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Abstract—In this paper, we study the problem of global reward maximization with only partial distributed feedback. This problem is
motivated by several real-world applications (e.g., cellular network configuration, dynamic pricing, and policy selection) where an action
taken by a central entity influences a large population that contributes to the global reward. However, collecting such reward feedback
from the entire population not only incurs a prohibitively high cost, but often leads to privacy concerns. To tackle this problem, we consider
distributed linear bandits with differential privacy, where a subset of users from the population are selected (called clients) to participate in
the learning process and the central server learns the global model from such partial feedback by iteratively aggregating these clients’
local feedback in a differentially private fashion. We then propose a unified algorithmic learning framework, called differentially private
distributed phased elimination (DP-DPE), which can be naturally integrated with popular differential privacy (DP) models (including central
DP, local DP, and shuffle DP). Furthermore, we show that DP-DPE achieves both sublinear regret and sublinear communication cost.
Interestingly, DP-DPE also achieves privacy protection “for free” in the sense that the additional cost due to privacy guarantees is a
lower-order additive term. In addition, as a by-product of our techniques, the same results of “free” privacy can also be achieved for the
standard differentially private linear bandits. Finally, we conduct simulations to corroborate our theoretical results and demonstrate the
effectiveness of DP-DPE.

Index Terms—Linear bandits, global reward maximization, partial distributed feedback, differential privacy, regret, communication cost.
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1 INTRODUCTION

THE bandit learning models have been widely adopted
for many sequential decision-making problems, such

as clinical trials, recommender systems, and configuration
selection. Each action (called arm), if selected in a round,
generates a (noisy) reward. By observing such reward
feedback, the learning agent gradually learns the unknown
parameters of the model (e.g., mean rewards) and decides the
action in the next round. The objective here is to maximize
the cumulative reward over a finite time horizon, balancing
the tradeoff between exploitation and exploration. While the
stochastic multi-armed bandits (MAB) model is useful for
this application [2], one key limitation is that actions are
assumed to be independent, which, however, is usually not
the case in practice. Therefore, the linear bandit model that
captures the correlation among actions has been extensively
studied [3], [4], [5].

In this paper, we introduce a new linear bandit setting
where the reward of an action could be from a large popula-
tion. Take the cellular network configuration as an example
(see Fig. 1). The configuration (antenna tilt, maximum output
power, inactivity timer, etc.) of a base station (BS), with
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Fig. 1: Cellular network configuration: a motivating applica-
tion of global reward maximization with partial feedback in
a linear bandit setting.

feature representation1 x ∈ Rd, influences all the users
under the coverage of this BS [6]. After a configuration is
applied, the BS receives a reward in terms of the network-
level performance, which accounts for the performance of
all users within the coverage (e.g., average user throughput).
Specifically, let the mean global reward of configuration x
be f(x) = ⟨θ∗, x⟩, where θ∗ ∈ Rd represents the unknown
global parameter. While some configuration may work best
for a specific user, only one configuration can be applied at
the BS at a time, which, however, simultaneously influences
all the users within the coverage. Therefore, the goal here
is to find the best configuration that maximizes the global
reward (i.e., the network-level performance).

At first glance, it seems that one can address the above

1. Similar to many linearly parameterized bandits (e.g., [5]), we may
represent each configuration by a d-dimensional feature vector through
some feature mapping.
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TABLE 1: Summary of main results

Algorithm2 Regret3 Communication cost4 Privacy

DPE O
(
T 1−α/2

√
log(kT )

)
O(dTα) None

CDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α

√
ln(1/δ) log(kT )/ε

)
O(dTα) (ε, δ)-DP

LDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α/2

√
ln(1/δ) log(kT )/ε

)
O(dTα) (ε, δ)-LDP

SDP-DPE O
(
T 1−α/2

√
log(kT ) + d3/2T 1−α ln(d/δ)

√
log(kT )/ε

)
O(dT 3α/2) (bits) (ε, δ)-SDP

1DPE is the non-private DP-DPE algorithm; CDP-DPE, LDP-DPE, and SDP-DPE represent the DP-DPE algorithm in the central, local, and
shuffle models, respectively, which guarantee (ε, δ)-DP, (ε, δ)-LDP, and (ε, δ)-SDP, respectively.
2In the regret upper bounds, we ignore lower-order terms for simplicity. T is the time horizon, k is the number of actions, d is the dimension
of the action space, and α is a design parameter that can be used to tune the tradeoff between the regret and the communication cost.
3While the communication cost of CDP-DPE and LDP-DPE is measured in the number of real numbers transmitted between the clients and
the server, SDP-DPE directly uses bits for reporting feedback. A detailed discussion is provided in Section 4.

problem by applying existing linear bandit algorithms (e.g.,
LinUCB [5]) to learn the global parameter θ∗. However,
this would require collecting reward feedback from the
entire population, which could incur a prohibitively high
cost or could even be impossible to implement in practice
when the population is large. To learn the global parameter,
one natural way is to sample a subset of users from the
population and aggregate this distributed partial feedback.
This leads to a new problem we consider in this paper: global
reward maximization with partial feedback in a distributed linear
bandit setting, which can be also applied to several other
practical applications, including dynamic pricing and public
policy selection [7], [8]. As in many distributed supervised
learning problems [9], [10], [11], privacy protection is also of
significant importance in our setting as clients’ local feedback
may contain their sensitive information. In summary, we are
interested in the following fundamental question: How to
privately achieve global reward maximization with only partial
distributed feedback?

To that end, we introduce a new model called differentially
private distributed linear bandit (DP-DLB). In DP-DLB, there
is a global linear bandit model f(x) = ⟨θ∗, x⟩ with an
unknown parameter θ∗ ∈ Rd at the central server (e.g.,
the BS); each user u of a large population has a local linear
bandit model fu(x) = ⟨θu, x⟩, which represents the mean
local reward for user u. Here, we assume that each user
u has a local parameter θu ∈ Rd, motivated by the fact
that the mean local reward (e.g., the expected throughput
of a user under a certain network configuration) varies
across the users. In addition, each local parameter θu is
unknown and is assumed to be a realization of a random
vector with the mean being the global model parameter θ∗.
The server makes decisions based on the estimated global
model, which can be learned through sampling a subset of
users (referred to as clients) and iteratively aggregating these
distributed partial feedback. While sampling more clients
could improve the learning accuracy, it also incurs a higher
communication cost. Therefore, it is important to address
this tradeoff in the design of communication protocols.
Furthermore, to protect users’ privacy, we resort to differential
privacy (DP) to guarantee that clients’ sensitive information
will not be inferred by an adversary. Therefore, the goal is
to maximize the cumulative global reward (or equivalently
minimize the regret due to not choosing the optimal action
in hindsight) in a communication-efficient manner while
providing privacy guarantees for the participating clients.

Our main contributions are summarized as follows.
• We present a new distributed linear bandit setting where
only partial feedback is available, leading to a novel
problem of global reward maximization with distributed
partial feedback. In addition to the traditional exploitation
and exploration tradeoff, learning with distributed feed-
back introduces two practical challenges: communication
efficiency and privacy concerns. This adds an extra layer
of difficulty in the design of learning algorithms.

• To address these challenges, we introduce a DP-DLB
model and develop a carefully crafted algorithmic learning
framework called differentially private distributed phased
elimination (DP-DPE), which allows the server and the
clients to work in concert and can be naturally integrated
with several state-of-the-art DP trust models (including
central model, local model, and shuffle model). This
unified framework enables us to study the key regret-
communication-privacy tradeoff systemically.

• We then establish the regret-communication-privacy
tradeoff of DP-DPE in various settings, including the non-
private case and the central, local, and shuffle DP models.
Our main results are summarized in Table 1. From Table 1,
we observe that the additional regret incurred by privacy
is only a lower-order additive term, which is dominated by
the regret from learning (i.e., Õ(T 1−α/ε) vs.5 Õ(T 1−α/2)).
In this sense, we say that DP-DPE might achieve privacy
“for free” following [12]. Moreover, this is the first work
considering the shuffle model in distributed linear bandits
to attain a better regret-privacy tradeoff, i.e., guaranteeing
similar privacy protection as the strong local model while
achieving the same regret as the central model. We further
perform simulations on synthetic data to corroborate our
theoretical results.

• Finally, we provide an interesting discussion about achiev-
ing privacy “for free”. We first highlight an interesting
connection between our introduced DP-DLB formulation
and the differentially private stochastic convex optimiza-
tion (DP-SCO) problem in terms of achieving privacy “for
free”. This bridge between our online bandit learning and
standard supervised learning might be of independent
interest. Furthermore, differential privacy may also be
ensured “for free” for standard linear bandits as well with
minor modifications of our developed techniques.

5. Here the Õ(·) notation hides the dependence on polylog(T ), the
dimension d, and privacy parameter δ.
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2 SYSTEM MODEL AND PROBLEM FORMULATION

We begin with some notations: [N ] ≜ {1, . . . , N} for any
positive integer N ; |S| denotes the cardinality of set S;
∥x∥2 denotes the ℓ2-norm of vector x; the inner product
is denoted by ⟨·, ·⟩. For a positive definite matrix A ∈ Rd×d,
the weighted ℓ2-norm of vector x ∈ Rd is defined as
∥x∥A ≜

√
x⊤Ax.

2.1 Global Reward Maximization with Partial Feedback
We consider the global reward maximization problem over
a large population containing an infinite number of users,
which is a sequential decision making problem. In each
round t, the learning agent (e.g., the BS or the policy maker)
selects an action xt from a finite decision set D ⊆ {x ∈
Rd : ∥x∥22 ⩽ 1} with |D| = k. This action leads to a global
reward with mean ⟨θ∗, xt⟩, where θ∗ ∈ Rd with ∥θ∗∥2 ⩽ 1
is unknown to the agent. This global reward captures the
overall effectiveness of action xt over a large population U .
The local reward of action xt at user u has a mean ⟨θu, xt⟩,
where θu ∈ Rd is the local parameter, which is assumed to
be a realization of a random vector with mean θ∗ and is
also unknown. Let x∗ ≜ argmaxx∈D⟨θ∗, x⟩ be the unique
global optimal action. Then, the objective of the agent is to
maximize the cumulative global reward, or equivalently, to
minimize the regret defined as follows:

R(T ) ≜ T ⟨θ∗, x∗⟩ −
T∑

t=1

⟨θ∗, xt⟩. (1)

At first glance, standard linear bandit algorithms (e.g.,
LinUCB in [5]) can be applied to address the above problem.
However, the exact reward here is a global quantity, which
is the average over the entire population. The learning agent
may not be able to observe this exact reward, since collecting
such global information from the entire population incurs a
prohibitively high cost, is often impossible to implement in
practice, and could lead to privacy concerns.

2.2 Differentially Private Distributed Linear Bandits
To address the above problem, we consider a differentially
private distributed linear bandit (DP-DLB) formulation, where
there are two important entities: a central server (which
wants to learn the global model) and participating clients
(i.e., a subset of users from the population who are willing to
share their feedback). In the following, we discuss important
aspects of the DP-DLB formulation.
Server. The server aims to learn the global linear bandit
model, i.e., unknown parameter θ∗. In each round t, it selects
an action xt with the objective of maximizing the cumulative
global reward

∑T
t=1⟨θ∗, xt⟩. Without observing the exact

reward of action xt, the server collects and aggregates
partial feedback from a subset of users sampled from the
population, called clients, and then update the estimate of
the global parameter θ∗. Based on the updated model, the
server chooses an action in the next round.
Clients. We assume that each participating client is randomly
sampled from the population and is independent from each
other and also from other randomness. Specifically, we as-
sume that local parameter θu at client u satisfies θu = θ∗+ξu,
where ξu ∈ Rd is a zero-mean σ-sub-Gaussian random

vector6 and is independently and identically distributed
(i.i.d.) across all clients. Let Ut be the set of clients in round
t. After the server takes action xt at t, each client u ∈ Ut

observes a noisy local reward: yu,t = ⟨θu, xt⟩+ ηu,t, where
ηu,t is a conditionally 1-sub-Gaussian7 noise and i.i.d. across
the clients and over time. Assume that the local rewards are
bounded, i.e., |yu,t| ⩽ B, for all u ∈ U and t ∈ [T ].
Communication. Communication happens when the clients
report their feedback to the server. At the beginning of
each communication step, each participating client reports
feedback to the server based on the local observations during
a certain number of rounds. In particular, the time duration
between reporting feedback is called a phase. By aggregating
such feedback from the clients, the server estimates the
global parameter θ∗ and adjusts its decisions in the following
rounds accordingly. We assume that the clients do not quit
before a phase ends. By slightly abusing the notation, we use
Ul to denote the set of clients in the l-th phase.

The communication cost is a critical factor in DP-DLB.
As in [14], we define the communication cost as the total
number of real numbers (or bits, depending on the adopted
DP model) communicated between the server and the clients.
Let L be the number of phases in T rounds and Nl be the
number of real numbers (or bits) communicated in the l-th
phase. Then, the communication cost, denoted by C(T ), is

C(T ) ≜
L∑

l=1

|Ul|Nl. (2)

Data privacy. In practice, even if users are willing to share
their feedback, they typically require privacy protection as
a premise. Differential privacy (DP) [15] is a mathematical
framework for ensuring the privacy of individuals in datasets.
Specifically, by observing the calculation/statistics/model
update from a set of individual data, an adversary cannot
infer too much information about any specific individual. In
this sense, DP can protect any existing or future attacks in
that any adversary tries to infer any individual’s information
would fail no matter how much computation power they
have or how much side information they have (i.e., even
though the adversary has access to all the others’ information
except the targeted one). To that end, we resort to DP to
formally address the privacy concerns in the learning process.
More importantly, instead of only considering the standard
central model where the central server is responsible for
protecting privacy, we will also incorporate other popular DP
models, including the stronger local model (where each client
directly protects her data) [16] and the recently proposed
shuffle model (where a trusted shuffler between clients and
server is adopted to amplify privacy) [17], in a unified
algorithmic learning framework.

3 ALGORITHM DESIGN

In this section, we first present the key challenges associated
with the introduced DP-DLB model and then explain how the

6. A random vector ξ ∈ Rd is said to be σ-sub-Gaussian if E[ξ] = 0
and v⊤ξ is σ-sub-Gaussian for any unit vector v ∈ Rd and ∥v∥2 = 1 [13].

7. Consider noise sequence {ηt}∞t=1. As in the general linear bandit
model [3], ηt is assumed to be conditionally 1-sub-Gaussian, meaning
E[eληt |x1:t, η1:t] ⩽ exp(λ2/2) for all λ ∈ R, where ai:j denotes the
subsequence ai, . . . , aj .
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developed DP-DPE framework addresses these challenges.

3.1 Key Challenges

To solve the problem of global reward maximization with
partial distributed feedback using the DP-DLB formulation,
we face four key challenges, discussed in detail below.

As in the standard stochastic bandit problem [18], there
is uncertainty due to the noisy rewards of each chosen action,
which is called action-related uncertainty. In addition, we face
another type of uncertainty related to the sampled clients in
DP-DLB, called client-related uncertainty. The client-related
uncertainty lies in estimating the global model at the server
based on randomly sampled clients with biased local models.
Note that the global model may not be accurately estimated
even if the exact rewards of the sampled clients are known
when the number of clients is insufficient. Therefore, the
first challenge lies in simultaneously addressing both types of
uncertainty in a sample-efficient way (Challenge a⃝).

To handle the newly introduced client-related uncertainty,
we must sample a sufficiently large number of clients so
that the global parameter can be accurately estimated using
the partial distributed feedback. However, too many clients
result in a large communication cost (see Eq. (2)). Therefore,
the second challenge is to decide the number of sampled clients
to balance the regret (due to the client-related uncertainty) and the
communication cost (Challenge b⃝).

Finally, to ensure privacy guarantees for the clients, one
needs to add additional perturbations (or noises) to the local
feedback. Such randomness introduces another type of uncertainty
to the learning process (Challenge c⃝), and it is unclear how
to integrate different trust DP models into a unified algorithmic
learning framework (Challenge d⃝). These add an extra layer
of difficulty to the design of learning algorithms.

Main ideas. We design a phased elimination algorithm
as in [19] that gradually eliminates suboptimal actions
by periodically aggregating the local feedback from the
sampled clients in a privacy-preserving manner. To address
the multiple types of uncertainty when estimating the global
reward ( a⃝ and c⃝), we carefully construct a confidence
width to incorporate all three types of uncertainty. To achieve
a sublinear regret while saving communication cost ( b⃝),
we increase both the phase length and the number of
clients exponentially. To ensure privacy guarantees ( d⃝), we
introduce a PRIVATIZER that can be easily tailored under
different DP models. The PRIVATIZER is a process consisting
of tasks to be collaboratively completed by the clients, the
server, and/or even a trusted third party. To keep it general,
we use P = (R,S,A) to denote a PRIVATIZER, where R is
the procedure at each client (e.g., a local randomizer), S is a
trusted third party that helps privatize data (e.g., a shuffler
that permutes received messages), and A is an analyzer run
at the central server. Next, we show how to integrate these
main ideas into a unified algorithmic learning framework.

3.2 Differentially Private Distributed Phased Elimination

With the main ideas presented above, we now propose a
unified algorithmic learning framework, called differentially
private distributed phased elimination (DP-DPE), which is
presented in Algorithm 1. The DP-DPE runs in phases and

Algorithm 1 Differentially Private Distributed Phased Elimi-
nation (DP-DPE)

1: Input: D ⊆ Rd, α, β ∈ (0, 1), and σn

2: Initialization: l = 1, t1 = 1, D1 = D, and h1 = 2
3: while tl ⩽ T do
4: Find a distribution πl(·) over Dl such that g(πl) ≜

maxx∈Dl
∥x∥2V (πl)−1 ⩽ 2d and |supp(πl)| ⩽

4d log log d+ 16, where V (πl) ≜
∑

x∈Dl
πl(x)xx

⊤

5: Let Tl(x) = ⌈hlπl(x)⌉ for each x ∈ supp(πl) and Tl =∑
x∈supp(πl)

Tl(x)
6: Play each action x ∈ supp(πl) exactly Tl(x) times if

not reaching T
7: Randomly select ⌈2αl⌉ participating clients Ul

# Operations at each client
8: for each client u ∈ Ul do
9: for each action x ∈ supp(πl) do

10: Compute average local reward over Tl(x) rounds:
yul (x) =

1
Tl(x)

∑
t∈Tl(x)

(⟨θu, x⟩+ ηu,t)
11: end for
12: Let y⃗ul = (yul (x))x∈supp(πl)

# Apply the PRIVATIZER P = (R,S,A)
# The local randomizer R at each client:

13: Run the local randomizer R and send the output
R(y⃗ul ) to S

14: end for
# Computation S at a trusted third party:

15: Run the computation function S and send the output
S({R(y⃗ul )}u∈Ul

) to the analyzer A
# The analyzer A at the server:

16: Generate the privately aggregated statistics: ỹl =
A(S({R(y⃗ul )}u∈Ul

))
17: Compute the following quantities:

Vl =
∑

x∈supp(πl)
Tl(x)xx

⊤

Gl =
∑

x∈supp(πl)
Tl(x)xỹl(x)

θ̃l = V −1
l Gl

18: Find low-rewarding actions with confidence width Wl:

El =

{
x ∈ Dl : max

b∈Dl

⟨θ̃l, b− x⟩ > 2Wl

}
19: Update:Dl+1 = Dl\El, hl+1 = 2hl, tl+1 = tl+Tl, and

l = l + 1
20: end while

operates with the coordination of the central server and the
participating clients in a synchronized manner. At a high
level, each phase consists of the following three steps:
• Action selection (Lines 4-6): computing a near-G-optimal
design (i.e., a distribution) over a set of possibly optimal
actions and playing these actions;

• Clients sampling and private feedback aggregation
(Lines 7-16): sampling participating clients and aggregat-
ing their local feedback in a privacy-preserving fashion;

• Parameter estimation and action elimination (Lines 17-
19): using (privately) aggregated data to estimate θ∗ and
eliminating actions that are likely to be suboptimal.
In the following, we describe the detailed operations
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of DP-DPE. We begin by giving some necessary notations.
Consider the l-th phase. Let tl and Tl be the index of the
starting round and the length of the l-th phase, respectively.
Then, let Tl ≜ {t ∈ [T ] : tl ⩽ t < tl + Tl} be the round
indices in the l-th phase, let Tl(x) ≜ {t ∈ Tl : xt = x} be the
time indices in the l-th phase when action x is selected, and
let Dl ⊆ D be the set of active actions in the l-th phase.
Action selection (Lines 4-6): In the l-th phase, the action
set Dl consists of active actions that are possibly optimal.
We compute a distribution πl(·) over Dl and choose actions
according to πl(·). We briefly explain the intuition below.
Let V (π) ≜

∑
x∈D π(x)xx⊤ and g(π) ≜ maxx∈D ∥x∥2V (π)−1 .

According to the analysis in [3, Chapter 21], if action
x ∈ D is played ⌈hπ(x)⌉ times (where h is a positive
constant), the estimation error associated with the action-
related uncertainty for action x is at most

√
2g(π) log(1/β)/h

with probability 1− β for any β ∈ (0, 1). That is, for a fixed
number of rounds, a distribution π(·) with a smaller value of
g(π) helps achieve a better estimation. Note that minimizing
g(·) is a well-known G-optimal design problem [20]. By the
Kiefer-Wolfowitz Theorem [21], one can find a distribution π∗

minimizing g(·) with g(π∗) = d, and the support set8 of π∗,
denoted by supp(π∗), has a size no greater than d(d+ 1)/2.
In our problem, however, it suffices to solve it near-optimally,
i.e., finding a distribution πl such that g(πl) ⩽ 2d with
|supp(πl)| ⩽ 4d log log d + 16 (Line 4), which follows from
[19, Proposition 3.7]. The near-G-optimal design reduces the
complexity to O(kd2) while keeping the same order of regret.
Clients sampling and private feedback aggregation (Lines 7-
16): The central server randomly samples a subset Ul of ⌈2αl⌉
users (called clients) from the population U to participate in
the global bandit learning (Line 7). Each sampled client
u ∈ Ul collects their local reward observations of each
chosen action x ∈ supp(πl) by the server and computes the
average yul (x) as feedback (Line 10). Then, these feedback
y⃗ul ≜ (yul (x))x∈supp(πl) ∈ R|supp(πl)| are processed by a
PRIVATIZER P to ensure differential privacy. Recall that a
PRIVATIZER P = (R,S,A) is a process completed by the
clients, the server, and/or a trusted third party. In particular,
according to the privacy requirement under different DP
models, the PRIVATIZER P enjoys flexible instantiations (see
detailed discussions in Section 4). Generally, a PRIVATIZER
works in the following manner: each client u runs the
randomizer R on its local average reward y⃗ul (over Tl pulls)
and then sends the resulting (potentially private) messages
R(y⃗ul ) to S (Line 13). The computation function in S operates
on these messages and then sends results S({R(y⃗ul )}u∈Ul

)
to the analyzer A at the central server (Line 15). Finally,
the analyzer A aggregates received messages (potentially
in a privacy-preserving manner) and outputs a private
averaged local reward ỹl(x) (over clients Ul) for each action
x ∈ supp(πl) (Line 16). We provide the rigorous formulation
of different DP models for PRIVATIZER P in Section 4, with
corresponding detailed instantiations of R,S , and A.
Parameter estimation and action elimination (Lines 17-19):
Using privately aggregated feedback ỹl, the central server

8. The support set of a distribution π over set D, denoted by suppD(π),
is the subset of elements with a nonzero π(·), i.e., suppD(π) ≜ {x ∈
D : π(x) ̸= 0}. We drop the subscript D in suppD(π) for notational
simplicity.

computes the least-square estimator θ̃l (Line 17). Action
elimination is based on the following confidence width:

Wl ≜


√

2d

|Ul|hl︸ ︷︷ ︸
action-related

+
σ√
|Ul|︸ ︷︷ ︸

client-related

+ σn︸︷︷︸
privacy noise


√
2 log

(
1

β

)
,

(3)
where σ is the standard variance associated with client
sampling, σn is related to the privacy noise determined
by the DP model, and β is the confidence level. We choose
this confidence width based on the concentration inequality
for sub-Gaussian variables. Specifically, the three terms in
Eq. (3) capture the action-related uncertainty, client-related
uncertainty, and the added noise for privacy guarantees,
respectively. Using this confidence width Wl and the esti-
mated global model parameter θ̃l, we can identify a subset
of suboptimal actions El with high probability (Line 18). At
the end of the l-th phase, we update the set of active actions
Dl+1 by eliminating El from Dl and double hl (Line 19).

Finally, we make two remarks about DP-DPE.

Remark 3.1. While a finite number of actions is assumed in this
paper, one could extend it to the case with an infinite number
of actions by using the covering argument [3, Lemma 20.1].
Specifically, when the action set D ⊆ Rd is infinite, we can
replace D with a finite set Dε0 ⊆ Rd with |Dε0 | ⩽ (3/ε0)

d such
that for all x ∈ D, there exists an x′ ∈ Dε0 with ∥x− x′∥2 ⩽ ε0.

Remark 3.2. In Algorithm 1, we assume that Dl spans Rd such
that matrices V (πl) and Vl are invertible. Then, one could find the
near optimal design πl(·) (Line 4) and compute the least-square
estimator θ̃l (Line 17). When Dl does not span Rd, one can simply
work in the smaller space span(Dl) [19].

4 DP-DPE UNDER DIFFERENT DP MODELS

In this section, we formalize DP models integrated with our
DP-DLB formulation and provide concrete instantiations for
the PRIVATIZER in DP-DPE according to three representative
DP trust models: the central, local, and shuffle models.

4.1 DP-DPE under the Central DP Model
In the central DP model, we assume that each client trusts
the server, and hence, the server can collect clients’ raw data
(i.e., the local reward y⃗ul in our case). The privacy guarantee
is that any adversary with arbitrary auxiliary information
cannot infer a particular client’s data by observing the output
of the server. To achieve this, the central DP model requires
that the outputs of the server on two neighboring datasets
differing in only one client are indistinguishable [15]. Before
presenting the formal definition in our case, recall that DP-
DPE (Algorithm 1) runs in phases, and that in each phase l, a
set of new clients Ul participate in the global bandit learning
by providing their feedback. Let9 UT ≜ (Ul)

L
l=1 ∈ U∗ be

the sequence of all the participating clients in the total L
phases (T rounds). We useM(UT ) = (x1, . . . , xT ) ∈ DT to
denote the sequence of actions chosen in T rounds by the
central server. Intuitively, we are interested in a randomized
algorithm such that the output M(UT ) does not reveal

9. We use the superscript ∗ to indicate that the length could be varying.
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“much” information about any particular client u ∈ UT .
Formally, we have the following definition.

Definition 4.1. (Differential Privacy (DP)). For any ε ⩾ 0
and δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-differentially
private (or (ε, δ)-DP) if for every UT ,U ′

T ⊆ U differing on a
single client and for any subset of actions Z ⊆ DT ,

P[M(UT ) ∈ Z] ⩽ eεP[M(U ′
T ) ∈ Z] + δ. (4)

According to the post-processing property of DP (cf.
Proposition 2.1 in [22]) and parallel-composition (thanks
to the uniqueness of client sampling), it suffices to guarantee
that the final analyzer A in P is (ε, δ)-DP. That is, for any
phase l, the PRIVATIZER P is (ε, δ)-DP if the following is
satisfied for any pair of Ul, U

′
l ⊆ U that differ by at most one

client and for any output ỹ of A:

P[A({y⃗ul }u∈Ul
) = ỹ] ⩽ eε · P[A({y⃗ul }u∈U ′

l
) = ỹ] + δ.

To achieve this, we utilize the standard Gaussian mechanism
at the server side to guarantee (ε, δ)-DP. Specifically, in
each phase l, the participating clients send their average
local rewards {y⃗ul }u∈Ul

directly to the central server, and
the central server adds Gaussian noise to the average local
feedback (over clients) before estimating the global parameter.
That is, in the central DP model, both R and S of the
PRIVATIZER P are identity mapping while A adds Gaussian
noise when computing the average. In this case, P = A, and
the private aggregated feedback for the chosen actions in the
l-th phase can be represented as

ỹl = P ({y⃗ul }u∈Ul
) = A ({y⃗ul }u∈Ul

)

=
1

|Ul|
∑
u∈Ul

y⃗ul + (γ1, . . . , γsl),
(5)

where sl ≜ |supp(πl)|, γj
i.i.d.∼ N (0, σ2

nc), and the variance
σ2
nc is based on the ℓ2 sensitivity of the average 1

|Ul|
∑

u∈Ul
y⃗ul .

In the rest of the paper, we will continue to use sl instead of
|supp(πl)| to denote the number of actions chosen in the l-th
phase for notational simplicity.

With the above definition, we present the privacy guar-
antee of DP-DPE in the central DP model in Theorem 4.2.

Theorem 4.2. The DP-DPE instantiation using the PRIVATIZER

in Eq. (5) with σnc =
2B
√

2sl ln(1.25/δ)

ε|Ul| guarantees (ε, δ)-DP.

The relatively high trust model in the central DP is not
always feasible in practice since some clients do not trust the
server and are not willing to share any of their sensitive data.
This motivates the introduction of a strictly stronger notion
of privacy protection called the local DP [16], which is the
main focus of the next subsection.

4.2 DP-DPE under the Local DP Model

In the local DP model, any data sent by any client must
already be private. In other words, even though an adversary
can observe the data sent from a client to the server, the
adversary cannot infer any sensitive information about the
client. Mathematically, this requires a local randomizer R at
each user’s side to generate approximately indistinguishable
outputs on any two different data inputs. In particular, let Yu

be the set of all possible values of the average local reward y⃗ul
for client u. Then, we have the following formal definition.

Definition 4.3. (Local Differential Privacy (LDP)). For any
ε ⩾ 0 and δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-local
differentially private (or (ε, δ)-LDP) if for any client u, every
two datasets y⃗, y⃗′ ∈ Yu satisfies

P[R(y⃗) = o] ⩽ eεP[R(y⃗′) = o] + δ, (6)

for every possible output o ∈ {R(y⃗)|y⃗ ∈ Yu}.

That is, an instantiation of DP-DPE is (ε, δ)-LDP if the
local randomizer R in P is (ε, δ)-DP. To this end, the
randomizer R at each client employs a Gaussian mechanism,
the shuffler S is a simple identity mapping, and the analyzer
A at the server side conducts a simple averaging. Then, the
overall output of the PRIVATIZER is the following:

ỹl =
1

|Ul|
∑
u∈Ul

R(y⃗ul ) =
1

|Ul|
∑
u∈Ul

(y⃗ul + (γu,1, . . . , γu,sl)) ,

(7)
where γu,j

i.i.d.∼ N (0, σ2
nl), and the variance σ2

nl is based on
the sensitivity of y⃗ul . With the above definition, we present
the privacy guarantee of DP-DPE in the local DP model in
Theorem 4.4.

Theorem 4.4. The DP-DPE instantiation using the PRIVATIZER

in Eq. (7) with σnl =
2B
√

2sl ln(1.25/δ)

ε guarantees (ε, δ)-LDP.

Although the local DP model offers a stronger privacy
guarantee compared to the central DP model, it often comes
at a price of the regret performance. As we will see, the regret
performance of DP-DPE under the local DP model is much
worse than that under the central DP model. Therefore, a
fundamental question is whether there is a PRIVATIZER for
DP-DPE that can achieve the same regret as in the central
DP PRIVATIZER while assuming similar trust model as in
the local DP PRIVATIZER. This motivates us to consider a
recently proposed shuffle DP model [17], [23].

4.3 DP-DPE under the Shuffle DP Model
In the shuffle DP model, between the clients and the server,
there exists a shuffler that permutes a batch of clients’
randomized data before they are observed by the server
so that the server cannot distinguish between two clients’
data. Thus, an additional layer of randomness is introduced
via shuffling, which can often be easily implemented using
cryptographic primitives (e.g., mixnets) due to its simple
operation [24]. Due to this, the clients now tend to trust the
shuffler but still do not trust the central server as in the
local DP model. This new trust model offers a possibility
to achieve a better regret-privacy tradeoff. This is because
the additional randomness of the shuffler creates a privacy
blanket so that by adding much less random noise, each client
can now hide her information in the crowd, i.e., privacy
amplification by shuffling [25].

Formally, a standard one-round shuffle protocol consists
of all the three parts: a (local) randomizerR, a shuffler S , and
an analyzer A. In this protocol, the clients trust the shuffler
but not the analyzer. Hence, the privacy objective is to ensure
that the outputs of the shuffler on two neighboring datasets
are indistinguishable from the analyzer’s point of view. Note
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that each client still does not send her raw data to the shuffler
even though she trusts it. Due to this, a shuffle protocol often
also offers a certain level of LDP guarantee.

In our case, the online learning procedure will proceed in
multiple phases rather than a simple one-round computation.
Thus, we need to guarantee that all the shuffled outputs
are indistinguishable. To this end, we define the (composite)
mechanismMs(UT ) ≜ ((S ◦ R)(U1), (S ◦ R)(U2), . . . , (S ◦
R)(UL)), where (S ◦ R)(Ul) ≜ S({R(y⃗ul )}u∈Ul

). We say a
DP-DPE instantiation satisfies the shuffle differential privacy
(SDP) if the composite mechanismMs is DP, which leads to
the following formal definition.

Definition 4.5. (Shuffle Differential Privacy (SDP)). For any
ε ⩾ 0 and δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-shuffle
differential privacy (or (ε, δ)-SDP) if for any pair UT and
U ′

T that differ by one client, the following is satisfied for all
Z ⊆ Range(Ms):

P[Ms(UT ) ∈ Z] ⩽ eεP[Ms(U
′

T ) ∈ Z] + δ. (8)

Then, for any phase l, the PRIVATIZER P is (ε, δ)-SDP
if the following is satisfied for any pair of Ul, U ′

l ⊆ U that
differ by one client and for any possible output z of S ◦ R:

P[(S ◦ R)(Ul) = z] ⩽ eε · P[(S ◦ R)(U ′
l ) = z] + δ.

We present the concrete pseudocode of R, S , and A
for the shuffle DP model PRIVATIZER P in Algorithm 2 (see
Appendix A), which builds on the vector summation protocol
recently proposed in [26]. Here, we provide a brief descrip-
tion of the process. Essentially, the noise added in the shuffle
model PRIVATIZER relies on the upper bound of ℓ2 norm
of the input vectors. However, each component operates on
each coordinate of the input vectors independently. Recall
that the input of the shuffle model PRIVATIZER is {y⃗ul }u∈Ul

and that each chosen action x corresponds to a coordinate
in the sl-dimentional vector. Consider the coordinate jx
corresponding to action x, and the entry yul (x) at client
u. First, the local randomizer R encodes the input yul (x)
via a fixed-point encoding scheme [17] and ensures privacy
by injecting binomial noise. Specifically, given any scalar
w ∈ [0, 1], it is first encoded as ŵ = w̄+γ1 using an accuracy
parameter g ∈ N, where w̄ = ⌊wg⌋ and γ1 ∼ Ber(wg − w̄)
is a Bernoulli random variable. Then, a binomial noise
γ2 ∼ Bin(b, p) is generated, where b ∈ N and p ∈ (0, 1)
controls the level of the privacy noise. The output of the local
randomizer for each coordinate is simply a collection of g+ b
bits, where ŵ+γ2 bits are 1’s and the rest are 0’s. Combining
these g + b bits for each coordinate jx for x ∈ supp(πl)
yields the final outputs of the local randomizer R for the
vector y⃗ul . Note that the output bits for each coordinate are
marked with the coordinate index so that they will not be
mixed up in the following procedures. After receiving the bits
from all participating clients, the shuffler S simply permutes
these bits uniformly at random and sends the output to
the analyzer A at the central server. The analyzer A adds
the received bits, removes the bias introduced by encoding
and binomial noise (through simple shifting operations),
and divides the result by |Ul| for each coordinate. Finally,
the analyzer A outputs a random sl-dimensional vector ỹl,
whose expectation is the average of the input vectors. That is,
E[ỹl] = 1

|Ul|
∑

u∈Ul
y⃗ul (which is proven in our Appendix A.3).

In the shuffle model PRIVATIZER, the three parameters g, b,
and p need to be properly chosen according to the privacy
requirement. Then, the final privately aggregated data is the
following:

ỹl = P ({y⃗ul }u∈Ul
) = A(S({R(y⃗ul )}u∈Ul

)). (9)

With the above definition, we present the privacy guarantee
of DP-DPE in the shuffle DP model in Theorem 4.6.

Theorem 4.6. For any ε ∈ (0, 15) and δ ∈ (0, 1/2), the DP-
DPE instantiation using the PRIVATIZER specified in Algorithm 2
guarantees (ε, δ)-SDP.

5 MAIN RESULTS

In this section, we study the performance of DP-DPE under
different DP models in terms of regret and communication
cost. We start with the non-private DP-DPE algorithm (called
DPE, with ỹl = 1

|Ul|
∑

u∈Ul
y⃗ul and σn = 0 for all l) and

present the main result in Theorem 5.1.

Theorem 5.1 (DPE). Let β = 1/(kT ) and σn = 0 in
Algorithm 1. Then, the non-private DP-DPE algorithm achieves
the following expected regret:

E[R(T )] =O(
√
dT log(kT )) +O

(
σT 1−α/2

√
log(kT )

)
,

(10)
with a communication cost of O(dTα).

We present a proof sketch below and provide detailed
proof in Appendix B.1.

Proof sketch. We begin by showing a concentration inequality
P
{
⟨θ̃l − θ∗, x⟩ ⩾ Wl

}
⩽ 2β, which indicates that in the l-th

phase, the estimation error for the global reward of each
action is bounded by Wl w.h.p. Then, the optimal action stays
in the active set the whole time w.h.p., and the regret incurred
by one pull is bounded by 4Wl−1 in the l-th phase. Finally,
summing up the regret over rounds in all phases yields
the regret upper bound. The analysis of the communication
cost is quite straightforward. In the l-th phase, only the
local average reward of each chosen action in this phase is
communicated, whose amount is bounded by (4d log log d+
16) according to the near-G-optimal design [19, Proposition
3.7]. Hence, the communication cost is proportional to the
total number of clients involved in the entire learning process.

Remark 5.2. Theorem 5.1 gives a problem-independent regret
upper bound for DPE. We can observe an obvious tradeoff between
regret and communication cost, captured by α. While a larger
α leads to a smaller regret, it incurs a larger communication
cost. Setting α = 2/3 gives O(T 2/3) for both regret and
communication cost.

Remark 5.3 ((Sub-)optimality). Note that one natural lower
bound for our setting is Ω(

√
dT ), the one for the standard linear

bandits with finite arms [3], where there is no client-related
uncertainty (i.e., σ = 0). In this setting, the upper bound derived
in Eq. (10) matches the existing lower bound up to a logarithmic
term. As to the general case with σ > 0, we can still see the
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(near)-optimality of our upper bound for the case with user-
sampling parameter α > 1. When sampling fewer users with
α ∈ (0, 1), the second term of the regret upper bound in Eq. (10)
that relies on α becomes dominant and cannot be ignored. However,
the aforementioned lower bound Ω(

√
dT ) is derived under the

standard linear bandit setting, which is irrelevant to the user
sampling parameter α. Therefore, we leave it as our future work to
close this gap between this natural lower bound and the derived
(α-dependent) upper bound in Eq. (10).

In Theorem 5.4, we present the performance of DP-DPE
under different DP models in terms of regret, communication
cost, and privacy guarantee. Let S ≜ 4d log log d+ 16.

Theorem 5.4. Let β = 1/(kT ). DP-DPE under different DP
models with the following parameters achieves the corresponding
results in Table 1:
(i) CDP-DPE. Set σnc = O

(
B
√

d ln(1/δ)

ε|Ul|

)
in (5) for each phase

l and σn = 2σnc

√
Sd in (3);

(ii) LDP-DPE. Set σnl = O

(
B
√

d ln(1/δ)

ε

)
in (7) for each phase

l and σn = 2σnl

√
Sd/|Ul| in (3);

(iii) SDP-DPE. Set σns = O
(
B
√
d ln(d/δ)
ε|Ul|

)
in (9) for each phase

l and σn = 2σns

√
Sd in (3).

We provide the detailed proofs in Appendix B.2 and make
the following remarks.

Remark 5.5 (Privacy “for-free”). Comparing the above results
with Theorem 5.1 for the non-private case, we observe that the DP-
DPE algorithm enables us to achieve privacy guarantees “for free”
in the central and shuffle DP models, in the sense that the additional
regret due to privacy protection is only a lower-order additive term.
Essentially, this is because the uncertainty introduced by privacy
noise is dominated by the client-related uncertainty, which can
be captured by our carefully designed confidence width Wl in
Eq. (3) and our choice of σn for different PRIVATIZERs. See more
discussions on achieving privacy “for-free” in Section 7.1.

Remark 5.6 (Regret-privacy tradeoff). Consider the regret
due to privacy protection by comparing the regret performance
column in Table 1 of all the DP-DPE algorithms. We can see an
additional term in regret performance associated with each DP-
DPE algorithm. Specifically, while the local DP model ensures
a stronger privacy guarantee compared to the central DP model,
it introduces an additional regret of Õ(T 1−α/2) compared to
Õ(T 1−α) in the central DP model. The shuffle DP model, however,
leads to a much better tradeoff between regret and privacy,
achieving nearly the same regret guarantee as the central DP
model, yet assuming a similar trust model to the local DP model
(i.e., without a trustworthy central server).

Remark 5.7 (Communication cost). Both CDP-DPE and LDP-
DPE consume the same amount of communication resources as
DPE, measured by the number of real numbers [14]. In contrast,
SDP-DPE relies only on binary feedback from the clients, and thus,
the communication cost is measured by the number of bits. It is
worth noting that sending messages consisting of real numbers
could be difficult in practice on finite computers [27], [28], and
hence in this case, it is desirable to use SDP-DPE, which incurs a
communication cost of O(dT 3α/2) bits.

Remark 5.8 (Pure DP extension). While we use the Gaussian
mechanism to ensure approximate DP (i.e., (ε, δ)-DP), we claim
that our proposed scheme in this paper can be effectively integrated
with the Laplace mechanism, which ensures a pure DP and achieves
nearly the same regret performance. We provide how to modify
the algorithm and derive the theoretical results for the Laplace
mechanism in Appendix C.

6 NUMERICAL RESULTS

In this section, we conduct simulations to evaluate DP-DPE.
The detailed setting of our simulations is as follows: d =
20, k = 103, σ = 0.1, |U| = 105, α = 0.8, and T = 106. We
perform 20 independent runs for each set of simulations.

First, we study the regret performance of DP-DPE under
different DP models. Recall that we use CDP-DPE, LDP-
DPE, and SDP-DPE to denote DP-DPE in the central, local,
and shuffle DP models, respectively. In Fig. 2(a), we present
the cumulative regret at the end of T rounds for the three
algorithms under different values of privacy budget ε. We
can observe an obvious tradeoff between the privacy budget
and the regret performance for all the DP models: the
cumulative regret decreases as the privacy requirement
becomes less stringent (i.e., a larger ε). In addition, it also
reflects the regret-privacy tradeoff across different DP models.
That is, with the same privacy budget ε, while LDP-DPE
has the largest regret yet without requiring the clients to
trust anyone else (neither the server nor a third party),
CDP-DPE achieves the smallest regret but relies on the
assumption that the clients trust the server. Interestingly,
SDP-DPE achieves a regret fairly close to that of CDP-DPE,
yet without the need to trust the server. This is well aligned
with our theoretical results that SDP-DPE achieves a better
regret-privacy tradeoff.

In addition, we are also interested in the regret loss due
to privacy protection and how efficiently DP-DPE performs
the global bandit learning. Fix the privacy parameters ε = 10
and δ = 0.1. In Fig. 2(b), we plot how the per-round regret
of the three algorithms (i.e., CDP-DPE, LDP-DPE, and SDP-
DPE) varies over time compared to the non-private DP-DPE
algorithm (i.e., DPE). We observe that LDP-DPE incurs the
largest regret while ensuring the strongest privacy guarantee
(i.e., (ε, δ)-LDP). On the other hand, the regret performance
of CDP-DPE and SDP-DPE is very close to that of DPE
(that does not ensure any privacy guarantee), under the
assumption of a trusted central server and a trusted third
party shuffler, respectively. This observation, along with our
theoretical results, shows that DP-DPE can indeed achieve
privacy “for-free” under the central and shuffle models.

Regarding the communication efficiency of our proposed
algorithm, we also show that the exponentially-increasing
client-sampling plays a key role in balancing the regret
and the communication cost. To this end, we compare DPE
with another non-private algorithm, called DPE-FixedU in
Fig. 2(c). DPE-FixedU is similar to DPE but samples only a
fixed number U of participating clients in each phase (i.e., the
participating clients are different, but the number of clients
in each phase is fixed, in contrast to our increasing sampling
schedule). For a fair comparison, we choose the value of U
such that the communication cost is the same under DPE and
DPE-FixedU, i.e., U = ⌈

∑L
l=1 |Ul|·Nl∑L

l=1 Nl
⌉. The results show that
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(a) (b) (c)

Fig. 2: Performance evaluation of DP-DPE. The shaded area indicates the standard deviation. (a) Final cumulative regret vs.
the privacy budget ε. (b) Per-round regret vs. time with privacy parameters ε = 10 and δ = 0.1. (c) Comparison between
two non-private algorithms. Here, we choose the number of clients in DPE-FixedU to be U = 97 based on the calculation.

TABLE 2: Comparison of communication cost under LinUCB and PE with different values of α.

Algorithms DPE DPE DPE DPE DPE
LinUCB PEα = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Communication cost (×104) 0.70 0.81 1.05 1.69 3.27 5.00 5.00

# of participating users (×104) 0.04 0.10 0.23 0.55 1.34 5.00 5.00

Fig. 3: LinUCB vs. PE vs DPE with different values of α.

DPE learns much faster than DPE-FixedU while incurring
the same communication cost.

Finally, as discussed in Section 7.2, we also compare DPE
with the the-state-of-the-art for standard linear bandit prob-
lem, i.e. LinUCB and PE, and present the regret comparison
in Figure 3 and communication and sample efficiency in
Table 2. The results show that DPE can achieve a regret close
to that of (adapted) LinUCB and PE by adjusting sampling
parameter α while always consuming less communication
cost and involving fewer users.

7 DISCUSSIONS

7.1 On Achieving Privacy “for Free”

Following the remark on privacy “for-free” (Remark 5.5),
in this section, we first study differentially private linear
bandits and then draw an interesting connection between
bandit online learning and supervised learning.

7.1.1 Differentially Private Linear Bandits
Motivated by the cellular configuration problem, we consider
the distributed linear bandits with partial feedback in the

main content and propose the DP-DPE algorithmic frame-
work to address the newly introduced challenges. However,
we highlight that our developed techniques with minor
modifications can also achieve similar results in terms of
regret and privacy for the standard linear bandits, where
there is no client-related uncertainty (σ = 0), i.e., θu = θ∗ in
our notations. That is, we can design differentially private
linear bandits where one can also achieve privacy “for free”
in the central and shuffle DP models (similar to Remarks 5.5).
This might be of independent interest to the bandit learning
community. We provide the detailed description of differen-
tially private linear bandits in Appendix D.

Remark 7.1. We can achieve the above “for-free” results because
the sensitive information in linear bandits are only rewards, which
is in sharp contrast to linear contextual bandits where both
contexts and rewards need to be protected. In this case, the best
known private regrets in the central, local and shuffle model are
Õ(

√
T√
ε
) [29], Õ(T

3/4
√
ε
) [30], and Õ(T

3/5

ε2/5
) [31], respectively.

7.1.2 Connection with Supervised Learning
In addition, we draw an interesting connection of our
novel bandit online learning problem to private (distributed)
supervised learning problems, through which we provide
more intuition on why DP-DPE can achieve privacy “for
free”. In particular, we compare our problem with differen-
tially private stochastic convex optimization (DP-SCO) [9],
where the goal is to approximately minimize the population
loss10 over convex and Lipschitz loss functions given n
i.i.d. d-dimensional samples from a population distribution
while protecting privacy under different trust models. More
specifically, via noisy stochastic gradient descent (SGD), the

10. The population loss for a solution w is given by L(w) ≜
Ez∈D[l(w, z)], where w is the chosen solution (e.g., weights of a
classifier), z is a testing sample from the population distribution D,
and l is a convex loss function of w.
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excess losses11 in DP-SCO under various trust models are
roughly as follows:

Central & Shuffle Model [9], [26]: Õ

(
1√
n
+

√
d

nε

)
, (11)

Local Model [33]: Õ

(
1√
n
+

√
d√
nε

)
. (12)

Recall our main results in Table 1 and ignore all the logarith-
mic terms for clarity. Now, one can easily see that in both
problems, privacy protection is achieved “for free” in the
central and shuffle models, in the sense that the second term
(i.e., the additional privacy-dependent term) is a lower-order
term (with respect to n or T ) compared to the first term
(see Eq. (11) and Table 1). On the other hand, under the
much stronger local model, in both problems, the additional
privacy-dependent term is of the same order as the first term.

We tend to believe that the above interesting connection is
not a coincidence. Rather, it provides us with a sharp insight
into our introduced DP-DLB formulation. In particular, we
know that the first term 1/

√
n in DP-SCO comes from

standard concentration results, i.e., how independent sam-
ples approximate the true population parameter. Similarly,
in our problem, the first term

√
dT 1−α/2 comes from the

concentration due to client sampling, which is used to
approximate the true unknown population parameter θ∗.
On the other hand, the second term in DP-SCO is privacy-
dependent and comes from the average of noisy gradients.
Similarly, in our problem, the second term is due to the
average of the local reward vectors with added noise for
preserving privacy.

In addition to these useful insights, we believe that
this interesting connection also opens the door to a series
of important future research directions, in which one can
leverage recent advances in DP-SCO to improve our main
results (dependence on d, communication efficiency, etc.).

7.2 Comparison with the-State-of-the-Art
Some perceptive readers might think reducing the model
to a problem where each user u can observe i.i.d. rewards
with mean ⟨θ∗, x⟩ by treating ⟨θu − θ∗, x⟩ as an additional
noise to ηt. In this case, we may solve our problem with the
existing solutions to the traditional linear bandits. However,
they exhibit the following significant limitations.

Note that the uncertainty introduced by the additional
noise has to be addressed by sampling enough clients,
e.g., one client per round. Considering DP, this problem
essentially reduces to the differential private linear bandit
(also discussed in our Section 7.1.1) with a larger noise
variance, where the same results in terms of regret (order-
wise) and privacy can be achieved. However, one new user
is sampled in each round to collect reward observation,
which requires exactly T users in total to obtain the desired
regret while ensuring the privacy guarantee. Instead, the DP-
DPE framework in this work provides an approach where it
collects feedback from multiple clients for the selected action
in each round while each client serves for multiple rounds
to maintain (or improve) sample efficiency. Specifically, it

11. The excess loss measures the gap between the chosen solution and
the optimal solution in terms of the population loss. See [32].

samples ⌈2αl⌉ clients for 2l plays (rounds in the l-th phase),
which is O(Tα) users in total. In addition, by only collecting
feedback after preprocessing reward observations at the end
of each phase, this carefully designed DP-DPE algorithmic
framework reduces the communication cost from exactly
T to O(dTα). We have to mention that choosing α < 1,
however, will incur a larger privacy cost (see Table 1).
Therefore, there is a tradeoff between the regret penalty due
to privacy and the communication and sampling efficiency,
which can be balanced by tuning α properly. Meanwhile, we
run simulations of the non-private algorithms: DPE, LinUCB
in [5], and PE in [3], and present the results in Figure 3 and
Table 2. The results show that DPE can achieve similar regret
performance (by adjusting parameter α) to LinUCB and PE
while improving user-sampling efficiency and communica-
tion efficiency significantly for each α ∈ (0, 1).

7.3 Extensions to Non-linear Bandits

In this work, we study the problem of global reward
maximization with distribution feedback in the stochastic
linear bandit model where direct reward observations are
not available. Note that the same challenge (i.e., no direct
/partial reward feedback) could also exist in other general
bandit models, e.g., generalized linear bandits and kernelized
bandits. We believe our algorithmic framework incorporat-
ing different DP models can be extended through careful
accommodation for the parametric generalized linear bandits.
Specifically, one may refer to [34] to update the estimator
of θ̃l and the confidence width Wl for the upper/lower
confidence bound (UCB/LCB) of each active arm used in
the elimination rule in any particular phase l. However,
our algorithmic framework may not be extended directly to
the non-parametric kernelized bandits. We study the new
challenges and present the solutions in our recent paper [8].

8 RELATED WORK

Bandit models and their variants have proven to be useful
for many real-world applications and have been extensively
studied (see, e.g., [3], [18], [35] and references therein). This
paper, different from most existing studies with exact reward
feedback available, considers a new linear bandit setting
where the agent has to learn with partial distributed feedback.
While this setting shares some similarities with distributed

bandits, federated bandits, and multi-agent cooperative
bandits, our motivation and model are very different from
theirs, which leads to different regret definitions (global
regret vs. group regret; see Section 2) and algorithmic
solutions. In the following, we discuss the most relevant
work in the literature and highlight the key differences.

Linear bandits. Different from the standard stochastic
multi-armed bandits (MAB) model with independent arms,
the linear bandit model captures the correlation among
actions via an unknown parameter [4], [36], [37]. The best-
known regret upper bound for stochastic linear bandits is
O(d

√
T log(T )) in [4], which holds for an almost arbitrary,

even infinite, bounded subset of a finite-dimensional vector
space. For a special setting where the set of actions is finite
and does not change over time, it is shown in [3] that a phased
elimination with G-optimal exploration algorithm guarantees a
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regret upper bounded by O(
√
dT log(kT )). This new bound

is better by a factor of
√
d, which deserves the effort when

d ⩾ log(k). However, none of these studies consider the
scenario where an action influences a large population and
the exact reward feedback is unavailable, which is a key
challenge in our problem. Note that the linear bandits model
we consider is different from the contextual linear bandits
in [5], [38] where the parameter is not shared by actions
(although assuming linear reward function), and thus, the
actions are not correlated through the parameter.

Differentially private online learning and bandits. Since
proposed in [15], differential privacy (DP) has become the
de facto privacy preserving model in many applications,
including online learning [39] and bandits problems [40].
Specifically, in [41], [42], [43], MAB has been studied in
the central, local, and shuffle DP models, respectively. We
refer interested readers to [44] for state-of-the-art results on
private MABs under all three models. In [29], the authors
explore DP in contextual linear bandits and introduce joint
DP as ensuring the standard DP incurs a linear regret. As
stronger privacy protection, local DP is also studied for
contextual linear bandits [30] and Bayesian optimization [45].
Very recently, shuffle model for linear contextual bandits have
been studied in [31]. As already highlighted in Remark 7.1,
the additional protection of context information leads to a
higher cost of privacy compared to linear bandits considered
in our paper, where only rewards are private information.
One concurrent work [46] with our conference paper study
the standard linear bandits in all the three DP models as
ours while ensuring pure DP. However, different from the
unified algorithmic framework in this paper, their algorithms
in different DP models are independently designed, and their
shuffle model requires the shuffler to do more than shuffling.

Distributed bandits. Another line of related work is on
multi-agent collaborative learning in the distributed bandits
setting [14], [47], [48], [49], [50], [51]. The most relevant work
to ours is the distributed linear bandit problem studied in
[14]. Similarly, they design a distributed phased elimination
algorithm where a central server aggregates data provided
by the local clients and iteratively eliminates suboptimal
actions. However, there are two key differences: i) they
consider the standard group regret minimization problem
with homogeneous clients that have the same unknown
parameter; ii) the clients send the rewards to the central
server without any data privacy protection.

Federated bandits. Federated learning (FL) has received
substantial attention since its introduction in [52]. The main
idea of FL is to enable collaborative learning among hetero-
geneous devices while preserving data privacy. Very recently,
bandit problems have also been studied in the federated
setting, where the underlying problem is a bandit one, includ-
ing federated multi-armed bandits [53], [54], [55], federated linear
bandits [56], [57], and federated Bayesian optimization [58], [59].
Among all the above work, the two most relevant studies
are [57] and [56]. While they both consider the case where
all heterogeneous users share the same unknown parameter
with heterogeneous decision sets, in our problem setting, the
users have heterogeneous unknown local parameters.

In addition to the differences in model and problem
formulation, we also highlight our main technical contribu-

tions compared to these works in the following. First, when
aggregating users’ data for learning the global parameter, we
protect users’ data privacy using rigorous differential privacy
guarantees, which, however, is not considered in [14] or [57].
Besides, the work [57] did not consider the correlation among
the actions, which is captured by a common linear parameter
in our setting. However, they consider a linear reward for
contextual bandits while still studying multi-armed bandits
with independent actions, each of which is associated with
a distinct parameter vector. While DP is also employed to
protect users’ data privacy in [56],12 they require that both the
Gram matrix of actions (of size O(d2)) and reward vectors
(of size O(d)) be periodically communicated using some DP
mechanisms (e.g., the Gaussian mechanism). Instead, in our
algorithm, only private average local reward for the chosen
actions (of size O(d log log d)) would be communicated in
each phase. Moreover, while they only consider a variant
of the central DP model, our DP-DPE solution provides
a unified algorithmic learning framework, which can be
instantiated with different DP models. Specifically, DP-DPE
with the shuffle model enables us to achieve a finer regret-
communication-privacy tradeoff (see Table 1). That is, not
only can it achieve nearly the same regret performance as the
central model (yet without trusting the central server), but it
requires the users to report feedback in bits only throughout
the learning process.

Recently, we also extended our setup to the non-linear
case by considering kernelized bandits [8].

Despite the above work regarding federated bandits, one
may wonder whether we can follow the idea of federated
learning to share clients’ locally learned model parameters
only. This way, one can avoid sharing raw data, which is
another way of protecting clients’ data privacy. However, we
argue that the additional benefit is marginal. On the one hand,
by employing different DP mechanisms, our proposed DP-
DPE algorithms already ensure provable privacy guarantees.
On the other hand, the communication cost of transmitting
the (private) average rewards is nearly the same as that
of transmitting the local model parameters. Specifically, in
each phase, a client in our DP-DPE algorithm needs to
send a |supp(πl)|-dimensional vector in DP-DPE, compared
to a d-dimensional vector when sending the local model
parameters. Therefore, the difference is marginal since we
have |supp(πl)| ⩽ 4d log log d+ 16.

Reinforcement learning. Note that reinforcement learn-
ing (RL) [61] is a generalization of bandits with a distinct
new feature – the agent’s actions not only yield immediate
rewards but also influence the environment’s future state(s).
In other words, bandits is a special and simple case of RL
where the horizon length of each episode is one, and hence,
the action will not impact the state for the next step as
the episode just restarts. In this sense, our study in bandits
(dealing with a stateless environment) could shed light on
distributed RL, including efficient communication design and
differentially private algorithmic framework design, which
might be of independent interest to the RL community.

12. As shown in a recent work [60], both the privacy guarantee and
regret bounds in [56] have gaps.
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9 CONCLUSION

In this paper, we studied a new bandit learning problem
where it is often difficult, if not impossible, to collect exact
reward feedback. To address it, we proposed a differentially
private distributed linear bandits formulation, where the
learning agent samples clients and interacts with them by
iteratively aggregating distributed feedback in a privacy-
preserving fashion. We then developed a unified algorithmic
learning framework, called DP-DPE, which can be naturally
integrated with different DP models, and systematically
established the regret-communication-privacy tradeoff.

In this work, we assumed that actions are correlated
through a common linear function with parameter θ∗. One
interesting direction for future work is to extend linear
functions to general (possibly non-convex) functions via
kernelized bandits. Moreover, our current privacy guarantee
under the shuffle model is only approximated DP. One
promising future direction is to explore pure DP in the shuffle
model by building upon the recent advance in MAB [44].
Finally, our work also raises several interesting questions
that are worth investigating. For example, can we further
improve communication efficiency by using advanced shuffle
protocols? Can we generalize our formulation to studying
reinforcement learning problems?
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