
ar
X

iv
:2

10
4.

13
13

0v
5

 [
cs

.C
R

]
 3

1
Ja

n
20

24
1

Secure and Efficient Federated Learning
Through Layering and Sharding Blockchain

Shuo Yuan, Member, IEEE, Bin Cao, Senior Member, IEEE, Yao Sun, Senior Member, IEEE,

Zhiguo Wan, Member, IEEE, and Mugen Peng, Fellow, IEEE

Abstract—Introducing blockchain into Federated Learning (FL) to build a trusted edge computing environment for transmission and

learning has attracted widespread attention as a new decentralized learning pattern. However, traditional consensus mechanisms and

architectures of blockchain systems face significant challenges in handling large-scale FL tasks, especially on Internet of Things (IoT)

devices, due to their substantial resource consumption, limited transaction throughput, and complex communication requirements.

To address these challenges, this paper proposes ChainFL, a novel two-layer blockchain-driven FL system. It splits the IoT network

into multiple shards within the subchain layer, effectively reducing the scale of information exchange, and employs a Direct Acyclic

Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation. Furthermore, the

FL procedure is customized to integrate deeply with blockchain technology, and a modified DAG consensus mechanism is designed to

mitigate distortion caused by abnormal models. To provide a proof-of-concept implementation and evaluation, multiple subchains based

on Hyperledger Fabric and a self-developed DAG-based mainchain are deployed. Extensive experiments demonstrate that ChainFL

significantly surpasses conventional FL systems, showing up to a 14% improvement in training efficiency and a threefold increase in

robustness.

Index Terms—Federated learning, blockchain, direct acyclic graph, sharding, layering

✦

1 INTRODUCTION

W ITH the advent of the Internet of Everything era, the
enormous volume of data generated by various con-

nected devices, such as mobile phones, vehicles, and smart
sensors, has become an invaluable resource for societal ad-
vancement. Machine Learning (ML), widely recognized for
its potency and effectiveness, plays a pivotal role in utilizing
this data resource, driving a variety of smart Internet of
Things (IoT) applications, such as smart grids, intelligent
transportation systems, and smart industries [2]. However,
the common centralized ML methodologies, which involve
collecting data from IoT devices at a central location for
training, present some drawbacks. This centralized ap-
proach not only leads to increased transmission delays and
extended learning convergence times but also poses serious
concerns regarding privacy breaches and the potential for
data misuse, highlighting the need for more secure and
efficient data processing methods in IoT networks.

To this end, Federated Learning (FL) [3] as a promising
training paradigm has been proposed to allow devices to

• This work was supported in part by the National Key R&D Program of
China under Grant 2021YFB1714100, in part by the National Natural
Science Foundation of China under Grant U22B2006, and in part by the
BUPT Excellent Ph.D. Students Foundation under Grant CX2020106.
This work was presented in part at 2021 IEEE WCNC [1]. (Corresponding
author: Bin Cao)

• Shuo Yuan, Bin Cao, and Mugen Peng are with the State Key Labo-
ratory of Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing 100876, China (e-mail: yuan-
shuo@bupt.edu.cn; caobin@bupt.edu.cn; pmg@bupt.edu.cn).

• Yao Sun is with James Watt School of Engineering, University of Glasgow,
G12 8QQ Glasgow, Scotland, UK (e-mail: Yao.Sun@glasgow.ac.uk).

• Zhiguo Wan is with Zhejiang Lab, Hangzhou 311121, Zhejiang, China
(e-mail: wanzhiguo@zhejianglab.com).

collaborate and train a shared ML model in a distributed
manner while keeping training data local. The main benefit
of FL is that only local models without any raw data need to
be shared during the entire learning process [3]. This allows
FL to take full advantage of the resources and data of IoT
devices to implement intelligence endogenous IoT services,
such as predictive maintenance of industrial devices, traf-
fic prediction in Internet-of-vehicle networks, and disease
diagnosis based on wearable devices. However, despite
the potential benefits of traditional FL, there are several
security and efficiency issues in a trustless edge computing
environment that have yet to be fully addressed in practical
applications, which can be summarized as follows.

Security Issues: Traditional FL systems depend on a
central aggregator for training orchestration, but this cen-
tralization presents security risks, including a Single Point
of Failure (SPOF) and vulnerability to targeted attacks,
potentially causing service disruption and paralysis [4].
In addition, the potential bias from the central aggregator
in selecting IoT devices each round can adversely affect
global model accuracy [5]. Moreover, traditional FL lacks
mechanisms to address trust issues in the transmission and
learning process of models, such as the poisonous models
generated by malicious IoT devices [6].

Efficiency Issues: Most FL systems operate in a syn-
chronous manner, wherein the central server waits for all
participating IoT devices to submit their local models before
updating the global model. This approach is slowed down
by stragglers, devices that take longer to complete training
iterations, which affect overall convergence speed [7]. In
contrast, asynchronous training approaches [8] update the
global model with potentially outdated local models, known
as stale models, which can lead to instability of the global

http://arxiv.org/abs/2104.13130v5

2

model during the updating process.

To address the aforementioned issues, a series of works
have introduced blockchain [9] into FL to exploit the ad-
vanced features of blockchain, such as tamper-resistant, de-
centralized, and traceability, in the trustless edge computing
environment [10], [11]. In [10], BlockFL is proposed to carry
out synchronous FL training in a decentralized manner.
Then, the SPOF and targeted attacks can be overcome, and
all local model updates are verified by blockchain nodes
on the Proof-of-Work (PoW) consensus [9]. To alleviate the
computation consumption during the consensus, a collabo-
rative system for industrial IoT is proposed in [11] to inte-
grate the federated training into the consensus process. Be-
sides, some works also introduced differential privacy into
blockchain-based FL to further enhance the data privacy of
IoT devices [11]. However, these studies fail to account for
the constraint imposed by blockchain throughput, a pivotal
determinant of training process efficiency.

Despite some enhancements to distributed training from
blockchain-enabled systems, integrating blockchain with FL
still faces notable challenges, which can be summarized as
follows:

1) High Computation Cost. The use of PoW or PoW-based
consensus mechanisms entails solving computational
puzzles to establish the right to generate blocks, ensuring
blockchain stability and security. However, this computa-
tional requirement introduces a significant computation
cost [12]. Moreover, the time spent on solving these
puzzles unavoidably slows down the convergence of the
training task.

2) Limited Scalability. As we all know, most consensus hardly
handles high scalability and decentralization at the same
time due to the cost of computation, communication,
and time [13]. For example, PoW consensus suffers from
low transaction throughput due to intensive hash com-
putation and cannot scale out its transaction processing
efficiency with the increase of blockchain nodes. Besides,
Practical Byzantine Fault Tolerance (PBFT) [14] faces
limitations imposed by network bandwidth due to the
frequent communication exchanges it requires.

3) Huge Storage Requirement. Blockchain operates as a dis-
tributed ledger, which necessitates each blockchain node
to maintain a record of verified blocks in its local ledger.
Consequently, the limited storage capacity of nodes sig-
nificantly hinders information exchange speed within
the network, thereby impacting the delivery of services
supported by the blockchain.

4) Stragglers. Most of the blockchain-enabled FL systems,
such as BlockFL [10], PIRATE [15], and DeepChain [16]
are processed in a synchronous manner. Hence, the pres-
ence of stragglers hampers training efficiency, similar
to traditional FL scenarios. Currently, there is limited
research on asynchronous training based on blockchain,
let alone the detection of stale models.

To address these challenges, we propose a hierarchical
blockchain-driven FL system, named ChainFL, to enhance
the scalability and security of decentralized FL. By split-
ting the large-scale IoT network into multiple shards, the
majority of information exchange and storage is limited in
the same shard which significantly reduces the communi-

cation rounds and storage requirements. Besides, the model
trained from each shard can be obtained and validated by
other shards efficiently with the help of the Direct Acyclic
Graph (DAG) consensus-based mainchain.

Overall, the main contributions of this paper are sum-
marized as follows:

• We propose ChainFL, a novel FL system driven by
the hierarchical blockchain, with the aim to provide
a secure and effective FL solution for large-scale IoT
networks. We design a Raft-based blockchain shard-
ing architecture to improve scalability and an adapted
DAG-based mainchain to achieve cross-shard interac-
tions. To our knowledge, ChainFL is the first system
to leverage a DAG for coordinating multiple shard
blockchain networks, thereby improving the security
and scalability of FL systems.

• We define the operation process and interaction rules
for ChainFL to perform the FL tasks. To improve learn-
ing efficiency, synchronous and asynchronous training
are combined in ChainFL to alleviate the negative im-
pact of stragglers. Moreover, a virtual pruning mecha-
nism is designed based on the adapted DAG consensus
to eliminate the impact of abnormal models.

• We devise a sharding network prototype leveraging
Hyperledger Fabric to instantiate the subchain layer of
ChainFL, while developing a DAG-based blockchain
to implement the mainchain layer, thereby fulfilling
cross-layer interactions. The off-chain storage scheme
is adopted in the prototype to reduce the storage re-
quirements of blockchain nodes in both layers. The ex-
tensive evaluation results show that ChainFL provides
acceptable and sometimes better convergence rates (by
up to 14%) compared to FedAvg [3] and AsynFL [8] for
CNNs and RNNs, and enhances the robustness (by up
to 3 times) of FL system.

The remainder of this paper is structured as follows. The
related works are reviewed in Section 2. Section 3 introduces
the architecture of ChainFL, with Section 4 detailing its
workflow and consensus. Implementation and evaluations
are in Section 5 and Section 6, respectively. Finally, conclu-
sions and future work are presented in Section 7.

Smart
Device

Central Server

Access
Point

(a)

Access
Point

Smart
Device

Block
propagation

Block generation

(b)

Fig. 1. Typical architecture of FL. (a) Typical master/slave architecture
of FL with a central server. (b) Typical decentralized architecture of
blockchained FL.

2 RELATED WORKS

Recent studies emphasize the crucial role of blockchain
in enhancing security and availability in FL. This section
reviews these works, focusing on blockchain-enabled FL,

3

and summarizes current advancements to underscore the
novelty of our work.

2.1 Blockchain-enabled FL Framework

As shown in Fig. 1(a), traditional FL runs in a master/slave
manner where the capacity and concurrency of the central-
ized master server handling massive participants are usu-
ally the bottlenecks to performing the distributed learning.
Recently, some works such as [10], [15]–[22] have achieved
decentralized learning by using blockchain to tackle the
bottlenecks, and the typical architecture is shown in Fig. 1(b)
where the training process is orchestrated by distributed
nodes instead of the master server. To prevent the effect of
local malicious gradients on the convergence of the global
model, two Byzantine-resilient FL architectures based on
blockchain, namely PIRATE and Biscotti, were proposed
by the authors of [15] and [18], respectively. Integrating
edge computing in BlockFL, Majeed et al. [20] proposed
FLchain to train multiple global models in parallel based
on the channel feature of Hyperledger Fabric, Liu et al.
[21] proposed a decentralized intrusion detection system
in response to the increased cyber-intrusions in vehicular
networks. To decrease the high communication latency be-
tween devices that are separated by great distance, Jin et
al. [22] proposed a cross-cluster FL based on blockchain
for the Internet of medical things. To promote participant
engagement and incentivize correct behavior, DeepChain
[16] and Refiner [19] have introduced incentive mechanisms
into their respective blockchain-based FL systems. How-
ever, these works have not considered the limitation of
blockchain throughput, which is a critical factor in deter-
mining the efficiency of the training process.

On the other hand, several studies have implemented
blockchain protocols on devices with constrained compu-
tational and storage capacities, such as mobile phones and
vehicles [15]. These devices are tasked with updating their
local models, as well as collecting other updated models
and solving computationally intensive puzzles to generate
blocks. Such requirements pose significant challenges for
edge devices [23]. Furthermore, the necessity to maintain
an ever-expanding local distributed ledger can compound
these difficulties, potentially diminishing the efficiency of
FL. A partial solution involves nodes retaining only a
segment of the ledger to reduce storage demands. How-
ever, this approach necessitates frequent interactions with
other entities to access information not stored locally, subse-
quently increasing communication overhead.

2.2 Blockchain Consensus

The consensus mechanism, a cornerstone of blockchain
technology, is instrumental in facilitating agreement in de-
centralized settings [23]. The PoW protocol, notably used
in Bitcoin [9] and later adopted in BlockFL [10], supports
an open participation model without the need for autho-
rization. However, PoW and similar protocols are resource-
intensive and time-consuming due to their reliance on solv-
ing complex hash problems to compete for block generation
rights. In response, Proof of Federated Learning (PoFL) [24]
has been proposed to repurpose the computational efforts
of PoW towards FL model training. Nevertheless, PoFL

is still hampered by limited throughput and an increased
likelihood of forking in scalable, competition-based con-
sensus environments [15]. Alternatively, the PBFT consen-
sus mechanism requires multiple communication rounds to
achieve consensus, which leads to exponentially increased
communication overhead as participant numbers rise [14].
In contrast, the Raft consensus [25], which relies on leader
selection and log replication to achieve rapid and reliable
consensus without the high computational costs and ex-
tended confirmation times associated with other protocols,
resulting in a significant improvement in throughput. How-
ever, the throughput of Raft is constrained by the peak
performance of the single node with limited resources [26].

2.3 Synchronous & Asynchronous FL

The FL process can be categorized into two types: syn-
chronous FL and asynchronous FL. In synchronous FL, as
detailed in [3], [27], training is concurrently executed by par-
ticipants, with the FL aggregator awaiting the completion of
all local model updates. The performance of synchronous
FL is enhanced by optimizing participant selection in con-
strained wireless networks [27] and by introducing an edge
device clustering and a cosine similarity-based model filter
to reduce parameter exchange redundancy [28]. However,
the network on the master aggregator side can experience
congestion when an excessive number of participants check
in concurrently [8]. In addition, the duration per iteration is
likely to increase as the participant count rises, a situation
exacerbated by the occurrence of straggling participants,
known as “stragglers”, who intermittently slow down the
training process [7].

In contrast to synchronous FL, asynchronous FL [8]
presents an alternative method that effectively addresses the
straggler issue. This approach involves the central server
promptly updating the global model upon receiving indi-
vidual local models, rather than waiting for all participant
updates. However, a potential downside of this method, as
indicated in [8], is the risk of destabilizing the global model
due to the aggregation of stale models, which were trained
based on a previous version of the global model. To address
these issues of model staleness and to improve efficiency, the
work [29] has proposed a semi-asynchronous FL approach,
innovating in the areas of client selection and the rules
for global model aggregation. However, it is noteworthy
that these methodologies do not take into consideration the
potential impact of malicious participants, whose actions
could significantly compromise the accuracy of the global
model.

Although both FL and blockchain are operational in
distributed networks, it is still a challenge to refine the
training process to adapt to the blockchain network while
effectively reducing the impact of straggler and/or stale
models.

2.4 The Novelty of the Paper

In this paper, we consider a classic blockchain-driven dis-
tributed learning scenario, which includes devices eager to
leverage their data for participation in decentralized learn-
ing processes and a large blockchain network supported

4

Shard #1

Model
Download/Upload

SLN

SFN/Device

Device

Layer

Subchain

Layer

Model
Aggregate

Transaction
exchange

SFN

Model
Aggregate

Transaction
exchange

SFN

Mainchain

Layer

Application

Layer

SLN

Smart
Contract

Smart
Contract

Task
Requester

Task
Requester

 Publish Task

Shard Model Shard Model

Aggregate
Global
Model

Shard #N

SFN/Device

Model
Download/Upload

Fig. 2. Layered architecture of ChainFL.

by edge nodes with abundant storage and computing re-
sources. We exploit the sharding architecture [30] to split
the large-scale blockchain network into multiple shards to
enhance the parallelism of consensus, which significantly
scales up the overall throughput and reduces the storage re-
quirement of blockchain nodes. Further, we design a DAG-
based mainchain to enable the asynchronous processing of
models trained by each shard, which can efficiently speed
up the validation and aggregation of shard models.

3 OUR PROPOSED CHAINFL SYSTEM

In this section, we present the architecture of ChainFL
and describe its main components. As depicted in Fig.
2, ChainFL employs a two-layer blockchain architecture,
which comprises a subchain layer, consisting of multiple
subchains, and a mainchain layer, featuring a single DAG-
based mainchain.

The subchain layer of ChainFL is based on the classic
multi-access edge computing scenario [31] which is com-
monly employed in smart IoT environments to support IoT
devices with limited resources. In this scenario, edge nodes
(e.g., IoT devices and access points with abundant compu-
tation resources) are partitioned into multiple independent
groups (referred to as shards) that deploy subchains and
act as blockchain nodes to facilitate information exchange
and consensus formation. To meet the requirements of ac-
cess control for IoT devices, the consortium blockchain is
adopted in the subchain. On the other hand, the mainchain
can be deployed on many distributed edge nodes or trusted
computation platforms to maintain and validate transac-
tions submitted by shards in a decentralized manner.

Shard Entities and Training Manner: Within each shard,
there exist several entity types, including IoT devices, Sub-
chain Leader Nodes (SLNs), and Subchain Follower Nodes
(SFNs). Each shard conducts the training task in a syn-
chronous manner, while interactions between subchains and
the mainchain occur independently and asynchronously. As
a result, ChainFL integrates both synchronous and asyn-
chronous training manners. Further details of the interaction
process are described in Section 4.2.

To well elaborate, the layered architecture of ChainFL, as
shown in Fig. 2, is described as follows.

3.1 Device Layer

This layer is composed of IoT devices that participate in FL
tasks, such as phones, vehicles, and smart home appliances.
These devices are responsible for maintaining the collected
data and training the local model. In addition, IoT devices
must pack their updated local models into transactions
along with additional information, such as authorization
details and timestamps, and then submit the transactions
to the subchain.

3.2 Subchain Layer

In each shard, independent subchains are deployed, each
bearing the responsibility of orchestrating the IoT devices
within the shard to collaboratively accomplish the training
task in a synchronous manner. The Raft consensus [25]
is adopted in each subchain, and the details about this
consensus in ChainFL are given in Section 4.3.1. In addition,
the edge nodes as blockchain nodes in each subchain fall
into two categories:

• Subchain Leader Node (SLN). The selection mechanism
for an SLN within each subchain follows the consensus
protocol specific to that subchain. Notably, in a Raft-
based subchain, the election of an SLN is conducted
via a democratic voting process, as detailed in [25].
Beyond executing fundamental consensus operations,
the duties of the SLN include the selection of devices
for participation in the training task, as well as the
authorization of their access to the subchain. Further
responsibilities include the aggregation of local models
and the uploading of the updated shard model to
the mainchain upon the completion of each iteration.
Concurrently, the SLN constructs new basic iteration
models from the mainchain for subsequent training
iterations.

• Subchain Follower Node (SFN). Each SFN is responsible
for authenticating and verifying the accuracy of the
transactions (local models) before they are transmitted
to the SLN. Moreover, all SFNs within a particular
shard need to reach a consensus on the block gener-
ated by the SLN. This consensus is reached through
adherence to the specific consensus protocol employed
within that shard.

Subchain Consensus: To adapt to IoT scenarios and al-
leviate the computational burden on IoT devices, the Raft
protocol, which has low computational complexity, is intro-
duced in this paper as the consensus mechanism for each
subchain1. Importantly, the inherent bottleneck of Raft (that
is, the throughput limited by the performance of a single
node) is effectively addressed by reducing the amount of
transaction processing of the leader through sharding. It is
worth noting that IoT devices with abundant resources can
participate in FL tasks, not only to train the local model
but also to serve as edge nodes, thereby establishing the
consensus of the subchain simultaneously.

3.3 Mainchain Layer

The mainchain within the proposed architecture employs
an asynchronous consensus mechanism based on DAG ar-

1. ChainFL is also able to employ alternative consensus mechanisms,
such as PBFT and Proof of Stake, as long as a robust leader selection
mechanism has been designed well for each shard.

5

chitecture, commonly referred to as DAG consensus [32]
or tangle consensus [33]. The performance and security
aspects of this DAG-based mainchain have been extensively
analyzed in our previous studies [12] and [32]. As illustrated
in Fig. 2, the DAG-based mainchain is characterized by
vertices indicating individual transactions and directed edges
representing the validation of one transaction by another. In this
structure, each transaction encapsulates a model trained by
an individual shard. Transactions without validation from
others are termed as “tips.” Distinctively, the mainchain in
this system diverges from traditional PoW-based blockchain
architectures by not depending on a linear chain for valida-
tion, owing to its graph-based nature. This inherent ability
to accommodate forks enables the mainchain to process
transactions asynchronously. Consequently, ChainFL, im-
plemented on IoT networks, demonstrates scalable capa-
bilities without significantly impeding system throughput.
For the expansion of ChainFL, new IoT devices can inte-
grate into an existing shard or collaborate with other edge
nodes/devices to form a new shard. Furthermore, each
node/platform in the mainchain network possesses a local
ledger, which facilitates the construction of a DAG. Notably,
the deployment of both the subchain and the mainchain is
feasible on a single edge node, provided that the node has
adequate resources.

3.4 Application Layer

The application layer is above the mainchain layer and uti-
lizes the interface offered by the mainchain layer to trigger
FL tasks through smart contracts2. The FL task requester
publishes the task by signing a smart contract that declares
its task requirements and conditions for completing the
task. Correspondingly, IoT devices and edge nodes engaged
in these tasks are incentivized with specific rewards upon
successful task completion.

4 CHAINFL WORKFLOW & CONSENSUS

In this section, we introduce the blockchain-enabled FL
algorithm, detail the FL process and consensus mechanisms
of ChainFL, and analyze the probability of tip selection.

4.1 FL Algorithm

As mentioned above, both synchronous and asynchronous
training are integrated into ChainFL and run in a decen-
tralized manner. Therefore, the FL algorithm originally pro-
posed in [3] needs to be modified to adapt to the architecture
of ChainFL.

To describe the algorithm clearly, we take shard #1
as an example. We assume that the set of IoT devices
{d1, d2, · · · , dn} is selected by SLN of shard #1 to par-
ticipate in the FL task, and the datasets of these devices
are {D1, D2, · · · , Dn}. Without loss of generality, let each
training sample in the dataset be an input-output pair (x,y),
where x is the feature and y is the label. The set of parame-
ters for the FL model is denoted as w. For each sample i, the
loss function of the machine learning problem is defined as
fi(w) = l(xi,yi|w). Therefore, the loss function for device

2. The smart contract is a self-executing contract with the terms
of negotiations between users being directly written into a computer
program [34].

T
ra

in
in

g
T

ra
in

in
g

T
ra

in
in

g

Shard #1

IoT Devices

DAG-base mainchain

Subchain deployed on edge nodes

SLN uploads the latest shard model at
the end of this iteration

SLN selects two tips and aggregates
them to obtain the new basic iteration

model for the current training iteration

SLN gets the task request block from
DAG-based mainchain

Devices download the basic round

model from the subchain for the
current training round

Devices upload the updated local
models to the subchain

1st Ite
ra

tio
n

T
ra

in
in

g
T

ra
in

in
g

T
ra

in
in

g

R
o

u
n

d

1st R
o

u
n

d

1st

2ndIte
ra

tio
n

1st Ite
ra

tio
n

2ndIte
ra

tio
n

R
o

u
n

d

1stR
o

u
n

d

1st

Shard #M

Publish

Smart contract-enabled
task publisher

Several rounds

Several rounds

SLN aggregates local models to update
the shard model

Timeline Timeline

Task request
block

SLNSFN SFN

Fig. 3. Overview of the FL process in ChainFL.

j on the mini-batch bj , a randomly sampled subset of Dj ,
can be written as fbj (w). The goal of device j is to minimize
the loss on each mini-batch:

minFj(w) = Ebj∼Dj
fbj (w). (1)

By applying the gradient descent algorithm on the mini-
batch, the local model of device j can be updated according
to:

wj ← wj − µj∇fbj (wj), (2)

where µj is the learning rate of this device. Then, E epochs
for local dataset Dj are executed to train the local model.

In addition, the Federated Averaging algorithm [3] is
adopted to aggregate the updated local models uploaded
from the selected devices. Then the loss function of shard #1
on decentralized datasets can be expressed as:

Gs1(w) =
m∑

j=1

|Dj |

D
Fj(w), (3)

where m(m ≤ n) is the number of valid models that pass
the validation during the consensus, and D =

∑m
j=1 |Dj |

is the total size of the datasets used in this shard training
round. As the IoT devices selected in round k upload their
updated local models, the model parameters of shard #1,
ws1, are updated through the weighted aggregation of all
updated local models’ parameters, i.e.,

ws1(k) =
m∑

j=1

|Dj |wj(k)

D
. (4)

4.2 FL Process

To complete the FL task in a decentralized manner, we
define the operation process and design a set of interaction
rules to orchestrate the IoT devices and edge nodes in

6

Algorithm 1 ShardTrainingIteration. wbim: basic iteration
model, wbrm: basic round model, ws: shard model, R: the
number of training round in each iteration.

Each triggered SLN executes:
1: obtain wbim from mainchain for the current shard train-

ing iteration
2: wbrm = wbim, ws = wbim, r = 0
3: while r < R do
4: encapsulate wbrm and publish to the subchain
5: select and trigger devices
6: receive valid local models // waiting devices update

7: ws ← aggregate local models according to (4)
8: wbrm = ws, r = r + 1
9: end while

10: return ws

Nodes in subchain execute:
1: receive the transactions from devices
2: for all received transactions do
3: Anew ← validate the accuracy of the model stored in

the transaction
4: if Anew > Aτ then
5: forward the transaction to SLN
6: else
7: mark invalid and discard
8: end if
9: end for

ChainFL, as shown in Fig. 3. It is important to highlight
that ChainFL incorporates two distinct types of transactions:
subchain transactions and mainchain transactions. The former
is created by IoT devices and SLNs and spreads within
a specific shard, while the latter is created by SLNs and
spreads in the mainchain network. Further details about this
procedure are given as follows.

Phase 1: Task Publication. To initiate an FL task, the
task requester signs a smart contract that contains all the
requirements of the task, such as the structure and pa-
rameters of the initial model, shard training configurations,
and completion conditions. The smart contract then gen-
erates the task request transaction (denoted as g0) on the
mainchain, which encapsulates the task requirements and a
test dataset provided by the task requester. Meanwhile, the
smart contract triggers the corresponding shard network(s)
to start the training task.

Phase 2: Shard Training. SLNs in activated shard net-
works retrieve g0, and the task information extracted from
g0 is encapsulated into a subchain transaction. This transac-
tion is then recorded in the distributed ledger of each shard
to initiate the training process. The details of Phase 2 are
described as follows:

1) Device Selection: In each training round of one shard,
SLN selects candidates for shard training based on the
status of IoT devices, such as their local data profile
and power status, which are reported periodically. Only
devices ready for training with sufficient battery and
stable network coverage are chosen. These devices are
then authorized to access the subchain, download the
basic round model for local training, and subsequently
upload their updated models. It is worth noting that

Algorithm 2 SLN Interact with Mainchain: Basic Iteration
Model Building and Shard Model Submitting

1: while true do
2: if the current is 1st iteration then
3: wbim ← extract the initial parameters from g0
4: ApproveSet = (g0)
5: else
6: (w

′

1,w
′

2, ...,w
′

η)← choose η tips from the DAG

7: (A
′

1, A
′

2, ..., A
′

η) ← validate the accuracy of the
model in each chosen tip

8: wbim ← (
λ∑

i=1

w
′

i

λ
), aggregate λ(λ < η) tips with the

highest accuracy to build a basic iteration model
9: ApproveSet = these λ tips

10: end if
11: wnew ← ShardTrainingIteration(wbim)
12: g ← package wnew and the ID of all transactions in

ApproveSet as a mainchain transaction
13: submit the g to the mainchain
14: if stop signal received then
15: break
16: end if
17: end while

device selection in each shard operates independently.
2) Local Update: Utilizing the basic round model obtained

from the subchain, each device performs the local train-
ing process by engaging with its raw data to address
problem (1). Once the predefined goals set in the smart
contract, such as a certain number of local training
epochs or a target evaluation metric convergence value,
are met, the updated local model is transmitted to the
relevant subchain node (SLN or SFN).

3) Model Aggregation: As outlined in Algorithm 1, subchain
nodes first receive and validate local models against the
test dataset. The validity of these models is determined
using the preset threshold Aτ , which is typically aligned
with the evaluation metric of the basic round model
relevant to the current training round, such as accuracy
for target recognition tasks or perplexity for natural lan-
guage processing. Subsequently, the SLN aggregates the
valid local models following (4) to update the shard model,
which is then disseminated to the subchain as the basic
round model for the ongoing shard training iteration. Due
to the synchronous manner of the training within each
shard, the aggregation of the shard model is triggered
when sufficient IoT devices upload their local models
within a specified period of time, otherwise, the round
is discarded. This entire procedure, encompassing device
selection and model aggregation, constitutes a round of
shard training. If the iteration continues, the updated
shard model is packaged as a new subchain transaction
and published to the subchain, forming the basis for the
next shard training round.

Phase 3: Shard Model Submitting and Basic Iteration
Model Aggregating. Upon the completion of each shard
training iteration, the most recent aggregated shard model
is encapsulated within a mainchain transaction. This trans-
action is subsequently submitted to the mainchain by the

7

SLN. Meanwhile, the new basic iteration model wbim is ag-
gregated from the mainchain. This aggregation initiates the
subsequent shard training iteration, as long as the training
task is still ongoing. It is important to emphasize that each
shard independently coordinates its training, validates other
transactions, and submits its trained shard model to the
mainchain. This process forms the basis of the asynchronous
transaction processing in the mainchain. The details of these
processes are shown in Algorithm 2.

In the decentralized architecture of ChainFL, direct gen-
eration of a global model is not feasible. Hence, a smart
contract is employed to monitor the latest DAG and ex-
ecute operations analogous to those in the basic iteration
model aggregation, as outlined in Algorithm 2, for peri-
odic global model aggregation. The selection of transactions
for constructing the global model is governed by task-
specific parameters, which are explicitly defined within the
smart contract. Upon reaching the predetermined termina-
tion condition, the smart contract broadcasts a stop signal
to all activated SLNs. Subsequently, these SLNs conclude
their training process after completing the current iteration.
Moreover, the task requester is endowed with the abil-
ity to aggregate the global model from any location with
mainchain access, thus facilitating decentralized control.
In addition, IoT devices, once authorized, can engage in
training on the edge shard blockchain. This participation
not only augments model accuracy but also allows for the
convenient acquisition of the most up-to-date intelligent
services, reducing the need for centralized infrastructure.

4.3 ChainFL Consensus

As described in Section 3, the Raft consensus and the DAG
consensus are adopted in each subchain and the mainchain,
respectively.

4.3.1 Raft Consensus

In a Raft consensus-based subchain network, edge nodes are
classified as leaders or followers. While detailed leader se-
lection is beyond the scope of this paper (see [25] for more),
managing leader failures, such as offline incidents, is cru-
cial. Raft, a Crash Fault-Tolerance (CFT) protocol, ensures
subchain continuity during leader crashes, detected via a
heartbeat mechanism [25]. Once a leader crash is detected,
leader candidates initiate an election process. Specifically, in
Raft, the maximum number of failed nodes that can be toler-
ated, denoted as a, is determined by the condition b = 2a+1,
where b represents the total number of edge nodes present
within a shard. As shown in Algorithm 1, followers have the
responsibility of validating received transactions (updated
local models) and forwarding the valid ones to the leader.
The leader then arranges these transactions in chronological
order based on their generation time. Once the cumulative
size of the transactions reaches a threshold or the designated
period ends, the leader creates a block and broadcasts it to
all followers. Followers approve the block after confirming
the signatures and verifying the transactions it contains.
Then, consensus on this block is reached when the leader
receives positive responses from at least half of all followers.

By partitioning a large-scale blockchain network into
multiple independent shards, the system throughput is

Tip 1

New transaction
approval tip 1

New
transaction

Tip 2

Submit tip 2 to
DAG

New transaction
approval tip 2

New
transaction

Tip 3

Submit tip 3 to
DAG

Judged as stale
model

Judged as stale
model

Selected as a
candidate

Selected as a
candidate

May be selected
as a candidate

Virtual Pruning

Normal growth

No one will select

Approve

Approve

 Freshness time

 Freshness time

Submit tip 1 to
DAG

No one
will select

Timeline

Timeline

Timeline

 Freshness time

Fig. 4. Three situations in the lifecycle of each tip.

scaled effectively with the help of parallel consensus and
separate data storage. These approaches localize most data
synchronization to individual shards rather than the entire
network, significantly reducing communication rounds and
expediting transaction processing. In addition, local mod-
els are stored exclusively in the ledger of their respective
shards, substantially decreasing the data storage require-
ments for the blockchain nodes. Furthermore, the influence
of stragglers is limited to their own shards, which prevents
network-wide impact.

4.3.2 DAG Consensus-based Virtual Pruning

As outlined in Algorithm 2, SLNs utilize a set of λ tips
for the construction of the basic iteration model. Subse-
quently, these selected tips are approved by the updated
shard model, which itself is trained from the basic iteration
model in the current iteration, and is thereafter encapsulated
in new mainchain transactions. However, the mainchain
might include two types of abnormal transactions: malicious
transactions from malicious shards and stale transactions
comprising outdated models from stragglers. The tip selec-
tion, as presented in Algorithm 2, effectively detects such
abnormal transactions by merging a voting system with
mainchain transaction accuracy checks. Transactions char-
acterized by low accuracy, for instance, are more likely to be
ignored, thus precluding their utilization in the aggregation
of the basic iteration model. In Section 4.3.3, we develop
a probabilistic model to quantify the likelihood that the
basic iterative model incorporates tips with low accuracy.
In DAG-based consensus, the approval rate for abnormal
transactions is lower compared to normal ones, but these
unapproved transactions are retained as tips in the graph of
the mainchain. Over time, the growing share of abnormal
transactions among tips increases the risk of their selection
by SLNs for the basic iteration model.

To address this issue, we set a waiting period called fresh-
ness time in the mainchain to eliminate the effect of abnormal
transactions. This freshness time is applied independently to
each tip and begins counting once the tip is received by the

8

mainchain node. As depicted in Fig. 4, each tip undergoes
one of three potential scenarios during its lifecycle. For a tip
to be approved by other transactions, it must be selected as
a candidate by at least one SLN within its freshness time.
Tips failing to be chosen within their freshness time are sub-
sequently disregarded by all SLNs. This mechanism of tip
selection, coupled with the enforcement of freshness time,
effectively mitigates the influence of abnormal transactions,
leading to a virtual pruning of the DAG. In the mainchain,
a transaction is deemed to have reached consensus when it
secures approval from a sufficient number of other trans-
actions, denoted as N , either directly or indirectly. Notably,
while each Raft-based shard is limited to handling crash
faults, this DAG consensus process efficiently mitigates the
negative impact of malicious devices and shards on FL
tasks.

4.3.3 Probability Analysis for Tip Selection

As outlined in Algorithm 2, SLNs select η tips from the
DAG mainchain and subsequently identify the first λ (where
λ < η) tips with the highest accuracy to build a basic
iteration model. To model this probability, we introduce an
auxiliary parameter denoted as A′ (where A′ ≥ Aτ) and
assume that there exist a tips with an accuracy equal to or
greater than A′ in the DAG mainchain. The total number
of the available tips in the DAG mainchain is denoted as
I . Then, we can determine the probability of the b (where
b ≤ I−a) tips whose accuracy is below A′ in selected η tips,
and the probability is

P (b) =
Cb

I−aC
η−b
a

C
η
I

. (5)

In addition, the goal of tip selection during the inter-
action between the SLN and the DAG mainchain is to
prioritize the tips with higher accuracy. If the number of
tips with an accuracy lower than A′ in the selected η tips is
greater than η−λ, which is equivalent to b > η−λ, the basic
iteration model will utilize tips with an accuracy below A′.
Therefore, we can derive the probability that tips with an
accuracy lower than A′ are used to build the basic iteration
model, and the probability is

P (b > η − λ) = 1− P (b ≤ η − λ) = 1−

η−λ∑

b=0

P (b). (6)

When holding other parameters constant, it can be observed
that the aforementioned probability decreases as the value
of λ decreases. This trend indicates that with a lower λ,
transactions of lower accuracy are more likely to be ex-
cluded from consideration.

5 IMPLEMENTATION

In this section, we detail the practical deployment of
ChainFL, which includes the off-chain storage scheme,
Hyperledger Fabric-based subchain, and modified DAG-
based mainchain. The formats of transactions and blocks
in ChainFL are presented in Fig. 5. In addition, the real-
world implementation of ChainFL, along with the function
modules operational in each entity, are depicted in Fig. 6(a)

InterPlanetary File System (IPFS)

Sender

(Device or SLN)

Subchain Transaction

Sender ID

Task ID

of Round

Hash of Paras File

Timestamp

Signature

Mainchain Transaction

(Mainchain Regular Block)

Shard ID

Approve Tips Set

Hash of Paras File

Timestamp

Header

SLN

Paras
File

File
Hash

Paras
File

File
Hash

Transaction Hash

Body

Header Body

Timestamp

Hash of Previous Block

Signature

of
Trans.

Hash
1~4

Hash
3~4

Hash
1~2

Trans. 1

Trans. 2

Trans. 3

Trans. 4

Hash 1

Hash 2

Hash 3

Hash 4

Subchain Regular Block

Merkle
Root

Model Acc.

Fig. 5. The format of transactions or/and blocks in ChainFL.

and Fig. 6(b), respectively. The implementation of ChainFL
is available on GitHub3.

5.1 Off-Chain Storage Scheme

Blockchain storage schemes typically fall into two cate-
gories: 1) full on-chain storage, where all data is directly
stored in the blockchain ledger, and 2) off-chain storage,
where data is stored in an external file system with only a
unique identifier in the ledger ensuring immutability. Given
the constraints of block size in Fabric, storing large data
streams within the main body of the block is impractical.
Consequently, our implementation adopts an off-chain stor-
age approach. For managing off-chain data, we utilize the
InterPlanetary File System (IPFS) [35], a private peer-to-peer
file system. Upon adding a file to IPFS, it generates a unique
hash value representing the file content. This hash value not
only facilitates the reconstruction of the Merkle tree of file
pieces of the parameter file but also enables the retrieval
of the entire file [35]. In our system, the blockchain ledger
stores only this hash value, not the parameter file itself.
To efficiently handle the parameter files within the training
process, all IoT devices and blockchain nodes in ChainFL are
integrated into the IPFS network. Interaction with IPFS is
managed through two function modules deployed on each
entity: file to ipfs() and get file from ipfs(), as illustrated in
Fig. 6(b).

5.2 Hyperledger Fabric-based Subchain

To facilitate the implementation of subchains, we establish a
Raft blockchain environment utilizing Hyperledger Fabric
[36] (referred to as Fabric), which incorporates the Raft
ordering consensus mechanism. Fabric, a permissioned dis-
tributed ledger technology platform, is well-suited for the
consortium-based structure of subchains in ChainFL. The
Public Key Infrastructure (PKI)-based membership man-
agement in Fabric provides robust control over IoT device
access, thus enabling efficient device selection. In addition,
a smart contract (called chaincode) refined from sacc [36] is
employed for processing transactions within subchains. The

3. https://github.com/shuoyuan/ChainsFL-implementation

9

Shard #1 Shard #2 Shard #3 DAG Node

SFN

Deploy on the Computer in Each Shard

Device Simulator

IPFS Node

SFNSFN

SLNSLN

DAG Host

Shard #2 Shard #3

S
h

a
r
d

 #
1

(a) Implementation of ChainFL

 C

a
n

d
id

a
te

s

Function Modules in SLN

devices_selection()

get_file_from_ipfs()

receive_valid_trans()

transaction_
validation()

model_aggregation()

publish_to_subchain()

is_current_iteration_
done_monitor()

p
u

b
li

sh
_

to
_

m
a

in
ch

a
in

()

#
 o

f
R

o
u

n
d

 P
lu

s
1

 (
N

e
w

 B
a

si
c

R
o

u
n

d
 M

o
d

e
l)

N
e

w
 T

a
sk

 I
D

 &
 R

e
se

t
#

 o
f

R
o

u
n

d
 (

N
e

w
 I

te
ra

ti
o

n
 M

o
d

e
l)

file_to_ipfs()

Yes

No

h

trigger_monitor()

Init Model

ch
o

o
se

_
ti

p
s_

fr
o

m
_

m
a

in
ch

a
in

()

Choose
 Tipsl

send_tips_list()

receive_transaction() listen_tips_reqs()

update_tips_list()

Function Modules in DAG Nodes

receive_transaction() forward_to_SLN()

transaction_
validation()

Function Modules in Subchain Nodes

get_file_from_ipfs()

Function Modules in Device

get_file_from_ipfs()

world_state_
monitor()

query_task_info()

local_training()

publish_to_subchain()

file_to_ipfs()

(b) Function modules deployed on each entity.

Fig. 6. The implementation of ChainFL in the real environment with the function modules deployed on each entity.

format for recording local or shard model information in the
subchain ledger is illustrated in Fig. 5. Each subchain trans-
action includes a Sender ID, which is a unique identifier
determined by the identity of the transaction issuer, such as
an IoT device ID or an SLN ID. The Task ID, assigned by the
SLN at the initiation of a shard training iteration, and the #

of Round, indicating the index of the current training round
within an iteration, are also integral components. Finally,
the Hash of Paras File represents the hash value of a model
file in IPFS, serving as a uniform resource identifier for file
location within IPFS.

To augment the functionality of Fabric nodes in ChainFL,
specialized function modules like transaction validation()

and model aggregation() have been developed and inte-
grated. These modules, not inherent to the original Fabric,
facilitate model validation and the aggregation of mod-
els and tips, as depicted in Fig. 6(b). In addition, func-
tions pertinent to mainchain interactions, such as pub-

lish to mainchain() and choose tips from mainchain(), are
also incorporated within Fabric nodes. The scheduling rules
and order among these modules are meticulously detailed
in Fig. 6(b). As described in Section 4.2, a new basic iter-
ation model is aggregated from the mainchain upon the
completion of the current iteration. The progression of it-
erations is tracked via # of Round, with iteration completion
denoted by reaching the predefined round number in the
task requirements. Moreover, each distinct shard training
iteration is associated with a unique Task ID. Following
the construction of a new basic iteration model, the SLN
is tasked with generating a new Task ID and resetting # of

Round for the subsequent shard training iteration.
Due to the limited amount of hardware, a complete

Fabric-based subchain containing one leader and two fol-
lowers is configured in a single PC4. In addition, the train-
ing process of IoT devices served by this subchain is also
simulated and executed on the same PC. Consequently, this

4. The Raft ordering consensus of Fabric necessitates the deployment
of at least three nodes (one leader and two followers) [36].

configuration essentially constitutes a single shard network
within ChainFL, comprising the PC and its associated IoT
devices.

5.3 Modified DAG-based Mainchain

We developed a modified DAG-based mainchain in Python
to facilitate information exchange with shards. The function
modules specific to the mainchain nodes are depicted in
Fig. 6(b). The mainchain node maintains an updated tip
list, shared with SLNs upon request. The communication
between SLNs and the mainchain node, predominantly
for request-response interactions, is implemented through
socket communication protocols. Moreover, the tip list un-
dergoes updates in two scenarios: first, when an SLN con-
tributes a new transaction to the mainchain, and second,
upon the detection of an abnormal tip through the virtual
pruning mechanism. The format of transactions in the main-
chain is depicted in Fig. 5. To accelerate and streamline
the execution of massive experiments, the mainchain is
deployed on a single computer (one node) in our real exper-
imental setup, rather than on multiple distributed nodes5.

6 EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of ChainFL in
terms of convergence and robustness against model attacks
of malicious devices or shards.

6.1 Baselines and Settings

To evaluate the performance of ChainFL, we run two tasks:
realistic object classification using Convolutional Neural
Networks (CNNs) as Task 1, and neural language process-
ing with Gated Recurrent Units (GRUs) as Task 2. Task 1
utilizes the MNIST image dataset [37], while Task 2 employs

5. The deployment scheme does not impact interactions between
SLNs and the DAG, ensuring that the performance of federated learn-
ing via ChainFL remains undisturbed.

10

TABLE 1
Common Experimental Settings.

Parameter Symbol Task 1 Task 2
Dataset D MNIST Penn Treebank
Dataset size |D| 70000 1036580
Model w CNN GRU
of devices n 100 100
Learning rate µ 1e-2 1e-2
of cand. tips η 3 3
of appr. tips λ 2 2
of shards M 3 3
Loss function l Cross Entropy Loss NLL Loss

Eval. metric em
Acc=

1
n

∑
n
i=1 φ (yi, ŷi)

PPL(x) =

2
−

∑
x p(x) log 1

p(x)

of dev./shard Sd {10, 20, 30} {10, 20, 30}
Mini-batch size B {10, 20, 30, 40, 50} {10, 20, 30, 40, 50}
Local epochs E {1, 5, 10, 15, 20} {1, 5, 10, 15, 20}
Malicious ratio Md {0, 0.1, 0.2, 0.3} {0, 0.1, 0.2, 0.3}
of rounds/ite. R {1, 2, 3} {1, 2, 3}

the English language dataset Penn Treebank [38]. For Task 1,
we adopt a non-IID data setting where the MNIST training
set is divided into 100 groups sorted by digit labels, with
each device receiving one group. In Task 2, the Penn Tree-
bank dataset is shuffled and randomly split into 100 subsets
without replacement, and then each device is allocated one
subset.

In Task 1, we use the classic network of LeNet-5 which
consists of two convolutional layers with max pooling and
three fully connected layers. Task 2 simulates mobile key-
board scenarios in decentralized applications, where each
text sample is embedded into a 300-dimensional vector for
the GRU-based model, followed by a fully connected layer
for next-word prediction, similar to [39]. Table 1 details
common experimental settings, including different evalua-
tion metrics (em) for different tasks. In Task 1, for accuracy
assessment, the function φ(·) outputs 1 for correct model
predictions (ŷi) and 0 otherwise. Task 2 employs perplexity
[40], a common metric for language models, where lower
testing perplexity indicates higher accuracy and better per-
formance, as detailed in Table 1.

Our extensive experiments compare various dimensions,
including distributed training methods, mini-batch size
scales, and local epoch numbers. We establish two baselines
for comparison, with specific settings for baselines and
ChainFL as follows:

FedAvg [3]: FedAvg, a synchronous federated optimiza-
tion method, samples a fraction of devices in each iteration,
with each device performing multiple local epochs to up-
date its model. For a more fair comparison, the number of
devices sampled per iteration equals the number of devices
per shard (Sd).

AsynFL [8]: AsynFL is an asynchronous federated opti-
mization method that updates the global model timely as
the central server receives the updated local model from the

device. For detail, the global model w
′

gm is updated using

the rule w
′

new ←
1
2w

′

gm + 1
2w

′

lm in each global epoch by

using the updated local model w
′

lm.

ChainFL: The training process of ChainFL in each shard
takes a similar setting to FedAvg and performs in a decen-
tralized way. The basic iteration model of each shard is built
asynchronously from the DAG according to Algorithm 2.
With three shards in ChainFL, Sd non-overlapping devices

73

93
103

133

149

59

90

108
120

136

486

540
548

558

504

10 20 30 40 50
0

50

100

500

550

600

650

700

#
 o

f
G

lo
b
al

 E
p
o
ch

s

Minibatch Size

 ChainFL

 FedAvg

 AsynFL

(a)

10 20 30 40 50
0

2k

4k

6k

8k

#
 o

f
G

ra
d

ie
n

ts

Minibatch Size

 ChainFL

 FedAvg

 AsynFL

(b)

111

73
57

64 68
81

50
65

58 56

519

486

367

276

341

1 5 10 15 20
0

100

300

400

500

600

#
 o

f
G

lo
b
al

 E
p
o
ch

s

Local Epochs of Devices

 ChainFL

 FedAvg

 AsynFL

(c)

1 5 10 15 20
0

3k

6k

9k

12k

15k

#
 o

f
G

ra
d
ie

n
ts

Local Epochs of Devices

 ChainFL

 FedAvg

 AsynFL

(d)

Fig. 7. Effect of the mini-batch size and local epochs of devices on # of
global epochs and # of gradients with a preset threshold of the testing
accuracy of 0.95 (Sd = 10, R = 1, Md = 0). (a) Global Epochs vs.
Mini-Batch Size. (b) Gradients vs. Mini-Batch Size. (c) Global Epochs
vs. Local Epochs. (d) Gradients vs. Local Epochs.

30 60 90 120 150
0.6

0.7

0.8

0.9

1

 ChainFL: B=10, E=5

 ChainFL: B=50, E=5

 ChainFL: B=10, E=15

 FedAvg: B=10, E=15

 AsynFL: B=10, E=15

T
es

ti
n

g
 A

cc
u

ra
cy

of Global Epochs

(a)

0 30 60 90 120 150
0

1

2

T
ra

in
in

g
 L

o
ss

of Global Epochs

 ChainFL: B=10, E=5

 ChainFL: B=50, E=5

 ChainFL: B=10, E=15

 FedAvg: B=10, E=15

 AsynFL: B=10, E=15

(b)

1.5k 3k 4.5k 6k 7.5k
0.8

0.85

0.9

0.95

1

T
es

ti
n

g
 A

cc
u

ra
cy

of Gradients

 ChainFL: B=10, E=5

 ChainFL: B=50, E=5

 ChainFL: B=10, E=15

 FedAvg: B=10, E=15

 AsynFL: B=10, E=15

(c)

1.5k 3k 4.5k 6k 7.5k
0

0.2

0.4

0.6

0.8

T
ra

in
in

g
 L

o
ss

of Gradients

 ChainFL: B=10, E=5

 ChainFL: B=50, E=5

 ChainFL: B=10, E=15

 FedAvg: B=10, E=15

 AsynFL: B=10, E=15

(d)

Fig. 8. Testing accuracy and training loss of Task 1 on two scales (Sd =

10, R = 1, Md = 0). (a) Accuracy vs. Global Epochs. (b) Loss vs. Global
Epochs. (c) Accuracy vs. Gradients. (d) Loss vs. Gradients.

are selected from 100 devices for each shard.

It is evident that comparing the performance of AsynFL
based on the number of global epochs may be unfair, given
the varying number of devices selected in each training
round. To address this, we use two comparative approaches:
metrics against the number of global epochs, and metrics
against the number of gradients. We treat each gradient
trained in a local epoch of one device as a computa-
tional unit which allows performance evaluation at equiv-
alent computational costs. For example, using 50 gradients

11

TABLE 2
Best Accuracy of Task 1 Under Different Experimental Settings of Mini-Batch Size (B) and # of Local Epochs (E).

Best Accuracy
Stop@ # of Global Epochs=150 Stop@ # of Gradients=7000

Mini-Batch Size (B) 10 20 30 40 50 10 20 30 40 50

E=5
FedAvg 0.9702 0.9603 0.9575 0.9552 0.9526 0.9663 0.9602 0.9552 0.954 0.9507
AsynFL 0.9021 0.8715 0.8511 0.8486 0.8147 0.9759 0.9756 0.9749 0.9724 0.9726
ChainFL 0.9758 0.9678 0.9683 0.9597 0.9507 0.9756 0.9678 0.9680 0.9545 0.9478
of Local Epochs (E) 1 5 10 15 20 5 10 15 20

B=10
FedAvg 0.9632 0.9746 0.9704 0.9715 0.9715 0.9729 0.9619 0.9482 0.9383
AsynFL 0.8483 0.9021 0.8774 0.8898 0.8978 0.9759 0.9665 0.959 0.9508
ChainFL 0.9701 0.9758 0.9785 0.9780 0.9799 0.97565 0.9625 0.9389 0.8991

0 1.5k 3k 4.5k 6k 7.5k
0

0.5

1

0 1.5k 3k 4.5k 6k 7.5k
0

0.5

1

0 1.5k 3k 4.5k 6k 7.5k
0

0.5

1

1.5k 3k 4.5k 6k 7.5k
0.75

0.8

0.85

0.9

0.95

T
es

ti
n
g
 A

cc
u
ra

cy

B=50, E=5, Md=0.1 B=50, E=5, Md=0.2

B=50, E=5, Md=0.3 ChainFL: B=50, E=5

 ChainFL

 FedAvg

 AsynFL

 ChainFL

 FedAvg

 AsynFL

T
es

ti
n
g
 A

cc
u
ra

cy

of Gradients

 ChainFL

 FedAvg

 AsynFL

of Gradients

 All Honest

 1 Malicious Shard

 Md=0.1

 Md=0.2

 Md=0.3

Fig. 9. Effect of different malicious device ratio on the testing accuracy
(Sd = 10, R = 1).

equates to selecting 10 devices per global epoch, with each
device conducting 5 local epochs. In ChainFL, the latest
global model in the current mainchain is approximated by
the basic iteration model aggregated by SLNs from tips of
the mainchain due to similar model aggregation processes
and the independent operation of each shard. For all three
paradigms, a local epoch of the device involves processing
the entire local dataset. It is also important to note that,
due to the decentralized setup of ChainFL, communication
rounds are not a suitable metric for fair comparison and are
thus not evaluated in this study.

6.2 Experimental Results

Our study initially evaluates FL model parameter sensitiv-
ity, focusing on mini-batch size B ∈ {10, 20, 30, 40, 50} and
local epochs E ∈ {1, 5, 10, 15, 20}. The training is conducted
over a set number of global epochs to ascertain optimal
accuracy and perplexity, with an additional analysis based
on gradient numbers. The results of Task 1 and Task 2, in
terms of the best accuracy and best perplexity, are presented
in Table 2 and Table 3, respectively. For benchmarks, we
use a testing accuracy threshold of 0.95 and perplexity
at 150, considering training complete when these metrics
are met (higher/lower than 0.95/150) by the global model.
Model convergence is examined by comparing the number
of global epochs to gradient requirements, shown in Fig. 7
and Fig. 11.

0

5k

10k

15k

20k

25k

0 30 60 90 120 150
0.5

0.6

0.7

0.8

0.9

1

0 30 60 90 120 150
0.5

0.6

0.7

0.8

0.9

1

#
 o

f
G

ra
d

ie
n

ts

 # of Gradients: R=1

 # of Gradients: R=2

 # of Gradients: R=3
T

es
ti

n
g

 A
cc

u
ra

cy

of Global Epochs

 Testing Accuracy: R=1

 Testing Accuracy: R=2

 Testing Accuracy: R=3

Sd=10 R=1

T
es

ti
n

g
 A

cc
u

ra
cy

of Global Epochs

 10 Devices Per Shard

 20 Devices Per Shard

 30 Devices Per Shard

Fig. 10. Effect of rounds per iteration and devices per shard on the
testing accuracy (B = 10, E = 5, Md = 0).

Meanwhile, we present partial results of the accu-
racy/perplexity and loss traces with varying model param-
eters for FedAvg, AsynFL, and ChainFL in Fig. 8 and Fig. 12.
Moreover, the resilience of these training paradigms against
multiple malicious devices is evaluated, with impacts on
Task 1 and Task 2 shown in Fig. 9 and Fig. 13. We also
examine the influence of rounds per shard training iteration
and device quantity per shard on the global model of
ChainFL, presented in Fig. 10 and Fig. 14. Finally, the impact
of integrating blockchain into FL on the training latency is
evaluated, with results shown in Fig. 15 and Fig. 16.

Task 1: MNIST. In this handwritten digit image classifi-
cation task, we analyze the best accuracy over 150 global
epochs and 7000 gradients produced during training. As
shown in the ‘Stop@ # of Global Epochs = 150’ column in
Table 2, ChainFL outperforms FedAvg and AsynFL in global
model accuracy for most mini-batch sizes and local epochs.
For instance, in the case of B = 10 and E = 1, ChainFL
shows a roughly 14% improvement in accuracy. This is
credited to SLNs in ChainFL building the basic iteration
model from the DAG-based mainchain, which incorporates
models from all shards. While the superiority of ChainFL
is slightly reduced in the ‘Stop@ # of Gradients = 7000’
scenario compared to AsynFL, it still maintains an edge over
FedAvg.

The influence of mini-batch size and local epochs on
devices is further illustrated in Fig. 7 and Fig. 8. For details,
E = 5 in Fig. 7(a) and Fig. 7(b), and B = 10 in Fig. 7(c)
and Fig. 7(d). We observe that decreasing the mini-batch
size reduces the number of global epochs and gradients

12

required to reach a testing accuracy of 0.95 in ChainFL and
FedAvg. However, increasing the amount of computation of
each device by increasing local epochs does not consistently
reduce global epochs, which indicates a potential decrease in
computational efficiency, as concluded from Fig. 7. Besides,
Fig. 8(a), Fig. 8(c), Fig. 8(b), and Fig. 8(d) show a faster
convergence rate and higher accuracy of ChainFL compared
to FedAvg and AsynFL in most scenarios. This enhancement
results from the iterative method of ChainFL, where well-
trained models from various shards in the mainchain are se-
lected for subsequent training rounds, potentially reducing
the impact of lower accuracy models. Conversely, in FedAvg
and AsynFL, both the worst and best models contribute to
the global model aggregation, regardless of the performance
of the models trained by each device.

In addition, this paper places a substantial empha-
sis on enhancing robustness during the training process.
We evaluate the performance of ChainFL against FedAvg
and AsynFL under various malicious device ratios, Md ∈
{0.1, 0.2, 0.3}. For instance, Md = 0.1 indicates that 10%
of devices in each shard are malicious, as illustrated in Fig.
9. The results demonstrate the pronounced superiority of
ChainFL in model accuracy, particularly notable at higher
malicious ratios (Md = 0.3), where ChainFL exhibits a
threefold increase in robustness. In scenarios with Md = 0.2
and Md = 0.3, the global model accuracy of FedAvg and
AsynFL struggles to converge beyond 0.5 even after 7.5k
gradients. In contrast, the performance of ChainFL con-
verges to values exceeding 0.8 under the same conditions.
Besides, the impact of varying levels of malicious activity
within ChainFL is depicted in the bottom right corner of
Fig. 9. It is observed that, although the accuracy of ChainFL
marginally diminishes with an increase in the malicious
ratio, the decline is relatively minimal compared to the
substantial accuracy reduction experienced by FedAvg and
AsynFL.

We also compare various ChainFL parameters, including
the number of rounds (R ∈ {1, 2, 3}) per shard training
iteration and devices per shard, with results shown in Fig.
10. The results show that a higher R does not improve global
model accuracy, which implies that extra computational
effort is not commensurately beneficial. Conversely, adding
more devices per shard improves both the peak accuracy
and the convergence speed of the global model accuracy.

Task 2: Penn Treebank. For Task 2, we also conduct training
for a preset number of global epochs and gradients to
determine the best perplexity, as shown in Table 3. ChainFL
consistently achieved lower global model perplexity in most
cases, evident in both the ‘Stop@ # of Global Epochs=80’ and
‘Stop@ # of Gradients=3000’ columns. In Fig. 11, we assess
the number of global epochs and gradients required to reach
the target perplexity of 150. Notably, both metrics increase
with larger mini-batch sizes, while more local epochs which
improve computational parallelism of devices, reduce the
number of global epochs. However, this does not always
correlate with proportional benefits in computation costs, as
illustrated in Fig. 11(d). Fig. 12 traces the testing perplexity
of the global model and the training loss on two scales under
the settings of B ∈ {20, 50} and E ∈ {5, 15}. ChainFL
demonstrates superior performance compared with FedAvg
and AsynFL in the B = 20, E = 15 configuration on the

10 20 30 40 50
0

20

40

60

80

#
 o

f
G

lo
b

al
 E

p
o

ch
s

Minibatch Size

 ChainFL

 FedAvg

 AsynFL

(a)

10 20 30 40 50
0

1k

2k

3k

#
 o

f
G

ra
d

ie
n

ts

Minibatch Size

 ChainFL

 FedAvg

 AsynFL

(b)

1 5 10 15 20
0

50

100

150

200

#
 o

f
G

lo
b

al
 E

p
o

ch
s

Local Epochs of Devices

 ChainFL

 FedAvg

 AsynFL

(c)

1 5 10 15 20
0

500

1k

1.5k

2k

#
 o

f
G

ra
d

ie
n

ts

Local Epochs of Devices

 ChainFL

 FedAvg

 AsynFL

(d)

Fig. 11. Effect of the mini-batch size and local epochs of devices on # of
global epochs and # of gradients with a preset threshold of the testing
perplexity of 150 (Sd = 10, R = 1, Md = 0). (a) Global Epochs vs.
Mini-Batch Size. (b) Gradients vs. Mini-Batch Size. (c) Global Epochs
vs. Local Epochs. (d) Gradients vs. Local Epochs.

0 10 20 30 40 50
100

500

900

 ChainFL: B=20, E=5

 ChainFL: B=50, E=5

 ChainFL: B=20, E=15

 FedAvg: B=20, E=15

 AsynFL: B=20, E=15

T
es

ti
n

g
 P

er
p

le
x

it
y

of Global Epochs

(a)

0 10 20 30 40 50

5.5

6

6.5

7

 ChainFL: B=20, E=5

 ChainFL: B=50, E=5

 ChainFL: B=20, E=15

 FedAvg: B=20, E=15

 AsynFL: B=20, E=15

T
ra

in
in

g
 L

o
ss

of Global Epochs

(b)

0 500 1000 1500 2000 2500
100

200

300

400

500

 ChainFL: B=20, E=5

 ChainFL: B=50, E=5

 ChainFL: B=20, E=15

 FedAvg: B=20, E=15

 AsynFL: B=20, E=15

T
es

ti
n

g
 P

er
p

le
x

it
y

of Gradients

(c)

0 500 1000 1500 2000 2500

5.5

6

6.5

7

 ChainFL: B=20, E=5

 ChainFL: B=50, E=5

 ChainFL: B=20, E=15

 FedAvg: B=20, E=15

 AsynFL: B=20, E=15

T
ra

in
in

g
 L

o
ss

of Gradients

(d)

Fig. 12. Testing perplexity and training loss of Task 2 on two scales
(Sd = 10, R = 1, Md = 0). (a) Perplexity vs. Global Epochs. (b) Loss
vs. Global Epochs. (c) Perplexity vs. Gradients. (d) Loss vs. Gradients.

global epochs scale. Moreover, the convergence and perplex-
ity of ChainFL also outperform FedAvg on the number of
gradients scale.

Task 2 also assesses the resistance of ChainFL to ma-
licious devices, with results displayed in Fig. 13. ChainFL
exhibits greater stability in testing perplexity compared
to FedAvg and AsynFL, especially as the ratio of mali-
cious devices increases. The fourth subfigure in Fig. 13

13

TABLE 3
Best Perplexity of Task 2 Under Different Experimental Settings of Mini-Batch Size (B) and # of Local Epochs (E).

Best Perplexity
Stop@ # of Global Epochs=80 Stop@ # of Gradients=3000

B 10 20 30 40 50 10 20 30 40 50

E=5
FedAvg 119.1973 129.0462 128.5419 128.6406 132.7023 119.1973 129.0462 128.5419 128.6406 132.7023
AsynFL 132.2897 138.1707 137.5729 140.7736 147.04 132.2897 138.1707 135.3072 128.9097 125.5916
ChainFL 119.302 124.0372 126.8396 129.7998 129.1252 119.302 124.0372 126.8396 134.0198 135.4396

E 1 5 10 15 20 5 10 15 20

B=10
FedAvg 154.8811 129.0462 133.6719 143.6469 138.19 129.0462 133.6719 143.6469 138.19
AsynFL 239.7618 138.1707 141.9482 142.396 149.2502 138.1707 141.9482 142.396 149.2502
ChainFL 172.6349 124.0372 131.1227 137.1788 144.9491 124.0372 131.1227 137.1788 144.9491

0 500 1k 1.5k 2k 2.5k

1k

2k

100
0 500 1k 1.5k 2k 2.5k

1.5k

3k

100

0 500 1k 1.5k 2k 2.5k

1.5k

3k

100
1k 1.5k 2k 2.5k700

200

130

T
es

ti
n

g
 P

er
p

le
x

it
y

 ChainFL

 FedAvg

 AsynFL

 ChainFL

 FedAvg

 AsynFL

B=50, E=5, Md=0.1 B=50, E=5, Md=0.2

B=50, E=5, Md=0.3 ChainFL: B=50, E=5

T
es

ti
n

g
 P

er
p

le
x

it
y

of Gradients

 ChainFL

 FedAvg

 AsynFL

of Gradients

 All Honest

 1 Malicious Shard

 Md=0.1

 Md=0.2

 Md=0.3

Fig. 13. Effect of different malicious device ratio on the testing perplexity
(Sd = 10, R = 1).

0 10 20 30 40 50
100

300

500

700

900

0

2k

4k

6k

8k

0 10 20 30 40 50

200

300

400

120

T
es

ti
n

g
 P

er
p

le
x

it
y

of Global Epochs

 Testing Accuracy: R=1

 Testing Accuracy: R=2

 Testing Accuracy: R=3

Sd=10 R=1

#
 o

f
G

ra
d

ie
n

ts # of Gradients: R=1

 # of Gradients: R=2

 # of Gradients: R=3

T
es

ti
n

g
 P

er
p

le
x

it
y

of Global Epochs

 10 Devices Per Shard

 20 Devices Per Shard

 30 Devices Per Shard

Fig. 14. Effect of rounds per iteration and devices per shard on the
testing perplexity (B = 20, R = 5, Md = 0).

particularly highlights the robustness of ChainFL against
malicious attacks. In addition, the impact of varying the
number of rounds R ∈ {1, 2, 3} and devices per shard
Sd ∈ {10, 20, 30} in Task 2 is examined. As shown in Fig.
14, there is a slight decrease in the testing perplexity of the
global model with increased R and Sd, for the same reasons
discussed in Task 1 of Fig. 10.

Extensive experiments on Task 1 and Task 2 reveal
key insights. ChainFL shares similar FL parameter (B and
E) sensitivities with FedAvg, where increased computa-
tional resources per device speed up convergence when

0 1500 3000 4500 6000 7500
0

50

100

150

200

T
ra

in
in

g
 L

at
en

cy
 (

S
ec

o
n

d
)

of Gradients

 ChainFL

 FedAvg

 AsynFL

Fig. 15. Training latency vs. the number of gradients for task 1.

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600
T

ra
in

in
g

 L
at

en
cy

 (
S

ec
o

n
d

)

of Gradients

 ChainFL

 FedAvg

 AsynFL

Fig. 16. Training latency vs. the number of gradients for task 2.

the local training has not fully utilized the available lo-
cal data. However, higher E values can cause overfitting
and adversely affect the global model once local data is
thoroughly utilized. Fig. 7 and Fig. 11 show that ChainFL
requires more global epochs and gradients to meet preset
accuracy/perplexity targets (0.95/150). Despite initial lag
compared to FedAvg due to multi-shard model consensus,
ChainFL often achieves faster convergence and higher accu-
racy, as shown in Fig. 8 and Fig. 12. On the other hand, in
an environment without malicious devices and stale models,
AsynFL exhibits fast and stable iterative updates that lead
to superior performance, consistent with the findings of
[8]. However, the performance of AsynFL experiences a
significant decline in the presence of malicious devices, as it
lacks resistance against attacks. In contrast, ChainFL demon-
strates resilience against such threats, which is attributed to
its local model evaluation consensus within each subchain.
Moreover, the consensus-based virtual pruning of the main-
chain efficiently eliminates the malicious model published
by the malicious shard to maintain a stable convergence of
the accuracy of the global model.

In addition, we evaluate the impact of integrating

14

blockchain into FL on the training latency, alongside explor-
ing the trade-off between the latency incurred by blockchain
implementation and the accuracy of FL. To guarantee an
equitable comparison, these experiments are uniformly con-
ducted with respect to the number of gradients involved.
Fig. 15 and Fig. 16 illustrate the correlation between train-
ing latency and the number of gradients for task 1 and
task 2, respectively. It is discernible that the training la-
tency for ChainFL marginally surpasses that of FedAvg.
Nonetheless, ChainFL demonstrates superior performance
over AsynFL, attributed to the accumulated latency from
numerous rounds of model aggregations and queuing de-
lays inherent in a fully asynchronous FL system. Notably,
despite the slight elevation in latency compared to FedAvg,
ChainFL confers significant robustness advantages, as evi-
denced by up to a threefold enhancement, as depicted in
Fig. 9 and Fig. 13. In light of this trade-off, the marginal
increase in latency is deemed acceptable and justifiable.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose ChainFL, a novel hierarchical
blockchain-driven FL framework, designed to improve both
the efficiency and security of FL systems in trustless edge
computing environments. We adopt a sharding architecture
to parallelize the consensus among shards, thereby reducing
the scale of information exchange and storage resource
requirements and scaling the system throughput. To reach
a consensus on shard models, we design the cross-layer
FL operation procedure and the virtual pruning of the
mainchain. Through the shard consensus and DAG-based
mainchain consensus, asynchronous and synchronous opti-
mizations are effectively combined to address the stragglers
and stale models. In addition, the hierarchical consensus
enhances the robustness of ChainFL, making it more re-
sistant to attacks from malicious entities. The prototype
of ChainFL is developed and deployed, and extensive ex-
periments conducted on this prototype demonstrate that
ChainFL provides acceptable and sometimes better training
efficiency (by up to 14%) and stronger robustness (by up to
three times) compared to conventional FL systems.

For future work, we plan to investigate model replace-
ment or double-spending attacks in ChainFL and explore
an incentive mechanism based on blockchain technology to
encourage IoT device participation in FL tasks.

REFERENCES

[1] S. Yuan, B. Cao, M. Peng et al., “ChainsFL: blockchain-driven fed-
erated learning from design to realization,” in Proc. IEEE Wireless
Commun. Networking Conf., WCNC’21. Nanjing, China: IEEE, Mar.
2021, pp. 1–6.

[2] L. U. Khan, W. Saad, Z. Han et al., “Federated learning for internet
of things: recent advances, taxonomy, and open challenges,” IEEE
Commun. Surv. Tutorials, vol. 23, no. 3, pp. 1759–1799, Jun. 2021.

[3] B. McMahan, E. Moore, D. Ramage et al., “Communication-
efficient learning of deep networks from decentralized data,” in
Proc. Int. Conf. Artif. Intell. Stat., AISTATS’17, Fort Lauderdale,
Florida, USA, Apr. 2017, pp. 1273–1282.

[4] M. Cao, L. Zhang, and B. Cao, “Toward on-device federated
learning: a direct acyclic graph-based blockchain approach,” IEEE
Trans. Neural Netw. Learning Syst., vol. 34, no. 4, pp. 2028–2042,
Apr. 2023.

[5] Z. Zhao and G. Joshi, “A dynamic reweighting strategy for fair
federated learning,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process, ICASSP’2022. Singapore: IEEE, May 2022, pp. 8772–8776.

[6] J. Zhu, J. Cao, D. Saxena et al., “Blockchain-empowered federated
learning: challenges, solutions, and future directions,” ACM Com-
put. Surv., vol. 55, no. 11, pp. 1–31, Feb. 2023.

[7] S. Dutta, G. Joshi, S. Ghosh et al., “Slow and stale gradients can
win the race: error-runtime trade-offs in distributed SGD,” in Proc.
Int. Conf. Artif. Intell. Stat., AISTATS’18. Playa Blanca, Lanzarote,
Canary Islands, Spain: PMLR, Aug. 2018.

[8] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated opti-
mization,” arXiv preprint arXiv:1903.03934, pp. 1–15, Dec. 2020.

[9] S. Nakamoto, “Bitcoin: a peer-to-peer electronic
cash system,” Aug. 2008. [Online]. Available:
https://dx.doi.org/10.2139/ssrn.3440802

[10] H. Kim, J. Park, M. Bennis et al., “Blockchained on-device feder-
ated learning,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–1283,
Jun. 2020.

[11] Y. Lu, X. Huang, Y. Dai et al., “Blockchain and federated learning
for privacy-preserved data sharing in industrial IoT,” IEEE Trans.
Ind. Inf., vol. 16, no. 6, pp. 4177–4186, Jun. 2020.

[12] B. Cao, Z. Zhang, D. Feng et al., “Performance analysis and
comparison of PoW, PoS and DAG based blockchains,” Digit.
Commun. Netw., vol. 6, no. 4, pp. 480–485, Nov. 2020.

[13] K. Croman, C. Decker, I. Eyal et al., “On scaling decentralized
blockchains,” in Proc. Financial Cryptogr. Data Secur., FC’16, Christ
Church, Barbados, 2016, pp. 106–125.

[14] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. Symp. Oper. Syst. Des. Implement., OSDI’99, New Orleans,
USA, Feb. 1999, pp. 1–14.

[15] S. Zhou, H. Huang, W. Chen et al., “PIRATE: a blockchain-
based secure framework of distributed machine learning in 5G
networks,” IEEE Netw., vol. 34, no. 6, pp. 84–91, Nov. 2020.

[16] J. Weng, J. Weng, J. Zhang et al., “DeepChain: auditable and
privacy-preserving deep learning with blockchain-based incen-
tive,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp.
2438–2455, Sep. 2021.

[17] Y. Qu, M. P. Uddin, C. Gan et al., “Blockchain-enabled federated
learning: a survey,” ACM Comput. Surv., vol. 55, no. 4, pp. 70:1–
70:35, Nov. 2022.

[18] M. Shayan, C. Fung, C. J. M. Yoon et al., “Biscotti: a blockchain
system for private and secure federated learning,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 7, pp. 1513–1525, Jul. 2021.

[19] Z. Zhang, D. Dong, Y. Ma et al., “Refiner: a reliable incentive-
driven federated learning system powered by blockchain,” Proc.
VLDB Endow., vol. 14, no. 12, pp. 2659–2662, Jul. 2021.

[20] U. Majeed and C. S. Hong, “FLchain: federated learning via MEC-
enabled blockchain network,” in Asia-Pacific Netw. Oper. Manag.
Symp.: Manag. Cyber-Physical World, APNOMS’19. Matsue, Japan:
IEEE, Sep. 2019, pp. 1–4.

[21] H. Liu, S. Zhang, P. Zhang et al., “Blockchain and federated
learning for collaborative intrusion detection in vehicular edge
computing,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6073–6084,
Jun. 2021.

[22] H. Jin, X. Dai, J. Xiao et al., “Cross-cluster federated learning and
blockchain for internet of medical things,” IEEE Internet Things J.,
vol. 8, no. 21, pp. 15 776–15 784, Nov. 2021.

[23] B. Cao, Z. Wang, L. Zhang et al., “Blockchain systems, technolo-
gies, and applications: a methodology perspective,” IEEE Com-
mun. Surv. Tutorials, vol. 25, no. 1, pp. 353–385, 3st Quart., 2023.

[24] X. Qu, S. Wang, Q. Hu et al., “Proof of federated learning: a novel
energy-recycling consensus algorithm,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 8, pp. 2074–2085, Aug. 2021.

[25] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf., USENIX
ATC’14, Philadelphia, PA, USA, 2014, pp. 305–319.

[26] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft
consensus algorithm for private blockchains,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 50, no. 1, pp. 172–181, Jan. 2020.

[27] Z. Qu, R. Duan, L. Chen et al., “Context-aware online client
selection for hierarchical federated learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 12, pp. 4353–4367, Dec. 2022.

[28] T. Wang, Y. Liu, X. Zheng et al., “Edge-based communication
optimization for distributed federated learning,” IEEE Trans. Netw.
Sci. Eng., vol. 9, no. 4, pp. 2015–2024, Jul. 2022.

https://dx.doi.org/10.2139/ssrn.3440802

15

[29] W. Wu, L. He, W. Lin et al., “SAFA: a semi-asynchronous proto-
col for fast federated learning with low overhead,” IEEE Trans.
Comput., vol. 70, no. 5, pp. 655–668, May 2021.

[30] L. Luu, V. Narayanan, C. Zheng et al., “A secure sharding protocol
for open blockchains,” in Proc. ACM. Conf. Computer. Commun.
Secur., CCS’16, Vienna, Austria, Oct. 2016, pp. 17–30.

[31] B. Cao, L. Zhang, Y. Li et al., “Intelligent offloading in multi-access
edge computing: a state-of-the-art review and framework,” IEEE
Commun. Mag., vol. 57, no. 3, pp. 56–62, Mar. 2019.

[32] Y. Li, B. Cao, M. Peng et al., “Direct acyclic graph-based ledger for
internet of things: performance and security analysis,” IEEE/ACM
Trans. Networking, vol. 28, no. 4, pp. 1643–1656, Aug. 2020.

[33] S. Popov, “The tangle,” IOTA, White paper, Apr. 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:4958428

[34] Y. Du, Z. Wang, J. Li et al., “Blockchain-aided edge computing
market: smart contract and consensus mechanisms,” IEEE Trans.
on Mobile Comput., vol. 22, no. 6, pp. 3193–3208, Jun. 2023.

[35] J. Benet, “IPFS - content addressed, versioned, P2P file system,”
arXiv preprint arXiv:1407.3561, pp. 1–11, Jul. 2014.

[36] “Hyperledger fabric,” Jun. 2023. [Online]. Available:
https://github.com/hyperledger/fabric

[37] Y. LeCun, L. Bottou, Y. Bengio et al., “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278–2324, Nov. 1998.

[38] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of english: the penn treebank,” University
of Pennsylvania Department of Computer and Information Sci-
ence Technical, Tech. Rep. No. MS-CIS-93-87, Oct. 1993.

[39] S. Ji, S. Pan, G. Long et al., “Learning private neural language
modeling with attentive aggregation,” in Proc. Int. Jt. Conf. Neural
Networks, IJCNN’19. Budapest, Hungary: IEEE, Jul. 2019, pp. 1–8.

[40] T. Mikolov, S. Kombrink, L. Burget et al., “Extensions of recurrent
neural network language model,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process, ICASSP’11. Prague, Czech Republic: IEEE,
Aug. 2011, pp. 5528–5531.

Shuo Yuan (Member, IEEE) received the B.S.
degree from Nanchang University, Nanchang,
China, and the M.E. degree in information and
communication engineering from Beijing Uni-
versity of Posts and Telecommunications, Bei-
jing, China, in 2016 and 2019, respectively. He
is currently working toward a Ph.D. degree in
the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications, Beijing, China. His re-
search interests include multi-access edge com-

puting, intelligent computing, and LEO satellite communication. He has
been a Reviewer for IEEE INTERNET OF THINGS JOURNAL and IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Bin Cao (Senior Member, IEEE) is a Profes-
sor with the State Key Laboratory of Network
and Switching Technology, Beijing University of
Posts and Telecommunications. He received the
IEEE Outstanding Leadership Award in 2020,
the Best Paper Award at IEEE BMSB 2021, and
the IEEE TEMS Mid-Career Award in 2021. He
is an Associate Editor of IEEE TRANSACTIONS

ON MOBILE COMPUTING and DIGITAL COMMU-
NICATIONS AND NETWORKS, serves/served as a
(Lead) Guest Editor of IEEE COMMUNICATIONS

MAGAZINE, IEEE INTERNET OF THINGS JOURNAL, IEEE TRANSAC-
TIONS ON INDUSTRIAL INFORMATICS, and IEEE SENSORS JOURNAL, as
well as the Co-Chair for IEEE ICNC 2018, IEEE Blockchain 2020, and
IEEE Globecom 2022. He is the Founding Vice Chair of Special Interest
Group on Wireless Blockchain Networks in IEEE Cognitive Networks
Technical Committee, and a Chief Young Scientist of the National Key
Research and Development Program of China.

Yao Sun (Senior Member, IEEE) is currently a
Lecturer with James Watt School of Engineering,
the University of Glasgow, Glasgow, UK. He has
extensive research experience in wireless com-
munication area. He received the IEEE Com-
munication Society of TAOS Best Paper Award
in 2019 ICC, the Best Paper Award of IEEE
INTERNET OF THINGS JOURNAL in 2022, and
Best Paper Award at IEEE ICCT in 2022. He
has served as TPC Chair for UCET 2021, and
TPC member for a number of international con-

ferences, including ICC 2022, VTC Spring 2022, GLOBECOM 2020,
WCNC 2019, ICCT 2019. His research interests include intelligent wire-
less networking, network slicing, blockchain system, internet of things
and resource management in mobile networks.

Zhiguo Wan (Member, IEEE) received the B.S.
degree in computer science from Tsinghua Uni-
versity in 2002 and the Ph.D. degree from the
School of Computing, National University of Sin-
gapore, Singapore, in 2007. He is currently a
Principal Investigator with Zhejiang Laboratory,
Hangzhou, Zhejiang, China. From 2008 to 2014,
he was an Assistant Professor with the School
of Software, Tsinghua University. He was a Post-
Doctoral Researcher with the Katholieke Univer-
sity of Leuven, Belgium, from 2006 to 2008. His

research interests include security and privacy for blockchain, cloud
computing, and intelligent computing.

Mugen Peng (Fellow, IEEE) received the Ph.D.
degree in communication and information sys-
tems from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2005. In
2014, he was an Academic Visiting Fellow at
Princeton University, Princeton, NJ, USA. He
joined BUPT, where he has been the Dean of the
School of Information and Communication En-
gineering since June 2020, and the Deputy Di-
rector of the State Key Laboratory of Networking
and Switching Technology since October 2018.

He leads a Research Group focusing on wireless transmission and
networking technologies with the State Key Laboratory of Networking
and Switching Technology, BUPT. His main research interests include
wireless communication theory, radio signal processing, cooperative
communication, self-organization networking, non-terrestrial networks,
and Internet of Things. He was a recipient of the 2018 Heinrich Hertz
Prize Paper Award, the 2014 IEEE ComSoc AP Outstanding Young
Researcher Award, and the Best Paper Award in IEEE ICC 2022, JCN
2016, and IEEE WCNC 2015. He is/was on the Editorial or Associate
Editorial Board of IEEE COMMUNICATIONS MAGAZINE, IEEE Network
magazine, IEEE INTERNET OF THINGS JOURNAL, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, and IEEE TRANSACTIONS ON NETWORK

SCIENCE AND ENGINEERING.

https://api.semanticscholar.org/CorpusID:4958428
https://github.com/hyperledger/fabric

	Introduction
	Related Works
	Blockchain-enabled FL Framework
	Blockchain Consensus
	Synchronous & Asynchronous FL
	The Novelty of the Paper

	Our Proposed ChainFL System
	Device Layer
	Subchain Layer
	Mainchain Layer
	Application Layer

	ChainFL Workflow & Consensus
	FL Algorithm
	FL Process
	ChainFL Consensus
	Raft Consensus
	DAG Consensus-based Virtual Pruning
	Probability Analysis for Tip Selection

	Implementation
	Off-Chain Storage Scheme
	Hyperledger Fabric-based Subchain
	Modified DAG-based Mainchain

	Experimental Evaluations
	Baselines and Settings
	Experimental Results

	Conclusions and Future Works
	References
	Biographies
	Shuo Yuan
	Bin Cao
	Yao Sun
	Zhiguo Wan
	Mugen Peng

