −log2(σ
2 +

∑

j∈K\{k}

pj(t)ωij

H2+Bij(t)
).

Proof. Please refer to Appendix C.

Based on the above derivation, we can approximately
transform the non-convex UAV trajectory optimization sub-
problem (31) into a convex one. We further transform the
approximate sub-problem into a conic problem in the fol-
lowing Lemma, which can be effectively solved by calling
MOSEK.



JOURNAL OF LATEX CLASS FILES, 2023 9

Lemma 2. Based on the above approximation results, (31)
can be approximately transformed into the following conic
problem by introducing a family of slack variables.

Maximize
Q(t),ηi(t),ξi(t),Bij(t)

∑

i

{

[Xi (t)]
+
+ [Zi (t)]

+
}

ηi (t)−

V ρ1
∑

i

ξi (t) (36a)

subject to :

linear constraints : (35), (54a), (55), (57), (58) (36b)

quadratic cone constraints : (59), (60) (36c)

rotated quadratic cone constraints : (43), (49) (36d)

exponential cone constraints : (54b), (56) (36e)

Further, the maximum value of (36a) is the lower bound
of the optimal objective value of (31).

Proof. Please refer to Appendix D.

4.3 Algorithm Design

Based on the above theoretical analysis and derivation,
we can summarize the main steps of solving (22) in the
following algorithm. Besides, the following Lemma presents
the convergence of the algorithm.

Algorithm 1 multi-UAV network resource-layer iterative
optimization algorithm

1: Initialization: Randomly initialize P(0)(t) and Q(0)(t),
let r = 0.

2: repeat
3: Given P(r)(t) and Q(r)(t), solve (25) to obtain the

solution C(r+1)(t).
4: Given C(r+1)(t), P(r)(t), and Q(r)(t), solve (30) to

achieve the solution P(r+1)(t).
5: Given C(r+1)(t), P(r+1)(t), and Q(r)(t), solve (36) to

obtain the solution Q(r+1)(t).
6: Update r = r + 1
7: until Convergence or reach the maximum number of

iteration rmax.

Lemma 3. The iterative optimization Algorithm 1 is conver-
gent.

Proof. Please refer to Appendix E.

Recall that (11) can be decomposed into two repeated
optimization sub-problems. We obtained the closed-form
solution of the auxiliary-variable-layer sub-problem. The
resource-layer sub-problem can be solved by calling Algo-
rithm 1. We can then summarize the steps of solving (11) in
Algorithm 2.

The computational complexity of Algorithm 2 has two
main contributors at each time slot, i.e., the auxiliary-
variable-layer optimization and the resource-layer opti-
mization. The computational complexity of solving the
auxiliary-variable-layer optimization sub-problem is O(N).
For the resource-layer optimization, it can be further de-
composed into three sub-problems, including serving UAV
selection optimization, UAV transmit power optimization,

Algorithm 2 Energy-efficient Multi-UAV network Opti-
mization, EMUO

1: Initialization: Randomly initialize Xi(1), Zi(1), and
Yk(1) to positive values for any subscriber i ∈ I and
UAV k ∈ K.

2: for each time slot t = 1, 2, . . . , T do
3: Observe the virtual queues Xi(t), Zi(t), and Yk(t).
4: Compute λi (t) using (24) for any subscriber i.
5: Find the serving UAV selection set C(t), UAV trajec-

tories Q(t), and UAV transmit power P(t) by calling
Algorithm 1.

6: Calculate ri (t) for any subscriber i ∈ I using (4).
7: Calculate di (t) for any subscriber i ∈ I using (9).
8: Calculate ptotj (t) for each UAV k ∈ K using (5).
9: Update Xi(t + 1), Zi(t + 1), and Yk(t + 1) for any

subscriber i ∈ I and UAV k ∈ K using (13), (14), and
(15), respectively.

10: end for

and UAV trajectory optimization sub-problems. The com-
putational complexity of solving the linear integer serv-
ing UAV selection optimization sub-problem by a branch-
and-bound method is min{O((1 + M)N ), O((1 + N)M )}.
Both UAV transmit power optimization and trajectory opti-
mization sub-problems are approximately transformed into
convex programming; thus, the computational complexi-
ties of solving the approximate UAV transmit power op-
timization and trajectory optimization sub-problems by an
interior method are O((N + 2M)3.5) and O((N + 2M +
NM)3.5), respectively [39]. Besides, an iterative optimiza-
tion scheme is explored to solve the resource-layer optimiza-
tion sub-problem, and hence, the computational complex-
ity of solving the resource-layer optimization sub-problem
is O(rmax(min{O((1 + M)N ), O((1 + N)M )} + O((N +
2M)3.5) +O((N + 2M +NM)3.5))) in the worst-case.

5 SIMULATION AND RESULT ANALYSIS

5.1 Comparison Algorithms and Parameter Setting

In this section, we conduct simulations to verify the effec-
tiveness of the proposed algorithm, and compare it with the
following five benchmark algorithms: 1) Nearest Neighbor
ASsociation (NNAS) algorithm: It implements the UAV
trajectory and transmit power optimization method in [18].
Meanwhile, each UAV only establishes a communication
link (if available) with its nearest ground subscriber in the
NNAS algorithm. 2) Stationary UAV DEployment (SUDE)
algorithm: UAVs hover steadily over the randomly gen-
erated locations, as in [25]. Meanwhile, the serving UAV
selection and UAV transmit power are optimized using the
schemes designed in the proposed algorithm. 3) Stationary
UAV with maximum transmit power (SUMTP) algorithm:
In SUMTP, UAVs hover steadily over a random selection
of locations and deliver video streams with the maximum
transmit power. Besides, it adopts the same serving UAV se-
lection scheme as the proposed algorithm. 4) Circular UAV
TRajectory (CUTR) algorithm: As in [29], each UAV flies in
a circular trajectory with a speed of two m/s. The distance
between any two neighboring UAVs is 1/4N (N is the num-
ber of deployed UAVs) km at the initial time. Besides, CUTR
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adopts the similar serving UAV selection and UAV transmit
power optimization schemes as the proposed algorithm. 5)
Circular UAV trajectory with the maximum transmit power
(CUMTP) algorithm: The difference between CUMTP and
CUT is that CUMTP adopts the scheme of the maximum
transmit power.

We consider a mountainous suburb area R of size
500× 500 m2, where ground subscribers walk randomly in
the area. The radio frequency propagation parameters are:
carrier frequency fc = 4.9 GHz, light speed c = 3.0 × 108

m/s, noise power σ2 = −174 dBm, total bandwidth
B = 100 MHz, far field reference distance D0 = 1 m,
antenna transmitting gains gTik = 1, and antenna receiving
gains gRik = 1. The values of parameters related to UAVs are
set: the maximum instantaneous total power p̂k = 500 mW,
the maximum time-averaged total power p̃k = 450 mW,
circuit power pck = 20 mW, the minimum safety distance
dmin = 50 m, the maximum flight distance in one time
slot smax = 250 m, elevation angle threshold θ = 77◦, and
fixed flight altitude H = 500 m. Several parameters related
to video transmission are: the length of transmitted video
data in a time slot L = 10 Mb, a turntable game in [29]
is called to set the required playback bitrate of subscriber i
with Ri ∈ {0.0316, 0.0154} bps/Hz, let the minimum time-
averaged achievable bitrate rthi = Ri, and the duration of
a time slot δt = 2 s. More system parameters are listed as
below: the video streaming utility model parameters α = 1
and β = 1; V = 10, ρ1 = 15, ρ2 = 0.05, T = 200, and the
maximum number of optimization iteration rmax = 60.

5.2 Performance Evaluation

In this subsection, we design extensive simulations to com-
prehensively verify the performance of the proposed al-
gorithm, including the stability verification, the QoE per-
formance, and the energy efficiency of the algorithm. To
weaken the impact of randomly initialized parameters (e.g.,
UAV transmit power and locations) on the performance of
algorithms, we run all algorithms for ten times, and then
their average values are compared.

5.2.1 Results of stability and UAVs’ trajectories

In this simulation, we test the stability of proposed algo-
rithm. The stability refers to the stability of the introduced
virtual queues and is defined as SX = maxi[Xi (t)]

+/t,
SZ = maxi[Zi (t)]

+/t, and SY = maxk[Yk (t)]
+/t. In Fig.

3, we plot the stability trends of the introduced virtual
queues. From this figure it can be observed that the obtained
stability values of virtual queues are upper bounded over
the whole period and tend to zero as time slot t increases.
According to the definition of mean-rate stability, we can
say that the virtual queues are mean-rate stable, and then
the time average-related constraint (16) can be satisfied. It
also indicates that the frame freezing can be alleviated.

Further, Fig. 4 shows the trajectories of four UAVs in the
first 100 time slots and their final positions.

5.2.2 Results of QoE

The QoE performance of the proposed algorithm is verified
by comparing it with other five benchmarks. As the frame
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Fig. 3. Stability trends of virtual queues vs. time slots.
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Fig. 4. An illustration of trajectories and final positions of four UAVs.

freezing constraint will not be violated, we mathemati-
cally define the QoE as QoE = NP − ρ1 ∗ TL in this
simulation, where the network profit NP = φ (r̄ (T )) =

α
M∑

i=1
log2β(1 +

Br̄i(T )
Ri

) and TL represents the total latency.

Recall the definition of the objective function, the latency
experienced by an unassociated subscriber in a time slot
is δt, the total latency can then be calculated by TL =
M∑

i=1

{

1
T

T∑

t=1

[
∑

k∈K

Lcik(t)
Blog2(1+sinrik(t))

+ (1−
∑

k∈K

cik(t))δt

]}

.

Network Profit: In Fig. 5, we plot the tendency of the
achieved network profit versus the number of UAVs and
the number of subscribers. From this figure we have the
following observations: 1) The proposed EMUO algorithm
achieves a high network profit, and it is hard to conclude
the tendency of the achieved network profit when varying
the number of UAVs. On one hand, more UAVs indicate that
more subscribers can simultaneously receive video streams,
and then greater network profit might be achieved. On
the other hand, the signal interference becomes stronger
and the corresponding achievable bitrate of each subscriber
is reduced when increasing the number of UAVs; thus,
a smaller network profit might also be obtained. Mainly
owing to the joint trajectory optimization and power op-
timization, EMUO achieves greater network profit with the
increase of the number of subscribers. 2) For NNAS, it is un-
able to provide services for subscribers fairly and achieves
the smallest network profit. Further, its achieved network
profit decreases with an increasing number of UAVs due to
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Fig. 5. Network profit of all comparison algorithms.

stronger signal interference. Yet, NNAS has the potential to
achieve higher profit when there are more subscribers in the
considered area. 3) For CUTR, its obtained network profit
will increase with N when N ≤ 4. Nevertheless, when
N > 4, strong signal interference leads to the decrease
in the achievable bitrates of subscribers and thus reduces
the profit. Diverse from CUTR, CUMTP utilizes the max-
imum transmit power to deliver video streams. However,
constrained by the LoS propagation condition, the cover-
age range of a UAV cannot be extended by choosing the
maximum transmit power. Meanwhile, CUMTP will cause
strong signal interference, and thus low network profit is
obtained. 4) Similar to the two circular UAV trajectory-
based algorithms, SUDE achieves higher network profit
than SUMTP. The comparison results indicate that maximiz-
ing the transmit power of UAVs cannot effectively increase
the network profit, and it is essential to optimize the UAV
transmit power.

Total latency: The tendency of the total latency of all
subscribers versus various numbers of UAVs is illustrated
in Fig. 6. From this figure we can observe that: 1) The
proposed EMUO algorithm achieves the lowest total latency.
2) For all comparison algorithms except NNAS, more UAVs
will lead to the reduction in total latency. This is because
more subscribers can simultaneously receive video streams
in a time slot when deploying more UAVs. For NNAS, it
undermines the fairness of video transmission, and many
subscribers have to wait for a long time to receive video
streams from UAVs. 3) When there are more subscribers,
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Fig. 6. Total latency of all comparison algorithms.

the achieved total latency of all comparison algorithms
will increase as subscribers have to wait to be served.
4) The achieved latency of CUTR and SUDE cannot be
significantly reduced when increasing the number of UAVs.
Although more subscribers can be simultaneously served,
signal interference grows stronger and thus achievable bi-
trates of subscribers decrease. 5) The achieved latency of
EMUO can be reduced by at least 2.97% compared with
other algorithms. This indicates that the adverse impact
of signal interference can be effectively alleviated through
joint serving UAV selection optimization, UAV trajectory
optimization, and UAV transmit power optimization.

QoE: Besides, we depict the achieved QoE of all com-
parison algorithms when varying the number of UAVs and
subscribers in Fig. 7. The following observations can be
obtained from this figure: 1) The proposed EMUO algorithm
outperforms the other comparison algorithms and achieves
the largest QoE. When increasing the number of UAVs, the
achieved QoE of EMUO increases mainly due to the rapid
decrease in the total latency. 2) For NNAS, as it obtains the
smallest network profit and higher latency, its achieved QoE
is the smallest. The large performance difference between
NNAS and EMUO verifies the significance of performing
serving UAV selection optimization. 3) The obtained QoE
of SUDE and SUMTP decrease with an increasing number
of subscribers mainly due to the rapid increase in the gener-
ated latency. Additionally, for the two stationary UAV-based
algorithms, UAVs are randomly and uniformly deployed
and hover over the considered area. In this case, although
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Fig. 7. QoE of all comparison algorithms.

the deployment locations of UAVs remain unchanged, more
subscribers can be covered and served when the number of
UAVs increases; and thus, higher QoE is obtained. 4) The
obtained QoE of both CUTR and CUMTP decrease with an
increasing number of subscribers. For CUTR, its achieved
QoE, however, shows an oscillation caused by special UAV
trajectories and irregular signal interference when increas-
ing the number of UAVs. Besides, when the number of
UAVs exceeds four, the obtained QoE of CUMTP cannot
be effectively improved. Recalling the results in Fig. 5(a),
we can say that circular UAV trajectory-based algorithms
cannot obtain high and stable QoE when the number of
UAVs is large.

5.2.3 Results of energy efficiency

Similarly, we compare the proposed algorithm with all other
comparison algorithms to evaluate its performance in terms
of energy efficiency, which is defined as EE = QoE − ρ2 ∗
TP , where TP =

∑

k∈K p̄totk (T ) represents the total power
consumption of all UAVs.

First, we plot the total power consumption of the multi-
UAV network by implementing different algorithms in Fig.
8. The following observations can be obtained from this
figure: 1) The two maximum-power-based algorithms, i.e.,
CUMTP and SUMTP, will consume the largest total power.
2) When N ≥ 3, the power consumption of all compar-
ison algorithms will increase with an increasing number
of UAVs as each UAV will consume circuit and transmit
power to serve subscribers. 3) Both signal interference and
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Fig. 8. Total power consumption of all comparison algorithms.

channel fading will affect the transmit power consumption.
When N ≥ 3, NNAS consumes the lowest transmit power.
This fact indicates that power consumption due to anti-
channel fading dominates the transmit power consumption.
From the perspective of optimizing power consumption,
the above fact further justifies the necessity of enabling
LoS propagation for video transmission. 4) The total power
consumption of the two trajectory-optimized algorithms,
i.e., EMUO and NNAS, decrease with an increasing M when
M < 30. This is because the increase in the number of
subscribers leads to the reduction in the distances among
UAVs and subscribers and then the weakening of channel
fading. When there are more subscribers (e.g., M = 30),
NNAS suggests to transmit videos using great power to
improve subscribers’ achievable bitrates and reduce latency,
as shown in Fig. 6(b).

Second, the influence of the number of UAVs and the
number of subscribers on the achieved energy efficiency of
all comparison algorithms is depicted in Fig. 9. From this
figure, we can have the following observations: 1) Given
any UAV number, the energy efficiency achieved by all
comparison algorithms decrease with an increasing number
of subscribers mainly owing to the rapid reduction in their
achieved QoE. 2) When the number of UAVs equals two and
the number of subscribers is fifteen, the achieved energy
efficiency of EMUO is slightly smaller than that of CUTR.
3) Except for the above case, EMUO is the most energy-
efficient algorithm. For instance, the energy efficiency of the
multi-UAV network can be improved by up to 66.75% by
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Fig. 9. Energy efficiency vs. the number of subscribers and UAVs.

Fig. 10. Jain’s fairness vs. the number of subscribers and UAVs.

running EMUO. 4) Except for the two maximum-power-
based algorithms, NNAS obtains the smallest energy ef-
ficiency. It is interesting to observe that CUTR is energy-
efficient than SUDE when N ≤ 3 and M ≤ 15, and the
performance of the two comparison algorithms is reversed
when N ≥ 4 and M ≥ 20. In this case, its achieved
energy efficiency can be greater than that of the proposed
EMUO. Therefore, the above results recommend the follow-
ing UAV trajectory design scheme: considering the simple
UAV movement control, it may be a good choice to deploy
UAVs with circular trajectories when the number of UAVs
is small and subscribers are sparsely distributed in the
considered area.

5.2.4 Results of fairness

Finally, we verify the fairness of the proposed algorithm by
comparing all algorithms. To this end, the popular Jain’s
fairness index is taken as the evaluation indicator, which

can be calculated by RF =

(
M∑

i=1

r̄i(T )
Ri

)2
/

M
M∑

i=1

(
r̄i(T )
Ri

)2

.

The achieved fairness indexes of all comparison algorithms
when varying the number of UAVs and the number of
subscribers are shown in Fig. 10. The following observations
can be obtained from this figure: 1) Compared with other
algorithms, the multi-UAV network can provide fairer video
transmission services for subscribers by running EMUO
when N > 3 and M > 15. When N ≤ 3 and M ≤ 15,
EMUO is overwhelmed by CUTR regarding service fairness.
2) As explained above, the option of maximizing the UAV
transmit power will not result in higher service fairness.
3) Likewise, the achieved Jain’s fairness index of CUTR is
larger than that of SUDE when N ≤ 3 and M ≤ 15, and
SUDE can achieve a higher fairness value than CUTR when
N ≥ 4 and M ≥ 20. 4) NNAS undermines the fairness

brought by the UAV trajectory optimization and obtains the
smallest fairness value.

In summary, when there are few UAVs and subscribers
are sparsely distributed, deploying UAVs with circular tra-
jectories can be an acceptable proposal to achieve energy-
efficient video transmission. On the contrary, when there are
more UAVs or subscribers, a joint UAV trajectory, transmit
power, and serving UAV selection optimization scheme for
video transmission will be more energy-efficient.

6 CONCLUSION

In this paper, we investigated the issue of energy-efficient
multi-UAV network optimization for subscribers’ QoE-
driven video transmission. In particular, considering the
time-varying characteristic of the multi-UAV network and
the differentiated requirements of subscribers, we first de-
signed a novel QoE model simultaneously considering the
video bitrate, the latency, and the frame freezing. Next,
we formulated the UAV video transmission problem as
a sequential-decision problem to maximize the QoE of
subscribers and minimize the total power consumption of
the multi-UAV network through the joint optimization and
control of UAV transmit power, serving UAV selection, and
UAV trajectories. Further, we developed an energy-efficient
multi-UAV network optimization algorithm with provable
performance guarantees to solve the challenging problem
by introducing the key ideas of Lyapunov optimization, iter-
ative optimization, and Taylor expansions. Finally, extensive
simulation results showed that the proposed algorithm can
effectively improve the QoE of subscribers and is 66.75%
more energy-efficient than benchmarks. Although we create
a QoE model incorporating the video bitrate, the latency,
and the frame freezing, the modeling of subscriber’s play-
back buffer state is not investigated in this paper. How to
integrate the buffer state into the QoE model is challenging
and deserves further research in the near future.
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APPENDIX A

PROOF OF PROPOSITION 1

Firstly, we can rewrite the LHS expression of (28b) as

∑

k∈K
cik (t) log2
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(37)

(37) is the sum of a concave function and a convex
function and is non-concave. We then explore a succes-
sive convex approximate (SCA) method to handle the non-
convexity of the corresponding constraint (28b). The core
idea of SCA is to obtain a local approximate solution of
a non-convex original problem by iteratively solving a se-
ries of convex optimization problems with different initial
points. Since these local convex problems have the similar
geometric characteristics as the non-convex problem, they
can be regarded as the approximation of the non-convex
problem at the given local points.

Next, we discuss how to obtain the approximation
function of non-concave function. Based on the following
assumption, we can obtain the approximation function.

Assumption 1. A function f̃ : X × Y → R is assumed to
be the approximation function of the non-concave function
f(x) (x ∈ X ), when the following conditions hold [38]

• f̃(·, ·) is continuous in X × Y .
• f̃(·, x(r)) is concave in X for all x(r) ∈ Y .
• Function value consistency: f̃(x, x) = f(x) for all

x ∈ X .
• Gradient consistency: ∂f̃(x,x(r))

∂x |x=x(r) =
∇f(x)|x=x(r) for all x(r) ∈ Y .

• Lower bound: f(x) ≥ f̃(x, x(r)) for all x ∈ X , x(r) ∈
Y .

In other words, we can approximate an original function
with its lower-bound that has the same first-order behavior
at each iteration. This is what the SCA method does.

Based on the principle of SCA method, let
⌣

Λik (t) =

−log2

(

σ2+
∑

j∈K\{k}

pj (t) hij (t)

)

, and for any local point

p
(r)
j (t), which denotes the transmit power of the j-th UAV

at the r-th iteration when exploring the SCA method, we can

obtain the lower bound of
⌣

Λik (t) by the first-order Taylor

expansion, i.e.,

⌣

Λik (t) ≥ −log2

(

σ2+
∑

j∈K\{k}

p
(r)
j (t)hij (t)

)

−
∑

j∈K\{k}

hij(t)
(

σ2+
∑

j∈K\{k}

p
(r)
j (t)hij(t)

)

ln 2

(

pj (t)− p
(r)
j (t)

)

= −F
(r)
ik (t)−

∑

j∈K\{k}

G
(r)
ik (t)

(

pj (t)− p
(r)
j (t)

)

(38)
Consequently, the constraint (28b) can be approximated

as (29). This completes the proof.

APPENDIX B

PROOF OF LEMMA 1

Without loss of generality, we assume that the video access
service of subscriber i is relayed by a UAV, (29) can then be
simplified as

Λ̂i (t)− F
(r)
ik (t)−

∑

j∈K\{k}

G
(r)
ik (t)

(

pj (t)− p
(r)
j (t)

)

≥ ηi (t) , ∀i, t
(39)

Considering that Λ̂i (t) = log2

(

σ2 +
∑

j∈K
pj (t)hij (t)

)

is a complex logarithmic function, we then introduce a
family of auxiliary variables to transform (39) into convex
cones. In particular, (39) can be rewritten as

σ2 +
∑

j∈K
pj (t)hij (t) ≥

e

(

ηi(t)+F
(r)
ik

(t)+
∑

j∈K\{k}

G
(r)
ik

(t)
(

pj(t)−p
(r)
j

(t)
)

)

ln 2
(40)

To simplify this expression, we introduce three auxiliary
variables Z1

i , Z2
i , Z3

i (∀i ∈ I), and let

Z1
i = σ2 +

∑

j∈K

pj (t) hij (t) (41a)

Z2
i = 1 (41b)

Z3
i =

(

ηi (t) + F
(r)
ik (t)+

∑

j∈K\{k}

G
(r)
ik (t)

(

pj (t)− p
(r)
j (t)

)



 ln 2 (41c)

It turns out that (41a)-(41c) are linear constraints. Ac-
cording to the standard form of an exponential cone Kexp =
{
x ∈ R3 : x1 ≥ x2 exp(x3/x2), x1, x2 ≥ 0

}
, (40) can take a

different form
(
Z1
i , Z

2
i , Z

3
i

)
∈ Kexp (42)

Similarly, we can rewrite (27b) into the following expres-
sion of a standard rotated quadratic cone

(

ηi (t) , ξi (t) ,
√

2L/B
)

∈ Q3
r, ∀i (43)

where, Qn
r =

{

x ∈ Rn : 2x1x2 ≥
n∑

j=3
x2
j , x1 ≥ 0, x2 ≥ 0

}

.

Based on the approximation of (28b) as (29) and the
above derivation, we can approximately transform (26) into
the standard conic problem (30).
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Further, the approximation result in Proposition 1 indi-
cates that the feasible region of (30) is a subset of that of
(26). Therefore, the opposite value of the maximum value of
(30a) is the upper bound of the optimal objective value of
(26). This completes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

By substituting (2) into the constraint (32b), we obtain

∑

k∈K
cik (t) log2

(
σ2+pk(t)hik(t)+

∑

j∈K\{k}

pj(t)hij(t)

σ2+
∑

j∈K\{k}

pj(t)hij(t)

)

=
∑

k∈K
cik (t) log2

(

σ2 +
∑

j∈K

pj(t)ωij

H2+‖qj(t)−si(t)‖
2

)

−
∑

k∈K
cik (t) log2

(

σ2 +
∑

j∈K\{k}

pj(t)ωij

H2+‖qj(t)−si(t)‖
2

)

≥ ηi (t) , ∀i, t

(44)

However, (44) is not a convex constraint w.r.t qj (t). For-

tunately,
⌣

Λik (t) = −log2

(

σ2 +
∑

j∈K\{k}

pj(t)ωij

H2+‖qj(t)−si(t)‖
2

)

is concave w.r.t ‖qj (t)− si (t)‖
2
. Therefore, a slack variable

Bij (t) ≤ ‖qj (t)− si (t)‖
2
, ∀i, j 6= k, t, can be introduced

to alleviate the problem. The LHS expression of (44) can be
rewritten as

∑

k∈K

cik (t) log2



σ2 +
∑

j∈K

pj (t)ωij

H2 + ‖qj (t)− si (t)‖
2





︸ ︷︷ ︸

convex function

−
∑

k∈K

cik (t) log2



σ2 +
∑

j∈K\{k}

pj (t)ωij

H2 +Bij (t)





︸ ︷︷ ︸

concave function
(45)

Observe that the above expression is a sum of a
convex function and a concave function. To tackle the
non-convex constraint, we explore the SCA method. Let

Λ̂i (t) = log2

(

σ2 +
∑

j∈K

pj(t)ωij

H2+‖qj(t)−si(t)‖
2

)

. For any given

local point q
(r)
j (t), which denotes the 2D horizontal location

of the j-th UAV at the r-th iteration of the SCA method, we
can obtain the lower bound of Λ̂i (t) via conducting the first-
order Taylor expansion, i.e.,

Λ̂i (t) ≥ log2

(

σ2 +
∑

j∈K

pj(t)ωij

H2+
∥

∥

∥q
(r)
j (t)−si(t)

∥

∥

∥

2

)

−
∑

j∈K

pj(t)ωij
(

H2+‖q
(r)
j

(t)−si(t)‖
2
)2

(

‖qj(t)−si(t)‖
2−
∥

∥

∥q
(r)
j

(t)−si(t)
∥

∥

∥

2
)



σ2+
∑

j∈K

pj(t)ωij

H2+‖q
(r)
j

(t)−si(t)‖
2



 ln 2

= D
(r)
i (t)−

∑

j∈K
E

(r)
ij (t)

(

‖qj (t)− si (t)‖
2

−
∥
∥
∥qj

(r) (t)− si (t)
∥
∥
∥

2
)

(46)
Hence, the constraint (32b) can be approximated as (34),

which is a convex constraint.

Additionally, for the introduced non-convex inequality

Bij (t) ≤ ‖qj (t)− si (t)‖
2

, we can calculate the lower
bound of its RHS term by

‖qj (t)− si (t)‖
2 ≥

∥
∥
∥q

(r)
j (t)− si (t)

∥
∥
∥

2
+

2
(

q
(r)
j (t)− si (t)

)T
(qj (t)− si (t))

(47)

With (47), we can obtain (35), and it can be observed that
(35) is a linear constraint. This completes the proof.

APPENDIX D

PROOF OF LEMMA 2

In this appendix, we discuss how to transform some com-
plex constraints into standard convex cones by introducing
some slack variables and prove the equivalence of the trans-
formation. For the complex constraint (34), we introduce a
variable ζij (t) to slack the Euclidean norm in it and let

‖qj (t)− si (t)‖
2
=
(

x
(u)
j (t)− x

(s)
i (t)

)2

+
(

y
(u)
j (t)− y

(s)
i (t)

)2
≤ ζij (t) , ∀i, j

(48)

By referring to the similar proof in Appendix B, (48)
can be rewritten as the following rotated quadratic cone
constraint.
(

ζij (t) ,
1
2 , x

(u)
j (t)− x

(s)
i (t) , y

(u)
j (t)− y

(s)
i (t)

)

∈ Q4
r, ∀i, j

(49)

Next, we should prove the equivalence of exploring the
slack variable scheme. In particular, we should prove that
(34) is equivalent to (48) and (50).

∑

k∈K
cik (t)

(

D
(r)
i (t)−

∑

j∈K
E

(r)
ij (t) (ζij (t)−

∥
∥
∥q

(r)
j (t)− si (t)

∥
∥
∥

2
))

+
∑

k∈K
cik (t) Λ̃ik (t) ≥ ηi (t) , ∀i, t

(50)

For (34), if the constraint (48) is active, it is not hard
to know that the feasible regions generated by (48) and
(50) are the same as (34). On the contrary, when (31) is
optimized under the constraints of (48) and (50), if there
is a UAV j or a subscriber i such that (48) is non-active, we
can always decrease ζij(t) towards ||qj(t)−si(t)||

2 without
changing the value of (31a) and violating (50). Therefore,
(34) is equivalent to (48) and (50).

Considering that the term Λ̃ik (t) in (34) consists of a
complex logarithmic function, we introduce a slack variable
ϕik (t) to handle it and let

log2

(

σ2 +
∑

j∈K\{k}

pj(t)ωij

H2+Bij(t)

)

≤ ϕik (t) (51)

Further, by introducing the variables v and mij (t) and
letting their exponential functions ev = σ2 and emij(t) =
pj(t)ωij

H2+Bij(t)
, we can rewrite (51) as the following constraint

ϕik (t) ln 2 ≥ ln

(

ev +
∑

j∈K\{k}

emij(t)

)

(52)
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As the following equivalent transformation holds,

t ≥ ln

(
n∑

j=1
exj

)

⇔







n∑

j=1
µj ≤ 1

(µj , 1, xj − t) ∈ Kexp, ∀j
(53)

we can transform (52) into the following set of convex
constraints

µ+
∑

j∈K\{k}

µij (t) ≤ 1, ∀i (54a)

{
(µ, 1, v − ϕik (t) ln 2) ∈ Kexp, ∀i

(µij (t) , 1,mij (t)− ϕik (t) ln 2) ∈ Kexp, ∀i, j 6= k
(54b)

Similarly, by introducing the slack variable fij (t) and
letting

fij (t) ≥
H2+Bij(t)
pj(t)ωij

= e−mij(t) (55)

we can obtain the following exponential cone constraint

(fij (t) , 1,−mij (t)) ∈ Kexp (56)

Similar, the equivalence of introducing the slack variable
fij(t) can be guaranteed.

Finally, with (48) and (51), the complex (34) can be
transformed into the following linear constraint.

∑

k∈K
cik (t)

(

D
(r)
i (t)−

∑

j∈K
E

(r)
ij (t) (ζij (t)−

∥
∥
∥q

(r)
j (t)− si (t)

∥
∥
∥

2
))

−
∑

k∈K
cik (t)ϕik (t) ≥ ηi (t) , ∀i, t

(57)

According to (6) and (33), we can obtain the following
linear constraint

−
∥
∥
∥q

(r)
k (t)− q

(r)
j (t)

∥
∥
∥

2
+ 2
(

q
(r)
k (t)− q

(r)
j (t)

)T

(qk (t)− qj (t)) ≥ d2min, ∀k, k 6= j, t
(58)

Besides, by referring to the standard expression of a
quadratic cone, we can rewrite (1) as

(

Htan−1θ, x
(u)
k (t)− x

(s)
i (t) , y

(u)
k (t)− y

(s)
i (t)

)

∈ Q3, ∀i, k, t
(59)

where, Qn =

{

x ∈ Rn : x1 ≥

√
n∑

j=2
x2
j

}

is a quadratic cone

of Rn.

Likewise, (7) can be rewritten as the following quadratic
cone constraint

(

smax, x
(u)
k (t)− x

(u)
k (t− 1) , y

(u)
k (t)− y

(u)
k (t− 1)

)

∈ Q3, ∀k, t
(60)

Based on the above derivation, we can approximately
transform (31) into the standard conic problem (36).

Besides, the lower bounds obtained in (46) and (47)
indicate that the feasible region of (36) is a subset of that
of (31). Therefore, the maximum value of (36a) is the lower
bound of the optimal objective value of (31). This completes
the proof.

APPENDIX E

PROOF OF LEMMA 3

Given a local point (C(r)(t), P(r)(t), Q(r)(t)) at the
r-th iteration, and denote the corresponding value of
(22a) at this point as Φ(C(r)(t),P(r)(t),Q(r)(t)). By
solving (25) we can obtain a solution C(r+1)(t) such that
Φ(C(r+1)(t),P(r)(t),Q(r)(t)) ≤ Φ(C(r)(t),P(r)(t),Q(r)(t)).
Given the local point (C(r+1)(t), P(r)(t), Q(r)(t)), we can
obtain an updated solution P(r+1)(t) by optimizing
(30) and have Φ(C(r+1)(t),P(r+1)(t),Q(r)(t)) ≤
Φ(C(r+1)(t),P(r)(t),Q(r)(t)). Similarly, given the
updated local point (C(r+1)(t), P(r+1)(t), Q(r)(t)), we
can obtain a new local point (C(r+1)(t), P(r+1)(t),
Q(r+1)(t)) by optimizing (36) at the (r + 1)-th
iteration and have Φ(C(r+1)(t),P(r+1)(t),Q(r+1)(t)) ≤
Φ(C(r+1)(t),P(r+1)(t),Q(r)(t)). To this end, we can
conclude that Φ(C(r+1)(t),P(r+1)(t),Q(r+1)(t)) ≤
Φ(C(r)(t),P(r)(t),Q(r)(t)). Further, it can be confirmed that
(22a) is low-bounded. Therefore, the iterative optimization
Algorithm 1 is convergent. This completes the proof.
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