
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

This document was downloaded from 
https://openair.rgu.ac.uk 

MEKALA, M.S., SRIVASTAVA, G., GANDOMI, A.H., PARK, J.H. and JUNG, H.-Y.  2024. A quantum-inspired sensor 
consolidation measurement approach for cyber-physical systems. IEEE transactions on network science and 

engineering [online], 11(1), pages 511-524. Available from: https://doi.org/10.1109/TNSE.2023.3301402  

A quantum-inspired sensor consolidation 
measurement approach for cyber-physical 

systems. 

MEKALA, M.S., SRIVASTAVA, G., GANDOMI, A.H., PARK, J.H. and 
JUNG, H.-Y. 

2024 

https://doi.org/10.1109/TNSE.2023.3301402


IEEE TRANSACTION ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX 2023 1

A Quantum-Inspired Sensor Consolidation
Measurement Approach for Cyber-Physical Systems

M S Mekala, Member, IEEE, Gautam Srivastava, Senior Member, IEEE, Amir H Gandomi, Ju H. Park, Senior
Member, IEEE, and Ho-Youl Jung, Senior Member, IEEE,

Abstract—Cyber-Physical System (CPS) devices interconnect
to grab data over a common platform from industrial applica-
tions. Maintaining immense data and making instant decision
analysis by selecting a feasible node to meet latency constraints
is challenging. To address this issue, we design a quantum-
inspired online node consolidation (QONC) algorithm based on
a time-sensitive measurement reinforcement system for making
decisions to evaluate the feasible node, ensuring reliable service
and deploying the node at the appropriate position for accurate
data computation and communication. We design the Angular-
based node position analysis method to localize the node through
rotation and t-gate to mitigate latency and enhance system
performance. We formalize the estimation and selection of the
feasible node based on quantum formalization node parameters
(node contiguity, node optimal knack rate, node heterogeneity,
probability of fusion variance error ratio). We design a fitness
function to assess the probability of node fitness before selection.
The simulation results convince us that our approach achieves
an effective measurement rate of performance index by reducing
the average error ratio from 0.17-0.22, increasing the average
coverage ratio from 29% to 42%, and the qualitative execution
frequency of services. Moreover, the proposed model achieves
a 74.3% offloading reduction accuracy and a 70.2% service
reliability rate compared to state-of-the-art approaches. Our
system is scalable and efficient under numerous simulation
frameworks.

Index Terms—Quantum computing, Node contiguity rate,
Node knack measurement index, Machine learning, Hadamard
gate.

I. INTRODUCTION

Cyber-Physical Systems (CPS), which combine sensor
frameworks, and computational and physical components, are
employed to control automated environments and fulfill the
demands of the Industry 4.0 paradigm [1]. This paradigm
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entails coordinating computation, communication, and con-
trol mechanisms through conditional probabilistic networks
or graph theory. However, the lack of integration among
decision models within the environment introduces varying
levels of complexity. This may consume abnormal energy to
maintain the network services and causes an unusual learn-
ing ratio through classical computing-based machine learning
techniques. Moreover, data generation is increasing as CPS
application deployments increase. The lack of adequate edge
computing environments hinders achieving optimal quality-of-
services (QoS) for CPS applications. A detailed investigation
report is presented in [2] regarding the QOS optimization
perspective; In this survey, the authors provide a concise
overview of the research gaps in areas such as latency, energy
usage, reliability, and privacy concerning CPS applications.
The next-generation network demands (enormous resources
and security standards) may resolve using learning models
with a backbone of quantum computing [3]. Theoretical quan-
tum computing is an optimal solution for meeting the needs of
5G communication networks by cloning the quantum mech-
anism [4] on network nodes to optimize the communication
and computation overhead. As a result, designing a quantum
decision-making method is challenging, but it may help choose
the right node to execute the offloading services at the network
edge.

Sensor localization and its operational decisions are promi-
nent factors for enhancing the lifetime of the CPS framework.
Let us assume s×a network area is considered to formulate the
listed issues, where s refers to a set of sensors and a refers to
a set of anchors. The main challenge is sensor classification
based on their activities through a quantum mechanism by
considering each cycle’s data. Selection of activities such
as inactive (switch-off) the sensor and classification of low
area and high coverage sensors impact the network service
reliability, network lifetime, and network energy usage. The
node localization technologies are primarily categorized into
two types; first, range-based approaches [5], which effectively
work based on Angle of Arrival (AoA) [6], Time of Arrival
(ToA) [7], Time Difference of Arrival (TDoA). Second, range-
free-based approaches [8], [9] work effectively based on con-
nectivity information among neighbouring devices. The exist-
ing methods effectively execute the services through classical
computing, which is time-consuming. Recently, an automated
vehicle network technology has received attention globally;
therefore, we focused on designing a range-free approach
based on quantum machine learning to optimize the overhead
of communication and computation services due to the vast
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TABLE I: Tools and technologies comparative study; Quantum Programming Studies (QPS), Quantum Development Kit

Tool Parameters

Toolkit Opensource Simulation
Real

Implementation
Built-in

Algorithms
Gate

Scheduling Coding
Matrix
Support

QPS ✓ ✓ ✓ ✗ ✓ ✓ Javascript ✓

Qubit4MATLAB ✗ ✓ ✓ ✗ ✓ ✓ MATLAB ✓

Cirq ✓ ✓ ✓ ✓ ✓ ✓ Python ✓

Qiskit ✓ ✓ ✓ ✓ ✓ ✓ Python ✓

QDK ✓ ✓ ✓ ✗ ✓ ✓ Python,Q# ✓

usage of smart devices.
Therefore, there is a need to design and develop an algo-
rithm for continuous updates of residual-energy level, sen-
sor contiguity rate, optimal knock rate, and novel distance
measurement. The algorithm iteratively collects node-centric
data after each cycle helps to make an accurate decision,
but it is an NP-hard problem. However, few metaheuristic
algorithms developed to resolve these issues [10]. For instance,
Genetic Algorithms (GA), Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), and Gravitational Search
Algorithm (GSA) are pretty well metaheuristic algorithms
that are widely used in CPS applications [11] but require a
long time to compute and process. Another drawback is that
extending the problem’s search space requires converging on
optimal solutions. In this regard, we design a quantum-inspired
multi-objective data fusion measurement approach to enhance
the sensor state’s quantization ratio by leveraging the sensor
coverage range, efficiency, and specific node-centric metrics.

Motivation: Maintaining and analyzing immense amounts
of data to make an instant decision by an edge server or
vehicle node is an essential task in the vehicular network.
We considered an abnormal scenario where the computation-
intensive tasks offload to the suitable server or device to meet
the application deadline. In this process, a crucial phase is
selecting a potential device and locating a device in the right
place. In line with this issue, two algorithms are developed
based on quantum theory, irrespective of classical machine
learning. The selection and localization mechanism is divided
into three tasks (measuring node-centric parameters, quantum
state estimation, and data fusion optimization). In our con-
structions, Algorithm 1 assesses the rotation angle magnitude
to assess the rotation direction of the vehicle and distance
based on node fitness, node degree, normalization value,
and qubit register probability for effective location analysis
subject to data fusion (Theorem 2). Consequently, Algorithm
2 assesses node selection based on quantum state estimation
(Theorem 1) subject to node contiguity, node optimal knack
rate, and node heterogeneity parameters for the initial selection
of feasible nodes. Moreover, we design a probability-based
fitness function to finalize the node selection based on quantum
state estimation, which can be observed in Fig. 1. Simultane-
ously, RSU/server localization is formulated by extending the
above measurements along with directionality. In this regard,
we design an angular-based node position analysis method
to localize the node through rotation and t-gate to mitigate
the latency and enhance the system performance. MATLAB

and Qiskit are considered to estimate the probability of each
vehicle state. The node consolidation issue is formulated by
dividing it into two-sub tasks (node selection and deployment)
subject to the probabilities of qubits, quantum state, node
contiguity, node optimal knack rate, node heterogeneity, and
probability of node fitness. Our contributions are listed as
follows:
1) Develop a quantum-inspire online node consolidation

(QONC) algorithm based on a time-sensitive measurement
reinforcement system through a quantum-inspired node-
centric measurement method and fitness function to eval-
uate the feasible node for ensuring reliable service by
deploying the node at the appropriate position for accurate
data computation and communication.

2) Develop an angular-based node position analysis method to
localize the node through rotation and T-gate to mitigate
the latency and enhance the system performance.

3) Conduct simulations based on MATLAB with QUBIT V5.8
and Qiskit to assess the proposed system performance

Table I provides a brief examination and amendment of the
functionalities of the tools and technologies, offering valuable
assistance to research scholars. Section II briefly describes
research gaps and issues of extant approaches. Section IV de-
scribes the proposed system and its mathematical model with
a novel algorithm in detail. Section V evaluates the outcome
examination, and Section VI concludes the manuscript.

II. RELATED WORK

Recent research works are examined in line with the article’s
objectives which are classified into two subsections.

A. Accurate data fusion importance based on quantum theory

Usually, effective data fusion impacts system performance
by optimizing the energy consumption, data compression, and
transmission overhead of CPS systems; since all report to
the sink node. We believe that making the sensors inactive,
which is not feasible to fulfill the system requirements, im-
pacts the communication and computation overhead of the
system. Therefore, selecting the abnormal sensor, device, or
node based on node-centric measurements is challenging. In
line with this motivation, we investigated recently published
articles to resolve this issue based on quantum theory by
estimating each node’s probability state.

In [12], a butterfly quantum network is developed to es-
timate the state of each qubit using communication channel
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TABLE II: Related works brief in line with article objectives

References Objectives
Node

selection
Qubit-state
estimation

Channel
analysis

Angle
estimation

Noise
tolerence Latency

Coverage
analysis

Resource
capacity

Node
fitness

Dimensions
degree

[12], [13] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗

[14] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗

[8] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

[9] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓

[15] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

[16], [17] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

[18] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

[19], [20], [21], [22], [23] ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

[24] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗

QONC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

auxiliary data in the process of target node analysis. A
quantum cooperative multicast (QCM) model is developed
to optimize the network transmission losses [13]. However,
these models are not optimal for lightweight communication
networks.
In [14], efficient resource allocation is designed based on
quantum states using the Quantum-based particle swarm opti-
mization method. The author concentrated on diminishing the
network iteration to achieve high performance. In [8], the node
density and node coverage rate-based swarm optimization
algorithm is designed to resolve the node deployment using
quantum theory (NDQ) and is treated as A3. In continuation,
a Quantum-inspired green communication framework for En-
ergy Balancing in sensor-enabled CPS systems (Q-EBIT) is
developed using a single receiving angle to localize the node
in the network [9], and it is treated as A2. In [15], node
energy consumption and hop count attributes are considered
with heuristic and deterministic methods designed based on
quantum theory to resolve the CPS framework node searching
issues. Subsequently, a quantum-inspired genetic algorithm is
proposed called quantum approximate optimization algorithm
(QAOA) for effective service execution based on policy gradi-
ent learning strategy to resolve the device-centric issues based
on hypothesis data collected and processed asynchronously to
improve the system performance accuracy [16] and is treated
as A1. In [17], the researchers design a machine learning
architecture-based novel quantum service allocation model
to address the next-generation network gaps. This algorithm
called the qubit-preserved shortest path algorithm (DQRA),
assesses the reward function to increase the service execution
rate in each routing window.

B. Sensor selection approaches

In [18], the authors measure an Expected hop Progress
(EP) based distance through two nodes. However, the system
is unsuitable for complex systems because of the longer-
range coverage rate. In [19], researchers develop a novel
scheduler with window constraints for routers to address
communication issues related to router allocation problems
and emergency data allocation. The scheduler shows promising
results, achieving an average running time of 0.209 sec-
onds. However, it is important to consider the complexity
aspect, as the model includes four designed algorithms. In

[20], researchers develop a role-aware hypergraph based on
hypergraphs and an attention mechanism to consolidate the
nodes’ role and achieve a 12.1% accuracy improvement in
node classification. In [21], the researchers design an Anchor
Pairs Condition (APC) analysis method to assess the distance
relation among anchor nodes for effective localization. Those
nodes are classified as optimal/suboptimal based on different
distance measurements. In [22], the researchers design a novel
localization method for node localization by measuring the
horizontal distance based on the angle of an arrived signal. In
[23], the authors develop a power-efficient node Localization
(PENL) approach based on Neural Network (NN) for effective
distance measurement among devices, which does not depend
on several hops counts. It measures the distance based on
an anisotropic signal. However, the extent of algorithm per-
formances is degenerative due to many node-centric factors,
especially in sparse networks. Therefore, a robust range-free
localization algorithm is essential for effective autonomous
vehicle orchestration based on quantum theory.

III. PRELIMINARIES

The authors and the research community have shown in-
creasing interest in quantum computing in recent years, as
it offers potential improvements in performance metrics such
as latency and reliability while maintaining low complexity
similar to classical models. However, selecting the appropriate
implementation platform remains a challenging task. One
notable option is the D-wave 2000Q1, which boasts 2000
qubits. Additionally, IBM2 has announced plans to release a
machine based on 50 qubits by 2020, although it is still in the
development phase. Moreover, each qubit resembles a super
state and after measurement, the final state would be 0, 1 like a
classical binary bit. A two-dimension state refer as |0⟩, |1⟩ and
its each state probability (a, b) is normalized as |a|2+ |b|2 = 1
[25].

State− 0→
State− 1→

[
a01
b11

| a02
b12

| · · ·· · · |
a0n
b1n

]
(1)

1https://www.dwavesys.com/d-wave-two-system
2https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
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Fig. 1: System model

Assume a two (n = 2) bits quantum register with their state
probabilities as follows.

|q1⟩ =
1√
2
|0⟩+ 1√

2
|1⟩

where a = 1√
2
, b = 1√

2
, the conditional probability is

|a|2 + |b|2 = 1. Accordingly, =
∣∣∣ 1√

2

∣∣∣2 + ∣∣∣ 1√
2

∣∣∣2 = 1
2 + 1

2 = 1.
The normalized sum of probabilities equals 1, and the
measurement of the 3-qubit register proceeds as described
below.

|
q1
↓
0

q2
↓
0

q3
↓
0⟩ =

1√
2
|0⟩+ 1√

2
|0⟩+

√
3

2
|0⟩

here a = 1√
2
, b = 1√

2
, c =

√
3
2 . The probability of three qubits

is
= (abc) |000⟩

=

(
1√
2
· 1√

2
·
√
3

2

)
|000⟩ =

(√
3

4

)
|000⟩

A. Communication model

In this paper, we have examined a similar experimen-
tal environment [26], [27]. To evaluate the signal-to-noise
ratio, we have employed the default method δcomi =[
(tpcomi gcomi ) /σ2

]
, where tpcomi represents the transmission

power with limits defined as tpcomi ϵ
[
tpcom,min

i , tpcom,max
i

]
,

gcomi represents the channel gain, σ2 denotes the channel
noise, and ωcom

i represents the bandwidth. The transmis-
sion rate between the node and RSU is defined using the
Shannon-Hartley formula as scomi,i+1|k = ωcom

i log2 (1 + δcomi ).
The probability of the communication channel is updated
based on the probabilities of transmission rate, node/vehicle
direction, coverage, and angle, as expressed by ψl,l+1|k ←
ρ [transmission, direction, coverage, angle]. The objective is
to ensure that this probability is below a threshold value to
achieve the desired goals.

B. Computation model

The execution of services typically occurs locally on the On-
Board Unit (OBU). However, when dealing with computation-
intensive tasks, the services are offloaded to a server or cloud,
which is a fundamental strategy. As a result, the latency of
local computations is defined as

τ loci =
required resources for service execution
ϕl(resources of lth OBU or node)

The definition of server-side computation latency is as follows,
and it must not exceed the threshold value. i.e, τl,l+1|k ≤ τ thr.

τ
l,l+1|k
i =

Size of the service(bits)
scomi,i+1|k

+ τ loci

C. Problem formulation

Node consolidation involves the validation of a node for
inclusion within a framework that facilitates data fusion. This
process is crucial for ensuring the precise design of a decision-
making system in autonomous vehicle systems. As next-
generation automated vehicle frameworks become prevalent,
they accommodate a vast number of active edge devices,
actuators, and the Internet of Things (IoT). These multi-
dimensional physical spaces present resource capacity chal-
lenges. Additionally, traditional machine learning techniques
fall short of meeting the learning requirements of industrial
applications due to limited data analytics, exploration, and
exploitation capabilities. To fulfill these requirements, the
service optimization problem can be formulated as follows:

min
∑

ρ
(
ζl,l+1|k

)
· ρ
(
τl,l+1|k

)
+
(
1− ρ

(
ζl,l+1|k

))
+
[
ρ
(
ϕl,l+1|k

)
· ρ
(
τl,l+1|k

)
+
(
1− ρ

(
ϕl,l+1|k

))
· ρ
(
τl,l+1|k

)]
(2)

Subject to:

C1 : Offloading decision rate ζl,l+1|k ≤ ζthr

C2 : Resource potentiality ϕl,l+1|k ≤ ϕthr

C3 : Channel (direction, transmission, coverage, angle) ψl,l+1|k ≤ ψthr

C4 : Qubit state-error probability Ope
s ≤ Othr

s,pe

C5 : Fusion variance χpe
s ≤ χthr

s,pe

The primary objective of this article is to address the node
selection challenge in service offloading, with a specific focus
on achieving low latency and efficient resource utilization,
where ρ ensures the probability of each variable. Several
recent publications and researchers have made notable efforts
to tackle this problem satisfactorily. Our approach involves
formulating the optimization problem by evaluating the qubit
state probability of each dimension, and angle measurement
and considering the impact of vehicle mobility on network
performance. The node selection and deployment problem is
formulated using theoretical and mathematical principles. A
set of constraints is defined, and it is crucial to ensure that
all these variables remain below their respective threshold
values. However, due to the inclusion of binary decision bits,
the optimization problem becomes non-convex, resulting in
an exponential increase in function complexity (likely 2N )
with the size of space represented by C1, C2 andC5. These
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factors are evident that this issue is similar to the NP-
Hard problem. Moreover, the article highlights the quantum
computing mechanism in line with the objectives.

IV. QUANTUM-INSPIRED SENSOR CONSOLIDATION
MECHANISM

Let us assume, a CPS framework enables a set of randomly
deployed sensors S in a × a network area with density ρ =

S
(a×a) , R communication radius. Where sle, (l = 1, 2, · · · , L)
denotes a set of GPS-enabled sensors called active-nodes, and
skc , (k = 1, 2, · · · ,K) denotes a set of hyper nodes sc = S−se
that may perform both relay services and computation services
as per the demand where the service arrival rate is λi for lth ve-
hicle. The sensor cluster is formulated based on their distance,
where paired sensors’ reliability is essential to execute the ser-
vices with low latency by following a novel offloading strategy
with a measurement index. For more information please refer
[24], [28]. This section further subdivides based on context
such as quantum angular theory for node coordinates analysis,
fusion variance measurement, node selection strategy, node
mobility impact on node selection, and proposed approach
complexity.

A. Quantum angular-based node coordinates analysis

Reliability plays an important role to establish the com-
munication and computation path by selecting the sensor pair
which have the maximum high-reliability value including relay
sensors. The service reliability is measured with Eq. 3.

αk
l,l+1 =

1

S
× dl,l+1

(rl,k + rk,l+1)
;∀ 0 < αk

l,l+1 ≤ R (3)

Deriving the possible location of the relay node is essential
since its location coordinates and location angle are unaware.
Let us assume that two active sensors (Se

l , S
e
l+1) are deployed

with a maximum communication range of ril,kR, ril+1,kR
respectively. The distance between the relay node and an active
node is calculated using Eq. 4.

dl,k =

θl+1,k∫
0

rl,k · αk
l,l+1

sin θkl
(4)

The ϑ (ϑ ⊂ (−π, π]) denotes the phase of each qubit; how-

ϑi > 0

ϑi < 0

ϑi < 0

ϑi > 0

xi

yi

xi

yi

sel sel+1

sck

sck
sck

sck

(a) (b)

Fig. 2: Quadratic place of the sensor. a) 4 phases of the sensor
b) rotation angle-based sensor localization

ever, the ith qubit phase is ϑi = arctan
(
xi/yi

)
. Each qubit

phase position may occupy any quarter among the four as
follows. Qubit phase position ϑi is illustrated in Figure 2. The
Quantum-based Sensor Angle Position (QSAP) measurement
index helps to place the regular node at the right place by
estimating the feasibility of each qubit concerning the sensor
position. The quantum rotation gate plays an important role
in qubit calculation and is derived as follows. The following
formula represents a qubit which rotates θkl degrees from the

original vector (xi, yi)→
(
x

′

i, y
′

i

)T
.[

x
′

i

y
′

i

]
=

(
cos
(
θkl
)
− sin

(
θkl
)

sin
(
θkl
)

cos
(
θkl
) )[

xi
yi

]
(5)

θkl is the rotation angle, and it is calculated with Eq. 6

θkl = ℏ× p(xi, yi) (6)

where τ denotes iterations count, ℏ = 4 × exp
( −τ
τmax

)
rep-

resents rotation step to control the rotation speed; and τmax

denotes maximum number of iterations. The calculation of the
node direction is highly essential and is defined as the function
p(xi, yi) as follows.

p(xi, yi) =
1

rl,k + rl+1,k
×

(
dbel,k
dprel,k

)(
ϑbel,k − ϑ

pre
l,k

)
(7)

where

dbel,k =
xbel,k
ybel,k
× dbel,l+1 cos θ − dbel,l+1

√
cos2be θ −

(
1−R2

l+1

)
dprel,k =

xprel,k

yprel,k

× dprel,l+1 cos θ − d
pre
l,l+1

√
cos2pre θ −

(
1−R2

l+1

)
ϑbel,k = arctan

(
xbel,k
/
ybel,k

)
ϑprel,k = arctan

(
xprel,k

/
yprel,k

)
The dbel,k, dprel,k , ϑbel,k, ϑprel,k are the probability of the ith qubit
best and predicted resolved coordinates, respectively. Finally,
if p(xi, yi) < 0, the θkl , (k = 1, 2, · · · ,K) rotates clockwise;
otherwise, it rotates anticlockwise to place the sensor node at
the reliable position.
Let us define the qubit of every sensor S and assume every
qubit is an attribute to assess the state of every sensor—that
is, Q = (q1, q2, · · · , qs, · · · , qn), ∴ sel ∪ skc ⊆ S.

qs =

(
x1
y1
| x2
y2
| x3
y3
· · · | xn

yn

)
(8)

where the supervision state is normalized based on derivation
described in Section III, and here, n is the number of qubits;
such as |xi|2 + |yi|2 = 1, i = 1, 2, · · · , n. The quantum
rotation gate helps to localize the ith bit of the sth individual
sensor as qs is described with Eq. 9. ⌢

x
i

l,k

⌢
y
i

l,k

 =

 cos
(
θil,k

)
− sin

(
θil.k
)

sin
(
θil,k

)
cos
(
θil,k

) [ xil,k
yil,k

]
(9)

Each state i from 1 to n updates the bit location using the

coordinates
(
x̂il,k, ŷ

i
l,k

)T
. The rotation angle plays a crucial
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Fig. 3: Vehicle location measurement based on angle and
reliability factor

role in the sensor selection process, determined as follows.

θil,k = ℏ× p(xil.k, yil.k)

Here, p(xil,k, y
i
l,k) represents a control function that assesses

the direction of rotation. The rotation angle magnitude is
denoted by ℏil,k. The conditions corresponding to the rotation
angle can be found in Table III, which lists all feasible solu-
tions. Figure 3 illustrates the derived position gis and predicted
position ĝis of the relay sensor. Subsequently, a binary solution

TABLE III: Rotation Angle Simulation Outcome

p(xi
l,k, y

i
l,k) ℏil,k f(gis) > f(yi

l.k) gis
⌢
g
i

s

xi
l.ky

i
l.k > 0 xi

l.k, y
i
l.k < 0 xi

l.k = 0 yi
l.k = 0

0 0 0 0 0 F 0 0
0 0 0 0 0 T 0 0
0 0 0 0 0 F 0 1

+1 -1 0 ±1 0.05π T 0 1
+1 -1 0 ±1 0.015π F 1 0
-1 +1 ±1 0 0.030π T 1 0
-1 +1 ±1 0 0.0065π F 1 1
-1 +1 ±1 0 0.0325π T 1 1

is essential to cross-verify the system’s performance. Let us
assume that the probability of the current position qubit xi is
compared with a random number ran, ∀ 0 ≤ ran ≤ 1. The
binary solution of the sensor state is defined with Eq. 10.

b
(
gis
)
=

{
1 for |xi|2 > ran

0 for |xi|2 ≤ ran
(10)

The binary solution set is B = (b1, b2, · · · , bs) , ∴ (s =
1, 2, · · ·S) which is derived based on above equation.
Algorithm 1 measures the status of hybrid sensors for effective
device location through quantum theory. The device deploy-
ment at the proper position based on novel measurements
affects the system’s latency and performance. Unlike the
classical method, we design a quantum computing-based node-
centric measurement system based on distance, hop count,
and coordinates for direction analysis to select the feasible
sensor set. In this process, line 1 initializes the demanded
attributes, and the selecting node should not be the active
node, and lines 5-8 assess the expected position subject to

Algorithm 1: Node-centric measurement Algorithm
input : sle, (l = 1, 2, · · · , L) denotes a set GPS enabled sensors,

set of hyper nodes skc , (k = 1, 2, · · · ,K)
output: Feasible location of relay sensors inline to the active

sensors
1 Initialize required attributes ρ ̸= 0, R ̸= 0, dl,k ̸= 0, θkl ̸= 0,

sc = S − se, ε&ϖϵ[0, 1], ℘sc ̸= 0, µsc ̸= 0;
2 for each sl = 1 to L do
3 for each sc = 1 to K do
4 if l ̸= c then
5 Estimate θkl = ℏ× p(xi, yi);
6 Estimate p(xi, yi) =

1
rl,k+rl+1,k

×
(

dbel,k
d
pre
l,k

)(
ϑbe
l,k − ϑpre

l,k

)
Estimate

dl,k =
θl+1,k∫

0

rl,k·αk
l,l+1

sin θk
l

;

7 Estimate χ = b
[
(Opee)T (Opee)

]
; # low

variance rate is preferred;
8 sc[i]← update the number of top short distance

nodes which are equal to its node degree
subject to low data variance rate;

9 end
10 else
11 Update the device position coordinates sc (x, y)

based on Monte Carlo method using cognition
coefficient which is ϖ ̸= 0

12 if ϖ ≥ 0.5 then
13 Estimate and update the position

sc (xi, yi) =
0.5× (sc (xi, yi) + sc (xi+1, yi+1))

14 end
15 else
16 Update the position sc (xi, yi) =

ε× ℘sc ± υ × |℘sc − µsc | × log
(
1
ε

)
17 end
18 end
19 end
20 end

angle, distance and data variance. The hyper sensor set is
updated in ascending order based on the distance and degree
of a node/vehicle. Subsequently, the second objective is a
resolved-based Algorithm 2. If the hyper node is the same as
the active node, then update the location coordinates based on
the Monte Carlo method through cognition coefficient weight
ϖ. If ϖ ≥ 0.5, assess the position as follows; else, process
line-16. Once the device position is assessed and after that
resolves the second target which is based on quantum state
estimation as follows

sc (xi, yi) = 0.5× (sc (xi, yi) + sc (xi+1, yi+1)) (11)

B. Fusion variance measurement for quantum state estimation
Quantum state estimation is an essential part of quantum

theory which is carried out with three process steps (mea-
surement, analysis and reconstruction) can be observed in Fig
4. Our objective is to strengthen the measurement process
because the reconstruction depends on the outcome of the
measurement process. The summation of qubit probabilities
plays an essential role in finalizing the state of the sensor to
accomplish sensor consolidation. Note, enhancing the tomog-
raphy accuracy means achieving a minimum error rate between
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Fig. 4: CPS-based quantum state estimation mechanism

the expected and current true states.
Assuming the quantum state reconstruction as λ̄, based on n
attribute measurements (specifically device contiguity, device
optimal knock ratio, and device heterogeneity treated as three
qubits), we can define each device as having n channels to
collect data for each state. In this context, the operator {πi}ni=1

optimizes the measurements of each sensor device, and the
current state probability of the ith qubit can be represented
as oi = tr(λ̄πi). To mitigate redundancy and iterative occur-
rence data, we construct a frequency matrix using a vector
vsi (i = 1, 2, · · · , n; s = 1, 2, · · · , S), i.e.,h

s
i/Hs

, where Hs

refer number of reconstruction state of sth device and hsi
refer total count of ith qubit outcomes. Consequently, the
occurrence frequency is estimated as

∑
s

vs
i

S , and unbiased true

probability vector O = (o1, o2, · · · , om)
T is defined as

b[Vs] = O (12)

The estimation error probability state, denoted as Opee
s , is

evaluated as Opee
s = O − Vs. The variance matrix of Vs is

represented by Cs = b[Opee
s (Opee

s )T ], and the covariance
matrix between Vs and V s+ 1 is given by Cs, s+ 1 =
b[Opee

s (Os+ 1pee)T ]. In the case where devices s and s + 1
are independent, Cs,s+1 is zero. The sensor weight matrix Ws

is defined as follows:

[W1,W2, · · · ,Ws] ≜W ≜
(
bT (Ĉ)

−1
b
)−1

× (Ĉ)−1b (13)

where b = [Im, · · · , Im]
T and

Ĉ = b


 Opee

1
...

Opee
S


 Opee

1
...

Opee
S


T
 =

 C11 . . . C1S

...
. . .

...
CS1 · · · CSS


(14)

Here, b is an identity matrix with an order of b, and ĉ is an
error covariance matrix.

Theorem 1. Let’s consider the assessment of the quan-
tum state λ̄, assuming a total of n attributes. If χ =

b

[(
O − Ô

)T (
O − Ô

)]
= b

[
(Opee)

T
(Opee)

]
represents

the data fusion variance Ô then the true data fusion probabil-

ity Oouf =
S∑

s=1
Ws · Vs is obtained and the variance matrix

Couf ≜ b
[(
O −Oouf

)T (
O −Oouf

)]
=
(
bT (Ĉ)

−1
b
)−1

is
estimated through linear least mean square error.

Proof. Let’s consider a defined method for precisely determin-
ing the probability state of a node by integrating unbiased data
from sensor nodes as follows

Oouf =

S∑
s=1

Ws · Vs (15)

According to the single attribute and multiple attribute fusions,
the probabilities are defined as

b

[
S∑

s=1

Ws · Vs

]
=

S∑
s=1

Ws · b[Vs] =
S∑

s=1

Ws ·O = O

Moreover, we have a true weighting matrix Ws

S∑
s=1

Ws = Im (16)

Therefore, the data fusion measurement error is redefined as

Opee = O −Oouf =

S∑
s=1

Ws ·Opee
s (17)

Subsequently, the data fusion variance is similar to χ =

b
[
(Opee)

T
(Opee)

]
and it can be defined as

χ = tr
(
b
[
(Opee)

T
(Opee)

])
= tr (C)

Based on Eq. 17, the true variance is as follows

b
[
(Opee) (Opee)

T
]
= b

 S∑
s=1

Ws ·Opee
s

(
S∑

s=1

Ws ·Opee
s

)T


= [W1,W2, · · · ,Ws] b


 Opee

1
...

Opee
S

 [Opee
1 · · ·Opee

S ]


 WT

1
...

WT
S


=WCWT

(18)
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As per the above equations bTWT = Im, the matrix’s can be
expressed as follows[

Ĉ b
bT 0

] [
WT

Y T

]
=

[
0
Im

]
(19)

According to the above Eq. 19, the matrix is rewritten as[
WT

Y T

]
=

[
Ĉ b
bT 0

]T [
0
Im

]

=

 (Ĉ)
−1
b
(
bT (Ĉ)

−1
b
)−1

−
(
bT (Ĉ)

−1
b
)−1

 (20)

Here, W =
(
bT (Ĉ)

−1
b
)−1

bT (Ĉ)−1 is weighting matrix, and

Y T = −
(
bT (Ĉ)

−1
b
)−1

union matrix. According to Eqs. 15

and 13, and V ≜
[
V T
1 , V

T
2 , · · · , V T

s

]T
the true probability is

Oouf = W × V, b[V] =
[
OT
]T
m·S = bO, and the legitimated

true data fusion probability is

b
[
Oouf

]
=
(
bT (Ĉ)

−1
b
)−1

bT (Ĉ)−1 · bO = O (21)

Corollary 1. Assume data fusion covariance matrix Cs,s+1 =
1 when n attributes and s sensors measurements are identical
then the Oouf is as follows

Oouf =

S∑
s=1

Ws · Vs (22)

the weighting matrix is defined as

Ws =

(
S∑

s+1

C−1
s,s+1

)−1

· C−1
s (23)

when the measurements are different, the variance matrix is
followed by

Couf =

(
S∑

s=1

C−1
s

)−1

(24)

In case Cs > 0, the Eq. 23 is defined as

Ws = Im −Wsb = Im −Xs · Z−1
s (25)

Thus the Eq. 15 is a conditional true optimal probabil-
ity, but still, it is quite complex when the sensor mea-
surement attributes dimensions degree is high, and Xs =
[Cs − C11, · · · ,Cs − C1S ]. However, the following Theorem
2 resolves the data loss and true data fusion issues.

Theorem 2. According to the variance matrix of Vs is
Cs = b

[
Opee

s (Opee
s )

T
]

and the covariance matrix between

Vs and Vs+1 is Cs,s+1 = b
[
Opee

s

(
Opee

s+1

)T ]
, select the data

fusion variance χ = b
[
(Opee)

T
(Opee)

]
which is estimated

as per the sensor performance index, and the sub-optimal true
probability is defined as

Oouf
sub =

S∑
s=1

ws · Vs (26)

here the coefficient weights are defined as

w =
bT ·̂C

−1

2

bT · Ĉ−1
2 · b

(27)

based on

Ĉ2 =

 tr (C11) . . . tr (C1S)
...

. . .
...

tr (CS1) · · · tr (CSS)

 b =

 1
...
1


Thus, the weighting coefficients [w1, w2, · · · , wS ] ≜ w and the
variance matrix is written as

Csub =

S∑
s,s+1=0

ws · ws+1 · Cs,s+1 (28)

Proof. The single attribute device is called a single mea-
surement device and vice versa. The expected data fusion
measurements are considered as follows:

b

[
S∑

s=1

ws · Vs

]
=

S∑
s=1

ws · b[Vs] =
S∑

s=1

ws ·O =O (29)

Such that,

S∑
s=1

ws = 1 (30)

The data fusion measurement error is derived as

Opee
sub = O −Oouf

sub =

S∑
s=1

ws·Opee
s (31)

The subsequent fusion variance matrix is

Csub = b
[
(Opee)

T
(Opee)

]
=

S∑
s,s+1=0

ws · ws+1 · Cs,s+1

(32)

and the variance is χsub = tr
(
b
[
(Opee) (Opee)

T
])

≜

tr (Csub). According to Eq. 20, an increase in the number
of qubits resulted in a corresponding increase in the compu-
tational complexity. Consequently, the measurement of each
sensor state’s probability becomes more complex when there
is an increase in attributes or qubits during a state assessment.
However, our gradient model helps improve computational
efficiency despite these complexities.

Corollary 2. If the values of n attributes and s sensor
measurements do not match, the covariance matrix Cs,s+1 for
data fusion is assumed to be zero. In this case, the value of
Oouf can be determined as follows.

Oouf
sub =

S∑
s=1

ws·Vs (33)

Legitimately, we have weight matrix

ws =

(
S∑

s=1

1

tr (Cs+1)

)−1

× 1

tr (Cs)
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and the corresponding variance matrix is defined as

Cs =

S∑
s=1

w2
s ·Cs (34)

Subsequent variance is calculated as

χsub = tr (Csub) =

(
S∑

s=1

1

tr (Cs+1)

)−1

(35)

Proof. For Cs,s+1 = 0 (s ̸= s+ 1), we have

Ĉ−1
2 = diag

[
1

tr (C1)
,

1

tr (C2)
, · · · , 1

tr (CS)

]
(36)

By substituting the aforementioned equation, the resulting
weight and variance matrix can be obtained as follows.

ws =

(
S∑

s=1

1

tr (Cs+1)

)−1

· 1

tr (Cs)
(37)

Cs =

S∑
s,s+1=0

wsws+1·Cs,s+1 =

S∑
s=1

w2
s ·Cs (38)

Consequently, the estimated variance of data fusion for each
measurement is calculated as follows.

χsub = tr (Csub)

=

S∑
s=1

w2
s · tr (Cs)

=

S∑
s=1

(
S∑

s=1

1

tr (Cs)

)−2

· 1

(tr (Cs))
2 · tr (Cs)

=

(
S∑

s=1

1

tr (Cs)

)−2

·
S∑

s=1

1

tr (Cs)

=

S∑
s=1

1

tr (Cs)

(39)

The developed fusion mechanism, utilizing scalar and ma-
trix weighting coefficients, is based on linear least mean square
error. This mechanism aims to differentiate the probability
of each qubit and estimate the potential of the sensor to
address computation and communication overhead challenges
associated with sensor states. The diagonal elements of Cs

are utilized to indicate the measurement accuracy of device
s. Algorithm 2 assesses the quantum state to select the RSU
or server by measuring node contiguity, node optimal knack
rate, and node heterogeneity parameters. In this process, line 1
initializes three quantum bits (contiguity ratio, knack ratio, and
heterogeneity weight). Moreover, each node’s fitness weight is
estimated before its selection. Line 4 assesses the contiguity
ratio, and line 6 assesses the knack ratio and heterogeneity
weight with line 7. The detailed quantum state estimation
is derived in the below Subsection IV-B1, which helps to
conclude the quantum register state with probability ratio. As
per the demand of qubits, the vehicle would be selected. The
fitness function is applied to select the sensor if ηs ≥ 0.5.

Algorithm 2: Quantum state estimation algorithm to
select sensor

input : Potential sensor list sc[i] ̸= 0,
Q = (q1, q2, · · · , qs, · · · , qn)

output: Select feasible sensor
1 Initialize required attributes ξsc ̸= 0, γsc ̸= 0, χsc ̸= 0 ;
2 for each sc[i] = 1 to n do
3 #contiguity ratio assessment#
4 Estimate

√
S

6A/π
← R, where |dl,k| < R and Rt ≥ 2Rs

to assess the concerning node contiguity ratio ξsc and
ρ (ξsc);

5 #optimal knack ratio assessment#
6 Estimate γsc = total demanded resources

total available resources and its probability;
7 Estimate φsc using Eq. 41;
8 Update node heterogeneity and non-linearity;
9 #likelihood probability and fitness assessment

10 Measure & update the likelihood probability of each
sensor through T-gate based on Subsection IV-B1.

11 Update sc[i] ascending order as per probability;
12 Estimate the fitness

ηs = ρ (ξsc | γsc , φsc)×
∑6

m=1

(√
Cm

)
;

13 if ηs ≥ 0.5 then
14 Select the sensor as potentially computation rich;
15 end
16 else
17 Check the rest of the sensors until the stack value

reaches zero; else go-to step 2;
18 end
19 end

1) Iterative data fusion analysis using quantum gates:
To assess the quantum register state of each, we used a
series of gates to manipulate the qubits in the register and
then measure the resulting state, including T-gate and H-
gate. The H-gate suits individual qubits within the register to
construct a balanced mixture of computational basis states,
making it easier to probe and analyze the quantum state.
The resulting superposition states can be measured to obtain
statistical information about the quantum register’s state. The
T-gate is a fundamental gate used for phase estimation. T-
gate is employed on selected qubits to adjust the relative
phases between the qubits’ superposition states. This phase
control is vital for performing accurate quantum calculations
and extracting meaningful results.

In our simulation, three qubits are considered. To create a
superposition in a single qubit, we used H−gate to the qubit
for a lightweight environment. This puts the qubit in a state
where it has a 50% chance of being in the | 1⟩ state and a 50%
chance of being in the | 0⟩ state. For complex environment
calculations, we combined multiple gates, including T−gates
and H−gates, in a controlled and coherent manner to help the
quantum state to map the classical states (0 or 1).

The probability-based normalization process is employed
while assessing the qubit’s state. In continuation, let’s assume
three qubits with eight dimensions, and the best dimension for
the node probability determines which node is chosen.

|ψsc⟩ =
1√
5
|110⟩+

√
1

5
|101⟩ −

√
2

5
|011⟩+

√
1

5
|111⟩.

To complete the node selection, let us assume that the first
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qubit-1

qubit-2

qubit-n

Vehicle-1

qubit register

Fitness probability
analysis

Fig. 5: The node/vehicle state consolidation involves analyzing
the probability variance through quantum-based data fusion

qubit has an elevated weight, meaning that the 1st bit is equal
to 1, and the corresponding probability is

=
∣∣∣ 1√

5

∣∣∣2 + ∣∣∣√ 1
5

∣∣∣2 + ∣∣∣√ 1
5

∣∣∣2 = 0.2 + 0.2 + 0.2 = 0.6

However, their probability is not equal to 1; therefore, we
apply the normalization formula as follows by dividing them
by their probability.

=
1√
5
|110⟩−

√
2
5 |011⟩+

√
1
5 ||111⟩

2/
√
5

= 1
2 |110⟩ −

1√
2
|011⟩+ 1

2 |111

Now the normalization factor is

=
∣∣ 1
2

∣∣2 + ∣∣∣ 1√
2

∣∣∣2 + ∣∣ 12 ∣∣2 = 0.2 + 0.5 + 0.2 = 1

It confines that, the 3-qubit quantum register is in |ψsc⟩ =
1
2 |110⟩−

1√
2
|011⟩+ 1

2 |111⟩. Figure 5 illustrates each sensor’s
data fusion analysis, which plays an important role in assessing
the sensor state. T-gate and H-gate are considered to assess the
quantum register state at each iteration based on Algorithm-
1 and Algorithm-2. Figure 6(a) illustrates the probabilities of
each dimension, as per the demand and weight of qubit, the
sensor would be selected, and detailed simulation outcomes
are described in Section V.

C. Node selection strategy based on conditional probability

To evaluate the state of a node, a node selection strategy is
employed, which relies on the conditional probability of each
constraint mentioned earlier. For instance, the fusion variance
probability value must fulfill the constraint C6 to be considered
in the node state estimation process.

sj | state⟩ =
√
χpe
s |⟩1 +

√
1− χpe

s |⟩0

Likewise, a matrix can be formed in the following manner,
with a value of 1 representing node selection and any other
value indicating non-selection, prompting the non-selection
case to restart the process. For more information please refer
[24], [28].

Stime
j =

[
1←

√
C1 | · · ·

√
C6 |

0←
√
1− C1 | · · ·

√
1− C6 |

]

Subsequently, node fitness probability is estimated as follows,
where m indicates the number of constraints defined in the
problem formulation section.

ηs = ρ (ξsc | γsc , φsc)×
6∑

m=1

(√
Cm

)
(40)

1) Vehicle mobility impact on node selection: The primary
reason for the lack of success in service offloading objectives
is the high mobility of vehicles, leading to data transmission
failures or disturbances when the unusual server’s execution
time. Therefore, ensuring a short transmission time for the link
has become significant, and the short transmission link time
is derived as follows.

φj,j+1|j,k =


R+dj,j+1|k

|κj−κj+1|k| for κj > κj+1|k
R+dj,j+1|k

|κj+κj+1|k| for κj ≤ κj+1|k
(41)

When the direction of vehicles is not the same, the transmis-
sion channel link quality

φj,j+1|j,k =

√
R2 −

(
yj − yj+1|k

)
+ dj,j+1|k∣∣κj + κj+1|k
∣∣ (42)

where φτ
j,j+1|j,k is transmission link between jth vehicle,

j + 1th vehicle or between jth vehicle, kth server over the
network. Here, dj is the speed of jth vehicle, R indicates
coverage range, ϖj , ϖj+1|k is the distance between vehicles
and server, respectively; In this scenario, we select the of-
floading node based on a specific condition: the probability of
service execution elapsed time being less than the probability
of transmission link time.

D. Complexity analysis

In the proposed mechanism, the calculation of each vehi-
cle/node state, denoted as |S⟩, is crucial since the selection of
nodes relies on the probability of node dimension. Therefore,
the probability amplitude of the node state must be equal to
one, expressed as

∑S
s=1 | bs |

2
= 1. The evaluation involves

assessing the suitable vehicle or node across its state spaces N ,
performing iterative search actions with l number of vehicles,
q control qubits which can observe in Algorithm 1 and 2.
As a result, the complexity of the proposed approach can
be represented as O

(√
N lI l · q log q

)
, which encompasses

weight summation, searching, and estimation of all parameters.
Space complexity: Typically, the required qubit storage for
a node is proportional to the logarithm of the number of
conditional qubits, denoted as O (log q).

V. EXPERIMENTAL RESULTS

In this Section, the simulation results are plotted to
determine the performance of our system. The Rigetti forest
cloud platform and QUBIT4MATLAB V5.8 with MATLAB
are used to evaluate every numerical simulation. The PyQuil
package is used by Rigetti’s forest cloud platform to simulate
our method in a quantum virtual environment. H(): Hadamard
gate, R(): Ration gate, T (): t-gate, I(): Identity gate have
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used in the simulation. Additionally, on 64-bit Ubuntu 20.1
LTS with an Intel Core i7-10700 CPU running at 3.80GHz
and an NVIDIA GeForce RTX3090, the Qiskit tool is utilized
for cross-verification. The state-of-art (SOTA) approaches are
labelled QAOA(A1), Q-Ebit(A2), and NDQ(A3), where A1
is a novel quantum service allocation model [16]. A2 is a
quantum-inspired communication and computation framework
[9]. A3, a quantum-based swarm optimization algorithm [8].

In our simulation, a backhaul link with a 10 Gb capacity
connects c=3,6,9 RSUs and 31% of vehicles for efficient com-
munication and processing. The MATLAB function generates
Rayleigh fading channel value, and the channel bandwidth
is fixed as 1000Hz. There are eight actions and six states
for 3-qubits, respectively. The full-duplex node deployment
helps to preserve channel resource usage and communication
delay, and the simulation variables are listed in Table IV. The
compute service’s anticipated storage size is 15 Mb, and the
plots are built using 300 iterations of the logs and a CPU cycle
per bit.
Figure 6 illustrates the state estimation analysis based on the
dimensions of each qubit and mean distance error analysis.
Quantum-based probability estimation helps to finalize the
state of each vehicle. According to that, the value vehicle se-
lection takes place, which impacts the system’s performance in
terms of low delay, resource usage, and quality of experience.
To choose the RSU server by the application deadline, our two
algorithms evaluate the node position using rotation angle and
h-gate. Each dimension probability of a single sensor’s qubit
register is shown in Figure 6(a). Moreover, the first two qubits
have been assigned a higher priority than the third qubit using
weight because the first two significantly impact the system
performance. Consequently, the probability ratio is plotted for
all four sensors as represented in Figure 6(b). The first aim
of this paper is to assess the suitable position of the sensor to
meet the qualitative coverage ratio and to cover the sensor
service demands concerning distance estimation and angle
measurement. Therefore, the mean distance error is assessed
and plotted concerning dimensions and sensor count, which
can be observed in Figure 6(c). The proposed method achieved
a lower error rate than SOTA approaches, even at different
dimensional levels.

Figure 7 illustrates service rate analyses of the proposed
method. We considered three different scenarios to assess
the proposed system’s performance. Usually, sensor density,
service arrival rate, and coverage range affect the service
reliability rate, and three variables vary per the service demand
to meet the application deadline. We noticed that, as the com-
putation and communication capacity increased, the anchor
count and the service execution ratio drastically increased, as
can be observed from Figure 7(a) to Figure 7(c).
Figure 8 illustrates the qubit dimension impact on system
performance. Figure 8(a) shows demanded time to complete
each iteration concerning dimension count. The proposed
system achieved a low consumption time which is an average
of 1.1k seconds. Consequently, A1, A2, and A3 achieved an
average time computation rate. Figure 8(b) shows the node-
selection error rate based on dimension probability. In this

case, the proposed model achieved low error rate than the rest
of the methods since our state estimation method adequately
measures the states and their probability for concluding the
device selection process. In addition to that, fitness value is
also estimated and considered before selecting the suitable
sensor. The concerning fitness values of each sensor based
on dimensions are plotted in Figure 8(c).
Figure 9 illustrates the error ratio concerning service coverage
and resource usage analysis. The proposed system achieved a
low normalized root mean square error of around 0.29% than
SOTA approaches concerning the increase of hypernode count,
which can be observed in Figure 9(a). Deploying the sensor
at the right position impacts the service reliability ratio, which
mitigates the system’s coverage issues. The proposed method
achieved a high coverage ratio by fulfilling resource require-
ments with less communication and computation overhead, as
shown in Figure 9(b). In continuation, maintaining a trade-
off between resource usage cost and latency minimization
over joint computation and communication. The proposed
method achieved low resource usage concerning the increment
in hypernode count, which can be observed in Figure 9(c).

TABLE IV: The simulation parameters include coverage range
(CR), transmission power (TP), channel frequency (CF), and
thermal noise power (TNP), bandwidth (B).

variable value variable value
RSU OBU

coverage 300m coverage 150m
CF 6 GHz CF 4 GHz
TP 50 dBm TP 30 dBm
B 50 MHz B 15 MHz

variable Value
size 15Mb

distance 160 m
TNP -91 dBm

time variance 5.3×10−4s
ωh 0.5
Γh 3.6/unit
O 26

density 5-6/km

Two scenarios have been considered and corresponding results
amended in Table V. The second case, specifically shows a
deficient infrastructure, making it difficult to combine low
error and latency rates with high service reliability. The
creation of a novel node consolidation system by taking into
account the qubit register probability and quantum machine

TABLE V: Performance analysis in both scenario-1: 8 vehi-
cles, 4 RSUs, 30% service arrival rate as well as scenario-2:
12 vehicles, 2 RSUs, 60% service arrival rate

#Scenario-1
Method Service reliability % Consolidation error rate % Offloading reduction %

NDQ(A3[8]) 29.2 0.46 26.2
Q-Ebit(A2[9]) 30.6 0.41 48.5

DQRA(A1[16]) 34.1 0.35 49.3
QONC 36.7 0.17 53.1

#Scenario-2
Method Service reliability % Consolidation error rate % Offloading reduction %

NDQ(A3[8]) 61.2 0.53 49.6
Q-Ebit(A2[9]) 67.5 0.79 56.3

DQRA(A1[16]) 68.7 0.72 62.1
QONC 70.2 0.22 74.3
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(a) Single sensor state probability based on di-
mension

(b) Multi-node state probability analysis based on
dimensions

(c) Mean distance error analysis

Fig. 6: Sensor state analysis

(a) Service rate when anchors=3 (b) Service rate when anchors=6 (c) Service rate when anchors=9

Fig. 7: Server/RSU service rate analysis when sensor density=31%,, service arrival rate=49%, coverage range=500m

(a) Required time for completing each iteration (b) Node selection probability error rate analysis (c) Fitness analysis for node selection

Fig. 8: Performance analysis using Qubit dimensions

(a) Normalized root mean square error analysis (b) Service coverage ratio analysis (c) Resource usage analysis

Fig. 9: Node density based on error ratio, resource usage, and service coverage analysis
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TABLE VI: Quantum-based node consolidation mechanism;
Er: error rate, Fre: frequency, Ct: completion time, wt:
waiting time, Dec: decision

Qubits probability# Devices |110⟩ |101⟩ |111⟩ Er Fre(GHz) Ct (ms) wt(ms) Dec

la|⟩ 0.62 0.71 0.75 0.6 7.2 5.2 520 not suitable

lb|⟩ 0.6 0.65 0.78 0.21 6 3.1 789 SR
vehicle

lc|⟩ 0.70 0.69 0.72 0.71 8.1 4.9 825 not suitable
ld|⟩ 0.75 0.79 0.82 0.15 3.1 1.5 315 Suitable

learning mechanism led to the proposed’s low latency and
error rate. The fitness weight prediction function is crucial
for maintaining a trade-off between resource usage, coverage
ratio, and latency rate while choosing the best RSU. First, let’s
imagine that there are four servers in a CPS framework, each
with a separate set of computational resources, and that server
lb|rangle is overloaded as a result of a high service arrival
rate. In this scenario, offloading takes place by node, which
is chosen based on the node-centric characteristics stated in
Table. VI.
According to a set of measurements (node contiguity, node
heterogeneity, and node optimal knack rate), including quan-
tum state estimation and data fusion optimization, the red tuple
offloads the services to the appropriate node in blue. In short,
while accommodating the offloaded services, the targeted node
service frequency, waiting time relative to the service length,
and execution time are also crucial. The blue tuple was chosen
because it may be resource-rich for computing. The system
performance improves more with this selection strategy than
with SOTA methods.

VI. CONCLUSION

This paper develops a QONC decision-making system to se-
lect a feasible node to meet application latency constraints and
to deploy the node at the appropriate position for accurate data
computation-communication. The angular-based node position
analysis method effectively localized the node position, which
is essential to achieving low latency and enhancing system
performance. The simulation results show that our method
has achieved a low average error ratio from 0.17-0.22 and an
average coverage ratio from 29%-42% because of estimating
quantum-formalized node parameters (node contiguity, node
optimal knack rate, node heterogeneity). The proposed model
achieved 74.3% offloading reduction accuracy, and a 70.2%
service reliability rate. The designed fitness function assesses
the node fitness probability before selecting the potential
device to execute the offloaded services. To satisfy the needs
of applications with tight deadlines, we will expand on this
work in the future by developing intelligent decision-making
methods using linear programming and the Grovers algorithm.

VII. FUTURE OBJECTIVES

The advantage of designing a Quantum Reinforcement
Learning (QRL) over traditional RL is carried out by three
strategies,
1) The equilibrium ratio between exploration and exploitation

of actions will be achieved in QRL’s exploration policy,

which will be based on the collapse postulate rather than
the greedy or Boltzmann policies.

2) Designing and utilizing the unitary transformation method
in a coordinated manner, the QRL model will update all of
the states concurrently.

3) The robust nature of the QRL algorithm will help adapt to
different learning rates quickly as the unknown changes in
the environment.

The robust nature of the QRL approach will be evaluated
through learning performance and convergence rate analysis in
certain simulations for lightweights and complex environments
in the future.

ACKNOWLEDGMENTS

This work was supported in part by the Basic Science
Research Programs of the Ministry of Education (NRF-
2018R1A2B6005105) and in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No.2019R1A5A8080290).

REFERENCES

[1] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
letters, vol. 3, pp. 18–23, 2015.

[2] K. Cao, S. Hu, Y. Shi, A. W. Colombo, S. Karnouskos, and X. Li,
“A survey on edge and edge-cloud computing assisted cyber-physical
systems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11,
pp. 7806–7819, 2021.

[3] J. Villalba-Diez and X. Zheng, “Quantum strategic organizational de-
sign: alignment in industry 4.0 complex-networked cyber-physical lean
management systems,” Sensors, vol. 20, no. 20, p. 5856, 2020.

[4] C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp. 2–17, 2021.

[5] F. Xiao, W. Liu, Z. Li, L. Chen, and R. Wang, “Noise-tolerant wireless
sensor networks localization via multinorms regularized matrix comple-
tion,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp.
2409–2419, 2017.

[6] Y. Wang and K. Ho, “Unified near-field and far-field localization for
aoa and hybrid aoa-tdoa positionings,” IEEE Transactions on Wireless
Communications, vol. 17, no. 2, pp. 1242–1254, 2017.

[7] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal processing magazine, vol. 22, no. 4, pp.
54–69, 2005.

[8] S. N. Ghorpade, M. Zennaro, B. S. Chaudhari, R. A. Saeed, H. Al-
humyani, and S. Abdel-Khalek, “Enhanced differential crossover and
quantum particle swarm optimization for iot applications,” IEEE Access,
vol. 9, pp. 93 831–93 846, 2021.

[9] S. Kumar, O. Kaiwartya, M. Rathee, N. Kumar, and J. Lloret, “Toward
energy-oriented optimization for green communication in sensor enabled
iot environments,” IEEE Systems Journal, vol. 14, no. 4, pp. 4663–4673,
2020.

[10] L. Tello-Oquendo, S.-C. Lin, I. F. Akyildiz, and V. Pla, “Software-
defined architecture for qos-aware iot deployments in 5g systems,” Ad
Hoc Networks, vol. 93, p. 101911, 2019.

[11] N. Saeed, A. Celik, M.-S. Alouini, and T. Y. Al-Naffouri, “Performance
analysis of connectivity and localization in multi-hop underwater optical
wireless sensor networks,” IEEE Transactions on Mobile Computing,
vol. 18, no. 11, pp. 2604–2615, 2018.

[12] X. Wang, C. Chen, M. Jiang, and X. Huang, “Quantum network
coding for remote state preparation of multi-qudit states,” in 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC).
IEEE, 2019, pp. 1150–1153.

[13] D.-D. Li, F. Gao, S.-J. Qin, and Q.-Y. Wen, “Perfect quantum multiple-
unicast network coding protocol,” Quantum Information Processing,
vol. 17, no. 1, pp. 1–18, 2018.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3301402

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Robert Gordon University. Downloaded on August 21,2023 at 10:08:37 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTION ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX 2023 14

[14] S. Dai, M. Liwang, Y. Liu, Z. Gao, L. Huang, and X. Du, “Hybrid
quantum-behaved particle swarm optimization for mobile-edge compu-
tation offloading in internet of things,” in International Conference on
Mobile Ad-Hoc and Sensor Networks. Springer, 2017, pp. 350–364.

[15] S.-Y. Kuo, Y.-H. Chou, and C.-Y. Chen, “Quantum-inspired algorithm
for cyber-physical visual surveillance deployment systems,” Computer
Networks, vol. 117, pp. 5–18, 2017.

[16] J. Yao, M. Bukov, and L. Lin, “Policy gradient based quantum approx-
imate optimization algorithm,” in Mathematical and Scientific Machine
Learning. PMLR, 2020, pp. 605–634.

[17] L. Le and T. N. Nguyen, “Dqra: Deep quantum routing agent for
entanglement routing in quantum networks,” IEEE Transactions on
Quantum Engineering, vol. 3, pp. 1–12, 2022.

[18] Q. Tu, Y. Zhao, and X. Liu, “Recovery schemes of hop count matrix via
topology inference and applications in range-free localization,” Expert
Systems with Applications, vol. 200, p. 116906, 2022.

[19] M. Jemmali, M. Denden, W. Boulila, G. Srivastava, R. H. Jhaveri, and
T. R. Gadekallu, “A novel model based on window-pass preferences
for data emergency aware scheduling in computer networks,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7880–7888,
2022.

[20] K. Li, Z. Huang, and Z. Jia, “Rahg: A role-aware hypergraph neural net-
work for node classification in graphs,” IEEE Transactions on Network
Science and Engineering, 2023.

[21] F. Han and X. Liu, “Anchor-pairs conditional decision-based node
localization for anisotropic wireless sensor networks,” in 2019 IEEE 11th
International Conference on Communication Software and Networks
(ICCSN), 2019, pp. 84–88.

[22] P. K. Rai, H. Idsøe, R. R. Yakkati, A. Kumar, M. Z. Ali Khan,
P. K. Yalavarthy, and L. R. Cenkeramaddi, “Localization and activity
classification of unmanned aerial vehicle using mmwave fmcw radars,”
IEEE Sensors Journal, vol. 21, no. 14, pp. 16 043–16 053, 2021.

[23] A. El Assaf, S. Zaidi, S. Affes, and N. Kandil, “Robust anns-based
wsn localization in the presence of anisotropic signal attenuation,” IEEE
Wireless Communications Letters, vol. 5, no. 5, pp. 504–507, 2016.

[24] M. Mekala, G. Srivastava, J. C.-W. Lin, G. Dhiman, J. H. Park, and H.-Y.
Jung, “An efficient quantum based d2d computation and communication
approach for the internet of things,” Optical and Quantum Electronics,
vol. 54, no. 6, pp. 1–19, 2022.

[25] D. Kudrow, K. Bier, Z. Deng, D. Franklin, Y. Tomita, K. R. Brown, and
F. T. Chong, “Quantum rotations: a case study in static and dynamic
machine-code generation for quantum computers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, 2013,
pp. 166–176.

[26] M. S. Mekala, G. Dhiman, G. Srivastava, Z. Nain, H. Zhang, W. Viriy-
asitavat, and G. P. S. Varma, “A drl-based service offloading approach
using dag for edge computational orchestration,” IEEE Transactions on
Computational Social Systems, pp. 1–9, 2022.

[27] M. S. Mekala, A. Jolfaei, G. Srivastava, X. Zheng, A. Anvari-
Moghaddam, and P. Viswanathan, “Resource offload consolidation based
on deep-reinforcement learning approach in cyber-physical systems,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 6, no. 2, pp. 245–254, 2022.

[28] M. S. Mekala, H. Zhang, J. H. Park, and H.-Y. Jung, “Quantum-based
offloading strategy for intelligent vehicle network,” in 2023 IEEE 20th
Consumer Communications & Networking Conference (CCNC), 2023,
pp. 987–988.

M. S. Mekala (Senior Member, IEEE, AFHE)
received the Ph.D. degree from VIT University.
He is currently working as an Assistant Profes-
sor with the School of Computing, Robert Gordon
University, Aberdeen, U.K. He is a Former Post-
Doctoral Researcher at RLRC LAB, Yeungnam Uni-
versity, Gyeonnsan, Korea. His research interests
include service computing, intelligent machine vi-
sion, data communication, decision making system
design, edge computing, CPS, IoT communication,
and Reliability Analysis.

Gautam Srivastava Gautam Srivastava is a Pro-
fessor of Computer Science at Brandon University,
Canada. In his 10- year academic career, he has
published a total of 400 papers in high-impact con-
ferences in many countries and high-status journals
(SCI, SCIE). He is an Editor of several international
scientific research journals including IEEE Transac-
tions on Industrial Informatics, IEEE Transactions
on Computational Social Systems, and IEEE Internet
of Things Journal. He received his M.Sc. (2006)
and Ph.D. (2012) in Computer Science from the

University of Victoria, Canada.

Amir H. Gandomi is a Professor of Data Science
and an ARC DECRA Fellow at the Faculty of
Engineering & Information Technology, University
of Technology Sydney. Prior to joining UTS, Prof.
Gandomi has published 350+ journal papers and 14
books which collectively have been cited 43,000+
times (H-index = 93). He has been named as one of
the most influential scientific minds and received the
Highly Cited Researcher award (top 1% publications
and 0.1% researchers) from Web of Science for six
consecutive years, from 2017 to 2022.

Ju H. Park (Senior Member, IEEE) received the
Ph.D. degree in electronics and electrical engineer-
ing from Pohang University of Science and Tech-
nology (POSTECH), Pohang, Republic of Korea, in
1997. He joined Yeungnam University, Kyongsan,
Republic of Korea, in March 2000, where he is
currently the Chuma Chair Professor. He has pub-
lished a number of articles in these areas. His
research interests include robust control and filtering,
neural/complex networks, fuzzy systems, multiagent
systems, and chaotic systems. Since 2015, he has

been a recipient of the Highly Cited Researchers Award by Clarivate Analytics
(formerly, Thomson Reuters) and listed in three fields, Engineering, Computer
Sciences, and Mathematics, in 2019 to 2022.

Ho-Youl Jung received the Ph.D. degree in electron-
ics engineering from the INSA de Lyon (Institute
National des Sciences Appliquées de Lyon), France,
in 1998. He is currently a Professor with the De-
partment of Information and Communication Engi-
neering, Yeungnam University, Korea. His research
interests include digital signal processing, computer
vision, deep-learning, autonomous vehicle, computer
graphics, control signal processing, and IoT.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2023.3301402

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Robert Gordon University. Downloaded on August 21,2023 at 10:08:37 UTC from IEEE Xplore.  Restrictions apply. 


	coversheet_template
	MEKALA 2023 A quantum-inspired sensor (AAM).pdf
	Introduction
	Related work
	Accurate data fusion importance based on quantum theory
	Sensor selection approaches

	Preliminaries
	Communication model
	Computation model
	Problem formulation

	Quantum-inspired Sensor Consolidation Mechanism
	Quantum angular-based node coordinates analysis
	Fusion variance measurement for quantum state estimation
	Iterative data fusion analysis using quantum gates

	Node selection strategy based on conditional probability
	Vehicle mobility impact on node selection

	Complexity analysis

	Experimental Results
	Conclusion
	Future Objectives
	References
	Biographies
	M. S. Mekala
	Gautam Srivastava 
	Amir H. Gandomi
	Ju H. Park
	Ho-Youl Jung





