
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 1

IPv6-in-IPv4 tunnel discovery: methods and
experimental results

Lorenzo Colitti, Student Member, IEEE, Giuseppe Di Battista, and Maurizio Patrignani

Abstract— Tunnels are widely used to improve security and to
expand networks without having to deploy native infrastructure.
They play an important role in the migration to IPv6, which
relies on IPv6-in-IPv4 tunnels where native connectivity is not
available; however, tunnels offer lower performance and are less
reliable than native links. In this paper we introduce a number of
techniques to detect, and collect information about, IPv6-in-IPv4
tunnels, and show how a known tunnel can be used as a “vantage
point” to launch third-party tunnel-discovery explorations, scal-
ing up the discovery process. We describe our Tunneltrace
tool, which implements the proposed techniques, and validate
them by means of a wide experimentation on the 6bone tunneled
network, on native networks in Italy, the Netherlands, and Japan,
and through the test boxes deployed worldwide by the RIPE
NCC as part of the Test Traffic Measurements Service. We assess
to what extent 6bone registry information is coherent with the
actual network topology, and we provide the first experimental
results on the current distribution of IPv6-in-IPv4 tunnels in
the Internet, showing that even “native” networks reach more
than 60% of all IPv6 prefixes through tunnels. Furthermore,
we provide historical data on the migration to native IPv6,
showing that the impact of tunnels in the IPv6 Internet did
not significantly decrease over a 6-month period. Finally, we
briefly touch on the security issues posed by IPv6-in-IPv4 tunnels,
discussing possible threats and countermeasures.

Index Terms— Tunnels, IPv6, Tunnel Discovery, IPv6 Topology
Discovery, IPv4 to IPv6 Transition

I. INTRODUCTION

TUNNELLING consists in the encapsulation of the pack-
ets of a network protocol within the packets of a second

network protocol, such that the former regards the latter as
its datalink layer [1]. Because of the flexibility it provides
(any protocol can be transported, including the encapsulating
protocol itself), tunnelling is widely used both to expand
networks without having to deploy native infrastructure and
to improve security. Examples of the former include IPX-in-
IP encapsulation [2], IPv6-in-IP encapsulation [3] and IP-in-IP
encapsulation [4]; examples of the latter include IPsec [5] and
virtual private networks [6]. The IPv6 specifications define
several types of IPv6-in-IPv4 tunnels, including configured
tunnels and automatic tunnels [3], 6to4 [7], ISATAP [8],
and Teredo [9]; IPv6 may also use GRE tunnels over IPv4
[10]. Our results suggest that tunnels are very common in

The authors are with Roma Tre University. Work partially supported by
European Commission: 6NET (IST-2001-32603) and Fet Open project COSIN
(IST-2001-33555); by ”Progetto ALINWEB: Algoritmica per Internet e per
il Web”, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse
Nazionale; and by European Commission - Fet Open project DELIS IST-
001907 ”Dynamically Evolving Large Scale Information Systems”. This work
was completed while the first author was visiting the RIPE NCC.

the Internet today, and that the transition to native IPv6
is occurring slowly; thus, we expect tunnels to continue to
play an important role in IPv6 networks, as IPv4 network
infrastructure will remain widely deployed for many years.

Tunnel discovery is the process of automatically detecting
tunnels and determining their endpoints. Similarly to other
network discovery problems, its importance derives from the
need for up-to-date information about network topology, and
from the impact that topology is known to have on crucial
aspects of network behavior, such as the dynamics of routing
protocols [11], the scalability of multicast [12], the efficacy of
denial-of-service countermeasures [13], [14], and other aspects
of protocol performance [15].

From a practical perspective, the ability to discover tunnels
can be useful in several scenarios. One example is trou-
bleshooting: if a link in the tunnel’s path fails, the tunnel
fails, and IPv6 diagnostic tools such as traceroute6 will
not reveal the source of the problem. The ability to determine
that the failed link is in a tunnel, and possibly perform an
IPv4 traceroute between the tunnel endpoints, would provide
great help in such cases. Secondly, tunnels are often used as
an interim solution until native IPv6 infrastructure is in place.
Tunnel detection techniques provide the means to follow the
evolution of the IPv6 Internet from its origin as a completely
tunneled network towards a completely native network, and
determine how much has to be done to complete the migration
to native IPv6. They can also provide insights into the structure
of the network itself: for example, as the cost of a tunnel
is much lower than that of a native link, predominantly
tunneled regions may be more densely interconnected than
native regions. The knowledge of these properties will aid
the development of realistic IPv6 topology generators. Finally,
tunnels offer lower performance than native links and are often
used as backup paths in case of problems; the knowledge
of whether a particular route contains a tunnel would allow
routing protocols or network operators to prefer native routes.
This is useful for Internet service providers and content
delivery operators who wish to maximize the quality of service
they provide.

Much has been written on the topic of IP topology dis-
covery, which is usually performed by interacting with the
network using probing packets [16]–[18] or through the ob-
servation of routing information, notably BGP tables [19],
bridge forwarding tables [20], or IGP routing tables obtained
via SNMP [21]. The combination of these approaches and
the use of advanced techniques has led to the development
of tools which achieve very good results in relatively little

0000–0000/00$00.00 c© 2004 IEEE

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 2

Fig. 1. An IPv6 in IPv4 tunnel is seen as a single hop at the IPv6 layer,
but IPv6 packets are encapsulated and sent as the payload of IPv4 packets
between the tunnel endpoints.

time [17], [19], [21]. However, tunnel discovery differs from
other types of network discovery in that a tunneled network is
made up of two distinct network layer topologies that interact,
and the resulting network is thus a complex “overlay” of
two forwarding planes (Figure 1), whose topology cannot be
deduced simply by applying known methods to explore each
plane separately; to do so, for example, would mean to com-
pletely ignore the path followed by the encapsulated packets
in the encapsulating plane, which is clearly unsatisfactory.
Further difficulties are caused by the fact that tunnels are
transparent to the encapsulated network, appearing to be an
ordinary point-to-point link while in reality they may span
any number of links in the encapsulating network. The impact
of tunnel discovery is also potentially more significant than
that of other types of topology discovery because tunnels
are more dynamic than physical links (for example, they
can be automatically created using tunnel brokers [22] or
specific tunnel setup protocols [23]) and because they can
undermine both performance, as a single tunnel may hide
a potentially long and inefficient path in the encapsulating
network, and security, as our techniques based on IP spoofing
clearly illustrate.

A possible approach to the tunnel discovery problem is the
use of SNMP queries to obtain information directly from the
nodes involved. This method is impractical, however: not only
does it require administrative access to network equipment,
and so cannot be used to discover tunnels in the Internet at
large, but the required MIBs are not yet finalized [24], and
the specific tunnel MIB is very rarely implemented. Another
method was outlined in [25], which follows the approach of
defining a new protocol and thus does not apply to exist-
ing infrastructure; furthermore, as it envisages authentication
mechanisms, it suffers from the same drawbacks as the use
of SNMP. In this paper, we discuss methodologies for tunnel
discovery that do not require administrative access to the
network and thus may be applied to the Internet at large. Our
main contributions are the following:

• We introduce techniques to infer the existence of IPv6-
in-IPv4 tunnels, confirm the existence of inferred tun-
nels, and collect information about tunnel endpoints. We
show how a tunnel, once discovered, can be used as

a “vantage point” to launch third-party tunnel-discovery
explorations.

• We describe Tunneltrace, a tool which uses our
techniques to detect tunnels between a vantage point and
a destination.

• We validate the techniques through wide experimentation,
first on the 6bone tunneled network [30], then by observ-
ing the IPv6 Internet from hosts in native networks in
Italy, the Netherlands and Japan, and from the test boxes
deployed worldwide by the RIPE NCC as part of the
Test Traffic Measurements Service [34]. As a byproduct
of our experimentation, we are able to assess to what
extent information in the 6bone registry is coherent with
the actual network topology.

• Finally, we provide the first experimental results on the
current distribution of tunnels in the Internet. Our data
show that tunnels are very common, the percentage of
native IPv6 connectivity is still low, and that the migration
to native IPv6 is progressing, albeit slowly.

The paper is organized as follows: Section II briefly pro-
vides the basic definitions and notations used both in Sec-
tion III, which introduces and formally describes our tunnel
discovery techniques, and in Section IV, which describes
Tunneltrace. Section V describes our experimentation and
discusses our results. In Section VI we briefly address security
issues introduced by tunnels that the development of our
techniques has led us to discover. We conclude in Section VII.

II. PRELIMINARY DEFINITIONS

Our definitions of node, link and interface are consistent
with the IPv6 specifications [26]: a node is a device imple-
menting IPv6, a link is a communication medium, offered by
an underlying link-layer (or, in the case of tunnels, network-
layer) protocol, over which the IPv6 protocol may transmit
packets, and an interface is a node’s attachment to a link. A
point-to-point link is a link to which exactly two interfaces
are connected. A dual stack interface is an interface on which
both IPv4 and IPv6 are enabled. We further (loosely) define a
routable interface as an interface whose IPv6 address belongs
to a prefix which exists in the global routing table and can
thus be reached by any host on the network.

An IPv6-in-IPv4 tunnel, T = 〈A, B〉, is a point-to-point link
between two dual stack interfaces A (the tunnel source) and B

(the tunnel destination). We denote respectively with A4 and
B4 and with A6 and B6 the IPv4 and IPv6 addresses of A

and B, and we represent bidirectional tunnels as two tunnels
with the same endpoints in inverted order; thus, if a tunnel
T = 〈A, B〉 is bidirectional, then T ′ = 〈B, A〉 also exists.
A tunnel operates as follows: when an IPv6 packet is sent
through the tunnel from A to B, the source node creates an
IPv4 packet with source addresses A4 and destination address
B4 whose payload is the IPv6 packet. Except in the case of
GRE or Teredo tunnels, no extra headers are added and the
packet is marked as encapsulating an IPv6 packet by setting
the IPv4 Protocol field to 41. The IPv4 packet is then sent to B

over the IPv4 network; when the destination node receives the
packet, it examines the IPv4 source address to check whether

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 3

it corresponds to a known tunnel, and if so, it decapsulates
the packet and processes it normally, as if it had arrived on
any other IPv6 interface. If the IPv6 packet is then forwarded,
the Hop Limit field in the header is decremented by 1; thus,
IPv6-in-IPv4 tunnels are “single-hop”, that is, they appear to
the IPv6 network as a single point-to-point link which hides
the complexity of the underlying IPv4 network [3].

In the rest of the paper, we shall denote a packet with a pair
of square brackets enclosing a source address, a destination
address, and other important features of the packet itself. For
example, an ICMPv6 echo request message from address X6

to address Y6 is written [X6Y6 echo-request]. Packet encap-
sulation is described by recursively using square brackets: if
the aforementioned IPv6 packet were encapsulated in an IPv4
packet, it would be written [A4B4[X6Y6 echo-request]]. To
denote the interface that originates or receives a packet, we
prepend the packet with the interface followed by a colon
or append to the packet the interface a colon followed by
the interface, thus X :[X6Y6 echo-request]:Y is a packet sent
by interface X and received by interface Y . Finally, if the
reception of a packet causes a node to emit another packet,
we indicate this with the symbol �. For example, if an echo
request packet causes a node to reply with an echo reply
packet, we write [X6Y6 echo-request] � [Y6X6 echo-reply].

III. TUNNEL DISCOVERY METHODS

This section presents a number of techniques we have
developed to tackle the tunnel discovery problem. Depending
on their objective, they may be divided into: (i) techniques
to infer the existence of tunnels, (ii) techniques to confirm
their existence, (iii) techniques to collect information about
their endpoints, and (iv) techniques which allow a host to
interact with the network as if it were located in a different
place to the one in which it is actually located (we name
these third party exploration techniques). They may further
be characterized according to their mode of operation: some
query known sources of information, others interact with the
network and observe the results, performing what we may
refer to as “active probing”. Each technique is a suitable
combination of the following basic methods:
Path MTU discovery The Maximum Transmit Unit (MTU)

of a link is the maximum size of a packet that may be
transmitted through the link, and the path MTU between
two interfaces X and Y is the minimum MTU of the
links composing the path between X and Y . Path MTU
discovery [27] is a method that allows a node to determine
the path MTU between one of its interfaces and another
interface on the network, thus obtaining information on
the MTUs of the intervening links. The presence on the
path of certain MTU values may suggest the presence of
a tunnel.

DNS lookups The Domain Name System is used to map IPv4
and IPv6 addresses to hostnames and vice versa. Often the
IPv4 and IPv6 addresses of an interface have the same
name, and since tunnel interfaces are dual stack, DNS
lookups can provide information about tunnel endpoints.
DNS queries can also be used to determine whether an
interface is dual stack.

TABLE I
CLASSIFICATION OF TUNNEL DISCOVERY TECHNIQUES

Rule Infer Confirm Collect Third-party
existence existence information exploration

1 MTU ×

2 DNS × ×

3 Packet × ×
injection

4 Fragment × ×
injection

5 Injected ×
ping

6 Dying × ×
packet

7 Ping-pong ×
packet

8 Bouncing ×
packet

IP spoofing Because IPv6-in-IPv4 tunnels do not use any
form of authentication, a tunnel destination will accept
an encapsulated packet sent by any node as long as the
source IPv4 address of the packet is the IPv4 address
of the tunnel source. This allows any node to cause
the tunnel endpoint to emit arbitrary IPv6 packets by
encapsulating them in IPv4 packets with spoofed source
addresses, and is the basis for our third-party discovery
techniques.

Hop Limit manipulation The Hop limit field in the IPv6
header specifies the maximum number of routers a packet
may pass through. When a router receives a packet with
the Hop Limit field equal to 1, it discards it and sends the
packet’s source an ICMPv6 error message whose source
address is the address of the interface on which it received
the packet. This behavior may be exploited to discover
the IPv6 address of an interface.

IPv6 Routing header While source routing is prohibited in
the majority of IPv4 networks, many IPv6 routers honor
the IPv6 Routing header, which permits a host sending
a packet to specify a list of nodes that the packet is to
pass through. Combined with Hop Limit manipulation,
the Routing header can be useful for determining the ad-
dresses of point-to-point interfaces and tunnel interfaces
in particular.

The remainder of this section is devoted to a formal presenta-
tion of the main techniques we have devised. Each technique
is expressed by means of a formal rule, which is identified
by a number and by a short name. Table I classifies the rules
according to their objective. Although each rule is expressed
by means of an implication, the validity of the implication
is not absolute, and in real-world conditions a rule may
fail to apply due to nonstandard behavior, misconfiguration,
or unexpected and uncommon network topologies. Data on
the applicability of the rules to real-world networks will be
provided in Section V.

Rule 1 (MTU): Consider the sequence of links that make up
the path between some interface X and some other interface
Y . We may think of each link as a point-to-point link, because
each packet that traverses a link is sent by exactly one of the
interfaces on the link and is received by exactly one of the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 4

Fig. 2. A link i in a path with its associated interfaces A(i) and B(i).

interfaces on the link1. Thus, if we number the links in the
path progressively starting from 1, for each we may define a
source interface A(i) and a destination interface B(i), which
have IPv6 addresses A6(i) and B6(i) (Figure 2).

Let MTU(i) be the MTU of link i. If we can send packets
from X , then we may use Path MTU discovery [27] to
determine, for each link, the value

PMTU(i) = min{MTU(i), PMTU(i − 1)}

where PMTU(1) = MTU(1). Because of encapsulation, the
MTU of the tunnel is lower than that of the underlying IPv4
network by a fixed amount depending on the tunnel type: 20
bytes for IPv6-in-IPv4 tunnels, 24 or 28 for GRE [10] tunnels.
The most common MTU value on the IPv4 Internet today is
1500 bytes, so these tunnels will almost always have MTUs
of 1480 and 1476 (or 1472) bytes respectively. Finally, many
tunnel interfaces (notably on BSD systems) use a default MTU
of 1280 bytes. Hence, if we consider two consecutive links
i − 1 and i on the path, we may write:

PMTU(i) < PMTU(i − 1)∧

PMTU(i) ∈ {1480, 1476, 1472, 1280}⇒ Tunnel(A(i), B(i))

where Tunnel(A(i), B(i)) means that there is a tunnel be-
tween A(i) and B(i). Of course, if the tunnel is entirely
contained in a portion of the IPv4 Internet where the MTU
of all the links is higher than 1500, this rule may fail to detect
a tunnel. It may also wrongly detect a link as a tunnel if the
link is manually configured to have an MTU equal to these
values. This may be particularly common in the case of 1280
bytes, which is the minimum MTU permitted by the IPv6
specifications. The MTU rule is confirmed by experience in
all the IPv6 networks on which we tested; note, however, that
it will only find a tunnel if its MTU is lower than the MTU
of all previous links in the path, and thus cannot detect two or
more tunnels in the same path unless their MTUs are different.

Rule 2 (DNS): We represent DNS lookups with a function,
Name(), that takes an IPv4 or IPv6 address and returns the
corresponding DNS name, and two functions, Addr4() and
Addr6(), that take a DNS name and provide the corresponding
IPv4 or IPv6 address. If a name of an interface X has both
an IPv6 and an IPv4 address, we may presume that it is dual
stack and that the two addresses are its IPv4 and IPv6 address.
Thus, we may write:

∃α|α = Addr4(Name(X6)) ⇒ DualStack(X)∧ X4 = α

∃β|β = Addr6(Name(X4)) ⇒ DualStack(X)∧ X6 = β

Rule 3 (Packet injection): Given two IPv4 addresses A4

and B4, if there is a tunnel between A and B, it is possible

1This is usually the case for all packets, but load-balancing mechanisms or
policy routing may cause behavior that varies from packet to packet.

Fig. 3. Packet injection: A spoofed IPv4 packet is sent to a tunnel endpoint
(1), is processed as if it had been sent by the other endpoint, and is forwarded
to its destination (2).

to cause an arbitrary (though limited in size) IPv6 packet
to enter the IPv6 network at interface B. This is done by
sending, from any interface Z, an IPv6 packet encapsulated
in an IPv4 packet with source and destination addresses A4

and B4. Because its source address is A4, when the packet
arrives at B it will be recognized as arriving from the tunnel
and will be decapsulated and processed as if it had been sent
by A (see Figure 3(a)). Formally, we may write:

Tunnel(A, B) ⇒

Z:[A4B4[X6Y6 payload]] � [X6Y6 payload]:B

where the payload of the two IPv6 packets is the same. This
technique may be used to “inject” an arbitrary IPv6 packet, up
to the maximum size permitted by the MTU of the underlying
IPv4 network minus the size of the IPv4 header, into the IPv6
network at interface B. We refer to this technique as packet
injection and to Z as the injecting interface. Note that the
packet, although sent by Z, actually enters the IPv6 network
at interface B, and, as far as the IPv6 network is concerned,
is simply a packet originated by a node on the same link as
B. This rule allows the injecting host to send packets as if it
were physically located on the same link as B, and if the node
r to which B belongs is a router, the injected packet will be
forwarded as normal towards X as if it had been sent by r

itself. We then say that r is a vantage point. Thanks to this
rule, a single host in a single location may interact with and
explore the network as if it were located simultaneously in all
the vantage points it is aware of. Note, however, that because
it depends on IP spoofing, both this rule and Rules 4, 5, 6 and
7, which depend on it, will not work if the network in which
B is located makes use of IPv4 ingress filtering.

Rule 4 (Fragment injection): IPv6 packets injected using
the packet injection technique described in Rule 3 are lim-
ited in size to the MTU of the underlying IPv4 network
minus the size of the encapsulating headers. However, it is
possible to inject a larger packet by fragmenting the IPv4
packet which encapsulates it. For example, suppose the packet
[A4B4[X6Y6 payload]] is fragmented by the IPv4 network into
two IPv4 packets f1 and f2. Upon arrival at B, the packet will
be reassembled (resulting in an IPv4 packet larger than the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 5

(a) (b)
Fig. 4. Injected ping: an IPv6 echo-request packet is injected into a tunnel (1) and forwarded to its IPv6 destination address (2). The destination replies
with an IPv6 echo-reply addressed to the source address of the encapsulated packet (3). Figure (a) shows the role of the tunnel, while Figure (b) shows the
succession of events (vertical axes) and the relationship between the two protocols.

MTU of the IPv4 network) and will be processed according
to Rule 3. So, we may write:

Tunnel(A, B) ∧ f1 o f2 = [A4B4[X6Y6 payload]] ⇒

Z:f1 ∧ Z:f2 � [X6Y6 payload]:B

where f1 o f2 indicates the packet reassembled from the two
fragments. This rule permits a host to use any vantage point
r to inject IPv6 packets of arbitrary size from r as if it had
a direct native connection to r. It is particularly useful in the
search for tunnels: for example, by combining this rule with
Rule 1, we may perform Path MTU discovery from the node
having interface B.

Rule 5 (Injected ping): Given two IPv4 addresses A4 and
B4, it is possible to determine whether there is a tunnel
T = 〈A, B〉 by applying Rule 3, with X6 = Z6, to inject
an echo request packet addressed to any routable interface Y

(Figure 4). The packet will arrive at interface B, and if there
is no tunnel between A and B, it will be discarded. Otherwise,
it will be forwarded to its destination Y , which will reply with
an echo reply message addressed to Z6. If the injecting host
receives a reply, it can conclude that there is a tunnel between
A and B. More formally, we may write:

Z:[A4B4[Z6Y6 echo-request]] � [Y6Z6 echo-reply]:Z ⇒

Tunnel(A, B)

Rule 6 (Dying packet): Given a tunnel T = 〈A, B〉, it is
possible to determine the IPv6 address B6 of the tunnel
destination by injecting a packet with the IPv6 Hop Limit
field set to 1. Because IPv6-in-IPv4 tunnels are modeled as
“single-hop”, the packet will appear at interface B without
ever having been processed by an IPv6 router, and thus with
the contents of the Hop Limit field intact. Upon arrival at
interface B, however, the Hop Limit of the packet will be
decremented to zero. The resulting “time exceeded” message
will arrive at Z and the injecting host may determine B6 by
examining its source address. Stating this in terms of a rule,
we have:

Z:[A4B4[Z6X6 HL=1]] � [Y6Z6 time exceeded]:Z ⇒

B6 = Y6

If the tunnel is bidirectional, it is possible to determine the
IPv6 address of the other endpoint simply by exchanging A4

and B4.

Rule 7 (Ping-pong packet): Rule 6 does not allow us to
determine the IPv6 address A6 of the tunnel source if the
tunnel is not bidirectional. However, it is frequently possible
to determine it by other means. Suppose the tunnel has an
IPv6 prefix T associated with it. Any IPv6 address in T will
be routed towards the tunnel, and each tunnel endpoint will
route through the tunnel all addresses in T except its own.
Thus, if we use Rule 5 to inject an echo request packet with a
Hop Limit of 2 and destination address X6 in T but not equal
to B6, the packet will reach B and be sent back through the
tunnel to A. If X6 = A6, then the injecting host will receive
an echo reply. Otherwise2, it will receive a “time exceeded”
message with source address A6. In both cases, it obtains A6.

It is simple to determine a suitable value for X6: the length
of T must be at most 127, because otherwise A6 and B6

cannot both be in T . So, whatever the length of T , B6 ± 1
(where the sign depends on whether B6 is even or odd) is
always in T . So we may write:

Z:[A4B4[Z6X6 echo-request,HL=2]]
�[X6Z6 echo-reply]:Z ⇒ A6 = X6

Z:[A4B4[Z6X6 echo-request,HL=2]]
�[Y6Z6 time exceeded]:Z ⇒ A6 = Y6

where

X6 =

{

B6 + 1, if B6 is even
B6 − 1, if B6 is odd

Note that if the tunnel interfaces are unnumbered, A6 and B6

are not on the same subnet and this rule does not apply.

2If subnet-router anycast addresses are used, X6 may belong to the same
router as B6. However, the injecting host may determine if that is the
case simply by sending [A4B4[Z6X6 echo-request,HL=1] and seeing if B

responds with an echo reply or a time exceeded. If it responds with an echo
reply, then subnet-router anycast is active, so the subnet is at least a /126.
The injecting host can then choose X6 as another address in the subnet.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 6

Rule 8 (Bouncing packet): Consider the path from some
interface Z to some other interface W . An IPv6 traceroute
from Z to W allows us to determine the sequence B6(i),
where i = 1 . . . n is the i-th link in the path, but it does not
allow us to determine A6(i) for any i. However, Z may use the
IPv6 Routing header to send a packet to B(i) which is routed
back towards itself; if the Hop Limit HL of this packet is set to
the appropriate value, the packet will expire on interface A(i)
and Z will receive a “time exceeded” message with source
address A6(i). The required value of HL is not necessarily
i + 1, as the path taken by a packet [Z6B6(i)] may not be a
subpath of the path taken by a packet [Z6W6]. However, HL
may be determined by adding one to the number x of hops
between Z and B(i), which can be obtained, for example, by
running a traceroute from Z to B6(i).

In the presence of asymmetric routing, this may not provide
A6(i), because the path from B(i) to Z may not be the same
as the path from Z to B(i). This problem may be partially
overcome by setting the packet’s destination not to Z6 but
to a previous hop on the path, to reduce the effects of route
asymmetry. Because the ICMPv6 specification requires [28,
section 2.2] that if the packet is sent to B6(i− 1), the source
address of the error message must be B6(i−1) and not A6(i),
Z may set the destination address to B6(i−2)3. More formally,

Z:[Z6B6(i)B6(i − 2) HL=x + 1] � [Y6Z6 time-exceeded]:Z

⇒ A6(i) = Y6

where [Z6B6(i)B6(i − 2)] indicates a packet source routed
through B6(i) with destination B6(i − 2). While this rule
applies to any link, not only to tunnels, it is particularly useful
when combined with Rule 2 to determine tunnel endpoints
given path information; if the IPv4 addresses of the tunnel
endpoints are known, then Rules 6 and 7 are more effective.

IV. A TUNNEL DISCOVERY TOOL

In this section we describe Tunneltrace, a tunnel discov-
ery tool we have developed to test the techniques introduced
in Section III. Although Tunneltrace is not intended to be
the main contribution of our work, which we believe lies in
the techniques themselves, we present it here as an example
of their application. Tunneltrace attempts to detect, and
collect information about, tunnels in the path between the
exploring host and a user-specified destination. Of course, by
applying Rule 4, in principle it is possible, given a sufficient
number of vantage points, to find tunnels in the entire network.

The strategy followed by Tunneltrace is simple: per-
form a traceroute to the destination node, and for each link
i attempt to discover if it is a tunnel. If it is, attempt to
discover the IPv4 addresses of the endpoints, confirm the
tunnel’s presence, and use it as a vantage point to explore
the rest of the path.

Specifically, for each hop in the traceroute B6(i),
Tunneltrace first applies Rule 1 to determine whether

3This may still provide incorrect results, because the asymmetry may be
located between B(i) and B(i−2). If greater accuracy is desired, the inferred
value of A6(i) can be compared with B6(i) and accepted only if it is on the
same subnet; however, this will cause false negatives for unnumbered links.

link i is a tunnel. If so, it attempts to obtain information
about its endpoints in the following way: first, it attempts to
obtain the IPv6 address of the previous hop’s sending interface,
A6(i), using Rule 8; then, it uses Rule 2 to attempt to obtain
A4(i) and B4(i), and if it succeeds, it attempts to confirm
the presence of the tunnel using Rule 5; finally, it verifies the
information collected by using Rules 6 and 7. If the tunnel is
confirmed, it is used as a vantage point to explore the rest of
the path.

If Rule 2 does not provide enough information to use the
tunnel as a vantage point, Tunneltrace combines it with
heuristics on DNS names, attempting to perform piecewise
matching as proposed in [29], and, if the name contains strings
such as “v6-”, “ip6.”, or “ipv6.”, repeating the DNS lookup
after removing them.
Tunneltrace also examines names looking for strings

that suggest the presence of tunnels (such as “tunnel” or “tu”),
queries the 6bone registry to check whether the node is a
known tunnel endpoint, and performs AS lookups: if the IPv4
address of a node is in a different AS as its IPv6 address, or if
the hops before and after the node are in different ASes than
the node itself, the node may be the endpoint of an interdomain
tunnel. In all these cases, Tunneltrace reports that a tunnel
might be present.

For each hop, Tunneltrace also outputs information
such as the IPv6 address (and DNS name and AS number)
of the answering interface B6(i) and whether the interface is
dual stack. It also provides this information about the sending
interfaces A(i).

V. EXPERIMENTAL RESULTS

The 6bone experimental IPv6 network [30] provides a useful
testbed for our work, as data on tunnels is publicly available
in the 6bone registry. Thus, applying our techniques to the
6bone may both (i) allow us to verify the validity of our
techniques, and (ii) use our techniques to check the accuracy
of the information in the registry itself. We used the tunnel
data available in the 6bone registry in various ways. Firstly,
we checked it for consistency, using DNS lookups and packet
injection to determine how many tunnels in the tunnel database
actually exist. Secondly, we used it as a large list of tunnels
against which to check the validity of our tunnel discovery
techniques. Finally, we used the list of existing tunnels as
vantage points from which to search for tunnels in the IPv6
Internet at large.

A. Status of the 6bone registry

We applied our tunnel confirmation methods to the 6bone
registry to determine whether the information on tunnels it
contains is accurate and up to date and to determine whether
the quality of the information varies over time. For every
tunnel, the registry contains the DNS names or IPv4 addresses
of the tunnel endpoints, along with other information. We
process one tunnel at a time, and attempt to resolve the DNS
hostnames of the tunnel endpoints to IPv4 addresses. If both
names can be translated to IP addresses, we use Rule 5 to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 7

TABLE II
STATUS OF TUNNELS IN THE 6BONE REGISTRY

Date Total Tunnels Up Down One endpoint Both endpoints
unknown to DNS unknown to DNS

2003-06-13 4334 998 1479 1328 529
2003-06-23 4319 1058 1394 1333 534
2003-07-18 4202 998 1322 1342 540
2003-08-07 4197 1046 1345 1316 490
2004-02-27 4280 964 1310 1397 609

determine whether the tunnel is actually working. The results
of our analysis are in Table II.

The results show that almost half of all tunnel records in
the registry have invalid DNS names for one or both endpoints
and therefore are either out of date or refer to tunnels that
no longer exist. About a quarter of the records are working
tunnels. The rest do not permit packet injection; while some
of these may be GRE tunnels and/or have endpoints located
in networks that employ ingress filtering, we expect most of
them to be inactive: our MTU survey results indicate that GRE
tunnels are much less common than IPv6-in-IPv4 tunnels, and
as the majority of tunnels in the 6bone registry are interdomain
tunnels, it is unlikely that ingress filtering has any significant
impact on the results. Further study of these undecided cases
would allow the development of a tool which could monitor
all aspects of the quality of a tunnel registry.

To study variation over time, we carried out a number
of observations over a two-month period, between June and
August 2003, to observe short-term changes. Our results show
that the data in the registry is fairly static, with a slow
rate of change. Comparison with a further observation made
approximately six months later, in February 2004, indicates
that the the quality of the information stored in the registry is
slowly decreasing: over this six month period, the percentage
of working tunnels dropped from 24.9% to 22.5%, and the
percentage of tunnels for which one or both endpoints had
an invalid DNS name rose from 43.0% to 46.9%. This is
consistent with the fact that the 6bone is being phased out [31].

B. Rule validity data

The large number of working tunnels provided by the 6bone
registry allows us to validate our tunnel discovery techniques
against known data: once a tunnel is confirmed using Rule 5,
we may check the validity of Rules 2, 4, 6, and 7. Using the
2003-08-07 dataset, we checked whether these rules applied
to the tunnels in the registry that we had confirmed to be
working. Of a total sample of 1046 tunnels, we found that
Rule 4 (Fragment Injection) applied to 999 tunnels (95.5%)
and Rule 6 (Dying packet) applied to 1013 tunnels (96.8%).
Rule 7 was tested only on tunnels that did not permit packet
injection in both directions, because for these, Rule 6 is much
more effective. Of 218 tunnels that were not bidirectional,
Rule 7 applied to 151 (69.2%). Together, Rules 6 and 7
allowed us to determine both IPv6 endpoints for 963 tunnels
(92.1%).

Rule 2 (DNS) was significantly less useful: of the 963
tunnels for which we knew the IPv6 addresses of both

endpoints, it applied to one endpoint in 169 cases (17.5%),
and to both endpoints in only 6 cases (0.6%). Though its
utility is rather limited, we feel that as it is probably the most
obvious of our techniques, our work would not be complete
without discussing it and determining its degree of usefulness.
Clearly, the techniques that make use of active probing produce
significantly better results than can be obtained by querying
online sources of information such as the 6bone registry or
the DNS.

C. MTU survey

The large number of vantage points obtained from the
6bone registry allows us to use third-party exploration to
evaluate the impact of tunnels in a sizable portion of the IPv6
Internet. Using a sample of 995 vantage points in 92 different
Autonomous Systems (ASes; for comparison, the total number
of ASes which announce IPv6 routes is approximately 450),
we applied Rule 4 to perform Path MTU discovery from each
vantage point to every prefix in the IPv6 routing table. By
applying Rule 1, we may deduce which paths contain one or
more tunnels and which are native. The results of our analysis,
excluding connectivity errors, are in Table III.

TABLE III
PATH MTU VALUES FROM VANTAGE POINTS TO THE INTERNET AS OF

AUGUST 2003

MTU value Number of paths Percentage
1480 150946 39.4%
1280 138358 36.1%
1476 44404 11.6%
1500 31525 8.2%
1428 13619 3.6%
Other 4104 1.1%
Total 382956 100.0 %

We note that the most common MTU is 1480 bytes, that of
an IPv6-in-IPv4 tunnel, followed by 1280, the minimum IPv6
MTU, which indicates that at least one link in the path has
a MTU of 1280 bytes (possibly an IPv6-in-IPv4 tunnel on a
BSD system). The paths with an MTU of 1476 are probably
due to GRE tunnels, while the paths with a MTU of 1428 may
be due to encapsulation of IPv6 in a L2TP VPN. Native paths
(those with a MTU of 1500) make up only 8.2% of all the
paths we surveyed. A relatively low percentage of native paths
is to be expected, given the fact that our vantage points are
tunnel endpoints, and each probably reaches some percentage
of prefixes through the tunnel itself; nevertheless these results
allow us to affirm that the percentage of native paths in the
IPv6 Internet is still quite low.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 8

D. Survey of “native” IPv6 networks: how native is native?

So far we have observed the IPv6 Internet through vantage
points that are tunnel endpoints. Since these may be located in
portions of the network that are dense in tunnels, we conducted
a survey from hosts inside three native IPv6 networks, one in
the GARR [32] network in Italy (AS 137), one at the RIPE
NCC in the Netherlands (AS 3333), and one at WIDE in Japan
(AS 2500) [33], to discover how tunneled “native” networks
really are. From each host we measured the Path MTU to
every prefix in the global IPv6 BGP table and applied Rule 1
to determine whether the path to each prefix contained at
least one tunnel. We found that of 443 prefixes in the BGP
table at the time of the analysis, the GARR, RIPE NCC and
WIDE networks respectively reached at least 275 (64.3%), 305
(68.8%) and 308 (72.6%) through tunnels4

Fig. 5. Percentage of tunneled prefixes seen by TTM test-boxes and three
native sites as of February 2004.

In order to obtain a more complete picture of the effect
of tunnels on global IPv6 connectivity, we repeated the ex-
periment from the “test-boxes” deployed worldwide by RIPE
NCC as part of the Test Traffic Measurements service [34].
Over 100 test-boxes are currently active, of which about 20
have IPv6 connections. We repeated the tests three times, once
in August 2003, once in January 2004, and once in February
2004; for each test, the same list of prefixes, obtained from a
BGP router in AS 137 on the day of the test, was used for
all the hosts. Due to differences in routing, not all test-boxes
could reach all prefixes, so prefixes that were reported to be
unreachable by a router within a test-box’s own AS were not
factored into the results. Also, test-boxes that could not reach
at least 75% of the BGP prefixes in our list were excluded
from the results so as not to skew the averages.

The February 2004 results are in Figure 5. As can be
seen from the graph, four of the test-boxes reached 100%
or almost 100% of the prefixes through tunnels, from which
we deduce that they are located in networks which do not
have a native IPv6 connection; the others reached between
62.8% and 94.8% of the prefixes through tunnels. The column
labeled “tt average A-Q” provides an average for all 17 test-
boxes, while the column labeled “tt average E-Q” provides the

4Discrepancies between number of prefixes and percentages are due to the
fact that not all these networks could reach the same number of prefixes, and
unreachable prefixes were not counted in the results.

average of all natively connected test-boxes. The results show
that global IPv6 connectivity still relies largely on tunnels,
even when observed from a native IPv6 network. However,
we note that there are non-trivial differences between the
percentage of native destinations reached by the various test-
boxes, indicating that measurements such as these offer a good
indication of the quality of an IPv6 network.

Fig. 6. Change in the percentage of tunneled prefixes seen by various test
boxes over a period of six months.

As regards variation over time, Figure 6 shows the evolution
of the percentage of prefixes reached through tunnels for the 12
test-boxes for which we have complete data sets (in August
2003, some test-boxes did not yet exist, and others did not
have connectivity to IPv6 networks yet; in January 2004 a
further test-box was unavailable due to technical problems).
Our data indicate that the quality of the IPv6 network is slowly
improving, as the average percentage of tunneled prefixes seen
by these hosts decreased from 79.0% in August 2003 to 76.6%
in January and 71.7% in February 2004. Some of this variation
is due to tt J being changed from a tunneled connection to
a native connection between August 2003 and January 2004
and to tt P experiencing non-optimal performance in January
2004, but even excluding these two test-boxes the percentages
still decrease over time: 77.7% in August 2003, 75.8% in
January 2004, and 72.6% in February 2004. We believe that
continued monitoring using our techniques would enable us to
track the evolution of the IPv6 network towards global native
connectivity and possibly provide insight into the processes
that drive it, although we leave this for future work.

VI. SECURITY CONSIDERATIONS

The development of our techniques, especially those related
to third-party discovery, has led us to consider security issues
inherent in IPv6-in-IPv4 tunnels. The fact that the IPv6 specifi-
cations do not define any type of authentication mechanism for
tunnels except a check on the IPv4 packet’s source address,
which is easily circumvented by IP spoofing, is a flaw that
may be exploited by a malicious user: as we have shown in
Rule 3, an attacker may inject arbitrary IPv6 packets into the
IPv6 network at a tunnel endpoint simply by by spoofing the
IPv4 address of the other endpoint.

From the perspective of an attacker, packet injection is
more attractive than IPv6 source address spoofing, since it

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 9

has the potential to bypass IPv6 packet filters (by using
IPv4) and because the attacker can use a real IPv6 source
address and receive replies, thus allowing the establishment
of TCP connections (which is not normally possible using IP
spoofing). This method may thus be used to bypass firewalls
and circumvent IPv6 ingress filtering if the tunnel endpoint is
located behind them. An example is in Figure 7.

Fig. 7. If a tunnel, even one limited to a known IPv4 address, for example that
of a trusted user for remote access, has an endpoint behind the IPv6 firewall, it
allows any dual stack host Z to inject IPv6 packets into the internal network,
bypassing the firewall. If Z’s packets were routed normally through the IPv6
Internet, they would be blocked by the IPv6 firewall (4), but if Z encapsulates
the packets and spoofs A’s IPv4 address, the packets bypass the IPv6 firewall
on the IPv4 plane (1) and reach the target (2). Firewalling on the IPv4 plane
does not help, as the IPv4 firewall must be configured to allow IPv4 packets
from the legitimate user.

The resulting security implications are similar to those of
source routing, which is administratively prohibited in the
majority of IPv4 networks; however, from the perspective of an
attacker this method may be even more attractive than IPv6
source routing, because it cannot easily be guarded against
without harming legitimate traffic and because the packets
arrive at the tunnel endpoints with the IPv6 Hop Limit field left
intact. This allows the attacker to spoof Neighbor Discovery
messages, with possibly dangerous consequences.

IPv4 ingress filtering removes the problem by preventing
IP spoofing, but this solution cannot easily be applied to
interdomain tunnels such as those used in the 6bone. Thus,
if interdomain tunnels are used, their endpoints should be
kept outside firewalls, or different types of tunnels, such as
GRE [10] or keyed GRE tunnels, should be used. The use of
IPsec is also an obvious (but non-trivial) solution, as is, of
course, the use of native links instead of tunnels.

VII. CONCLUSIONS

We have introduced several techniques to infer the existence
of IPv6-in-IPv4 tunnels, to confirm their existence, and to
collect information about their endpoints, outlining a strategy
for tunnel discovery along a path and showing how it is
possible to use tunnels as ”vantage points” to inject packets
into the network at multiple locations, performing third-party
exploration and scaling up the discovery process.

By applying our techniques to the 6bone registry, we were
able to assess to what degree it is coherent with the actual state

of the network, showing that almost half of the information
on tunnels is out of date, but that about one quarter or more
of the tunnels listed is still functioning. The information in
the 6bone registry also allowed us to verify the validity of
our techniques, showing that those which make use of active
probing are very effective, providing results for over 90% of
the tunnels in the registry we were able to make use of.

We used our techniques to provide the first experimental
data on the presence of tunnels in the IPv6 Internet, by mea-
suring the percentage of IPv6 prefixes reached through tunnels
from the native GARR, RIPE NCC and WIDE networks and
from the 20 IPv6-enabled test-boxes deployed worldwide by
the RIPE NCC as part of the Test Traffic Measurements
service. All the networks we tested reached less than 40% of
IPv6 prefixes natively, showing that global IPv6 connectivity
still relies largely on tunnels.

We also considered the security issues posed by IPv6-
in-IPv4 tunnels, which provide only a very weak form of
authentication, touching on the possible threats that may arise
and the countermeasures that may be taken.

ACKNOWLEDGEMENTS

We would like to thank Henk Uijterwaal from the RIPE
NCC for providing us with the opportunity to perform our
measurements from the RIPE NCC network and the TTM
test-boxes. We would also like to thank Kenjiro Cho for his
comments and help on MTU measurements from Japan and
the WIDE Project [33] for allowing the use of its network
infrastructure for this purpose.

REFERENCES

[1] R. Callon and D. Haskin, “RFC2185: Routing aspects of IPv6 transi-
tion,” September 1997.

[2] D. Provan, “RFC1234: Tunneling IPX traffic through IP networks,” June
1991.

[3] R. Gilligan and E. Nordmark, “Transition mechanisms for IPv6 hosts
and routers,” RFC 2893, Aug. 2000.

[4] R. Woodburn and D. Mills, “RFC1241: Scheme for an internet encap-
sulation protocol: Version 1,” July 1991.

[5] S. Kent and R. Atkinson, “Security architecture for the Internet Proto-
col,” RFC 2401, Nov. 1998.

[6] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “A
Framework for IP Based Virtual Private Networks,” RFC 2764, February
2000.

[7] B. Carpenter and K. Moore, “Connection of IPv6 domains via IPv4
clouds,” RFC 3056, Feb. 2001.

[8] F. Templin, T. Gleeson, M. Talwar, and D. Thaler, “Intra-Site Automatic
Tunnel Addressing Protocol (ISATAP),” Work in progress, Apr. 2002.

[9] C. Huitema, “Teredo: Tunneling IPv6 over UDP through NATs,” Work
in progress.

[10] S. Hanks, T. Li, D. Farinacci, and P. Traina, “RFC1701: Generic Routing
Encapsulation (GRE),” October 1994.

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence.” in ACM SIGCOMM 2000, September 2001.

[12] G. Philips, S. Shenker, and H. Tangmunarunkit, “Scaling of multicast
trees: Comments on the Chuang-Sirbu scaling law,” in ACM SIGCOMM
1999, August 1999.

[13] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” in Proc. ACM/SIGCOMM ’00, Aug. 2000.

[14] K. Park and H. Lee, “On the effectiveness of route-based packet filtering
for distributed DoS attack prevention in power-law internets,” in Proc.
ACM/SIGCOMM ’01, Aug. 2001.

[15] P. Radoslavov, H. Tangmunarunkit, H. Yu, R. Govindan, S. Shenker, and
D. Estrin, “On characterizing network topologies and analyzing their
impact on protocol design,” September 2000.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 1, NO. 1, APRIL 2004 10

[16] H. Burch and B. Cheswick, “Mapping the Internet,” IEEE Computer,
vol. 32, no. 4, pp. 97–98, April 1999.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. ACM/SIGCOMM ’02, Aug. 2002. [Online].
Available: citeseer.nj.nec.com/spring02measuring.html

[18] I. Astic and O. Festor, “A hierarchical topology discovery service for
IPv6 networks,” in IEEE/IFIP Network Operations and Management
Symposium NOMS’2002., R. Stadler and M. Ulema, Eds., April 2002,
pp. 497–510.

[19] G. Di Battista, F. Mariani, M. Patrignani, and M. Pizzonia, “Archives
of BGP updates: Integration and visualization,” in Proc. International
Workshop on Inter-domain Performance and Simulation, Salzburg, Aus-
tria, Feb. 2003.

[20] Y. Bejerano, Y. Breitbart, M. Garofalakis, and R. Rastogi, “Phys-
ical topology discovery for large multi-subnet networks,” in Proc.
IEEE/INFOCOM ’03, 2003.

[21] G. Barbagallo, “Polyphemus, a system for discovering and visualizing
OSPF networks,”
http://www.dia.uniroma3.it/˜ polyph/.

[22] A. Durand, P. Fasano, I. Guardini, and D. Lento, “IPv6 tunnel broker,”
RFC 3053, Jan. 2001.

[23] M. Blanchet, “Tunnel setup protocol (tsp): A control protocol to setup
IPv6 or IPv4 tunnels,” Work in progress.

[24] B. Fenner, B. Haberman, J. Schoenwalder, and D. Thaler, “Management
information base for the Internet Protocol (IP),” Work in progress.

[25] R. Bonica, K. Kompella, and D. Meyer, “Tracing requirements for
generic tunnels,” Work in progress.

[26] S. Deering and R. Hinden, “Internet Protocol, version 6 (IPv6) specifi-
cation,” RFC 2460, Dec. 1998.

[27] J. McCann, S. Deering, and J. Mogul, “Path MTU discovery for IP
version 6,” RFC 1981, Aug. 1996.

[28] A. Conta and S. Deering, “Internet control message protocol (ICMPv6)
for the Internet Protocol version 6 (IPv6) specification,” RFC 2463, Dec.
1998.

[29] V. N. Padmanabhan and L. Subramanian, “An investigation of
geographic mapping techniques for internet hosts,” 2001, p. 13. [Online].
Available: citeseer.nj.nec.com/padmanabhan01investigation.html

[30] R. Rockell and R. Fink, “RFC2772: 6Bone Backbone Routing Guide-
lines,” February 2000.

[31] R. Fink and R. Hinden, “6bone (IPv6 Testing Address Allocation)
Phaseout,” Work in progress.

[32] “GARR - The Italian Academic and Research Network,”
http://www.garr.it/.

[33] “Widely Integrated Distributed Environment (WIDE) Project,”
http://www.wide.ad.jp/.

[34] “RIPE NCC Test Traffic Measurements,” http://www.ripe.net/ttm/.

