
1

HCB: Enabling Compact Block in Ethereum
Network with Secondary Pool and Transaction

Prediction
Chonghe Zhao,Taotao Wang, Member, IEEE, Shengli Zhang, Senior Member, IEEE, Soung Chang Liew, Fellow,

IEEE

Abstract—Compact block, which replaces transactions in the
block with their hashes, is an effective means to speed up
block propagation in the Bitcoin network. The compact block
mechanism in Bitcoin counts on the fact that many nodes may
already have the transactions (or most of the transactions) in the
block, therefore sending the complete block containing the full
transactions is unnecessary. This fact, however, does not hold
in the Ethereum network. Adopting compact block directly in
Ethereum may degrade the block propagation speed significantly
because the probability of a node not having a transaction in
the sending block is relatively high in Ethereum and requesting
the missing transactions after receiving the compact block takes
much additional time. To investigate the factors that prevent
compact block in Ethereum, we set up probe nodes to collect
data from Ethereum MainNet and performed data analysis. Our
analysis results indicate that the missing transactions could be
attributed to factors such as small transaction pools, network
latency, and miners’ selfish behaviors. Moreover, simply enlarging
the transaction pool and using the prediction algorithm proposed
for Bitcoin to predict the missing transactions and prefetch
them do not work for Ethereum. This paper proposes hybrid-
compact block (HCB), an efficient compact block propagation
scheme for Ethereum and other similar blockchains. First, we
develop a Secondary Pool to store the low-fee transactions, which
are removed from the primary transaction pool, to conserve
storage space. As simple auxiliary storage, the Secondary Pool
does not affect the normal block processing of the primary
pool in Ethereum. Second, we design a machine learning-based
transaction prediction module to precisely predict the missing
transactions caused by network latency and selfish behaviors.
We implemented our HCB scheme and other compact-block-like
schemes (as benchmarks) and deployed a number of worldwide
nodes over the Ethereum MainNet to experimentally investigate
them. Experimental results show that HCB performs best among
the existing compact-block-like schemes and can reduce propa-
gation time by more than half with respect to the current block
propagation scheme in Ethereum.

Index Terms—Ethereum, Block Propagation, Compact Block,
Transaction Pool, Naı̈ve Bayes Classifiers
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ETHEREUM, regarded as the architype of Blockchain
2.0, introduced Ethereum Virtual Machine (EVM) and

smart contract to fulfill various Turing-complete computing
tasks in a decentralized manner [1]. Taking a step beyond
Bitcoin, which only implements a distributed ledger to record
transactions [2], Ethereum can support various distributed
applications (DAPPs) in the domains of Metaverse [3], De-
centralized Finance (DeFi) [4], and Non-fungible Token (NFT)
[5]. Ethereum is becoming the most popular blockchain system
with around 10,000 active nodes and a cryptocurrency market
capitalization approaching that of Bitcoin.

With more and more DAPPs deployed on Ethereum, the
low number of transactions per second (TPS) Ethereum can
process is becoming a significant performance bottleneck.
According to [6], the current TPS of Ethereum is 15, and
around 200,000 pending transactions are usually piled up in
the network.

Quite a number of works tried to improve the TPS perfor-
mance of public blockchains (i.e., Bitcoin-like and Ethereum-
like blockchain) from the perspectives of consensus, sharding,
and networking [7]. The aim of this work is to improve the
TPS of Ethereum-like public blockchains from the networking
perspective. A straightforward but naı̈ve way to scale TPS
is to embed more transactions into each block. However, a
block of large size is encumbered with large block propagation
time and increased fork rate [8]. Compact block, which
compresses the block size by obviating the need to propagate
the transactions already in the receiving node’s transaction
pool (Tx-Pool), is an effective way to increase the number
of transactions encapsulated into each block. In a compact
block, the transactions in the full block are replaced with
their hashes, which the receiving node uses to identify the
transactions from within its local transaction pool [9]. Some
transactions may be missing in the local Tx-Pool, in which
case extra communication rounds are needed for the receiving
node to obtain the missing transactions. Since the block size
of Bitcoin is large (up to 1MB), compact block has been
widely studied and adopted [10]–[13]. Graphene [10] uses
a Bloom Filter [14] and Invertible Bloom Lookup Tables
(TBLT) [15] to compress blocks further and to quickly detect
missing transactions. XThin [11] and XThinner [12] combine
Bloom Filter and shorter transaction hash to decrease missing
transactions and compress block. Txilm [13] optimizes the size
of the transaction hash by evaluating the probability of hash
collisions and introduces a “salt” in the hash computation to
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protect against potential attacks.
Compact block potentially could improve the TPS of

Ethereum. There are two main differences between the
Ethereum and Bitcoin blockchain regarding the block propa-
gation process in the networking layer. First, Ethereum adopts
a hybrid block-hash propagation protocol that simultaneously
forwards the full blocks and block hashes over the network.
The sending node forwards the full block to a random subset
of its neighbor nodes and the block hash to its other neighbor
[16]. Seldom does a receiving node that receives the block
hash already has all the transactions in the block unless it has
already received the full block from another sending node.
Thus, nodes mostly obtain new blocks through the reception of
full blocks. This means that full-block broadcasting dominates
the block propagation in Ethereum, the same as in Bitcoin
prior to the introduction of compact block. Second, the block
size of Ethereum is smaller than that of Bitcoin. With the
growth of Ethereum gas limit, its block size is increasing,
and most blocks in Ethereum are larger than 20KB, as shown
in [6]. As demonstrated in [17], [18], the block propagation
time increases quickly when the block size exceeds 20KB.
Moreover, our work in [19] also shows that a small-sized
“bodyless block” can improve block propagation speed by up
to 4 times in Ethereum.

Designing an efficient and compatible compact block
scheme for Ethereum is challenging due to some unique
mechanisms of Ethereum. According to [19] and [20], the
matched-block probability is around 0.85 in Bitcoin, but only
around 0.12 in Ethereum. In other words, for Ethereum, about
88% of the compact blocks contain missing transactions at a
receiving node, and the need for extra rounds of communica-
tion to obtain the missing transaction reduces the efficiency
of compact block significantly. Improving the matched-block
probability is paramount to the effectiveness of compact block
in Ethereum. Predicting missing transactions and including
the predicted missing transactions into the compact block is a
good way to improve matched-block probability. Works [21],
[22] investigate the transaction prediction problem for Bitcoin,
and work [9] applies transaction prediction to the compact
block scheme in Bitcoin. In [9], when forwarding a compact
block, the sending node first predicts that the receiving nodes
are likely not to have some of the transactions conveyed
by this compact block, the sending node then piggybacks
these missing transactions with the compact blocks and sends
them together with the compact block to the receiving nodes.
Meanwhile, [21] uses a Random Forest Classifier [23] to
decide which transactions in the Mempool (transaction pool in
Ethereum) to pack into the next block; [22] compares multiple
classifiers to predict the confirmation time of the transactions
in the Bitcoin network. Compared with Bitcoin, the transaction
pool and block interval in Ethereum are much smaller, and a
new compact block scheme must be compatible with these
system setups (simply changing the system parameters may
induce other issues that are not compatible with the whole
system). Furthermore, new DAPPs bring new behaviors to
Ethereum when propagating transactions, which also need to
be taken into account. For example, some transactions related
to DeFi smart contracts might be withheld within a few nodes

for privacy reason or for higher profit [24] (i.e., preferences
are given to other transactions with higher fees).

In this paper, we propose a hybrid-compact block (HCB)
protocol to speed up block propagation in Ethereum. Unlike
the entirely new compact block scheme in [19] that is hard to
work in the current Ethereum without modifying the functional
components of block validation and assembly, HCB is fully
compatible with the current Ethereum. In HCB, we introduce a
Secondary Pool module and a Missing Transactions Prediction
module to increase the matched-block probability of compact
blocks in Ethereum.

Our main contributions are summarized as follows:

• Identifying the causing factors of the subpar matched-
block probability in Ethereum: We set up probe nodes to
collect data from Ethereum MainNet. Our investigation
on the collected data shows that the poor matched-block
probability in Ethereum is caused by small transaction
pools, network latency, and nodes’ selfish behaviors. We
quantify the relative contributions of the three factors to
the poor matched-block probability. We prove that with
the current Ethereum architecture, merely enlarging the
transaction pool would result in a larger empty block rate,
reducing the TPS performance.

• Proposing a secondary transaction pool (Secondary Pool):
Instead of simply enlarging the transaction pool, we
propose a Secondary Pool module to store transactions
removed from the original small transaction pool because
of their relatively low fees. The transactions in the Sec-
ondary Pool can also contribute to the reconstruction of
the full block when an HCB block is received. We design
a transaction restore algorithm that returns selected trans-
actions in the Secondary Pool to the original transaction
pool after each block.

• Predicting the missing transactions: We apply machine-
learning model of Naı̈ve Bayes Classifier to build a
Missing Transactions Prediction model and train the
model by collecting data from Ethereum MainNet. To
decrease the retransmission probability, HCB piggybacks
the missing transactions predicted by the model and other
transaction hashes into the compact block for forwarding.
The precision of our prediction model can reach 0.951.

• Implementing HCB and Testing over the Ethereum Main-
net: We implement an HCB prototype and conduct ex-
periments over the Ethereum MainNet with a set of
nodes located worldwide to evaluate the performance
of our HCB prototype. We compare the experimental
performance of HCB with the current Ethereum’s block
propagation protocol and three other compact block-like
propagation protocols. The experimental results show that
the matched-block probability of HCB in Ethereum is
around 0.90, which is even better than that of compact
block in Bitcoin. Notably, the block propagation time of
HCB is only about half that of the current Ethereum.

The rest of this paper is organized as follows. Section
II measures and presents the performance of basic compact
blocks in Ethereum. An overview of our hybrid-compact block
protocol is given in Section III. Section IV elaborates on the
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specific design of our hybrid-compact block protocol. Section
V designs the experiments and discusses the experimental
results. Section VI concludes this work.

II. BASIC COMPACT BLOCK PROTOCOL IN ETHEREUM

We set up an experiment to test the basic compact block
protocol in Ethereum. We found that applying the basic
compact block protocol in Ethereum leads to even worse
performance than the current full block protocol due to the
high retransmission rate induced by the low matched-block
probability. Identifying the causes and the remedy for the low
matched-block probability leads us to the design of our HCB
protocol.

A. Poor Performance of Basic Compact Block Protocol in
Ethereum

Although the basic compact block protocol can speed up
the block propagation in Bitcoin [25], it may not work well
in Ethereum. As shown in our experiment result in [19],
the matched-block probability in Ethereum is only around
0.12 compared with 0.85 in Bitcoin [20]. In other words,
if Ethereum simply incorporates the basic compact block
protocol into its block propagation process, the nodes would
often need extra rounds of communications to acquire the
missing transactions.

To gain insight into compact block propagation in Ethereum,
we set up an experiment in Ethereum MainNet. We compare
the transmission time of full blocks and that of compact blocks
plus the transmission times of missing transactions. As shown
in Fig. 1, we set up two standard full nodes (Standard Node
1 and Standard Node 2) that propagate full blocks like other
legal Ethereum nodes would do and two modified full nodes
(CB Node 1 and CB Node 2) that propagate compact blocks
instead of full blocks on two AliCloud servers1. Each server
contains one standard node and one CB node: one server
contains Standard Node 1 and CB Node 1, and the other
server contains Node 2 and CB Node 2. The two standard
full nodes run with the Ethereum Geth client [26], and the
two modified full nodes run with the modified Ethereum Geth
client that incorporates the basic compact block protocol. All
the four nodes were connected to Ethereum MainNet, and the
two standard nodes and the two CB nodes were connected
respectively, during the period of August 2, 2022 to August
6, 2022.

The specific experimental process is as follow: Standard
Node 1 and Standard Node 2 exchange the transactions and
full blocks with Ethereum MainNet. Standard Node 1 and
Standard Node 2 forward the full blocks to each other. That
is, the Standard Node that receives a full block would first
forward it to the other Standard Node directly. Similarly,
CB Node 1 and CB Node 2 also exchange the transactions
and blocks with Ethereum MainNet. To forward compact

1One of the AliCloud servers was located in California with an IP address
of 47.251.1.118, and another one was located in Mumbai with an IP address of
149.129.181.111. Both the AliCloud servers have the same typical hardware
configuration: CPU with 8 cores, RAM with 16GB, SSD with 1.5 TB, and
bandwidth with 8 Mbit/sec.

blocks, the CB Node that first receives a full block from
Ethereum MainNet would transform the received full block
to a compact block and then sends it to the other CB node.
The receiving CB Node would reconstruct the full block with
its local transactions. If the receiving CB Node cannot match
all CB transactions in its local transaction pool, it requests
transmissions of the missing transactions.

We analyze the data recorded in the log files of the four
nodes. We first measured the average transmission time of
the recorded 28987 full blocks transmitted between Standard
Node 1 and Standard Node 2. We then measured the average
transmission time of the corresponding recorded 28987 com-
pact blocks transmitted between CB Node 1 and CB Node
2. Among the 28987 compact blocks, 26279 compact blocks
contain some missing transactions at the receiving CB Nodes.
The matched-block probability in our experiment is 0.11, close
to the measured results in [19]. Fig. 2 plots the average block
transmission time of the two protocols for different full block
sizes. The blue bars are the average transmission time of
the full blocks, which increases linearly with the block size.
The average transmission time of compact blocks consists of
the initial compact block transmission time (red bars) and
the missing transactions transmission time (yellow bars). The
initial compact block transmission time nearly keep constant
for different full block sizes, since different full block sizes do
not change the corresponding compact block sizes much; the
missing transactions transmission time increase very slowly
with the block size due to the slow increase in the number
of missing transactions with the block size. When the block
size is smaller than 200Kbytes, the performance of the basic
compact block protocol is worse than the full block protocol.
When the block size is larger than 200Kbytes, even though
the CB nodes also need missing transactions to be transmitted
with high probability, the performance of the compact block
protocol is better than that of the full block protocol, whose
transmission time is dominated by the block size. Additionally,
according to [6] and our experiment, most of the blocks are
smaller than 200Kbytes in the current Ethereum MainNet,
and thus the basic compact block protocol does not work
well. To improve the performance of the basic compact block
protocol, we need to increase the matched-block probability
(hence reducing the retransmissions of missing transactions).

B. Factors Causing Low Matched-block Probability

To identify the causes of the low matched-block proba-
bility of the basic compact block protocol in Ethereum, we
analyze and classify the missing transactions observed in our
experiment. We recorded all the transactions in the received
compact blocks that were not at the receiving CB nodes.
Two sets S1 and S2 record the information about the missing
transactions at CB Node 1 and CB Node 2, respectively.
Each entry {hash, tr, tc} in Si corresponds to one missing
transaction in CB Node i, where hash is the hash of the missing
transaction, tr is the time of reception of the transaction from
the Ethereum MainNet (i.e., this transaction has been removed
from the node’s Tx-Pool due to some reason before the arrival
of the compact block that contains the hash of the transaction),
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Fig. 1. The experimental setup for investigating the performance of the basic
compact block protocol in Ethereum.
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Fig. 2. The measured average transmission time of full blocks (blue),
compact blocks (red), and the measured average retransmission time of
missing transactions (yellow) in our experiment.

and tc is the time of reception of the transaction hash in
the compact block. Notably, if the CB node never received
a missing transaction, tr is NULL. By analyzing the missing
transactions in S1 and S2, we identify three types of missing
transactions caused by different factors.

• Stale transactions caused by small transaction pools
(67.45%): A stale transaction is defined as a missing
transaction whose tr! = NULL&&tr < tc. In other
words, a stale transaction was once received and stored
in the node’s local transaction pool, but it had been
removed from the transaction pool before the compact
block arrived. The stale transactions were removed due
to the limited transaction pool size to make room for the
numerous transactions arriving later. According to [6],
there are around 200,000 pending transactions piled up
over Ethereum MainNet, and a CB node that runs with
the default transaction pool of the Geth client can only
store 6144 transactions in its transaction pool. Thus, CB
nodes remove old transactions to make room for the new
transactions according to the transaction pool evicting
algorithm in Ethereum [26]. The inclusion of a stale
transaction in a block occurs when an old transaction is
included in a compact block by the miner that operates

with an extended-size transaction pool. Our experiment
shows that the proportion of stale transactions among the
missing transactions at CB Node 1 and CB Node 2 are
66.7% and 68.2%, respectively.

• Selfish transactions caused by miners’ selfish be-
haviors (32.20%): A selfish transaction is defined as
a missing transaction whose tr == NULL, which
means that selfish transactions were never received by
the receiving nodes when the compact block arrived.
In the Ethereum MainNet, some full nodes deliberately
withhold some transactions without forwarding them to
other nodes and pack these transactions directly into their
mined blocks. For example, the users who participate
in the FlashBots Project only send their transactions
related to DeFi contracts to some specific miners without
broadcasting these transactions to the whole network of
miners [24]. Our experiment shows that the proportion of
selfish transactions among the missing transactions at CB
Node 1 and CB Node 2 is 32.9% and 31.5%, respectively.

• Later transactions caused by network latency
(0.35%): A later transaction is defined as a missing
transaction whose tr! = NULL&&tr > tc, which means
that a later transaction arrives at the receiving CB node
after the compact block that contains this transaction is
received by this receiving CB node. This later arrival
of transactions is caused by the network latency when
propagating transactions over Ethereum MainNet [16].
Typically, the receiving time of later transactions were
within 1 second after the corresponding compact blocks
were received (tr−tc < 1s), and on average were around
548ms in our experiment. The experiment result shows
that the later transactions are 0.4% and 0.3% of the total
missing transactions at the two CB nodes, respectively.

III. HCB OVERVIEW

As discussed in the last section, we must deal with the
three types of missing transactions to improve the matched-
block probability so that the compact block protocol can be
adopted in Ethereum. Intuitively, we can enlarge the size of
transaction pool to solve the problem of stale transactions,
and we can use transaction prediction and piggyback to solve
the problems of selfish and later transactions. However, these
intuitive ideas cannot be directly applied in Ethereum because
they may have the opposite effect of performance degradation,
as will be explained shortly. This section first discusses the
technical challenges for applying compact block protocol in
Ethereum and then gives the overview our HCB solutions.

A. Technical challenges

Challenge 1: Simply enlarging the size of transaction pool
increases the empty block rate, and thus decreases the TPS
performance in Ethereum.

In Ethereum, after receiving a new block from other nodes,
a miner node will immediately begin to mine an empty block
that contains no transactions while verifying the received block
to update its local global state [26]. The reason to mine an
empty block is that the miner needs to first reset its local
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transaction pool before assembling the next new block, during
which time the miner can only mines an empty block. If the
hash puzzle for the empty block is solved before a block with
transactions can be assembled, then the miner successfully
mines the empty block and the miner will broadcast the empty
block over the network. On the other hand, if the hash puzzle
for the empty block has not been solved by the time a block
with transactions is assembled, then the miner will switch to
mining the new block.

We now quantitatively model the relationship between TPS
and the size of transaction pool in Ethereum. The miner
executes two processes after receiving a new block form
another node: the local transaction pool reset and the new
block assembly, both of which depend on the size of the
miner’s local transaction pool. When executing the transaction
pool reset, the miner first removes the invalid transactions after
the blockchain global state is updated by the new block (e.g.,
with the transactions packed in the newly received block, some
transactions with insufficient balances after the blockchain
global state is updated). After that, the miner needs to re-
calculate the Gas fees of the transactions in the pool and re-
rank the transactions according to the re-calculated Gas fees,
since Gas fees in EIP-1559 are dynamically determined based
on the updated blockchain global state [27]. When assembling
a new block, the miner packs and executes the eligible
transactions from the local transaction pool according to the
priority of transaction selection and ordering in Ethereum [19].

In the PoW blockchain systems, such as Bitcoin and
Ethereum 1.0, the block generation rates follow the expo-
nential distributions [28]–[30]. Given that the average block
interval in Ethereum is measured as 13000ms in [6], we
model the Ethereum’s block interval to follow an exponential
distribution with a mean of tg = 13000ms. Further, we denote
the duration of transaction pool reset by tp, and the duration
of the new block assembly by ta. Then, the duration during
which a miner is mining an empty block is τ = tp + ta, and
the probability that an empty block is successfully mined in
this duration is given by:

p(τ) = 1− e
−τ
tg = 1− e

−(tp+ta)

tg (1)

Considering that there are on average M transactions in a full
block, the effective TPS in Ethereum can be computed as

TPS = (1− p(τ)) ∗ M
tg

= e
−(tp+ta)

tg ∗ M
tg

(2)

Note that, in eq. (1), both tp and ta increases with the size of
the transaction pool. We then set up an experiment to measure
tr and ta under different sizes of the transaction pool during
the period of March 12, 2022 to March 15, 2022. We denote
the default size of the transaction pool by L, and we have
L = 6144 (i.e., there are up to 6144 transactions in the
transaction pool by default). In our experiment, we gradually
enlarge the size of the transaction pool to k ∗L, k = 1, 2, · · ·,
and measure the values of tp, ta when the transaction pool is
full of transactions. The measured results are plotted in Fig.
3. From the measurement results, we can observe the linear
increases of tp, ta with the size of the transaction pool (in
terms of k in Fig. 3). Therefore, we can fit two linear functions
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Fig. 3. The measured results of the block assembly duration ta and the
transaction pool reset duration tp under different k.

to model the corresponding relationships: ta = 12.9k + 56.5
and tp = 73.9k − 37.9. Thereby, using these linear functions,
we now can rewrite eq. (1) as

p(k) = 1− e−
86.8k+18.6

tg (3)

The accuracy of (3) can be verified by setting k = 1 as in
Ethereum: the empty block rate given by our model (3) is
p(k = 1) ≈ 0.01; and it is shown in [6] that the real empty
block rate in Ethereum is also around 0.01. With (3), if miners
enlarge the transaction pool to store up to 200,000 transactions
(k = 33), the empty block rate is p(33) ≈ 0.20; and thus, the
TPS will decreases from 15.3 to 12.3 (there are around average
M = 200 transactions in a full block). Therefore, it is not a
good way to solve the stale transactions by simply enlarging
the size of transaction pool.

Challenge 2: It is difficult to precisely predict selfish and
later transactions in Ethereum, since the network latency is
dynamic and there are many complex applications, causing
the snapshots of the transaction pools of different nodes to be
quite different.

To improve the matched-block probability of the compact
block protocol, a sending CB node can predict the missing
transactions at receiving CB nodes and piggybacks the pre-
dicted missing transactions along with the sent compact block.
One way to predict selfish transactions is to use Gas fees of
transactions, i.e., predicting the transactions with high Gas fees
as the selfish transactions. One way to predict later transactions
is to use ages of transactions (the age of a transaction is
defined as the time duration since the CB node received the
transaction), i.e., predicting the transactions with small ages as
the later transactions. However, it is difficult to determine the
optimal age to predict the later transactions, since the latency
when propagating transactions over the network is dynamic
and it is also related to Gas fees (some nodes may discard the
transactions with low Gas fees and withhold the transactions
with high Gas fees, which influence the propagation latency).
Also, the complex applications deployed over Ethereum may
render the prediction of selfish transactions ineffective. No-
tably, Ethereum supports DeFi applications by smart contracts,
where miners’ actual profits not only come from Gas fees,
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but also from Miner Extractable Value (MEV) by including,
excluding or reordering some specific transactions in blocks
[4], e.g., a transaction with low Gas fee may call the internal
instruction of a smart contract to pay extra MEV for miners
privately [24]. Therefore, it is infeasible to simply predict the
selfish transactions based on Gas fees and the later transactions
based on ages.

Another way to predict missing transactions is based on
the local transaction pool: when a CB node receives a block,
it first checks to see which transactions are in the block
but not in its local transaction pool, and then predicts these
transactions as the missing transactions for other nodes and
piggyback them with the compact block. The performance of
this prediction method depends on the similarity of transaction
pools, which is good in Bitcoin [31]. If the similarity of
transaction pools between different nodes is good, it is very
likely that a transaction not in the transaction pool of a sending
node is not in the transaction pool of a receiving node either.
However, this simple prediction method does not work well
if the transaction pools of different nodes are not similar.
Therefore, we measured the similarity of transaction pools
in Ethereum MainNet. We set up two standard full nodes
that connect to Ethereum MainNet in the three days from
March 9, 2022 to March 11, 2022. The two standard full nodes
are both set up with the same configuration as the Standard
Node 1 and Standard Node 2 in the experiment described in
the last section. On the first day, we directly connected the
two nodes and thus the network distance between them was
one hop. On the second day, we did not directly connect
the two nodes but connected them to a common neighbor
node, and thus their network distance was two hops. On the
last day, we removed the direct connection between the two
nodes and also removed their connections to the common
neighbor node, and thus their network distance was at least
three hops. We define the similarity of two transaction pools
as the number of the common transactions in the two pools
over the number of the transactions in the union of the two
pools. We measured the similarity of the two transaction pools
of the two experimental nodes by comparing their transaction
pools every 10 minutes. Fig. 4 shows the measured similarity
of the two transaction pools with respect to different network
distance. Although the median similarity can reach 0.84 for
the case of one hop network distance, the network distances
between the majority of Ethereum nodes are not one hop.
Moreover, the median similarity is only around 0.64 when
the network distance is more than two hops. For comparison,
[32] shows that the similarity of transaction pools in Bitcoin
is around 0.997 in most cases. Based on our experimental
results, we can conclude that the prediction method based on
the transaction pool would not work well in Ethereum.

B. Overview of HCB Solution

To tackle the above challenges, we propose a hybrid-
compact block (HCB) protocol to deal with the three types
of missing transactions and speed up block propagation for
Ethereum. Our HCB is fully compatible with the protocol
stack of the current Ethereum blockchain. To implement HCB,
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Fig. 4. The similarity of the transaction pools between the two experimental
nodes with respect to different network distance.

we extend the present Ethereum implementation with the
architecture shown in Fig. 5. There are four original modules
in a standard Ethereum node: Transaction Pool (Tx-Pool),
Block Assembly, Block Mining, and Block Process. A stan-
dard Ethereum node receives new blocks and transactions from
other standard nodes over the underlying P2P network; the Tx-
Pool module stores new and unpacked transactions; the Block
Assembly module selects eligible transactions from Tx-Pool
to assemble new blocks; the Block Mining module computes
mining puzzles to generate legal blocks with valid nonces; the
Block Process module validates new blocks (mined locally or
received from other nodes), updates the local database, and
forwards the legal blocks to other nodes.

Extending the standard Ethereum node, our proposed HCB
nodes add a Secondary Pool module and a machined learning
based Missing Transactions (TXs) Prediction module to enable
the compact block protocol. The aim of Secondary Pool
is to solve the problem of stale transactions: specifically,
Secondary Pool stores the transactions that are removed from
Tx-Pool due to their low Gas fees 2. When an HCB block
is received, we can reconstruct the full block by using the
transactions from both the Tx-Pool and the Secondary Pool.
In our HCB protocol, the standard Tx-Pool is not modified
(its size and function); the block mining module still select
eligible transactions from Tx-Pool to assemble a new full
block. Therefore, the empty block rate is not increased either,
resolving Challenge 1. The aim of Missing TXs Prediction
module is to solve the problems of selfish and later transac-
tions by predicting and piggybacking these transactions into
HCB blocks, so as to decrease the transaction retransmission
probability. We train a data-driven prediction model of naı̈ve
Bayes classifier with the empirical transaction data sampled
from Ethereum MainNet. Although the similarity of Tx-Pools
in Ethereum is small, we improve the prediction precision by
considering various transaction features related to the network

2Gas fee of a transaction is dynamic over time after EIP-1559 is adopted
by Ethereum. Therefore, it will be removed from Tx-Pool to Secondary Pool
when its Gas fee is low. If its Gas fee increases significantly after a certain
time, it can also be recovered to Tx-Pool from Secondary Pool like a new
transaction.
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latency and miners’ selfish behaviors 3.
An HCB block can be regarded as a combination of a

standard block and a compact block. The data structure of
HCB blocks is shown in Fig. 6. Each transaction in an HCB
block is classified as missing or present with the help of the
Missing TXs Prediction module. For a missing transaction,
the full transaction data is included into the HCB block. For
a present transaction, its short hash is packed into the HCB
block to reduce overload (a 6 bytes short ID is used in our
scheme [9]).

Our HCB protocol can work with the current Ethereum with
full compatibility. Based on the extended architecture in Fig. 5,
an HCB node is able to generate HCB blocks from full blocks,
and vice versa. An HCB node uses Missing TXs Prediction
to generate an HCB block. It then forwards the HCB block to
other HCB nodes and the full block to other standard nodes
that do not support our HCB protocol. The receiving HCB
node can use the full transactions, which are predicted to be
missing at the receiving HCB node and included in the HCB
block by the sending node, and the transactions in its local
Tx-Pool and Secondary Pool to reconstruct the full block.

IV. DETAILED HCB DESIGN

This section presents the specific design of HCB, including
the new modules of Secondary Pool and Missing Transactions
Prediction, and the HCB forwarding protocol.

3Using our data-driving prediction framework, more complex and advanced
prediction scheme can be applied to improve the precision further.

A. Secondary Pool

In HCB, each node maintains a Secondary Pool to solve
the stale transactions, and the Secondary Pool interacts closely
with the original Tx-Pool (primary).

Before introducing the Secondary Pool, we first briefly
review the mechanism of the original Tx-Pool for Ethereum
nodes. There are two submodules in Tx-Pool: Pending and
Queue. Pending stores the transactions with continuous nonces
(i.e., the transactions issued from the same account must
contain the continuous nonces), which will be selected to
assemble the full block [16]. The default size of Pending
is 5120. Queue stores the transactions with discontinuous
nonces, and its default size is 1024. To avoid the broadcast of
invalid transactions over the network, the transactions must be
verified successfully before being stored in Tx-Pool, including
signature, balance, size, and so on [33]. After verification, the
valid transactions are stored in Pending or Queue according
to the values of their nonces, and only the transactions stored
in Pending are forwarded. At the same time, all transactions
in Tx-Pool are ordered by their fees. When the number of
transactions in Tx-Pool reaches the full value, i.e., 5120 plus
1024, the new transactions with higher fees evict the old
ones with lower fees (i.e., these evicted transactions are stale
transactions discussed in Section II-B), and also the positions
of the transactions in Pending and Queue will be readjusted
according to their nonces.

As a complement to the primary Tx-Pool, our Secondary
Pool has a dynamic size and three main processes for mainte-
nance, i.e., the processes of transaction storage, transaction
identification and block-wise update, as explained in the
following:

Dynamic Size: Since the secondary pool size does not affect
the empty block rate, it can be set to a large value to store large
stale transactions to improve the matched-block probability.
The only concern is memory consumption, especially if the
attackers issue a transaction spam attack to deliberately send
a lot of valid but low fees transactions to HCB nodes. Thus,
we place a dynamic limit on the secondary pool size, which
is synchronized once a day with the number of unconfirmed
transactions over the Ethereum network published on the
website of [6]. For example, it is set to 200,000 on July 6,
2022. The reason to set this dynamic limit on the secondary
pool size is that we assume that the average number of
unconfirmed transactions will not change suddenly and we
will not accept any more transactions beyond the used the
secondary pool size in case of a spam attack.

Transaction Storage: A stale transaction to be removed
from Tx-Pool due to the arrival of other transactions would be
stored in the Secondary Pool if space permits. If the secondary
pool is full, the transaction with lowest fee would be discarded.
A stale transaction received for the first time with continuous
nonce but cannot be stored in Pending due to its low fees
(i.e., it is evicted by some coming transaction with higher fee
from Pending, and thus it is a stale transaction now) would be
stored in the Secondary Pool and would also be forwarded to
other nodes.

For fast reconstruction of the full block and the handling of
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the hash collision (multiple transactions with the same short
ID), we set up a short ID map to record the transactions in
Tx-Pool and the Secondary Pool. The short ID map consists
of pairs of key-value, where each key is a short ID of trans-
actions and the corresponding value is an array containing the
transactions whose short IDs equal to that key. A transaction
and its short ID are stored into the short ID map as new pair
of key-value when its short ID has not been recorded in the
map; otherwise, it is appended to the value of an existing
key-value pair when its short ID has been recorded in the
map. Compared with the size of the standard hash, the size of
short ID is reduced from 32 Bytes to 6 Bytes in our scheme.
According to [9], this short ID will cause a slightly increased
probability of hash collisions; however, it is acceptable for our
HCB protocol4. Notably, to support our HCB protocol, the
short ID map also needs to record the transactions in Tx-Pool
and their short IDs to reconstruct the full block.

Transaction Identification: When a node receives an HCB
block, it identifies the present and missing transactions by
querying the short ID map about the short IDs of the trans-
actions contained in the HCB block. If the short IDs of
the transactions are contained in the short ID map, these
transactions are present ones; otherwise, they are missing
transactions in our HCB protocol. Then the node uses the
present transactions to construct the full block if there are
no missing transactions. If there are transactions missing from
both of Tx-Pool and the secondary pool, the node sends the
corresponding short IDs of the missing transactions to the
neighbor node that forwarded this HCB block to request the
missing transactions. At the same time, the node also records
the identification result of each transaction (i.e., present or
missing) as one of the features for subsequently Missing
Transactions Prediction.

Specifically, the node adopts the following rules to identify
the transactions in the HCB block. For each short ID in the
HCB block, if it cannot be found in the keys of the short ID
map, the corresponding transaction is identified as missing;
moreover, if it can be found in the short ID map as a key
and its value (the array) only contains one transaction, the
transaction is identified as the only transaction corresponding
to this short ID (i.e., having no hash collision). There is a
little probability that the value (the array) corresponding to
a given key contains multiple transactions (i.e., having hash
collision). We propose the following algorithm to resolve the
hash collision problem in our HCB.

To solve the hash collision problem that causes the unnec-
essary transaction request and retransmission, we add a post-
identification phase processing in our HCB protocol. After the
identification process of all transactions in the HCB block,
we use a set Um to store the corresponding short IDs of the
transactions that are identified as missing, a set Up to store the
corresponding short IDs of the transactions that are uniquely
identified precisely (the no hash collision case), and a set
Uc to store the short IDs that each correspond to multiple
transactions (the hash collision case). If Um is not empty, the

4In our experiments, there was no any hash collision occurring within one
week, as shown in Section V.

node identifies the transactions in sets Uc and Um as missing,
and requests these missing transactions from the sending nodes
of this HCB block. If Um is empty and Uc is non-empty,
the node can try all possible combinations of the collided
transactions to check which one satisfies the value of the
BodyHash5 field in the block header.

Block-wise Update: After reconstructing the full block, the
node validates the full block and updates its local database
to obtain the new global states. Next, the Secondary Pool
will be reset based on the new global states. During the reset
operation, first, all invalid transactions are removed from the
Secondary Pool, including the transactions with insufficient
balance and the expired transactions that are already contained
in the block. Then, according to the base fee and gas fee used
in the block header, the fees of the remaining transactions are
updated by the design principle of EIP-1559 [27]. Finally, we
propose a transaction restore algorithm to move the transac-
tions whose fees increase significantly under the new global
states, to Pending and Queue. The proposed transaction restore
algorithm is given in Algorithm 1.

B. Missing Transactions Prediction

To deal with the selfish and later transactions, the sending
nodes predict the missing transactions at the receiving nodes
and piggyback these transactions into the HCB block. The
missing transaction prediction can be regarded as a binary
classification problem (i.e., to classify transactions as missing
or present).

We apply naı̈ve Bayes classifier [34], a probabilistic ma-
chine learning model, to our missing transaction predication.
Naı̈ve Bayes classifier assumes the independence of the data’s
features and thus significantly simplifies the learning process.
It is shown in [35] that although the independence assumption
is sometimes inaccurate in theory, naı̈ve Bayes classifier has
worked quite well in practice and can achieve relatively
good performance for classification problems [35]. The model
design of the naı̈ve Bayes classifier for our missing transaction
prediction is given as follows:

Model Design: We denote the set containing the features
of a transaction by X = {x1, x2, . . . , xn}, where xi is the
ith feature of the transaction. We will discuss how to select
the features for transaction latter. We denote the class label
of the corresponding transaction by yj and j ∈ {1, 2}, which
represents if the transaction is missing (y1) or present (y2)
at the receiving nodes. Following the naı̈ve Bayes classifier
model, the Missing Transaction Prediction is designed to com-
pute the a posteriori probability (APP) of each transaction’s
class, p(yj |X), as:

p(yj |X) = p(yj)

n∏
i=1

p(xi|yj) (4)

where p(yj) is the prior probability of class yj ; p(xi|yj) is
the conditional probability of each transaction feature in X .
If the APP p(yj |X) can be computed, we can estimate the

5BodyHash is a standard hash computed from all transactions in the block
body.
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Algorithm 1 Transaction Restore Algorithm
Require: a sequence Gp storing the transactions in Pending

of Tx-Pool by ascending order of fees; a sequence Gq

storing the transactions in Queue of Tx-Pool by ascending
order of fees; a sequence Gs storing the transactions in
the Secondary Pool by descending order of fees.

Ensure: Gp, Gq , Gs

1: Select the first transaction Txp with the lowest fee γp in
Gp.

2: Select the first transaction Txq with the lowest fee γq in
Gq .

3: Select the first transaction Txs with the highest fee β in
Gs.

4: γ = min(γp, γq)
5: while γ < β do
6: if (the nonce of Txs is continuous for Gp) && (γp < β)

then
7: if the limit of Pending is reached then
8: Remove Txp from Gp and insert it in Gs.
9: Remove the transactions with discontinuous

nonces from Gp and insert them in Gs.
10: end if
11: Remove Txs from Gs and insert it in Gp.
12: Update Txp, Txs, γp, γ, and β.
13: else if (the nonce of Txs is discontinuous for Gp) &&

(γq < β) then
14: if the limit of Queue is reached then
15: Remove Txq from Gq and insert it in Gs.
16: end if
17: Remove Txs from Gs and insert it in Gq .
18: Update Txq , Txs, γq , γ, and β.
19: else
20: Update Txs and β.
21: end if
22: end while

transaction’s class as y1 if p(y1|X) > p(y2|X) or as y2 if
p(y1|X) < p(y2|X). Therefore, when assembling an HCB
block, the node can employ the features xi, i = 1, 2, · · ·, n
of each transaction to determine whether the transaction is
missing or not. To compute the probability p(yj |X), we need
to know probabilities p(yj) and p(xi|yj), as specified in (4).
A Naı̈ve Bayes classifier learns to know these probabilities
using a training dataset.

Training Phase: With a set of transactions collected from
the Ethereum MainNet (detailed in Section V-A) as the training
dataset, the training phase estimates the prior probability
p(yj) and the conditional probabilities p(xi|yj). Here, p(yj)
is estimated by counting the frequency of training transactions
that fall into class yj . Similarly, p(xi|yj) is estimated by
counting the frequency of the transactions with feature xi
within the training subset labeled as class yj .

Feature Selection: As described in Section II, there are
various complex factors that lead to the missing transactions,
including network latency, transaction fee and selfish behavior
from nodes. Considering these factors, we can select the
following features of transactions to use in the naı̈ve Bayes

classifier model for predicting missing transaction prediction.
• Gas Fee x1: It is determined by the rule of EIP-1559 [27]

and impacts whether the transaction is broadcast over the
network. The transaction with low fee may be discarded.
But in case of the transaction with high fee, it also may be
deliberately withheld by some nodes. Thus, Gas fee can
be selected as a feature that contributes to the prediction
model.

• Age x2: It is the time duration since the sending nodes
received this transaction. The transaction with the small
age is likely to be not fully broadcast over the network
due to the network latency. Thus, transaction age can
contribute to the prediction model.

• Rank Ratio x3: It is defined as the following. The trans-
actions are sequentially packed in the block. For the nth

transaction in a block with m total transactions, its rank
ratio is defined as n/m. The miners in Ethereum prefer
to pack local transactions and the withheld transactions
in the front position of their mined blocks, and thus the
rank ratio relates to the selfish behavior in our prediction
model.

• Existence at the sending node x4: It represents whether
the transaction is missing at the sending node or not
(i.e., x4 = 0 represents a missing transaction; x4 = 1
represents a present transaction). When the transaction
does not exist at the sending node, it is likely to be
missing at the receiving nodes.

C. HCB Forwarding Protocol

In order to exchange blocks among HCB nodes and stan-
dard Ethereum nodes, we design a simple HCB forwarding
protocol.

We first briefly review the Block-Hash propagation (BHP)
protocol in Ethereum, which is illustrated in Fig. 7(a). Con-
sider that a sending node forwards a new block to its N neigh-
bor nodes. The sending node randomly selects

√
N neighbor

nodes to forward the full block directly after verifying the
block head information. It then announces the block hash to
the remaining neighbor nodes after verifying the full block.
The neighbor nodes that do not have the block will request the
block header and block body successively from this sending
node to reconstruct the full block.

To maintain compatibility with Ethereum, our HCB for-
warding protocol is designed based on the Block-Hash propa-
gation, as illustrated in Fig. 7(b). In particular, at the beginning
when establishing a connection, the HCB nodes notify each
other that they will replace the full block with an HCB
block to minimize bandwidth usage through a sendHCB
message. When the sending node has a new block to forward,
it randomly selects

√
N neighbor nodes, and then forwards the

HCB block to the selected HCB nodes and forwards the full
block to the selected full nodes, accordingly. For the remaining
neighbors, the block hash is forwarded, which is the same as
in Fig. 7(a). For the nodes that receive an HCB block, they
reconstruct the full block from Secondary Pool and Tx-Pool. If
the reconstruction fails due to missing transactions, they will
request the missing transactions from the sending node.
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V. EXPERIMENTAL RESULT

In this section, we first train and test our prediction model by
crawling the data from Ethereum MainNet. We then implement
an HCB prototype and evaluate its performance over the
Ethereum MainNet.

A. Missing Transaction Prediction

Collecting Dataset: To validate the prediction model, we
set up two modified nodes with only the Secondary Pool
module, and connected them to Ethereum MainNet during the
period of April 8, 2022 to April 14, 2022 to collect the data.
When receiving a new block from other neighbor nodes, a
modified node obtained the features (x1, x2, x3, x4) of each
transaction in the block and recorded them in its log file. It then
generated the corresponding compact block and sent it to the
other modified node. The receiving node labeled the class of
transactions by querying its local Tx-Pool and the Secondary
Pool, recorded the classification in its log file. After the data
has been collected, we randomly select 1,000,000 transactions
from the log files, and take 80% of the selected transactions
as the training dataset and 20% of the selected transactions as
the test dataset.

Prediction Model with Training Dataset: By analyzing
and counting the training dataset, we estimate each prior prob-
ability p(yj) and conditional probability p(xi|yj) according to
the process of the training model as in Section IV-B. Note
that both the label yj and feature x4 are discrete, p(yj) and
p(x4|yj) are simply estimated by counting the corresponding
frequencies. For the continuous features (i.e., x1, x2 and x3),
their conditional probabilities are estimated by using the Curve
Fitting Tool in Matlab to fit their probability density functions.

For class y1 that represents the present transactions at
the receiving node and class y2 that represents the missing
transactions for the receiving node, the prior probabilities are
given by

p(y1) = 0.92, p(y2) = 0.08 (5)

Since fee x1 is a continuous feature and the fees of most
transactions take values in the range of [0gWei, 200gWei],
the histograms of x1 under classes y1, y2 within the range are
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Fig. 8. Frequency distributions for different continuous features in
present(top) and missing (bottom) transactions subset.

shown in Fig. 8(a) and Fig. 8(d), respectively. The conditional
probabilities of x1 given y1, y2 are fitted as

p(x1|y1) =
0.6222

x21 − 0.1143x1 + 0.8207
(6)

p(x1|y2) =
0.5636

x21 − 0.2979x1 + 0.7611
(7)

Since age x2 is a continuous feature and the ages of
most transactions take values in the range of [0s, 200s], the
histograms of x2 under classes y1, y2 within the range are
shown in Fig. 8(b) and Fig. 8(e), respectively. The conditional
probabilities of x2 given y1, y2 are fitted as

p(x2|y1) = 0.0275e−(
x2−6.447

5.632 )
2

+ 0.02145e−(
x2−13.44

20.46 )
2

(8)

p(x2|y2) =
0.0306

x2 + 0.04501
(9)

Since rank ratio x3 is also a continuous feature, and x3
for each transaction in the block is in the range of [0, 1], its
histograms under classes y1, y2 are shown in Fig. 8(c) and Fig.
8(f), respectively. The conditional probabilities of x3 given y1,
y2 can be fitted as

p(x3|y1) = −0.003665x23 + 0.004119x3 + 0.009356 (10)

p(x3|y2) =
0.0047x3 + 0.001141

x3 + 0.01187
(11)

Feature x4, the existence of the transaction at the sending
node or not, it has two values, missing or present. The
conditional probabilities of x4 given y1, y2 are estimated as

p(x4|y1) = {0.99, x4=present
0.01, x4=missing (12)

p(x4|y2) = {0.23, x4=present
0.77, x4=missing (13)

By substituting the above conditional probabilities and prior
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TABLE I
CONFUSION MATRIX FOR PREDICTION RESULTS

Truth

Prediction
results Positive

(Missing)
Negative
(Present) Recall and Precision

Positive
(Missing) 9385 12182

Recall:
9385

9385+12182
≈ 0.435

Negative
(Present) 483 177950

Precision:
9385

9385+483
≈ 0.951

probabilities into eq. (4), we can obtain the prediction model
as discussed in Section V-A.

Prediction Model Validation with Test Dataset: We
use the test dataset to validate the prediction model. In this
validation, we mark the missing transactions at the receiving
node as positive and the present transactions at the receiving
node as negative. We then obtain the confusion matrix for
the prediction results as shown in Table I. By comparing
the prediction results and the ground truths in Table I, the
precision and recall of the prediction results are calculated
as 9385

9385+483 ≈ 0.951, 9385
9385+12182 ≈ 0.435. In our scheme,

when the sending nodes predict the transactions in the block
as the missing transactions at the receiving nodes, they will
send the complete transactions along with the compact block to
the receiving nodes. Therefore, the precision of the prediction
results determines the matched-block probability. The achieved
precision of 0.951 in our experiment shows that the prediction
model can efficiently predict the missing transactions at the
receiving nodes. The achieved recall of 0.435 shows that more
than half of the complete transactions in HCB (predicted as
missing transactions) are not necessary (i.e., these transactions
are already present at the receiving nodes), which means
an imperfect utilization of the bandwidth. Additionally, the
sending nodes would send around 9385+12182

200000 ∗100% ≈ 10.7%
of the transactions in the corresponding compact block to the
receiving nodes.

B. Performance of HCB on Ethereum MainNet

In this subsection, we measure the performance of HCB
on Ethereum MainNet, in terms of matched-block probability,
matched-transaction rate, block size distribution, and block
propagation time.

Experiment Setup: To ensure the performance of HCB
on Ethereum MainNet, we implemented the prototype of
the full HCB protocol with the Secondary Pool and the
prediction module based on current Ethereum software [26].
For comparison, we also implemented three compact block-
like protocols: 1) the basic compact block (BCB); 2) the
simple compact block only with Secondary Pool (SCB); 3)
the compact block only with the prediction module (PCB).
We conducted four sets of experiments to measure the per-
formances of the five protocols (i.e., BHP, HCB, BCB, SCB,
PCB) during the period of August 7, 2022 to September 10,
2022. In each set of experiments, we setup two AliCloud
servers; in different set of experiment, two servers were at
different geographical locations; in all sets of experiments, all
servers were configured with the same hardware configuration
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Fig. 9. Matched-Block probability (red columns) and Matched-Transaction
rate (blue columns) under different schemes.

as described in Section II-A. The locations of the servers in
each set are given as follows: Shenzhen and Shanghai in the
first set, Shenzhen and Sydney in the second set, Shenzhen and
London in the third set, and California and Mumbai in the last
set. In each set of experiments, two nodes that run with the
same Ethereum Client software were deployed onto the two
servers respectively and connect on Ethereum MainNet; the
two nodes adopted one of the five protocols for one week;
during the experiment, the two nodes exchanged the blocks
and transactions from other standard nodes on Ethereum
MainNet, and forwarded the corresponding messages to each
other according to the adopted protocol.

Matched-Block Probability and Matched-Transaction
Rate: We calculate the matched-block probability and
transaction-matched rate of the four compact block protocols
(BCB, SCB, PCB, and HCB). Matched-transaction rate is
defined as the ratio of the present transaction number to the
total transaction number in one compact block, and it is an
important metric to demonstrate the performance of compact-
block-like protocols.

The experiment results are shown in Fig. 9. We can see that
the matched-block probability of BCB is only around 0.12
if we directly adopt the basic compact block in Ethereum,
although the matched-transaction rate can reach around 0.92.
This means that the nodes can match most of the transactions
in a block, but at the same time there is a large chance that
the nodes need extra communication rounds to request the
missing transactions. And if we merely add the Secondary
Pool (SCB protocol) or the prediction model (PCB protocol)
to BCB, the matched-block probability can be improved to
0.23 and 0.28 respectively. This is because merely adding
the Secondary Pool cannot match the selfish transactions that
are not broadcast over the network, and merely adding the
prediction model cannot fully predict all missing transactions
(Table I shows that the precision of prediction results is around
0.951). For our HCB protocol, the matched-block probability
can be significantly improved to around 0.90 (for comparison,
the matched-block probability in Bitcoin is around 0.85 [20]),
and the matched-transaction rate can be improved to around
0.99. Therefore, HCB nodes are likely to reconstruct the
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full blocks locally without requesting the missing transactions
using extra communication rounds and thus can speed up the
block propagation significantly in Ethereum.

Block Size: Our HCB and other compact block protocols
speed up the block propagation by reducing the block size.
We recorded the size of full block, compact block and hybrid-
compact block during the experiment, and their CDFs are
shown in Fig. 10. We can see that around 80% of the full
blocks are larger than 20 Kbytes. Works [17], [18] have
demonstrated that the block propagation time increases quickly
when the block size exceeds 20 Kbytes. In BCB , only 0.5% of
compact blocks are larger than 20 Kbytes, but the probability
of retransmitting missing transactions is as high as 90% (i.e.,
the matched-block probability of BCB is around 10% as shown
in Fig. 9); in HCB, 15% of hybrid-compact blocks are larger
than 20 Kbytes since some full transactions are inserted into
the block, and the retransmission probability is decreased to
10%.

Block Propagation Time: Block propagation time is the
most important metric for blockchains, since it determines
the fork rate of a blockchain [8], [29]. For BHP, the block
propagation time is dominated by the transmission time of
the full blocks. For BCB, SCB, PCB, and HCB, the block
propagation time ca n be written as

t = ρtx + (1− ρ)(tx + ty) = tx + (1− ρ)ty (14)

where tx is the transmission time of the initial compact block;
ty is the retransmission time of the missing transactions; ρ
is the expected matched-block probability of the protocol;
(1 − ρ)ty is the additional retransmission time of missing
transactions of the protocol.

The experiment results of block propagation time are shown
in Fig. 11, where the horizontal axis indicates the block
size. From the results in Fig. 11, we can make several
conclusions as follows. For our HCB, it saves more than
1/2 block propagation time compared to the BHP protocol
when the block size is large. Thanks to its good matched-
block probability and smaller hybrid-compact block size, HCB
always needs the shortest block propagation time among all
protocols under any block size and physical distance between

(a) (ShenZhen, ShangHai)

[0, 100] [100, 200] [200, 300] [300, 400]
Block Size (Kbytes)

0

50

100

150

200

250

300

D
el

ay
 (

m
s)

BHP BCB: t
x

BCB: (1- )t
y

SCB: t
x

SCB: (1- )t
y

PCB:t
x

PCB: (1- )t
y

HCB: t
x

HCB: (1- )t
y

(b) (ShenZhen, Sydney)

[0, 100] [100, 200] [200, 300] [300, 400]
Block Size (Kbytes)

0

100

200

300

400

500

600

700

800

D
el

ay
 (

m
s)

(c) (ShenZhen, London)

[0, 100] [100, 200] [200, 300] [300, 400]
Block Size (Kbytes)

0

100

200

300

400

500

600

700

800

D
el

ay
 (

m
s)

(d) (California, Mumbai)

[0, 100] [100, 200] [200, 300] [300, 400]
Block Size (Kbytes)

0

100

200

300

400

500

600

700

800

D
el

ay
 (

m
s)

Fig. 11. Block propagation time for different schemes between two nodes at
different locations (a) Shenzhen and Shanghai; (b) Shenzhen and Sydney; (c)
Shenzhen and London; (d) California and Mumbai.

the nodes. BHP does not work well when the block size is
large, and its block propagation time increases linearly with
the block size, and it performs worst among the five protocols
when the block size is larger than 200Kbytes. BCB, SCB,
and PCB do not work well when the block size is small, and
their block propagation times are mainly dominated by the
retransmission time of the missing transactions due to their
low matched probabilities. As shown in Fig. 10, currently 65%
and 95% of blocks in Ethereum are smaller than 100Kbytes
and 200KBytes respectively, which hinders the adoption of
BCB, SCB, and PCB in Ethereum-like blockchains.

VI. CONCLUSION AND DISCUSSION

Compact block is a good way to speed up block propagation
in blockchain such as Bitcoin. But due to the smaller transac-
tion pool, network latency, and the selfish behaviors of nodes,
the basic compact block cannot be directly adopted in the
Ethereum blockchain. This work proposes a hybrid-compact
block (HCB) propagation protocol with two new modules, the
Secondary Pool and Missing Transaction Prediction, which
improve the matched-block probability of HCB in Ethereum
from 12% to 90% so that the block propagation time can
be shortened significantly. As a result, the propagation time
of HCB only needs 1/3∼1/2 time of the current protocol
in Ethereum when the block size is large. Moreover, the
implementation of the two modules is only an internal ex-
tension to the standard Ethereum node architecture, and HCB
is compatible with the current Ethereum network.

Our HCB is a block propagation scheme, and it is com-
patible with different Ethereum-like blockchains, such as
Ethereum 2.0 [36], Ethereum Classic (ETC) [37], Ethereum-
PoW (ETHW) [38]. Ethereum 2.0 replaces the current
Ethereum’s Proof-of-Work (PoW) with Proof-of-Stake (PoS)
[39], [40] at the consensus layer. But the node in Ethereum 2.0
also maintains the Tx-Pool module to store the unconfirmed
transactions, and the proposer (miner in PoW) selects the
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eligible transactions from the Tx-Pool to assemble the block
and broadcast it over the network. Both the Secondary Pool
and Missing Transaction Prediction modules can be added in
the architecture of Ethereum 2.0 to support HCB. Moreover, it
is more beneficial to apply HCB in Ethereum 2.0 to speed up
the block propagation and reduce the network load. Unlike
current Ethereum (that adopts PoW), Ethereum 2.0 has a
fixed block interval of 12 seconds, short block propagation
time allows more time for validation, cryptographic operations,
state, and ledgers management [36], [41].

Although the presented HCB performs well, its detailed
algorithms can be further improved. For example, the Naı̈ve
Bayes Classifier assumes independence features, which is not
accurate in our missing transaction prediction model and leads
to a probability of 10% to retransmit the missing transactions.
More sophisticated classifiers, such as the Semi-Naı̈ve Bayes
Classifier [42], Bayesian Network [43], Random Forest [23],
Logistic Regression [44], and Support Vector Machine [45],
are good options for improving our prediction model.
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[25] J. Mišić, V. B. Mišić, and X. Chang, “On the benefits of compact

blocks in bitcoin,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 2020, pp. 1–6.

[26] “Go ethereum,” https://github.com/ethereum/go-ethereum/, accessed
June, 2022.

[27] V. Buterin et al., “Eip-1559: Fee market change for eth 1.0 chain,”
[Online].Available: https://eips.ethereum.org/EIPS/eip-1559, 2019.

[28] P. R. Rizun, “A transaction fee market exists without a block size limit,”
Block Size Limit Debate Working Paper, pp. 2327–4697, 2015.

[29] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, “bloxroute:
A scalable trustless blockchain distribution network whitepaper,” IEEE
Internet of Things Journal, 2018.

[30] gavinandresen, “Back-of-the-envelope calculations for
marginal cost of transactions,” [Online].Available:
https://gist.github.com/gavinandresen/5044482, 2013.

[31] “Compact blocks faq,” https://bitcoincore.org/en/2016/06/07/
compact-blocks-faq, accessed June, 2022.

[32] K. Dae-Yong, E. Meryam, and J. Hongtaek, “Examining bitcoin mem-
pools resemblance using jaccard similarity index,” in 2020 21st Asia-
Pacific Network Operations and Management Symposium (APNOMS).
IEEE, 2020, pp. 287–290.

[33] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[34] “Naive bayes classifier,” https://en.wikipedia.org/wiki/Naive Bayes
classifier, accessed June, 2022.
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