
Balancing Performance, Robustness and Flexibility
in Routing Systems∗

Kin-Wah Kwong, Roch Guérin
University of Pennsylvania

{kkw@seas, guerin@ee}.upenn.edu

Anees Shaikh, Shu Tao
IBM T.J. Watson Research Center

{aashaikh@watson, shutao@us}.ibm.com

ABSTRACT
Modern networks face the daunting task of handling increas-
ingly diverse traffic that is displaying a growing intolerance
to disruptions. This has given rise to many initiatives, and
in this paper we focus on multiple topology routing as the
primary vehicle for meeting those demands. Specifically,
we seek routing solutions capable of not just accommodat-
ing different performance goals, but also preserving them
in the presence of disruptions. The main challenge iscom-
putational, i.e., to identify among the enormous number of
possible routing solutions the one that yields the best com-
promise between performance and robustness. This is where
our principal contribution lies, as we expand the definitionof
critical links – a key concept in improving the efficiency of
routing computation – and develop a precise methodology
to efficiently converge on those solutions. Using this new
methodology, we demonstrate that one can compute routing
solutions that are both flexible in accommodating different
performance requirements and robust in maintaining them
in the presence of failures and traffic fluctuations.

1. INTRODUCTION
IP networks now carry a wide range of traffic with perfor-

mance needs not always served well by the traditional “one-
size-fits-all” design. When it comes to routing, this has trig-
gered interest in solutions that compute paths according to
different criteria as exemplified in the Multi-Topology Rout-
ing (MTR) extensions [18, 17]. This added flexibility can
be used to improve service differentiation for multiple per-
formance criteria,e.g., [11], or improve robustness to fail-
ures,e.g., [10, 8, 1]. As detailed in Section 2, each of these

∗The work of Kin-Wah Kwong and Roch Guérin was supported by
NSF grant CNS-0627004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

issues is reasonably well understood in isolation. However,
the growing heterogeneity of IP traffic and its increasing sen-
sitivity to disruptions, many of which can be attributed to
routing [16], make exploring if and how they can be jointly
realized an important question.

We carry out such an investigation in its most basic in-
stance, namely that oftwo independent routings,i.e., Dual
Topology Routing or DTR, with one routing targeting de-
lay and the other throughput. We assume a well-provisioned
network, where link delay characteristics are the dominant
performance criterion for delay-sensitive traffic, but less so
for throughput-sensitive traffic. Our goal goes beyond op-
timizing routing decisions according to each criterion, and
extends to making themrobust to failures. In other words,
performance alone is not our sole target, and we are willing
to “sacrifice” some of it in exchange for robustness in the
face of common disruptions,e.g., single link failures1. That
such a trade-off is both attainable and beneficial is known
under standard IP routing [20, 7, 19, 14], but its extension
to multiple (two) routings has to the best of our knowledge
not been explored before. Such an extension is important
as although DTR, and more generally MTR, significantly
enhances the flexibility of IP routing, flexibility without ro-
bustness to disruptions is of limited benefits. Conversely,the
sheer computational complexity of exploring the enormous
routing space created by multiple (two) interacting routing
schemes makes such an extension non-trivial.

Computational complexity arises from two main sources,
one of which is already present in standard IP routing (single
routing). Specifically, upon detecting failures, IP routing ad-
justs its packet forwarding decisions,i.e., recomputes short-
est paths based on the configured link weights2, to better
redistribute traffic around the failure. The goal of “robust”
routing [20, 7, 19, 14] is then to identify asingleset of link
weights that optimizes this traffic redistribution in all fail-
ure scenarios under consideration, as well as under normal
operating conditions. This calls for evaluating each routing

1Single link failures are among the most frequent and can substan-
tially impact network performance [16, 9]. They are also typically
short enough not to warrant reconfiguring the network.
2Dynamically adjusting link weights after a failure is typically
avoided to prevent even further traffic disruptions.

solution against all possible failures! In DTR, this already
complex problem is compounded because routing solutions
now consist of all possiblepairs of routings. Clearly, the
resulting combinatorial explosion makes a direct approach
infeasible even for relatively small networks.

The first contribution of this paper is, therefore, to de-
velop a computationally efficient, yet accurate, solution.The
method is based on a novel definition oflink criticality – a
key metric for assessing the importance of a link to the ro-
bustness of routing solutions. Note that the novelty we claim
is not in the concept of link criticality itself. The concept
was already proposed and used in the context of single rout-
ing [20, 7, 19, 14], where in spite of the lower computational
complexity, a brute force approach was still impractical for
all but small networks. The main challenge though is not in
realizing that only a small subset of links may indeed be crit-
ical to the robustness of a routing solution. The challenge is
in identifying which links actually belong to that subset. In
other words, link criticality alone is not a particularly use-
ful concept unless accompanied by a specific “identification”
methodology. As a matter of fact, the relative contributions
of previous works that tackled this problem for single rout-
ing [20, 7, 19, 14] were in introducing progressively more
accurate identification schemes. Unfortunately, as discussed
in Section 4, those existing methods all failed to produce
consistent results when applied to DTR. Overcoming this
problem called for a re-evaluation of what it meant for a link
to be “critical” and for devising an explicit and systematic
methodology for deriving the criticality of a link from this
basic understanding. This is where the paper’s contribution
to the concept of link criticality lies.

In addition to the problem of devising an effective link
criticality metric, another challenge faced in a DTR setting
is that links can exhibit different criticality for each routing.
Characterizing theoverall (across both routings) criticality
of a link then calls for “combining” those values so as to
produce a global ordering of critical links. This ordering
can then be used to reduce computational complexity by fo-
cusing on a small subset consisting of only the most critical
links. This is what allows us to then explore the benefits
of robust DTR solutions across a broad range of network
topologies and traffic patterns, and identifywhen, why and
howrobust DTR solutions can help.

The rest of the paper is structured as follows. Section 2
reviews related works. Section 3 introduces our model and
problem formulation. Section 4 presents the approach used
for identifying critical links and evaluates its effectiveness.
Section 5 is devoted to demonstrating the benefits of robust
DTR optimization across a broad range of network topolo-
gies and traffic patterns. Section 6 concludes the paper.

2. RELATED WORKS
Previous related works fall in two categories: Works tack-

ling a similar robust optimization problem in the context
of single routing; and works using MTR to improve net-

work robustness by computing multiple routings that serve
as backups in case of failures.

Works from the first category are rooted in earlier efforts
for finding optimal link weight settings in IP networks (short-
est path and destination based),e.g., [5]. Fortzet al. [6] was
the first to consider extending the problem to include robust-
ness to changes in either network topology (link failures)
or traffic patterns. Their work suggested that one could of-
ten mitigate the impact of such changes by adjusting just a
few link weights. Subsequent studies,e.g., [7, 14, 20, 19],
established the feasibility of computing a single set of link
weights that worked well under both normal conditions and
all single link failures. The computational complexity of
the problem was also identified, which led to various ver-
sions [7, 20, 19] of the previously mentioned critical link
approach. Specifically, Yuan [20] proposed to select criti-
cal links based on random sampling, while Fortzet al. [7]
suggested to identify them based on their impact on network
utilization. Sridharanet al.[19] proposed to use fluctuations
in the performance of routing solutions that emulated link
failures as a means for identifying critical links. Our method
is partially inspired by this last approach, but differs signifi-
cantly in how it determines link criticality, in part motivated
by the fact that neither it nor the methods of [7, 20] were
found to work well in a DTR setting.

In the second category, [1, 8, 10] recently proposed to use
MTR to improve network resiliency. Each routing protects
against certain failure scenarios, with routers switchingfrom
one routing to another upon detecting failures. These works
neither consider MTR as a means to support different traffic
classes, nor do they focus on jointly optimizing routing to
preserve performance across classes in the presence of fail-
ures. Another set of tangentially related works are studies
on path restoration and backup routing in MPLS networks.
While those works share the goal of improving network ro-
bustness to failures, the MPLS forwarding paradigm makes
it an altogether different problem.

3. ROBUST OPTIMIZATION MODEL
We model the network as a directed graphG = (V, E)

with node setV and link setE, and Cl denotes the ca-
pacity of link3 l ∈ E. The network supports two traffic
classes: delay- and throughput-sensitive. The traffic ma-
trices for the two classes areRD = [rD (s, t)]|V |×|V | and
RT = [rT (s, t)]|V |×|V |, respectively, whererD (s, t) and
rT (s, t) are the traffic volumes in each class for source-
destination (SD) pair(s, t).

Each linkl in the network is assigned two weights,WD
l

and WT
l , for routing delay- and throughput-sensitive traf-

fic, respectively.W :=
⋃

l∈E

{
WD

l , WT
l

}
denotes a weight

setting for the network. Our goal is to find aW that works
well in both normal (failure-free) and all single link failure
scenarios. Traffic from different classes share link resources,
e.g., through a common FIFO queue at each link, so that they
3Unless otherwise specified, link means directed link.

interact on an equal footing. However, in computing rout-
ing solutions, we assume thatprecedence is given to delay-
sensitive traffic(more on this below).

The cost function for delay-sensitive traffic is based on the
notion of Service Level Agreements (SLA’s) [14], typically
defined in the form of an end-to-end delay bound for all SD
pairs. End-to-end delays are computed by summing the de-
lays of individual links on the path of each SD pair. The
delayDl on link l is computed as

Dl =

pl, if xl/Cl 6 µ (1a)

κ

Cl

(
xl

Cl − xl

+ 1

)
+ pl, otherwise (1b)

whereκ is the average packet size,pl andxl are the prop-
agation delay and the total traffic on linkl, respectively4.
The above model assumes that queueing delay is negligible
compared to propagation delay when link utilization is low
(≤ µ) [14]. Hence, at low load, delay-sensitive traffic selects
paths based on propagation delay only, without discriminat-
ing them by utilization. At high load (> µ), Dl includes
queueing delay, with Eq. (1b) using an M/M/1 model to ap-
proximate the average queueing delay on linkl.

The utility or cost function of delay-sensitive traffic for
SD pair(s, t) is then related to both the delayξ(s,t) it expe-
riences, and the SLA target delay boundθ > 0. Specifically,
the traffic incurs a cost of 0 when its delay is belowθ, fol-
lowed by a sharp increase as soon as the delay exceeds the
SLA threshold. This is expressed as

Λ(s,t) :=

{
0, ξ(s,t) 6 θ (2a)

B1 + B2

(
ξ(s,t) − θ

)
, otherwise (2b)

whereB1 andB2 are positive parameters that determine the
SLA penalty:B1 is a constant penalty incurred for any SLA
violation, whileB2 is a penalty proportional to the delay in
excess of the SLA bound. Without loss of generality, we
chooseB1 = 100 andB2 = 1. This cost function captures
the financial penalty commonly associated with SLA viola-
tions, and the fact that many real-time applications exhibit
a threshold-based sensitivity to delay,e.g., VoIP quality is
relatively insensitive to delay as long as it remains below a
certain threshold, but degrades very rapidly beyond that [4].

The overall cost function for delay-sensitive traffic is then
defined as the total penalty imposed because of SLA viola-
tions,i.e., Λ :=

∑
(s,t)∈V ×V Λ(s,t).

For throughput-sensitive traffic, we reuse the load-based
cost function of [5], which defines the costf(xl) incurred
by traffic on linkl as follows

f(xl) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

xl,
xl

Cl
6 1

3
(3a)

3xl − 2/3Cl,
1

3
6

xl
Cl

6 2

3
(3b)

10xl − 16/3Cl,
2

3
6

xl

Cl
6 9

10
(3c)

70xl − 178/3Cl,
9

10
6

xl

Cl
6 1 (3d)

500xl − 1468/3Cl, 1 6
xl

Cl
6 11

10
(3e)

5000xl − 16318/3Cl,
11

10
6

xl

Cl
(3f)

4To prevent the discontinuity ofxl/(Cl − xl) whenxl → Cl, this
function is approximated by a linear function whenxl/Cl > 0.99.

wherexl denotes the total traffic on linkl. The overall cost
for throughput-sensitive traffic,Φ, is then the sum of all link
costs,i.e., Φ :=

∑
l∈L f (xl) whereL is the set of links

carrying throughput-sensitive traffic.
Based onΛ andΦ, we define a global cost functionK :=

〈Λ, Φ〉 as well as an “ordering” that allows us to compare
valuesK1 andK2 obtained by two routing solutions. Be-
cause of the precedence given to delay-sensitive traffic in
computing routing solutions, the ordering we choose is “lex-
icographic,” namely,〈a1, b1〉 > 〈a2, b2〉, if and only if a1 >
a2, or a1 = a2 andb1 > b2. Next, givenK and the asso-
ciated ordering, we search for weight settingsW that work
well in both normal and failure scenarios.

This search proceeds in two phases. The first phase, called
regular optimization, targets normal conditions and mini-
mizesKnormal := 〈Λnormal, Φnormal〉, whereΛnormalandΦnormal

are the delay- and throughput-sensitive traffic costs, respec-
tively, under normal conditions. In other words, it seeks to

minimize
W

Knormal (4)

The best costsΛ∗
normal and Φ∗

normal obtained from this first
phase are then used as benchmarks when optimizing for ro-
bustness in the second phase.

The second phase, calledrobust optimization, optimizes
routing against link failures. LetΛfail,l andΦfail,l denote the
costs of the delay- and throughput-sensitive traffic, respec-
tively, when link l fails. To make routing robust against all
single link failures, we search for weight settings as follows:

minimize
W

Kfail := 〈Λfail , Φfail〉 (5)

subject to

Λnormal = Λ∗
normal (6)

Φnormal 6 (1 + χ)Φ∗
normal (7)

whereΛfail :=
∑

l∈E Λfail,l andΦfail :=
∑

l∈E Φfail,l mea-
sure the compounded costs of the delay- and throughput-
sensitive traffic, respectively, over all single link failures.
Eq. (6) states that we are not willing to degrade the perfor-
mance of delay-sensitive traffic,i.e., allow SLA violations
in exchange for greater robustness, while Eq. (7) states that
such a trade-off is acceptable for throughput-sensitive traffic
within a range specified byχ > 0. Eq. (6) reflects our earlier
assumption regarding penalties for SLA violations, while
Eq. (7) acknowledges the elastic nature of performance for
most throughput-sensitive applications,e.g., TCP.

4. REDUCING COMPUTATIONAL COSTS
The problem of computing optimal link weights in IP net-

works (even with a single traffic class and without optimiz-
ing for failure resilience) is NP-hard [5]. It is already a
computationally formidable task to find an exact solution
to Eq. (4) that optimizes DTR routing under normal con-
ditions. It is even harder to find a solution to Eq. (5), which
needs to consider the impact of all possible single link fail-
ures. Hence, to make robust DTR optimization practical, it
is necessary to develop a computationally efficient heuristic.

4.1 Heuristic outline
As mentioned in the previous section and illustrated in

Fig. 1, our approach involves two phases. The first phase
builds on a tabu search heuristic to identify a good DTR link
weight setting for Eq. (4). In each step of this search (Phase
1a in Fig. 1), both weights (one for each traffic class) of each
link are randomly perturbed. The weights generated from
this perturbation are accepted if they result in a lower net-
work costKnormal. This procedure is repeated across all links
during each iteration, and stops5 when the resulting cost re-
ductions are less thanc% afterP1 diversifications, where a
diversification amounts to restarting the search from a new
random weight setting whenever the cost is not improved
after a certain number of iterations. Details about this ba-
sic building block can be found in [12]. In addition, fol-
lowing the motivations put forth in [19] and as detailed in
Section 4.4.1, we also leverage this first phase to collect in-
formation for the identification of critical links.

Critical links are used in Phase 2 of the heuristic, which
uses weight settings produced in Phase 1 and satisfying the
constraints of Eqs. (6) and (7) – they can be gathered over the
course of Phase 1. Starting from those weight settings, Phase
2 performs another tabu search to optimize Eq. (5). The
search terminates when cost reductions from new weight
perturbations are again less thanc% after at leastP2 diver-
sifications. The weight settingW that results in the smallest
value forKfail is chosen as the final solution.

If cost statistics is not enough,

generate statistics until enough

Optimize normal network performance

and collect cost statistics

Optimize network robustness

Finish

Input traffic engineering instance

Phase 1a

Phase 1

Identify critical link set

Phase 1b

Phase 1c

Phase 2

Figure 1: The flow of the proposed heuristic.

4.2 Critical links
The major complexity of the heuristic is in Phase 2, since

each step involves computing network costs for all possible
link failures. As in [20, 7, 19], this is what motivates the in-
troduction of critical links, as once they have been identified,
Kfail only needs to be evaluated for the failure of these links,
instead of all links. The resulting reduction in computations
is then in direct proportion to|Ec| /|E|, whereEc ⊂ E de-
notes the set of critical links. The smaller|Ec|, the greater

5We implicitly assume that a generated solution is good enough if
the stopping criterion is met.

the savings, and the optimization now becomes

minimize
W

K fail :=
〈
Λfail , Φfail

〉
(8)

whereΛfail :=
∑

l∈Ec
Λfail,l andΦfail :=

∑
l∈Ec

Φfail,l.
Given this, our goals are two-fold. For a given value of

|Ec|, we want to explicitly identify which links to include
in Ec to minimize the resulting inaccuracy. In addition, we
would like to develop an understanding of how small|Ec|
can be in practice, while preserving acceptable accuracy.

4.3 Defining link criticality
How to identify critical links, or define the criticality of

a link, is a question that earlier proposals [20, 7, 19] also
faced. Unfortunately, extending these definitions to DTR
failed to generate quality solutions, and we briefly highlight
the reasons as follows.

The explosion in the size of the solution space that re-
sulted from the introduction of two routings made the ran-
dom selection approach of [20] impractical. This was also
an issue with the load-based criterion of [7], as the use of
two routings can result in a much wider range of load vari-
ations across routing solutions. In addition, link load is not
the most critical performance metric when considering the
routing of delay-sensitive traffic, which is an important com-
ponent in our DTR model.

The reasons behind the failure of the approach of [19] to
the DTR setting are more subtle. Critical links in [19] are
links for which network costs vary wildly during the initial
phase of the optimization (our Phase 1a), when focusing on
weight settings that emulate the failure of those links,i.e.,
large values. The intuition is to focus on links for which se-
lecting the right routing makes a significant difference, asin-
dicated by the cost fluctuations they produce across failure-
emulating weight settings. In translating this intuition into a
procedure, [19] introduces two thresholds that define regions
of bad and good performance and tracks how often they are
crossed for each link in instances (weight settings) that emu-
late the failure of that link. The problem with extending this
approach to DTR is that the greater range of performance
variations present in DTR made it difficult to define thresh-
olds that were universally effective across network settings.
Also the methodology of [19] is unable to deal with differ-
ent link criticality for each routing. This motivated us to
re-examine the notion of link criticality and seek to define a
systematic procedure to quantify it.

Specifically, we define the “criticality” of a link as the dif-
ference in the network costs produced by Phase 2 of our
heuristic, with and without including the link. Thus, the
question is how to estimate this difference without comput-
ing the best network cost if the link were included in the
computation. For that purpose, let ushypotheticallyassume
(see Fig. 2(a)) that we can construct thedistributionof net-
work costs,i.e., Λfail,l or Φfail,l, under all “acceptable” rout-
ing solutions6 when linkl fails. Assuming the availability of

6A routing is acceptable if it satisfies Eqs. (6) and (7).

Network costs over all acceptable

routing patterns (under failure of link l)

D
is

tr
ib

u
ti
o
n

Left-tail mean Mean

l

(a)

Network costs over all acceptable

routing patterns

D
is

tr
ib

u
ti
o
n

Under failure of link l
Under failure of link l’

(b)

Figure 2: (a) Defining link criticality. (b) Two link cost
distributions.

this distribution, it is then possible to infer the likely effect
of including link l or not inEc, as we describe next.

Consider first the case where linkl is not inEc. In such
case, because the procedure of selecting link weights is obliv-
ious to network performance under the failure of linkl, our
best estimate for the resulting network cost is simply the
mean of the distribution of Fig. 2(a). In other words, the final
weight setting is essentially random when it comes to linkl.
In contrast, when linkl is in Ec, the impact of its failure is
explicitly incorporated in the weight selection. Hence, the
selection process is biased against weight settings that gen-
erate high network costs when linkl fails (the r.h.s. of the
curve in Fig. 2(a)), and favors weight settings that yield good
performance (the l.h.s. of the curve in Fig. 2(a)). Choosing
the weight setting that produces the best such performance
may not be feasible, since the final solution has to be a com-
promise across all failure scenarios. However, it is reason-
able to assume that the final choice falls somewhere in the
“left-tail” of the distribution.

Based on the above observations, we propose to define
link criticality as the difference between the mean value of
network costs when linkl fails, and some estimate of the left-
tail of this distribution. More formally, let̂Λfail,l andΦ̂fail,l

denote the mean values of the distribution of Fig. 2(a) for the
delay and throughput-sensitive cost functions, andΛ̃fail,l and
Φ̃fail,l the corresponding left-tail7 mean values, we define the
criticality of link l for the two traffic classes as:

ρΛ,l := Λ̂fail,l − Λ̃fail,l (9)

ρΦ,l := Φ̂fail,l − Φ̃fail,l (10)
The higher the value ofρΛ,l or ρΦ,l, the more critical link

l is. Fig. 2(b) shows two representative distributions for, say,
link l andl′. The network cost distribution for linkl′ is rel-
atively narrow, so that its mean and left-tail mean are close
to each other. This indicates that even if we do not explic-
itly take link l′ into account during robust optimization, our
selection of a routing solution, which is essentially random
in its performance under the failure of linkl′, will not per-
form too differently from one optimized for such a scenario.
In contrast, the wider distribution for linkl translates into a
much bigger difference between a random weight selection
7We define the left-tail as the smallest 10% costs.

and one that explicitly seeks to optimize performance under
the failure of linkl.

4.4 Identifying critical links
In order to use our proposed definition of link criticality,

we need to return to our initial hypothesis and obtain esti-
mates of the distributions of network costs following the fail-
ure of each link across all acceptable routings (link weight
settings). Obviously, this needs to be done without carrying
out exhaustive computations explicitly failing every linkfor
each routing under consideration. The approach we use to
construct our estimates of these distributions is inspiredby
the methodology of [19], and extends it to reflect the larger
solution space we are dealing with.

4.4.1 Building cost distributions

As in [19], we take advantage of the fact that the opti-
mization first needs to compute the best network cost under
normal conditions. This is Phase 1a in Fig. 1, which per-
forms a tabu search that randomly perturbs individual link
weights while seeking to improve network cost. The infor-
mation gathered in this phase can be leveraged to build the
distributions of network costs under link failures. This can
be accomplished by realizing that some weight perturbations
closely resemble link failures,i.e., assigning a large enough
weight to a link has a similar impact on routing decisions
as failing the link (the latter is equivalent to assigning itan
“infinite” weight).

Specifically, if a Phase 1a weight perturbation results in
weights for a link that arebothin the interval[qwmax, wmax],
0 < q < 1, wmax is the maximum allowable weight value
(i.e., both traffic classes must be affected),and the network
costs before such perturbation are “acceptable” (more on this
below), then the cost samples from this weight perturbation
can be used to build the estimated cost distributions of the
link. To ensure that we gather a sufficient number of sam-
ples, our definition of “acceptable” network costs for decid-
ing on the eligibility of a cost sample in Phase 1a is based
on a slightly relaxed version of Eqs. (6) and (7). Specifically,
the cost of delay-sensitive traffic should be no more thanzB1

higher than the current best cost (the lowest cost discovered
in Phase 1a so far), and the cost of throughput-sensitive traf-
fic should be no more than(1 + χ) times the current best
cost. In our experiments, we letz = 0.5 andχ as defined in
Eq. (7). We setq = 0.7 to realize a reasonable trade-off be-
tween closely emulating failures and ensuring the generation
of a large enough number of samples by the end of Phase 1a.

Even with the above relaxations of our sampling strategy,
it is still possible that the number of valid samples gener-
ated in Phase 1a is insufficient to produce accurate estimates
of the cost distributions of all links. This is because it re-
quires weight perturbations that result inbothweights being
close towmax. Too few samples would produce inaccurate
cost distributions, which could result in incorrect assessment
of link criticality and compromise the quality of the final

routing solution. Our approach to this problem is to add an
optional phase, Phase 1b, that is carried out in case insuffi-
cient samples are collected in Phase 1a. [12] provides more
details on how to decide to proceed with Phase 1b or not,
but here we note that it was rarely triggered in our experi-
ments, and when it was, the added computational overhead
was marginal when compared to the overhead of Phase 2.

4.4.2 Selecting critical links

After Phase 1a or 1b, the quantitiesρΛ,l andρΦ,l, defined
in Eqs. (9) and (10) as the criticality of linkl for the two cost
functions, have been estimated. It remains to use this infor-
mation to decide which links belong toEc. This depends on
ρΛ,l andρΦ,l as well as the target sizen of Ec, and is carried
out in Phase 1c. Because each link has two distinct critical-
ity values, one for each traffic type, their orderings according
to each may not be consistent. As a result, the first step of
Phase 1c is to normalize link criticality values as follows:

ρΛ,l := ρΛ,l

/∑
j∈E

Λ̃fail,j , ρΦ,l := ρΦ,l

/∑
j∈E

Φ̃fail,j

The denominators in the above expressions represent our es-
timates of the best possible network costs across all single
link failures, assuming it was possible to include all linksin
Phase 2 of the optimization. Thus, the above expressions
capture relative deviations incurred, for each traffic type,
when linkl is not included inEc. Note that although we have
estimates for the best possible network costs under failures,
we have not yet produced any routing capable of realizing
them.

Once the normalized criticality values have been obtained,
Phase 1c uses them to progressively eliminate fromEc links
that have the least effect on the expected, normalized error
of the optimization procedure. Specifically, links are first
sorted in descending order ofρΛ,l andρΦ,l into two lists,EΛ

andEΦ, respectively. The two lists are then used to estimate
the normalized optimization errors, if only the top-m links
in a list are used in Phase 2 of the heuristic. These expected
normalized errors are computed as follows:

ρΛ (EΛ,m) :=
∑

l∈E\EΛ,m

ρΛ,l , ρΦ (EΦ,m) :=
∑

l∈E\EΦ,m

ρΦ,l

whereEΛ,m ⊆ EΛ andEΦ,m ⊆ EΦ denote the sets of the
top-m links, in order of criticality, inEΛ andEΦ.

Given these estimates, the next step is to remove links
from Ec, starting withEc = E and until the target size of
|Ec| = n is reached, while minimizing the optimization er-
ror. This procedure is detailed in Algorithm 1.

4.5 Critical links-based search
In this section, we demonstrate that the approach we have

just described (denotedcritical search) is successful in meet-
ing our original goals, which we quantify by comparing it to
a “brute-force” solution withEc = E (termedfull search) in
terms of both its accuracy and computational cost. The eval-
uation is carried out over a range of topologies and traffic
loads (see Section 5.1 for details). Because network perfor-
mance can experience greater fluctuations when links not in-

Algorithm 1 : Critical link identification process.
Input : SortedEΛ andEΦ, target sizen of critical link set
Result: Critical link setEc

n1 ← |E|, n2 ← |E|, Ec := EΛ,n1
∪ EΦ,n2

1
while |EΛ,n1

∪ EΦ,n2
| > n do2

if ρΛ

`

EΛ,n1−1

´

> ρΦ

`

EΦ,n2−1

´

then3
n2 ← n2 − 14

else5
n1 ← n1 − 16

end7

end8
returnEc := EΛ,n1

∪ EΦ,n2
9

cluded inEc are failed, each experiment is repeated 5 times,
and we report averages and standard deviations.

4.5.1 Accuracy

To measure the accuracy of the critical search solution, we
introduce the following metrics:

• βfull , βcrt: Average numbers of SD pairs that violate the
SLA delay bound across all single link failures, under
full (full) and critical searches (crt).

• βΦ (%): Difference in network costs for throughput-
sensitive traffic (Φfail) between full and critical searches8.

A good solution satisfiesβcrt ≈ βfull andβΦ ≈ 0.
The performance of critical search is summarized in Ta-

ble 1 for different network topologies and different|Ec| val-
ues that vary from 5% to 15% of|E| (the values in the brack-
ets denote the standard deviations in the 5 runs of each ex-
periment). The results demonstrate that critical search con-
sistently produces a reasonable approximation of full search
across different topologies, while considering only a small,
albeit carefully selected, number of links. Similar observa-
tions were also found for different network sizes, and more
results can be found in [12].

Another parameter, besides topology, that can influence
the accuracy of critical search is network load. We investi-
gate its impact in the context of a random topology with 30
nodes and 180 links. We set the maximum link utilization
to 0.9 (the average utilization is 0.56, up from 0.43 in Ta-
ble 1). The results are shown in Table 2, and illustrate that
good accuracy can still be realized with only a slightly larger
number of links (≈ 20% vs. 10∼15%) now inEc.

The impact of higher network load can be explained as
follows. At high loads, the delay-sensitive traffic becomes
more sensitive to queueing delays because of congestion.
This amplifies the errors made by overlooking the cost im-
pact of certain links. Similarly, the slope of the cost function
of throughput-sensitive traffic increases with network load,
so that at high loads a slight change in link load can signif-
icantly affect the cost. This in turn amplifies the magnitude
of the errors incurred when omitting some links from the op-
timization. Both of those factors point to the need for some

8Critical search may produce a smaller cost for throughput-
sensitive traffic than full search does, because of the non-linearity
of the lexicographic cost function.

Table 1: Critical vs. full search for different topologies.
Topology type [# nodes, # links] RandTopo [30,180] NearTopo [30,180] PLTopo [30,162] ISP [16,70]

Avg link util 0.43 0.46 0.44 0.43
βfull 0.19 21.39 1.13 1.04

|Ec|
|E|

= 5%
βcrt 2.60 (0.82) 25.17 (5.73) 2.82 (0.28) 3.32 (0.74)

βΦ (%) 7.96 (8.71) 24.55 (10.56) 3.11 (2.28) 14.22 (8.27)
|Ec|
|E|

= 10%
βcrt 1.30 (0.35) 25.31 (3.10) 2.40 (0.13) 3.22 (0.93)

βΦ (%) 4.09 (0.32) 18.59 (13.81) 5.61 (3.07) 18.01 (6.22)
|Ec|
|E| = 15%

βcrt 0.99 (0.15) 22.33 (4.55) 1.76 (0.21) 1.99 (0.35)
βΦ (%) 2.75 (1.84) 19.42 (13.75) 8.03 (4.19) 10.08 (4.43)

Table 2: Critical vs. full search at high load.
βfull 1.80

|Ec|/|E| 10% 20% 25%
βcrt 5.77 (2.91) 2.23 (0.94) 2.19 (0.73)

βΦ (%) 18.43 (16.28) 22.90 (14.10) 24.98 (9.76)

increase in the size ofEc to maintain the accuracy of the
critical search.

4.5.2 Computational savings

The other important aspect of critical search is the mag-
nitude of computational savings it yields. As discussed in
Section 4.2, the bulk of savings comes from reducing the
time spent in Phase 2, and their magnitude should be ap-
proximately proportional to1 − |Ec|/|E|. This was vali-
dated across a range of topologies and is illustrated in Ta-
ble 3 for a representative sample with|Ec|/|E| = 0.1. The
table shows that while the critical search approach slightly
increases the time spent in Phase 1, this increase pales in
comparison to the reduction of time spent in Phase 2. Ta-
ble 3 shows a reduction in computation time from several
days for a full search down to just a few hours for a critical
search. These results were obtained on a 2.66 GHz Pen-
tium Xeon machine. The other metric of importance when
assessing computational cost is memory consumption. We
did not observe significant differences between the two ap-
proaches, with neither requiring more than 100 MB of mem-
ory throughout our experiments.

Table 3: Average computation times for critical vs. full
search (in hours).

30-node, 240-link topologies
Type RandTopo NearTopo
Phase 1 2 1 2
Full 1.32 56.05 4.27 58.82
Crt 1.80 4.27 4.43 5.35

5. EVALUATING ROBUSTNESS
The previous section addressed the feasibility of comput-

ing routing solutions capable of both efficiently meeting de-
lay and throughput requirements and maintaining them in
the presence of all single link failures. Next, we turn to
exploring the merits of this solution, and in particular as-
sessingwhenit is of benefit, and howbig those benefits are.
Answering those questions calls for comparing the perfor-
mance of routing solutions computed with and without tak-

ing robustness into account across different network topolo-
gies of varying sizes and carrying different traffic patterns
and loads. Additionally, the choice of SLA target is also
of interest,e.g., to determine whether simply relaxing it can
substitute for a robust routing solution. Last but not least,
the sensitivityof the solution to the accuracy of the “antic-
ipated” traffic matrices is of concern. This is especially so
since traffic matrix estimation is rife with potential inaccura-
cies,e.g., [13]. As a result, it is also important to assess the
extent to which the benefits of robust optimization remain in
the presence of deviations between the anticipated and actual
offered traffic.

In the rest of this section, we attempt to answer these
questions, starting with a brief overview of the configura-
tions (network topologies, traffic matrices, and other param-
eter settings) used in the evaluation. Because of space con-
straints, most configuration details are relegated to [12],and
the focus is instead on the results of the investigation, which
can be summarized as follows:

• Robust optimization affords significant benefits across
most network topologies,i.e., minor loss in performance
under normal conditions and much smaller performance
degradations in the presence of failures.

– These benefits grow as the path diversity offered
by the network topology increases.

• Network size and load do not significantly affect the
benefits of robust optimization.

– However, because high network loads can limit
path diversity, those benefits can be slightly lower
at very high loads.

• Relaxing SLA delay bounds is not a substitute for ro-
bust optimization,i.e., a looser SLA does not ensure
greater robustness to failures.

• The benefits of using robust optimization remain even
when the actual offered traffic deviates from that used
to compute the routing solution,i.e., in some sense the
robustness to topological changes (failures) also ex-
tends to traffic fluctuations.

5.1 Evaluation settings

5.1.1 Network topologies

Both real and synthesized topologies are used. Our real
topology emulates a North American ISP backbone network
of 16 nodes and 70 links. For synthesized topologies, we
assume that nodes are randomly distributed in a unit square

Table 4: SLA violations across topologies.
Topology type [# nodes, # links] RandTopo [30,120] NearTopo [30,120] PLTopo [30,162] ISP [16,70]

Average SLA violations
Robust 1.88 (0.33) 126.09 (8.71) 1.76 (0.21) 1.99 (0.35)

No robust 6.80 (1.15) 147.36 (19.77) 11.25 (2.05) 4.49 (0.64)

Average top-10% SLA violations
Robust 7.83 (2.25) 307.35 (21.59) 10.85 (1.81) 10.93 (2.74)

No robust 31.40 (7.91) 379.53 (32.32) 72.58 (16.33) 23.62 (3.17)
Cost degradation of throughput-sensitive traffic (%) 3.24 (0.46) 5.89 (5.70) 7.01 (1.61) 12.35 (4.35)

and connected using three different types of topologies:
• RandTopo: Random graph of given average node de-

gree.
• NearTopo: Nodes connect to theirg closest neighbors9.
• PLTopo: Power-law topology based on the preferential

attachment model [2].
Link propagation delays are determined by the Euclidean
(geographical for the real topology) distances between nodes
and scaled to ensure a reasonable match between the target
SLA boundθ and the network diameter (coast-to-coast prop-
agation delay in the real topology). Unless otherwise speci-
fied, a value ofθ = 25 ms is used. Link capacities were set
at 500 Mbps, with different traffic patterns and intensities
(see below) used to generate heterogeneous load levels.

5.1.2 Traffic matrices

The throughput-sensitive traffic matrix is generated using
a gravity model [13, 14] with three different demand levels
across nodes. The delay-sensitive traffic matrix is generated
using the random model of [11] where we assume that each
SD pair generates delay-sensitive traffic. The total volume
of delay-sensitive traffic is specified as a fraction0 < f < 1
of the total network traffic volume. We usef = 30% in the
results we report on, but experiments with other values did
not reveal strong sensitivity to this value.

5.1.3 Computational parameters

Both the cost functions and the computational method of
Section 4 involve a number of parameters, and we briefly
specify the values used in generating the results of Sections 5.2
to 5.6. Experiments with other values produced some changes
in the results, but none that significantly affected the conclu-
sions of this investigation.

In estimating the network cost for delay-sensitive traffic,
we used a packet sizeκ = 1500 bytes and a load thresh-
old µ = 0.95 in Eq. (1). This reflects a backbone environ-
ment, where high link speeds make queueing delays negli-
gible except at very high loads. In allowing degradation of
the performance experienced by throughput-sensitive traffic
in exchange for greater robustness, we choseχ = 0.2, i.e.,
we allow a degradation of up to 20%. In Phase 1a of the op-
timization heuristic, the diversification interval is set to 100
iterations and the search stops whenP1 = 20 diversifica-
tions have all produced cost improvements belowc = 0.1%.
In Phase 2, each diversification round starts with a weight
setting close to one that already satisfies the constraints of
9A value g (> 1) is chosen such that the total number of links in
the network matches a target value.

Eqs. (6) and (7), so a smaller diversification interval of 30
iterations is used and the search terminates afterP2 = 10 di-
versifications produce cost improvements below0.1%. Un-
less otherwise specified,|Ec|/|E| = 0.15 was used. Traffic
is split evenly over equal-cost paths. Each experiment was
repeated 5 times and the average results are reported. In the
tables, the values in the brackets denote the standard devia-
tions in the 5 runs of each experiment.

5.2 Effect of network topology
We evaluate the benefits of robust optimization on topolo-

gies introduced in Section 5.1.1. Two metrics of interest are
(i) the number of SLA violations in the presence of failures
(as a measure of robustness); and (ii) the impact of robust op-
timization on the network cost of throughput-sensitive traffic
(as a measure of the cost of robust optimization). Note that
implicit in our earlier choice ofχ = 0.2 we are willing to tol-
erate an increase in the network cost of throughput-sensitive
traffic of 20% in exchange for robustness. The purpose of (ii)
is to ascertain whether throughput-sensitive traffic is incur-
ring any additional penalty from robust optimization (recall
that we are giving precedence to delay-sensitive traffic in the
optimization).

The results of this investigation for metric (i) are reported
in Table 4, for scenarios where all topologies had an average
link load around 0.42 under normal conditions. From the
table, we see that on average, robust optimization not only
produces substantially fewer SLA violations across all fail-
ures (by factors ranging from 2 to 7 in most cases10), but
more importantly it yields drastic reductions when focusing
on the “worst” top-10% of all failures,i.e., those with the
highest number of SLA violations.

We take a closer look at how those benefits are achieved
in the case of RandTopo, for which detailed link-by-link re-
sults are presented in Fig. 3 that reports on both metrics (i)
and (ii). Fig. 3(a) displays the often dramatic reduction inthe
number of SLA violations that robust optimization affords,
while Fig. 3(b) illustrates that throughput-sensitive traffic is
also afforded some protection, especially during the worst
failure patterns. In addition, the last row of Table 4 shows
that although we were willing to tolerate a degradation of up
to 20% in the cost of throughput-sensitive traffic under nor-
mal conditions in exchange for greater robustness, the ac-
tual degradation incurred is typically much smaller. In other

10NearTopo is somewhat of an outlier in that even if some reductions
are seen, the number of SLA violations remains high even with
robust optimization. We will shortly explain the reason behind this
behavior.

0 20 40 60 80 100 120
0

10

20

30

40

Failure link ID

N
um

be
r

of
 S

LA
 v

io
la

tio
ns

Robust
No Robust

(a) Number of SLA violations

0 20 40 60 80 100 120
0.5

0.6

0.7

0.8

0.9

1

Failure link ID

T
hr

ou
gh

pu
t−

se
ns

iti
ve

 tr
af

fic
 c

os
t

Robust
No Robust

(b) Throughput-sensitive traffic
cost

Figure 3: Network performance with and without robust
optimization.

words, the use of sub-optimal and potentially longer paths
selected by robust optimization only had a small impact on
the performance of throughput-sensitive traffic. This ob-
servation was consistent across all our experiments, so that
from now on we focus on metric (i).

We now turn to the NearTopo topology that was identi-
fied as somewhat of an outlier exhibiting smaller benefits
from robust optimization than other topologies. Specifically,
Table 4 shows a relatively large number of SLA violations
even under robust optimization. This can be explained as
follows: In NearTopo, nodes connect only to their nearest
neighbors. Paths between pairs of nodes geographically far
apart,e.g., at opposite sides of the network, are not only long
(in terms of hop counts), but share a small set of links in the
“core” of the network. This limited path diversity means
that core links are typically heavily loaded, and the associ-
ated long queueing delays can then induce SLA violations
even in the absence of failures. Failures obviously make
matters worse, and whenever a core link fails, its traffic can
only be redistributed on few other links that are already heav-
ily loaded. This translates into even heavier congestion and
longer queueing delays on those links, which then result in
a large number of SLA violations. An obvious question is
whether robust optimization would fare better, if links in the
core of the network were resized to eliminate SLA violations
at least under normal conditions. After performing such link
resizing [12], the average number of SLA violations after
failures decreases as expected (down to 18 when robust opti-
mization is used and 38 when it is not). However, the limited
path diversity that is still the rule in NearTopo implies that
even then those benefits remain limited.

The investigation of NearTopo illustrates that in general
the benefits of robust optimization depend on its ability to
discover and use additional paths that regular optimization
would not consider, and do so without inducing severe con-
gestion on these paths. This is not possible in NearTopo,
where the limited number of routing options in the core means
that both regular and robust optimizations consider essen-
tially the same set of paths. To further illustrate the effect
of path diversity on robust optimization, we compare link
utilization levels in RandTopo and NearTopo after failures.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Sorted failure link ID

N
um

be
r

of
 li

nk
s

ha
vi

ng
 la

rg
er

 u
til

iz
at

io
n

RandTopo
NearTopo

(a)

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sorted failure link ID

A
ve

ra
ge

 in
cr

ea
se

 o
f l

in
k

ut
ili

za
tio

n

RandTopo
NearTopo

(b)

Figure 4: Link loads after failure under robust optimiza-
tion. (a) Number of links experiencing load increase. (b)
Average increase in link load.

Fig. 4(a) shows that in RandTopo load increases after a fail-
ure are distributed over a much greater number of links than
in NearTopo, Fig. 4(b) shows that the magnitudes of these
increases are much smaller in RandTopo. The few large uti-
lization increases in NearTopo are responsible for the com-
paratively larger number of SLA violations it experiences.

5.3 Effect of network size
Network size is another factor that can affect the benefits

of robust optimization. In investigating this possibilitywe
present RandTopo as an example. The network size is varied
from 30 to 50 nodes, while the mean node degree is fixed
at 5. The average link utilization is roughly 0.43 across all
topologies under normal conditions. Table 5 summarizes the
number of SLA violations as the network size increases.

Table 5: Average number of SLA violations in RandTopo
as a function of network size. (“R” and “NR” denote
robust and regular optimizations, respectively).

Size 30 nodes 40 nodes 50 nodes
R NR R NR R NR

Avg 2.70 13.80 0.92 34.56 1.63 23.35
(0.21) (4.18) (0.23) (5.02) (0.11) (8.39)

Top-10% 16.58 84.05 6.52 200.25 12.26 177.03
(1.17) (22.15) (2.52) (24.62) (1.14) (67.11)

We find that the benefits of robust optimization persist
or even increase as the network grows. This is in part be-
cause larger networks typically offer greater path diversity,
which robust optimization can leverage. Furthermore, the
greater network size does not preclude regular optimization
from making locally bad decisions, which re-route delay-
sensitive traffic over congested links in the presence of fail-
ure, hence triggering SLA violations. Similar results were
obtained when growing the network by adding links rather
than nodes, and the details can be found in [12].

5.4 Effect of network load
Next, we investigate how network load affects the bene-

fits of robust optimization. As mentioned earlier, higher link
loads can reduce path diversity in the network, in that fewer
alternate paths may be able to accommodate an increase in

0 50 100 150
0

10

20

30

40

50

60

Sorted failure link ID

N
um

be
r

of
 S

LA
 v

io
la

tio
ns

Robust (Max util=0.74)
Robust (Max util=0.90)
No Robust (Max util=0.74)
No Robust (Max util=0.90)

Figure 5: SLA violations in medium- and highly-loaded
networks.

load, and therefore accessible to robust optimization to im-
prove robustness. The question is then whether enough al-
ternate paths remain for robust optimization to discover and
use, so as to offer meaningful improvements. In order to ex-
plore this issue, we take a 30-node, 180-link RandTopo as a
representative example that in the absence of congestion it
offers a reasonable level of path diversity. We consider two
levels of network load: medium and high, with maximum
link utilizations of 0.74 and 0.9, respectively, under normal
conditions. In robust optimization for the highly-loaded net-
work, we set|Ec|/|E| = 0.25 to achieve better accuracy of
thecritical search.

Fig. 5 shows the number of SLA violations across all sin-
gle link failures, with and without robust optimization. As
network load increases, the higher link loads and associated
higher queueing delays result in more paths with end-to-end
delays at or close to the SLA bound. Thus, the lesser delay
margins on many paths translate into more SLA violations
after link failures, irrespective of whether robust optimiza-
tion is used or not. In spite of this, we see that robust op-
timization still yields substantial improvements in minimiz-
ing SLA violations even at high loads. This indicates that at
least in topologies with adequate path diversity, robust op-
timization is still able to identify enough alternate pathsto
ensure robustness by allowing traffic to be redistributed on
those paths in the presence of failures.

5.5 Effect of SLA delay constraint
In this section, we address the question of whether and to

what extent robustness is achievable simply by relaxing SLA
delay bounds. In other words, is robust optimization useful
only under the assumption of “tight” delay constraints? The
results demonstrate that a looser SLA bound alone is not suf-
ficient to ensure greater robustness to failures. As a matter
of fact, it may make matters worse and actually strengthen
the benefits of robust optimization.

We illustrate this using a 30-node, 120-link RandTopo as
an example11. Table 6 shows the number of SLA viola-
tions under both regular and robust optimizations for differ-
ent SLA bounds. Robust optimization consistently yields a
significantly smaller number of SLA violations than regular

11Its maximum end-to-end propagation delay was set to 25ms.

Table 6: Average number of SLA violations in RandTopo
as a function of SLA bound under regular and robust
optimizations.

SLA bound (ms) 25 30 45 60 100
Regular optimization

Avg # SLA violations
6.80 4.51 16.22 23.94 30.24

(1.15) (2.29) (9.80) (10.19) (15.03)
Avg link util 0.42 0.44 0.46 0.48 0.50

Robust optimization

Avg # SLA violations
1.88 0.49 0.20 <0.01 0

(0.33) (0.07) (0.02) (<0.01) (0)
Avg link util 0.42 0.43 0.45 0.46 0.48

optimization, even as the SLA bound becomes looser. As
a matter of fact, a looser SLA bound often results inmore
SLA violations under regular optimization. Both results are
intuitive, though not obvious. Recall that the relative insensi-
tivity to failures of robust optimization stems primarily from
its selection of paths that are slightly sub-optimal under nor-
mal conditions, but capable of preserving performance in the
presence of failures. Because of their sub-optimality, those
paths are never considered by regular optimization. Hence,
the benefits of robust optimization are primarily a reflection
of its ability to consider a different (broader) set of pathsthan
regular optimization. As long as this difference remains, so
will these benefits. Consider now the effect of relaxing the
SLA bound. A looser SLA bound means that more paths are
eligible for routing delay-sensitive traffic. This in turn re-
sults in new path choices for improving the performance of
throughput-sensitive traffic. However, it does little to change
the fact that regular optimization will still not consider the
sub-optimal paths that robust optimization does. In other
words, both optimizations have more paths to choose from,
but thedifferencesin their choices remain.

0 200 400 600 800
0

20

40

60

80

100

Sorted SD pair

E
nd

−
to

−
en

d
de

la
y

(m
s)

SLA bound=25ms
SLA bound=45ms
SLA bound=100ms

Figure 6: End-to-end delay distribution across SD pairs
in the absence of failures under regular optimization.

The reason behind theincreasednumber of SLA viola-
tions under regular optimization in RandTopo as the SLA
bound is relaxed is itself explored further in Fig. 6. The fig-
ure plots the distribution of end-to-end delays in the absence
of failures for delay-sensitive traffic under regular optimiza-
tion. The results suggest that as the SLA bound is relaxed,
the end-to-end delays of delay-sensitive traffic increase com-
mensurately. Hence, the number of flows close to the SLA
bound and, therefore, at risk of violating it after a failure,
remains roughly constant. In other words, the relaxation of

the SLA bound is not used to improve the “failure-tolerance
margin” of delay-sensitive flows,i.e., increase the amount of
additional delay they can tolerate after a failure. In addition,
the flexibility to consider longer paths for delay-sensitive
traffic to improve the performance of throughput-sensitive
traffic also results in higher link utilization (see Table 6 and
Fig. 7). This makes it more likely that after a failure, link
loads will increase to a level where queueing delays become
high enough to affect end-to-end delays. Hence, it is more
likely that delay-sensitive flows, whose end-to-end delays
are close to the SLA bound prior to a failure, will experience
SLA violations after a failure. This explains the greater num-
ber of SLA violations under regular optimization as reported
in Table 6 for looser SLA bounds. Similar results were also
observed with the PLTopo and ISP topologies [12].

The previous results notwithstanding, there are instances
where a loose SLA bound lessens the benefits of robust op-
timization. This typically occurs in topologies with limited
path diversity, where robust optimization has little potential
in the first place12. In other words, the conclusion that relax-
ing SLA bounds is no replacement for robust optimization
remains valid across topologies where it is effective.

0 20 40 60 80 100 120
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
ax

 u
til

 o
f l

in
k

ca
rr

yi
ng

 d
el

ay
 tr

af
fic

Failure link ID

SLA delay bound=30ms
SLA delay bound=100ms

Figure 7: Maximum utilization of links carrying delay-
sensitive traffic in RandTopo under regular optimization.

5.6 Sensitivity to uncertain traffic matrices
The last aspect of our evaluation deals with the sensitivity

of the routing solutions we produce to errors/uncertainties in
the traffic matrices used to compute them. As alluded to at
the beginning of Section 5, traffic matrices are usually de-
rived from combining and averaging a broad range of mea-
surements. As a result, traffic matrices cannot be assumed
to be accurate estimates of the actual traffic flowing through
a network at a particular point in time. In addition to aver-
aging and measurement inaccuracies, external factors,e.g.,
flash-crowds, BGP route changes, etc., can also contribute
significant discrepancies between actual traffic and the traf-
fic matrices used for optimization. The question is whether
this affects the effectiveness of robust optimization.

LetRD andRT denote the delay- and throughput-sensitive
basetraffic matrices used by the optimization, respectively,
andR̃D = [r̃D(s, t)]|V |×|V | andR̃T = [r̃T (s, t)]|V |×|V | the

12See [12] for an illustration of this behavior on NearTopo.

traffic matrices representing theactual traffic carried by the
network. In investigating the impact of differences between
RD andR̃D, andRT andR̃T , we focus on two types of traf-
fic uncertainties. The first emulates measurement errors and
random fluctuations in traffic intensities. The second targets
traffic variations caused by sporadic incidents that affectthe
traffic sunk or sourced by a few nodes.

To capture random fluctuations in the intensity of traffic
between individual SD pairs, we rely on a Gaussian model
that has been shown appropriate in modeling such estimation
errors [3, 15]. This gives actual traffic intensities of the form

r̃D(s, t) = rD(s, t) + N (0, εrD [s, t]) (11)

r̃T (s, t) = rT (s, t) + N (0, εrT [s, t]) (12)
whereN (0, σ) denotes a normally distributed random vari-
able with zero mean and standard deviationσ. ε controls
the magnitude of possible traffic fluctuations. For example,
with ε = 0.2, the actual traffic intensities can fluctuate by
±40% around the estimated mean value with a likelihood of
about 95%. Conversely, the impact of sporadic incidents is
captured by using a hot-spot model that allows traffic surges
to (upload) or from (download) a small set of (server) nodes.
The hot-spot model involves selecting a small set of server
nodes, assigning a number of “clients” to each one of them,
and scaling the traffic intensities of the corresponding SD
pairs by a factor greater than one. Specifically, in the upload
scenario, assuming that clienti is assigned to serverj, the
corresponding traffic intensities arẽrD(i, j) = νi,jrD [i, j]
and r̃T (i, j) = µi,jrT [i, j] for the delay- and throughput-
sensitive traffic, respectively, whereνi,j > 1 andµi,j > 1.
Similar symmetric expressions hold for the download case.

The results of our investigation on the impact of traffic
variations from the random and hot-spot models are reported
in Figs. 8 and 9, respectively, for a 30-node, 180-link Rand-
Topo. In each model, 100 testing instances were randomly
generated. Details on the exact simulation settings can again
be found in [12]. In the case of random fluctuations,ε = 0.2
was used. For hot-spots, we randomly selected 10% of the
nodes as servers and 50% of nodes as clients, andνi,j and
µi,j were uniformly distributed between 2 and 6,i.e., the
traffic volume could increase by 100-500% for those SD
pairs. The figures focus on the top-10% worst failures to
magnify possible differences. The vertical bars in the fig-
ures denote the standard deviations among the 100 testing
instances. The main conclusions are that (i) the benefits of
robust optimization remain even with reasonably large de-
viations between estimated and actual traffic matrices,i.e.,
robust optimization still performs much better in the face of
failures; (ii) Computing a routing robust to failures appears
to also afford some level of robustness against unexpected
traffic fluctuations,i.e., routing performance is roughly equal
for the estimated and actual traffic matrices.

6. CONCLUSION
The paper explores the extent to which DTR-based rout-

ing solutions can offer both flexibility in supporting mul-

0 5 10 15
0

50

100

150

Sorted top−10% failure link ID

N
um

be
r

of
 S

LA
 v

io
la

tio
ns

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(a) SLA violation

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sorted top−10% failure link ID

T
hr

ou
gh

pu
t−

se
ns

iti
ve

 tr
af

fic
 c

os
t

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(b) Throughput-sensitive traffic
cost

Figure 8: Impact of traffic uncertainty: random fluctua-
tion scenario.

0 5 10 15
0

20

40

60

80

100

120

140

Sorted top−10% failure link ID

N
um

be
r

of
 S

LA
 v

io
la

tio
ns

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(a) SLA violation, upload hot-
spot

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sorted top−10% failure link ID

T
hr

ou
gh

pu
t−

se
ns

iti
ve

 tr
af

fic
 c

os
t

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(b) Throughput-sensitive traffic
cost, upload hot-spot

0 5 10 15
0

20

40

60

80

100

120

140

Sorted top−10% failure link ID

N
um

be
r

of
 S

LA
 v

io
la

tio
ns

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(c) SLA violation, download
hot-spot

0 5 10 15
0

0.5

1

1.5

2

Sorted top−10% failure link ID

T
hr

ou
gh

pu
t−

se
ns

iti
ve

 tr
af

fic
 c

os
t

Robust (Perturbed TM)
No Robust (Perturbed TM)
Robust (Base TM)

(d) Throughput-sensitive traffic
cost, download hot-spot

Figure 9: Impact of traffic uncertainty: hot-spot sce-
nario. (a) and (b): Upload. (c) and (d): Download.

tiple traffic types, and robustness to failures. In carrying
out this exploration, the paper develops a novel insight and
methodology for identifying links that arecritical to routing
performance, thereby making the task of computing a ro-
bust routing feasible. The paper demonstrates that flexibility
and robustness can be jointly realized across a broad range
of topologies and traffic patterns. It also demonstrates that
those benefits remain even in the presence of uncertainty in
the traffic estimates used when computing routing solutions.

7. REFERENCES
[1] G. Apostolopoulos. Using multiple topologies for

IP-only protection against network failures: A routing
performance perspective. Technical report,
ICS-FORTH, Greece, 2006.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks.Science, October 1999.

[3] J. Cao, D. Davis, S. V. Wiel, and B. Yu. Time-varying

network tomography: Router link data.Journal of the
American Statistical Association, 95(452):1063–1075,
December 2000.

[4] R. G. Cole and J. H. Rosenbluth. Voice over IP
performance monitoring.Computer Communication
Review, 31(2):9–24, April 2001.

[5] B. Fortz and M. Thorup. Internet traffic engineering
by optimizing OSPF weights. InProc. IEEE
INFOCOM, 2000.

[6] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS
weights in a changing world.IEEE JSAC, May 2002.

[7] B. Fortz and M. Thorup. Robust optimization of
OSPF/IS-IS weights. InProc. International Network
Optimization Conference, 2003.

[8] S. Gjessing and O. Norway. Implementation of two
resilience mechanisms using multi topology routing
and stub routers. InProc. AICT-ICIW, 2006.

[9] G. Iannaccone, C. N. Chuah, R. Mortier,
S. Bhattacharya, and C. Diot. Analysis of link failures
in an IP backbone. InProc. IMW, 2002.

[10] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and
O. Lysne. Fast IP network recovery using multiple
routing configurations. InProc. IEEE INFOCOM,
2006.

[11] K.-W. Kwong, R. Guérin, A. Shaikh, and S. Tao.
Improving service differentiation in IP networks
through dual topology routing. InProc. ACM
CoNEXT, 2007.

[12] K.-W. Kwong, R. Guérin, A. Shaikh, and S. Tao.
Balancing performance and robustness in dual
topology routing. Technical report, University of
Pennsylvania, 2008. [Online]www.seas.upenn.
edu/ ˜ kkw/paper/rdtr-techreport.pdf .

[13] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya,
and C. Diot. Traffic matrix estimation: Existing
techniques and new directions. InProc. ACM
SIGCOMM, 2002.

[14] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot. IGP
link weight assignment for operational Tier-1
backbones.IEEE/ACM ToN, August 2007.

[15] A. Nucci, A. Sridharan, and N. Taft. The problem of
synthetically generating IP traffic matrices: Initial
recommendations.SIGCOMM Comput. Commun.
Rev., 35(3):19–32, 2005.

[16] K. Papagiannaki, R. Cruz, and C. Diot. Network
performance monitoring at small time scales. InProc.
ACM IMC, 2003.

[17] T. Przygienda, N. Shen, and N. Sheth. M-ISIS: Multi
topology (MT) routing in IS-IS. IETF RFC 5120,
February 2008.

[18] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and
P. Pillay-Esnault. Multi-topology (MT) routing in
OSPF. IETF RFC 4915, June 2007.

[19] A. Sridharan and R. Guérin. Making IGP routing
robust to link failures. InProc. Networking, 2005.

[20] D. Yuan. A bicriteria optimization approach for robust
OSPF routing. InProc. IEEE Workshop on IP
Operations and Management, 2003.

