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A Backpropagation Algorithm for Inferring
Disentagled Nodal Dynamics and Connectivity

Structure of Dynamical Networks
Eugene Tan, Débora Corrêa, Thomas Stemler, Michael Small

Abstract—Dynamical networks are versatile models that describe a variety of behaviours such as synchronisation and feedback in
networks of coupled dynamical components. However, applying these models in real systems is difficult as prior information of the
connectivity structure or local dynamics is often unknown and must be inferred from node state observations. Additionally, the influence
of coupling interactions complicates the isolation of local node dynamics. Given the architectural similarities between dynamical
networks and recurrent neural networks (RNNs), we propose a network inference method based on the backpropagation through time
(BPTT) algorithm used to train RNNs. This method aims to simultaneously infer both the connectivity structure and isolated local node
dynamics from node state observations. An approximation of local node dynamics is first constructed using a neural network. This is
alternated with an adapted BPTT algorithm to regress corresponding network weights by minimising prediction errors of the network
based on the previously constructed local models until convergence. This method was successful in identifying the connectivity
structure for coupled networks of chaotic oscillators. Freerun prediction performance with the resulting local models and weights was
comparable to the true system with noisy initial conditions. The method is also extended to asymmetric negative coupling.

Index Terms—dynamical networks, network inference, backpropagation, neural networks, machine learning

✦

1 INTRODUCTION

Dynamical networks are a common occurrence when
studying complex systems where the goal is to model large
systems of multiple interacting components [1]. In its sim-
plest form, a dynamical network may be defined as hav-
ing three main components: local node dynamics, coupling
dynamics and connectivity structure (see Equation 1). One
key feature of dynamical networks is its ability to recreate
and describe rich and interesting dynamics such as chimera
states, synchronisation [2], [3], [4] and cascading failure
commonly encountered in real world systems [5]. They have
also been applied to other systems such as neuron networks
[5], [6], power grids [7], [8], epidemic spread [9], and cardiac
arrhythmia [10].

ẋi(t) = f(xi(t)) +
∑
i ̸=j

cijg(xi(t),xj(t)). (1)

In Eq 1, nodes are indexed with i, the coefficient cij
represents coupling between nodes i and j, and f and g
are the local and coupling dynamics respectively. Despite
its relatively simple form, data-driven applications of this
framework to model real world systems can be difficult if
information regarding the coupling structure and dynamics
is not accessible. In these cases, these components need to be
inferred before a dynamical networks framework can be ap-
plied. Specifically, there is the inverse problem of inferring
network characteristics from data. However, this problem
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is difficult due to the complicated interplay between local
models and coupling behaviour. This is problematic in sys-
tems where the network can only be observed in its entirety,
and local dynamics and coupling structure are not clearly
separable [11]. For example, in modelling brain connectivity
[12], it may be desirable to infer the component dynamics
of local brain regions. However, isolating these regions for
observation may not be physically possible. If modelling
epidemic spread between regions, it may be desirable to
infer which transport connections influence the dynamics
the most.

Many existing methods of inferring dynamical network
properties require either the local or coupling dynamics to
be at least partially known. Alternatively, some methods
restrict inferences to statistical arguments with uncertainty
in order to remove the dependence on a priori informa-
tion. For the interested reader, a comprehensive review and
discussion on data-driven network inference has also been
given by Gao & Yan [13].

Numerous approximation and inference methods for
inferring network connectivity have been developed each
with varying success. These methods may be classified into
three main approaches:

1) Direct Approach - For systems where both local
f and coupling dynamics g is explicitly known,
a direct algebraic approach using derivatives have
been used to recover connectivity structure [14].

2) Perturbation Methods - These methods try and
recreate a proxy dynamical network that performs
similarly to the target system. Small perturbations
are applied to individual nodes in the network and
observed to see how each signal propagates. These
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propagations are then used to infer the network
connectivity structure [15], [16], [17] .

3) Signal Correlation - This approach focuses on quan-
tifying the correlation between node signals [18].
Node pairs with highly correlated signals are used
to infer the connectivity structure. Maximum route
entropy has also been used as an alternative to
achieve the same result. [19]. An extension of this
approach is the employment of some notion of
causality such as Granger causality [20], [21] and
short-term causal dependence. [15].

The inference of connectivity structure also poses an ad-
ditional challenge of false positive couplings and remains an
open research area. Granger causality and similar statistical
based approaches have been found to particularly struggle
with this problem, even for simple network structures such
as rings and chains [21], [22].

The second problem of constructing models to describe
the local dynamics f in multi-node networks has been
studied for pseudo-periodic systems [10], [20]. Outside
these, many approaches focus on the case of a single node
without external interactions and utilise a time-delay em-
bedding with appropriately chosen delay and embedding
dimension [23]. Proposed modelling methods for long-term
prediction include neural network predictors [24], radial
basis predictors [25] and reservoir computing [26] among
several others. Assessing the quality of these local models
relies on the comparison of dynamical invariants such as
Lyapunov exponents or correlation dimension [27], [28], [29]
and attractor homology [30].

There is also a third related problem of identifying
coupling equations g from signals. Solutions have been
proposed using phase dynamics for networks exhibiting
pseudo-periodic behaviour, but not necessarily for aperiodic
behaviour [10]. For simple oscillator networks, Panaggio
et al. [31] propose a gradient descent method to regress
coupling functions of a given form. This approach draws
similarities with [14].

For low dimensional systems, symbolic approaches
aimed at tackling either the dynamics or connectivity struc-
ture inference problem have gained increased traction in
recent times. A method based on the ideas of compressed
sensing [32] and sparse optimisation methods (SINDy) [33]
have been proposed to reconstruct the functional form of the
dynamics equations using a library of basis functions (e.g.
power series, Fourier series) for isolated dynamical systems
with no interactions. Compressive sensing tries to find the
sparsest combination of coefficients for some power series
basis via convex optimisation with respect to the L1-norm.
Link and coupling weight identification can also be included
into this approach [32], [34]. However, we note that this
method may be limited to simple systems with analytical
or well-behaved equations.

The symbolic approach with basis functions was also
extended to local dynamics and coupling functions by util-
ising prior known information of the network connectivity
structure [11]. A similar approach (ARNI) [35] using basis
functions has also been proposed to reconstruct the coupling
function and connectivity structure of dynamical networks.
ARNI is also applicable to heterogeneous networks where

local dynamics f differ between nodes. We note that ARNI
can also be adapted to infer local dynamics instead [11].

Despite these topics being well studied, the literature
on inferring both connectivity structure and node dynam-
ics from time-series observations is not rich. Methods for
reconstructing local dynamics (e.g. SINDy [33] and Gao
[11]) are either restricted to single node systems, or rely or
prior information about the connectivity structure. In cases
where the aim is to infer connectivity structure, either local
dynamics are known prior [14] or are not directly inferred
[35]. There remains the need of more methods that tackle
the inference of both of these properties simultaneously.

We note that a method utilising a mean field approach
has been proposed to tackle the simultaneous inference of
local dynamics and connectivity structure [36]. This method
constructs an ‘effective network’ that acts as an approximate
proxy for the real dynamical network, reproducing many of
its properties and behaviours. Under specific assumptions
such as weak coupling, network heterogeneity and limited
links, this method has been shown to perform well in
identifying critical transitions and the connectivity struc-
ture of a cat cortex. However, the ‘effective network’ relies
on the network sparsity and presence of hubs to recover
an approximation of the local dynamics. Additionally, this
approximation of local dynamics is not fully disentangled
from the interaction dynamics. An extension and formalisa-
tion of this approach was subsequently presented [37] and
demonstrated the capacity for this approach in predicting
emergence behaviour.

Another dynamical systems approach was proposed by
Novaes et al. [38] for analysing sparse networks of inter-
acting oscillators. Their approach assumes dynamics occur
near a Hopf-Andronov bifurcation and focuses on analysing
the phases of trajectories to recover the requisite network
properties.

In contrast to the more theoretical approaches previously
discussed, there has recently been a growing interest in
applying machine learning methods to solve this problem.
Many existing methods utilise a graph neural network
(GNN) architecture to perform network inference. One of
the earlier formulations consists of two neural networks that
are trained simultaneously to learn the interaction structure
and resulting dynamics (conditioned on said interaction)
[39]. Similar ideas using GNNs have also been proposed
by Cranmer et al. [40] to predict the movement of many
body particles, given the interaction structure is known a
priori. Even more recently, Zhang et al. [41] presented a
neural architecture consisting of a network generation layer
and three dynamics layers to model a generalised dynamical
network. This network is then subsequently trained end-to-
end for the purposes of prediction. Whilst these methods are
able to infer network dynamics, these approaches produce
black box models that combine both the interaction and local
dynamics together. That is, the learned local dynamics are
conditional on a given network connection structure and are
not necessarily separable.

In this paper, we present a proof of principle of a data-
driven approach for simultaneously inferring both the local
node dynamics and weighted connectivity structure from
the observation of node signals, assuming only prior knowl-
edge of the coupling function. This method aims to decouple
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the time-series observations of node states to reconstruct the
separated components of local dynamics f(xi) and coupling
connectivity structure cij . The novelty of this method lies in
the separated output approximations of local dynamics and
coupling structure. This differs from the ‘effective network’
method and various machine learning approaches that infer
local dynamics without fully removing interaction dynam-
ics.

Recognising the structural similarities between dynami-
cal networks and RNNs, we propose an adaptation of the
backpropagation through time (BPTT) algorithm used to
train RNNs [42], as a method of regressing the connec-
tivity structure of a dynamical network. This regression
is then used to decouple the observed node signals and
simultaneously construct a model of local dynamics. This
method combines the tasks achieved by several of the
abovementioned methods, whilst also dealing instances of
dynamical networks with weighted edges. The proposed
method is formulated on the following assumptions: (1) the
coupling function g(xi, xj) is known, (2) all nodes states are
observable, (3) the network dynamics are not fully synchro-
nised, and (4) the magnitude of coupling effects is small
in compared to the local node dynamics. In our analyses,
assumptions (1) and (2) are encoded as apriori information
(i.e. g is diffusive coupling, and all node states are inputs
for regression). Assumptions (3) and (4) can be achieved by
either considering a sparsely connected network, or weak
coupling magnitudes cij . However, we note that it is not
needed for networks to be both sparse and have weak
coupling for these assumptions to be met.

We test the performance of the proposed method on a
dynamical network of Lorenz [43] and Chua oscillators [44]
with a randomly initialised weighted connectivity struc-
ture. We find that an adapted backpropagation regression
method was able to reproduce the network coupling struc-
ture and local dynamics for a 64 node network. Additional
cases with asymmetric and negatively weighted coupling
are also explored, yielding similar results. To test the per-
formance on a more realistic application, the proposed
backpropagation regression method was applied to a net-
work of driven FitzHugh-Nagumo oscillators operating in
the chaotic regime to simulate a simple biological neuron
network (see Appendix). Similar to the previous cases, the
backpropagation method was able to successfully reproduce
both the network structure and local dynamics.

2 BACKGROUND

2.1 Dynamical Networks

Dynamical networks can be defined as a network G =
(f, g, C) consisting of three main components, local dy-
namics f , coupling dynamics g and connectivity structure
C . Node states evolve according to Equation 1 with local
behaviour governed by f and additional external influences
from neighbours due to coupling components g and C .

The effect of coupling between nodes results in a high
dimensional system with multiple interacting sub-systems.
For small or highly connected networks, sufficiently large
coupling can cause network-wide synchronisation of node
states. As coupling is decreased, chimera states and group

Fig. 1. Illustration of the forward pass and one step prediction of RNNs
with hidden node state evolutions given by Equation 2.

synchronisation emerges [2], [3], [4]. When no coupling is
present, all nodes behave independent of each other.

Here, we focus on dynamical networks based on two
different 3-dimensional chaotic systems, Lorenz [45] and
Chua, with diffusive coupling in the first component. For
the latter, we will focus on the Chua system with cubic
nonlinearity ϕ operating in the single scroll mode [44] to
analyse dynamics contrasting with the Lorenz system.

2.2 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are a modelling archi-
tecture developed in the field of machine learning that is
widely used for sequence and time-series prediction [46],
[47], [48]. RNNs consist of an input layer with weights
C(in), a fully connected hidden layer of nodes with time
varying state s(t) and feedback weights C(s), and an output
layer with readout weights C(out). For prediction, an input
sequence xin = {x(t0),x(t1), ...,x(tn)} is fed into the RNN
via the input layer with input weights C(in). These inputs
are usually discretely sampled at regular time intervals tn
and then sequentially fed into the recurrent hidden layer
whose nodes feedback to each other according to weights
C(s) before applying a nonlinear transformation σ(·). In
its continuous time formulation, this allows network to
approximate nonlinear dependencies between states with
nodes evolving according to Equation 2,

s(tn) = σ(C(in)x(tn) + C(s)s(tn−1) + b), (2)

where s(tn) = (s1(tn), s2(tn), ...sN (tn)) represents the state
values of all N hidden nodes in the RNN.

Predictions x̂(t) are calculated using the trained readout
weights and hidden node states as given in Equation 3 and
Figure 1,

x̂(tn+1) = C(out) · s(tn). (3)

The training of RNNs involve the small adjustment of
network weights C(in), C(s), C(out) and biases b such
that the error between x(tn) and x̂(tn) is minimised. This
is achieved via the backpropagation through time (BPTT)
algorithm [20]. The BPTT algorithm can be interpreted as
an adaptation of the gradient descent training algorithm
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Fig. 2. Schematic of typical backpropagation through time (BPTT) cal-
culation for training recurrent neural networks with an input length of
4. Input time-series x(tn) is used to evolve node states s(tn) during
the forward pass. For brevity, each node in the figure represents all the
state of all hidden nodes in the network at a given time. Node states
s(tn) are used to calculate a value for the errors E(tn+1) and L. Partial
derivatives for L are taken with respect to the node states s(tn) and
edge weights C(in), C(s), C(out) and subsequently used to adjust edge
weights such that prediction error L is minimised.

for neural networks that accounts for the propagation of
network weight effects through the history of the RNN’s
hidden node states s(tn).

2.3 Backpropagation

The BPTT algorithm works by unfolding the predictions
of the recurrent network at each time step. This process
reframes the forward pass of an RNN into a feedforward
network where each layer corresponds to the node states
of the RNN at a specific time. For a given RNN model,
an input sequence xin = {x(t0),x(t1), ...,x(tn)} is fed
in to produce a predicted sequence of outputs x̂out =
{x̂(t1), x̂(t2), ..., x̂(tn+1)}. Prediction losses are calculated
with respect to some metric d between the real output xout

and the predictions x̂out. For an RNN with N hidden nodes,
the total loss L for an n step prediction with respect to the
L2 norm is given by

L =

t=tn∑
t=t1

E(t) =

t=tn∑
t=t0

∥x̂out(t)− xout(t)∥2, (4)

where E(tn) is the error of the nth prediction step.
The gradient of the loss taken with respect to node

weights is calculated by propagating the error backward
through time steps and used to update node weights (see.
Figure 2). During the update step, each weight cij (in-
put, output or hidden layer weights) is updated according
the the calculated partial derivatives proportional to some
learning rate α,

cij ← cij − α
∂L
∂cij

. (5)

From observation, the hidden layer of an RNN functions
identically to a dynamical network. We aim to investigate if
the BPTT approach can be adapted to regress the weights of
a dynamical network given a set of input node states.

INITIALISATION

BACKPROPAGATION

RETRAINING

CONVERGENCE

DECOUPLING

Fig. 3. Overview of the steps in the proposed backpropagation regres-
sion method. Components being trained (red) in each step. Regressed
components are given with solid lines.

3 METHODS

This paper proposes a novel method of simultaneously in-
ferring the local dynamics f and connectivity structure C of
a dynamical network with a known coupling function g by
only observing node states. The proposed method consists
of three main stages, namely initialisation, backpropagation
and decoupling. A flowchart outlining this process is pro-
vided (see Figure 3).

3.1 Backpropagation Regression Algorithm

Initialisation

The initialisation stage consists of constructing a local model
f̂ that approximates the true local dynamics f . Due to
the complex interplay between the local f and coupling g
dynamics, getting an accurate coupling-free estimation of f
directly from node signals is not possible.

The estimated local model f̂ is defined as a map from
state space x(t) to vector field ẋ(t). The time-series is
numerically differentiated in order to retrieve ẋ(t),

ẋ(t) ≈ x(t+ δt)− x(t)

δt
. (6)

However, Equation 6 is only valid for a single isolated
node and does not account for coupling effects with neigh-
bouring nodes. For this stage of the method, we assume
that the magnitude of coupling effects from g is relatively
small compared to local dynamics f . By small, we mean that
the ‘attractor’ of each node’s time-series is not too distorted
from the true attractor of the non-coupled case. This is
because coupling with other neighbours in the dynamical
network may cause spurious intersections of trajectories.
This allows a mean field approach to be taken when con-
structing an approximate local model f̂ . Here, we calculate
an estimate ˆ̇x(t) of the true vector field at each point in
state space as an average over its K nearest neighbours (see
Figure 4),

ˆ̇x(t) =
1

K

K∑
i=1

x(i)(t+ δt)− x(i)(t)

δt
, (7)
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Fig. 4. Mean field approach where effective vector field (blue) at a point
in phase space is taken as the average of K nearest neighbours’ vector
field influenced with neighbouring node interactions.

where ẋ(i)(t) corresponds to the velocity of the ith closest
neighbour. The identification of neighbours are done with
respect to the Euclidean distance with all points in the
time-series (i.e at all times t) being considered potential
candidates of nearest neighbours.

The estimated local dynamics f̂ is defined as a mapping
f̂ : x(t) → ˆ̇x(t). A feedforward network with 2 hidden
layers was used to learn the mapping due to its simplicity
and ease of implementation. Each hidden layer is composed
of 128 neurons with a sigmoid activation function. The
estimated local dynamics f̂ calculated from the mean field
approach acts as an initial proxy for the true local dynamics,
which will then be further refined to remove coupling effects
on the vector field during the decoupling and retraining
stage of the algorithm. In addition to the local dynamics f̂ ,
values for the estimated coupling adjacency matrix Ĉ must
also be initialised. However, there is no restriction on what
values of Ĉ may be taken.

Backpropagation

The main aim of the backpropagation stage is to provide
an improved estimate for the coupling adjacency matrix Ĉ .
Similar to the BPTT algorithm, a forward pass consisting of
freerun predictions is first calculated using the estimated
f̂ and Ĉ with randomly selected initial values from the
observed time-series in order to properly sample across the
whole attractor,

ˆ̇xi(t) = f̂(xi(t)) +
∑
i ̸=j

ĉi,jg(x̂i(t), x̂j(t)), (8a)

x̂i(t+ δt) = F̂ (x̂i(t)) (8b)

= x̂i(t) + δt ˆ̇xi(t). (8c)

For simplicity, we assume coupling only in the first compo-
nent of each time-series.

Freerun predictions for all nodes x̂i(t) are calculated
by recursively evaluating Equations 8a and 8b. The loss in
freerun predictions due to errors in the local model f̂ and
network weights Ĉ can be calculated using some metric.
Here, n is the length of the freerun prediction, N is the
number of nodes in the dynamical network. This loss at each
node, Ei, is the squared L2 error across the total freerun
trajectory {x̂i(t0), ..., x̂i(tn)},

L =

t=tn∑
t=t0

N∑
i=1

Ei(t) =

t=tn∑
t=t0

N∑
i=1

∥x̂i(t)− xi(t)∥2. (9)

Fig. 5. Schematic of the two node modified backpropagation algorithm
for calculating weight gradients. Forward pass (blue and black), and
backpropagation (red).

For regressing network weights, the loss gradient with
respect to Ĉ must be calculated and used to update the
estimate of Ĉ ,

dL
dĈ

=

t=tn∑
t=t0

N∑
i=1

∂Ei(t)

∂Ĉ
=

t=tn∑
t=t0

N∑
i=1

∑
d

2(x̂
(d)
i (t)− x

(d)
i (t))

∂x̂
(d)
i (t)

∂Ĉ
,

(10)
where x

(d)
i (t) is the dth component of the predicted state of

node i at time t.
This requires the estimation of partial derivatives with

respect to the coupling weights cij . The recursive expres-
sions for these derivatives are given in the Appendix. To
provide more stability in the regression, the gradient for
each step of backpropagation is averaged over the multiple
randomly chosen initial inputs x(t0). An overview of the
modified backpropagation algorithm is given in Figure 5
with a more detailed illustration given in the Appendix.

Decoupling and Retraining
The use of a mean field approximation to construct an initial
local model f̂ results in significant errors in the estimation
of the vector field for the coupled dimensions. These errors
limit the ability for the algorithm to estimate the true cou-
pling weights as accurate regressions assume that f = f̂ .
By using estimated coupling values Ĉ to partially decouple
calculated values of the vector field, the output space of
f̂ changes to better reflect the true local dynamics f (i.e.
without coupling effects). To adapt to this change, the model
must be retrained on data of the new partially decoupled
output space. The process of decoupling the vector field and
truncating coupling interaction effects allows for gradual
correction of the errors introduced from the mean field
approximation of the vector field.

After attaining an improved estimate of the weighted
adjacency matrix Ĉ , the calculated coupling weights can be
used to partially decouple the observed node time-series
according to Equation 11.

ˆ̇x(tn) ≈
xi(tn+1)− xi(tn)− δt

∑
i̸=j ĉijg(xi(tn),xj(tn))

δt
,

(11)
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for all selected nodes i. The new calculated value of the
vector field ˆ̇x can then be used to improve the previously
constructed local dynamics model. The final decoupling
step is alternated with the backpropagation step to grad-
ually improve both the local model and estimate weighted
adjacency matrix Ĉij . A much lower model learning rate
η′ < η must be used to ensure that the structure of the
initial model is preserved. Using a small learning rate also
has the added benefit of providing additional stability to
the algorithm as it minimises drastic changes in the loss
landscape that can affect convergence.

3.2 Performance Assessment

Several measures need to be introduced to assess perfor-
mance for the proposed backpropagation method. Because
the backpropagation method aims to infer two separated
components: the static network connectivity C and the local
node dynamics f , the measures should assess the quality of
each inference separately, as well as their performance in the
combined network model.

The error in the inferred network connectivity Ĉ can be
measured using the norm of the weight error matrix ϵC :

ϵC =
∥Ĉ − C∥2

∥C∥2
, (12)

and is normalised by the true weight values C .
The quality of the inferred local dynamics can be mea-

sured by the prediction horizon and mutual information.
Prediction horizon assesses the accuracy of predictions
given by the combined model inclusive of local dynamics
and coupling weights. The prediction horizon for node i
was defined as the time tp,i where prediction errors exceed
a set threshold ϵ. The overall prediction horizon tp for the
entire dynamical network is taken as the average prediction
horizon across all nodes i,

tp = ⟨tp,i | ∥x̂i(tp,i)− xi(tp,i)∥ < ϵ⟩Ni=1. (13)

Prediction horizon is simple to calculate and provides an
intuitive measurement of performance if the intended appli-
cation is for exact future prediction. However, it is defined
with respect to a hard limit ϵ and does not distinguish
between more gradual prediction failures such as slow
changes in phase, which may be temporary or permanent.

Mutual information I(X,Y ) is a nonlinear measure of
the correlation between two random variables X and Y . In
simple terms, describes the amount of information that is
shared between any two random variables X and Y . Low
mutual information implies independence between X and
Y . Mutual information is usually calculated as a function of
marginal and joint probabilities,

I(X,Y ) =

∫
X

∫
Y
p(X,Y )(x, y) ln

(
p(X,Y )(x, y)

pX(x)pY (y)

)
dydx.

(14)
The quality of a model can be accessed by comparing the
mutual information between the true states of a trajectory
x(t), and those predicted by the model x̂(t) at each point in
time t. Hence, we can define the average mutual information

I(τ) with respect to some chosen freerun prediction length
τ ,

I(τ) =
1

τ

τ∑
t=1

p(x(t), x̂(t)) ln

(
p(x(t), x̂(t))

p(x(t))p(x̂(t))

)
, (15)

where p(x(t)), p(x̂(t)) and p(x(t), x̂(t)) are the joint and
marginal probabilities of observing (or predicting for the
case of x̂) a given state at time t. For each value of τ in I(τ),
the distributions of p(x(t)), p(x̂(t)) and p(x(t), x̂(t)) are cal-
culated empirically using histograms based on observations
of x(t) and x̂(t) for t ∈ [1, τ ]. For chaotic systems, I(τ) of an
imperfect model will be a decreasing function. The contour
of I(τ) tracks the collapse of the local model’s prediction
performance for increasing prediction lengths τ .

The performance of a trained local model f̂ can be as-
sessed by using it to produce freerun predictions of separate
system with only a single node (i.e. no external interactions).
A score S related to the mutual information between the
trajectories from the real local model x(t) and trained local
model x̂(t)) can be calculated using the cumulative area
under the average mutual information curve,

S =

∫ τmax

1

I(τ)dτ, (16)

The score S can also be interpreted as a measure of the
prediction performance of the model for a prediction length
of τ steps where larger values of S indicate more persistent
mutual information and a better predictive local model.
Because the score S is calculated as a sum across τ , it is
able account for the limitations in prediction horizon and
better describe how well the dynamics of the local model
reflects the real system.

The mutual information based score S is only calculated
with respect to only one component of the predicted time-
series (i.e. x component). This is sufficient for the sys-
tems analysed as all components of the time-series (x, y, z)
feedback to each other. Hence, collapse in the prediction
performance of one component will quickly result in poor
predictions in all other components. Additionally, I(τ) for
each component cannot be summed together as it assumes
that all components evolve independently.

To assess the mutual information of the combined model
of both regressed weights and trained local model, S is
calculated as the sum of the scores across all nodes. Whilst
nodes are not independent, the sparsity of network connec-
tions mean that collapse in the prediction performance of
one node does necessarily propagate quickly to all other
nodes in the network.

4 RESULTS

Three tests were done to assess the performance of the
proposed adapted backpropagation regression algorithm.
These were the cases of the small 16 node network, large
64 node network, and networks with non-positive asym-
metric coupling weights. All tests were conducted on ran-
dom networks with each edge existing with probability
p = log(N)/N to minimise the likelihood of disjoint net-
works. Edges are bidirectional in all networks except the
asymmetric network case. Values for the node coupling
strengths were normally distributed (µ, σ) = (0.15, 0.02).
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The mean coupling strength µ is assumed to be non-zero to
ensure that regressed values clearly distinguish between the
absence and presence of edges.

Input data of 25000 steps with an additional 2000 steps
washout were generated with time step dt = 0.02 using
the standard RK4 algorithm. Washout steps were discarded
exclude any transient dynamics. An initial learning rate of
η = 0.001 was used for training the feedforward model
during initialisation. A lower learning rate of η′ = 0.0002
was used for all subsequent retraining iterations with each
training period consisting of 30 epochs. A preset number
of 40 or 80 refit iterations were chosen before ending
regression. However, we note that it may be possible to
implement a stopping criterion based on plateauing of either
the prediction errors or regressed weight matrix Ĉ .

Performance measures (S, tp) for each model were eval-
uated over 8 randomly chosen initial conditions. To assess
the performance of regressed models, each performance
measure was compared against a control case where the
entire network structure and local model is fully known
but initial conditions are perturbed by ξ ∼ N(0, 0.0052)
where ξ is in scaled units. This method was chosen over
the calculation of dynamical invariants such as Lyapunov
exponents due to its ease of computation, especially in high
dimensional systems such as dynamical networks. Due the
chaotic nature of the system’s oscillators, small deviations
in initial conditions will grow exponentially. Deviations the
initial conditions that are sufficiently small are able to track
nearby trajectories for some period of time before diverging.
Therefore, scores that match those of the control case imply
that the regressed models are able to perform almost as well
as the case where the system dynamics are fully known, but
contaminated with noise in its initial conditions.

4.1 Positive Symmetric Networks

The fully observable case assumes that all node time-series
are accessible for regression. Gradient losses L are calcu-
lated at each backpropagation step and used to regress
the network adjacency matrix Ĉ . The regression algorithm
was run for a total of 40 refit iterations each consisting
of 300 backpropagation steps followed by decoupling and
retraining of the model. A total of 8 randomly generated 16
node networks were tested. For each network, the quality
of the regressed weights and local model was assessed
by running freerun predictions with 8 randomly generated
initial conditions.

The backpropagation method was able to accurately
regress the weights of both the Lorenz (Figure 6) and Chua
(Figure 8) dynamical networks. The average normalised
error in the regressed weights for these systems at the end
of 30 iterations was 9% and 7% for the Lorenz and Chua
networks respectively. The constructed trained local model
for both systems also showed a large improvement in S with
71% increase for Lorenz and a 38% increase for Chua when
compared to the initial local model based purely on the
mean field approach (i.e. Iteration 0). The mutual informa-
tion of the combined local model and coupling structure in-
creased by 65% and 59% for the Lorenz and Chua networks
respectively. The prediction horizons for both systems were
found to increase with each additional iteration. Both Chua
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Fig. 6. Regression results for the Lorenz 16 node system normally
distributed coupling weights (µ, σ2) = (0.15, 0.02) and connection prob-
ability p over 40 iterations. First two data points correspond to the values
attained during initialisation. Coloured bands contain the 95%, 90%,
75% and 50% quantiles across 64 different combinations of dynamical
network and random initial conditions. The result from the noise control
case is in red.
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Fig. 7. Regression of Lorenz 16 node network weights (top) at different
number of iterations compared to the error in the weights (bottom). True
weights (right) are given for comparison showing good agreement with
the regressed results. Array entries coloured based on value of weights
and error.

and Lorenz networks were found to perform as well or
better than the control case where ξ = 0.005.

4.2 Large 64-node Network

A single larger system of 64 random coupled Lorenz os-
cillators was used to test the scalability of the system. The
algorithm was run for 80 iterations to account for slightly
slower convergence. Performance metrics identical to the
regular 16 node case was used with the network tested
against 16 different initial conditions (see Figures 10 and
11).

We find that the backpropagation method was also able
to accurately regress the desired weights of the the coupled
system with a final normalised weight error of 9%. The mu-
tual information of the local model and combined network
system was also found to increase by 51% and 81% by the
end of the iterations respectively.
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Fig. 8. Regression results for the Chua 16 node system operating in
the single scroll regime. Coupling weights are normally distributed with
(µ, σ2) = (0.15, 0.02) and connection probability p over 40 iterations.
First two data points correspond to the values attained during initialisa-
tion. Coloured bands contain the 95%, 90%, 75% and 50% quantiles
across 64 different combinations of dynamical network and random
initial conditions. The result from the noise control case is in red.
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Fig. 9. Regression of Chua 16 node network weights (top) at different
number of iterations compared to the error in the weights (bottom). True
weights (right) are given for comparison showing good agreement with
the regressed results. Array entries coloured based on value of weights
and error.

4.3 Negative Asymmetric Coupling

Many dynamical systems assume the case of positive cou-
pling resulting in the attraction of nearby trajectories. In
addition to this common case, we consider dynamical sys-
tems with both negative and positive coupling where re-
pulsive behaviour between nodes is possible. Additionally,
we also consider the effects where the adjacency matrix is
not symmetrical. To do this, a 16 node adjacency matrix
was generated with each non diagonal entry being non-zero
with a probability p = log(N)/N and is not guaranteed to
be symmetric. However, each node has a 0.25 probability of
being changed to a negative value. The time-series was then
generated similarly to the original test case with the Lorenz
equations (see Figures 12 and 13).

The backpropagation method was found to also work
equally well in regressing cases with negative weights and
asymmetric coupling. The results for the network prediction
horizon, log weight errors and mutual information mea-
sures show a similar trend to their symmetric, positively
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Fig. 10. Regression results for the larger Lorenz 64 node system nor-
mally distributed coupling weights (µ, σ2) = (0.15, 0.02) and connection
probability p over 80 iterations. First two data points correspond to the
values attained during initialisation. Coloured bands contain the 95%,
90%, 75% and 50% quantiles across 8 random initial conditions. The
result from the noise control case is in red.
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Fig. 11. Regression of Lorenz 64 node network weights (top) at different
number of iterations compared to the error in the weights (bottom). True
weights (right) are given for comparison showing good agreement with
the regressed results. Array entries coloured based on value of weights
and error.

weighted counterparts with a final normalised weight error
of 5%, and an 58% relative increase in mutual information
for the constructed local model. The mutual information of
the combined network was found to increase by 75% when
compared to the first iteration.

4.4 Noise Effects
In order to test the robustness of the method, the back-
propagation approach was applied to time-series from a
16 node Lorenz dynamical network with additive Gaussian
noise to simulate measurement noise. The Gaussian noise
term ϵξ(t) ∼ N(0, ξ) was added after normalising the data
to zero mean and unit standard deviation. Because back-
propagation regression requires the evaluation of numerical
derivatives, the noisy input data was first smoothed using
spline regression [49], [50] with a regularisation parameter
λ = 10. The usage of cubic splines also has the advantage
or producing relatively smooth derivatives.

The noise magnitude was varied with ξ ∈ [0, 0.1] with
the maximum ξ value corresponding to a signal-noise ratio
(SNR) of 20dB. Backpropagation regression was run for 40
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Fig. 12. Regression results for the Lorenz 16 node system normally
distributed coupling weights (µ, σ2) = (0.15, 0.02) and connection prob-
ability p over 40 iterations. Weights are asymmetric and changed to its
negative value with probability of 0.25. First two data points correspond
to the values attained during initialisation. Coloured bands contain the
95%, 90%, 75% and 50% quantiles across 64 different combinations
of dynamical network and random initial conditions. The result from the
noise control case is in red.

3 6 9 12 15

3

6

9

12

15

Re
gr

es
se

d

Iteration 1

3 6 9 12 15

3

6

9

12

15

Iteration 2

3 6 9 12 15

3

6

9

12

15

Iteration 10

3 6 9 12 15

3

6

9

12

15

Iteration 20

3 6 9 12 15

3

6

9

12

15

Iteration 40

3 6 9 12 15

3

6

9

12

15

W
ei

gh
t E

rro
r

3 6 9 12 15

3

6

9

12

15

3 6 9 12 15

3

6

9

12

15

3 6 9 12 15

3

6

9

12

15

3 6 9 12 15

3

6

9

12

15

3 6 9 12 15

3

6

9

12

15

Real Weights

0.2

0.1

0.0

0.1

0.2

Fig. 13. Regression of Lorenz 16 node network with negative and
positive weights (top) at different number of iterations compared to
the error in the weights (bottom). True weights (right) are given for
comparison showing good agreement with the regressed results. Array
entries coloured based on value of weights and error.

iterations in line with those for the noiseless Lorenz and
Chua 16 node systems. Each configuration was repeated for
8 randomly chosen network and initial conditions.

The effect of noise hampers performance and results in
the addition of spurious incorrect weights during regression
(see Figure 14). To address this, a threshold value of 0.04 is
selected to filter the weights following regression. Regressed
weights that do not exceed this value are set to 0. The
threshold value is visually selected from the histogram dis-
tribution of weights. As the network weights are normally
distributed with non-zero mean, cij ∼ N(0.15, 0.02), true
weights will tend to have regressed value much greater
than zero. In contrast, noise effects will yield to low valued
spurious weights. This results in a bimodal distribution of
weights. Hence, the threshold value can be selected as a
value that distinguishes between the two modes.

The performance of the regression algorithm weights
was found to be relatively robust against noise. For low

noise levels ξ ≤ 0.04, the effects of noise appear follow a
linear relationship (see Figure 14). The increase in weight
errors ϵC slow for higher levels of noise. In the latter case,
the weight filtration was found to be very effective in re-
moving spurious edge weights allowing a further decrease
in weight errors. However, we found that higher values of
noise with ξ ≥ 0.15 resulted in instability of the regression
algorithm and divergence in the weight errors.

The effect of noise was found to significantly affect the
quality of the local dynamics models (see Figure 15). For
small noise levels ξ ≤ 0.01, the approximations f̂ of the
local dynamics was relatively stable. However, there was
a large difference in prediction performance between the
noiseless and noisy case. Noise effects are more detrimental
for ξ > 0.01 where the long run predictions of the resulting
models no longer conform to the attractor of the original
Lorenz system. In several instances, it was found that the
models slowly drifted and converged to a fixed point. For
ξ ≥ 0.07, the observational noise results in a local model
that is worse than the initial mean field estimate.

The poor learning of the local model can be attributed
to the combined effects of noise changing the temporal
structure of the time-series and the relatively low sampling
rates of the time-series. An integration step of dt = 0.02
corresponds to approximately 35 points per oscillation. Each
oscillation consists of a short transient extrema. Additive
noise result in over or underestimation of these peaks, which
can have a detrimental effect on calculated vector field.
The noise tests were repeated at a lower integration step
of dt = 0.002, which was smoothed and downsampled to
dt = 0.02. This configuration allowed a better treatment of
the additive noise and yielded more robust results.

We find that the performance of this method under noise
is comparable to other methods used to analysed dynamical
networks. For local dynamics, the attractor of the regressed
local model dynamics began to collapse at ξ = 0.05 corre-
sponding to an SNR of 26dB. This is comparable to the test
results conducted by [11] where the methods SINDy, ARNI
and Gao’s method exhibit large decreases in performance at
approximately 55dB, 40dB and 25dB respectively.

5 METHOD LIMITATIONS

There are several data and system requirements needed for
the application of the backpropagation regression algorithm.
Firstly, the backpropagation regression method requires
networks that are not fully synchronised. This is because
differences in the trajectories of coupled nodes are used to
decouple observed node signals to infer links. Networks
operating in the fully synchronised regime will have fully
coincident trajectories and cannot be used to infer weights.

Secondly, reliance of a mean field approximation during
the initialisation stage assumes that node trajectories do not
deviate too much from the attractor of the local dynamics
of the uncoupled single node case. Small deviations will
inevitably occur, and is accounted for during the decoupling
and retraining stage of each iteration. However, deviations
that are too large may cause convergence problems.

Thirdly, there must be sufficient full node state observa-
tions with trajectories that fully explore the state space for
the regression to converge and produce a good local model.
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known with perturbed initial conditions.

The method was found to be convergent with time-series
lengths as low as 5000 time steps with dt = 0.02, excluding
an initial washout period of 2000 time steps to account for
dynamical transients.

6 COMPUTATION TIME AND SCALABILITY

The backpropagation regression algorithm inherits simi-
lar computational difficulties as the BPTT algorithm. The
most expensive operation is the calculation of error gra-
dients in each regression step, which has a complexity
of approximately O(tinN4). The original BPTT algorithm
allows a speedup of gradient calculations by predefining
expressions for the derivatives of the activation function.
In contrast, the backpropagation regression algorithm for
dynamical networks is defined with respect to an arbitrary
local model as the activation function, which may not have
a closed form and derivatives must be calculated using
finite differences. We note that if a feedforward neural

network is used as the local model with well-defined ac-
tivation functions in each layer, the calculation of partial
derivatives with respect to each input may be sped up
significantly. However, this has not been implemented in
the current algorithm. There are also additional potential
gains in computation speed that can be achieved via par-
allelisation of some parts of the algorithm. A copy of the
algorithm is available at: https://github.com/eugenetkj98/
BackpropagationRegressionPublic

Computation benchmarks were done on system with
a pair of 20 Core Intel Xeon Gold 6242R 3.1 GHz CPUs
with hyperthreading enabled and 512 GB RAM. Neural net-
work computation was completed with an NVIDIA Quadro
RTX6000 GPU. Code was written in Julia 1.7.3 and the
machine learning package, Flux. The 16 node dynamical
networks with 10 step free run prediction for regression and
40 refit iterations required a total of 20 minutes to complete.
The 64 node dynamical network with the same regression
settings required a total of 42 hours to complete.

7 CONCLUSION

Dynamical networks are an interesting and useful frame-
work to analyse complex systems with multiple interacting
components. However, application of this framework is
usually difficult due to lack of information pertaining to
features such as the connectivity structure and local dynam-
ics. Therefore, there is a need for a method to extract these
features purely from observed node states.

In this paper, we propose an adapted backpropagation
method for inferring the local model and connectivity struc-
ture of dynamical networks purely from node time-series.
The result is an estimate of the inferred network structure
and a local dynamics model that is disentangled from the
coupling interactions. This method draws inspiration from
the backpropagation through time (BPTT) algorithm com-
monly used to train RNNs and adapts it for the purpose
of regressing couplings weights in a dynamical network.
Regressed values for the network coupling are then used to
decouple the observed node time-series and improve the
construction of the local model without coupling effects.
The two steps of backpropagation weight regression and
decoupling alternate until sufficient convergence is achieved
yielding a final local model and regressed coupling weights.

The method was tested on dynamical networks of nodes
of identical chaotic oscillators with successful results. Two
types of chaotic oscillators, Lorenz and single-scrolled Chua,
were tested. The backpropagation regression method was
able to accurately identify the coupling weights down to a
margin of 7%. The regressed models were also compared
to a control case where the true local model is known,
but whose initial states are perturbed by a small error. It
was found that the trained local model was comparable
to the control case. Combined, the regressed weights and
constructed local model were able to achieve respectable
freerun prediction horizons for the 16 node dynamical net-
work compared to a control case. Due to the chaotic nature
of the network dynamics, long-term predictions are typi-
cally unfeasible. However, the ability to forecast accurate
short-term predictions can be useful for inferring potential
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cascading failures or imminent undesirable behaviour. This
may be used to inform preemptive intervention measures.

Despite its poor scalability, the method was also able to
accurately reconstruct the local model and coupling weights
of a larger 64 node network with similar results to the
smaller 16 node counterparts. Additional testing was also
done on dynamical networks with negative and asymmetric
coupling with similar performance.

The robustness of the method was also tested against
noise and network heterogeneity (see Appendix). The algo-
rithm was found to be convergent for small to moderate
amounts of observational noise. However, larger noise lev-
els resulted in poor local models and potential instability. In
contrast, network heterogeneity did not significantly affect
the performance of the backpropagation algorithm.

We acknowledge that the method proposed in this paper
is a proof of concept that, whilst functional, has multiple
areas of further research and potential refinement. Firstly,
there remains further work on the refinement of the speed
and complexity of the algorithm to be more scalable. Sec-
ondly, there remains a need for further testing the on the
effect of hyperparameters and initialisation on algorithm
performance. Thirdly, it would be beneficial to investigate
the performance of this method on different dynamical
network structures. There also remains the possibility of
investigating how other machine learning methods used in
recurrent neural networks may be applied to the backprop-
agation regression algorithm.
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