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ABSTRACT issues is reasonably well understood in isolation. However

the growing heterogeneity of IP traffic and its increasing se
sitivity to disruptions, many of which can be attributed to
g routing [16], make exploring if and how they can be jointly

Modern networks face the daunting task of handling increas-
ingly diverse traffic that is displaying a growing intolecan
to disruptions. This has given rise to many initiatives, an ! a :
in this paper we focus on multiple topology routing as the '€@lized animportantquestion. o
primary vehicle for meeting those demands. Specifically, Ve carry out such an investigation in its most basic in-

we seek routing solutions capable of not just accommodat- St2nce, namely that awo independent routings.e., Dual
ing different performance goals, but also preserving them T0P0logy Routing or DTR, with one routing targeting de-

in the presence of disruptions. The main challengeois- lay and the other throughput. We assume a well-provisioned
putational, i.e, to identify among the enormous number of network, where link delay characteristics are the dominant

possible routing solutions the one that yields the best com- Performance criterion for delay-sensitive traffic, busles
promise between performance and robustness. This is wherd®! throughput-sensitive traffic. Our goal goes beyond op-
our principal contribution lies, as we expand the definitipn ~ imizing routing decisions according to each criteriondan
critical links — a key concept in improving the efficiency of €Xténds to making themobustto failures. In other words,
routing computation — and develop a precise methodology perform_a_nce alone is r?o? our sole target, and we are _W|II|ng
to efficiently converge on those solutions. Using this new [© “sacrifice” some of it in exchange for robustness in the

methodology, we demonstrate that one can compute routingfce 0f common disruptions, g, single link failures. That
solutions that are both flexible in accommodating different SUch @ trade-off is both attainable and beneficial is known

under standard IP routing [20, 7, 19, 14], but its extension
to multiple (two) routings has to the best of our knowledge
not been explored before. Such an extension is important
1. INTRODUCTION as although DTR,. Qnd more generally MTR si.gnificantly
enhances the flexibility of IP routing, flexibility withoub+

IP networks now carry a wide range of traffic with perfor- - pystness to disruptions is of limited benefits. Conversiesy,
mance needs not always served well by the traditional “one- sheer computational complexity of exploring the enormous
size-fits-all” deSign. When it comes to rOUting, this hag'tn routing Space Created by mu|t|p|e (two) interacting rwtin
gered interest in solutions that compute paths according toschemes makes such an extension non-trivial.
different criteria as exemplified in the Multi-Topology Reu Computational complexity arises from two main sources,
ing (MTR) extensions [18, 17]. This added flexibility can  one of which is already presentin standard IP routing (sing!
be used to improve service differentiation for multiple-per routing). Specifically, upon detecting failures, IP rogtad-
formance criteriag.g, [11], or improve robustness to fail-  jysts its packet forwarding decisiorig., recomputes short-
ures,e.g, [10, 8, 1]. As detailed in Section 2, each of these est paths based on the configured link weighte better
“The work of Kin-Wah Kwong and Roch Guérin was supported by redi;tribute traffic arou_nd the fai_lure. _ Th_e goal of “runst
NSF grant CNS-0627004. routing [20, 7, 19, 14] is then to identifysingleset of link
weights that optimizes this traffic redistribution in alilfa
ure scenarios under consideration, as well as under normal
operating conditions. This calls for evaluating each moti

performance requirements and robust in maintaining them
in the presence of failures and traffic fluctuations.
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solution against all possible failures! In DTR, this alrgad

work robustness by computing multiple routings that serve

complex problem is compounded because routing solutionsas backups in case of failures.

now consist of all possibleairs of routings. Clearly, the
resulting combinatorial explosion makes a direct approach
infeasible even for relatively small networks.

The first contribution of this paper is, therefore, to de-
velop a computationally efficient, yet accurate, solutibhe
method is based on a novel definitionlimik criticality — a
key metric for assessing the importance of a link to the ro-
bustness of routing solutions. Note that the novelty watlai
is not in the concept of link criticality itself. The concept

Works from the first category are rooted in earlier efforts
for finding optimal link weight settings in IP networks (shor
est path and destination baseely, [5]. Fortzet al. [6] was
the first to consider extending the problem to include robust
ness to changes in either network topology (link failures)
or traffic patterns. Their work suggested that one could of-
ten mitigate the impact of such changes by adjusting just a
few link weights. Subsequent studiesg, [7, 14, 20, 19],
established the feasibility of computing a single set df lin

was already proposed and used in the context of single rout-weights that worked well under both normal conditions and

ing [20, 7, 19, 14], where in spite of the lower computational
complexity, a brute force approach was still impractical fo
all but small networks. The main challenge though is not in
realizing that only a small subset of links may indeed be crit
ical to the robustness of a routing solution. The challesge i
in identifying whichlinks actually belong to that subset. In
other words, link criticality alone is not a particularlyais
ful concept unless accompanied by a specific “identificétion
methodology. As a matter of fact, the relative contribusion
of previous works that tackled this problem for single rout-
ing [20, 7, 19, 14] were in introducing progressively more
accurate identification schemes. Unfortunately, as disulis
in Section 4, those existing methods all failed to produce
consistent results when applied to DTR. Overcoming this
problem called for a re-evaluation of what it meant for a link
to be “critical” and for devising an explicit and systematic
methodology for deriving the criticality of a link from this
basic understanding. This is where the paper’s contributio
to the concept of link criticality lies.

In addition to the problem of devising an effective link
criticality metric, another challenge faced in a DTR seftin
is that links can exhibit different criticality for each ring.
Characterizing th@verall (across both routings) criticality
of a link then calls for “combining” those values so as to
produce a global ordering of critical links. This ordering
can then be used to reduce computational complexity by fo-
cusing on a small subset consisting of only the most critical
links. This is what allows us to then explore the benefits
of robust DTR solutions across a broad range of network
topologies and traffic patterns, and identifynen why and
howrobust DTR solutions can help.

The rest of the paper is structured as follows. Section 2

reviews related works. Section 3 introduces our model and Ry = |

all single link failures. The computational complexity of
the problem was also identified, which led to various ver-
sions [7, 20, 19] of the previously mentioned critical link
approach. Specifically, Yuan [20] proposed to select criti-
cal links based on random sampling, while Fastzal. [7]
suggested to identify them based on their impact on network
utilization. Sridhararet al.[19] proposed to use fluctuations
in the performance of routing solutions that emulated link
failures as a means for identifying critical links. Our math

is partially inspired by this last approach, but differsmsiiy
cantly in how it determines link criticality, in part motited

by the fact that neither it nor the methods of [7, 20] were
found to work well in a DTR setting.

In the second category, [1, 8, 10] recently proposed to use
MTR to improve network resiliency. Each routing protects
against certain failure scenarios, with routers switcHiiog
one routing to another upon detecting failures. These works
neither consider MTR as a means to support different traffic
classes, nor do they focus on jointly optimizing routing to
preserve performance across classes in the presence-of fail
ures. Another set of tangentially related works are studies
on path restoration and backup routing in MPLS networks.
While those works share the goal of improving network ro-
bustness to failures, the MPLS forwarding paradigm makes
it an altogether different problem.

3. ROBUST OPTIMIZATION MODEL

We model the network as a directed gragh= (V, E)
with node setV and link setFE, and C; denotes the ca-
pacity of link® I € E. The network supports two traffic
classes: delay- and throughput-sensitive. The traffic ma-
trices for the two classes aep = [rp (s,t)]jv|x|v| and
rr (s,t)]|v|x|v|, respectively, wherep (s,t) and

problem formulation. Section 4 presents the approach usedTT (s,t) are the traffic volumes in each class for source-

for identifying critical links and evaluates its effectivess.

destination (SD) paifs, t).

Section 5 is devoted to demonstrating the benefits of robust  gach linki in the network is assigned two weighig;?

DTR optimization across a broad range of network topolo-
gies and traffic patterns. Section 6 concludes the paper.

2. RELATED WORKS

Previous related works fall in two categories: Works tack-
ling a similar robust optimization problem in the context
of single routing; and works using MTR to improve net-

and W,T', for routing delay- and throughput-sensitive traf-
fic, respectivelyW := U, {W°, W' } denotes a weight
setting for the network. Our goal is to findl& that works
well in both normal (failure-free) and all single link farki
scenarios. Traffic from different classes share link resesr
e.g, through a common FIFO queue at each link, so that they

3Unless otherwise specified, link means directed link.



interact on an equal footing. However, in computing rout-
ing solutions, we assume thatecedence is given to delay-
sensitive traffifmore on this below).

The cost function for delay-sensitive traffic is based on the
notion of Service Level Agreements (SLA'S) [14], typically
defined in the form of an end-to-end delay bound for all SD

wherez; denotes the total traffic on link The overall cost
for throughput-sensitive traffi@, is then the sum of all link
costs,i.e, ® := Y, . f(x;) whereL is the set of links
carrying throughput-sensitive traffic.

Based om\ and®, we define a global cost functidi :=
(A, ®@) as well as an “ordering” that allows us to compare

pairs. End-to-end delays are computed by summing the de-valuesk; and K, obtained by two routing solutions. Be-

lays of individual links on the path of each SD pair. The
delayD; on link [ is computed as

DI, if xl/Cl <p  (1a)
D =
1 gl (C’l:ﬁ - + 1) + 1, otherwise (1b)

wherek is the average packet size, andz; are the prop-
agation delay and the total traffic on lirik respectivels.

cause of the precedence given to delay-sensitive traffic in
computing routing solutions, the ordering we choose is-“lex
icographic,” namely{ay, b1) > (as, b2), if and only ifa; >
ag, Ora; = ag andb; > bs. Next, givenK and the asso-
ciated ordering, we search for weight setting/sthat work
well in both normal and failure scenarios.

This search proceeds in two phases. The first phase, called

The above model assumes that queueing delay is negligiblg®gular optimization targets normal conditions and mini-

compared to propagation delay when link utilization is low
(< w) [14]. Hence, at low load, delay-sensitive traffic selects
paths based on propagation delay only, without discriminat
ing them by utilization. At high load> ), D; includes
gueueing delay, with Eq. (1b) using an M/M/1 model to ap-
proximate the average queueing delay on link
The utility or cost function of delay-sensitive traffic for

SD pair(s, t) is then related to both the delgy, , it expe-
riences, and the SLA target delay bouhd 0. Specifically,
the traffic incurs a cost of 0 when its delay is beléwfol-

lowed by a sharp increase as soon as the delay exceeds th

SLA threshold. This is expressed as
A 0, Esp <0 (29)

(s:6) = { By + By (§s)—0), otherwise (2b)
whereB; and B, are positive parameters that determine the
SLA penalty: B; is a constant penalty incurred for any SLA
violation, while B is a penalty proportional to the delay in
excess of the SLA bound. Without loss of generality, we
chooseB; = 100 and By = 1. This cost function captures
the financial penalty commonly associated with SLA viola-
tions, and the fact that many real-time applications exhibi
a threshold-based sensitivity to delayg, VoIP quality is
relatively insensitive to delay as long as it remains below a
certain threshold, but degrades very rapidly beyond tHat [4

The overall cost function for delay-sensitive traffic isthe
defined as the total penalty imposed because of SLA viola-
tions,i.e, A ==3" yevuv Ags)-

For throughput-sensitive traffic, we reuse the load-based

cost function of [5], which defines the cogfx;) incurred
by traffic on link{ as follows

xy, %ll <3 (3a)
3z = 2/3C, s<a <3 (3b)
10z, — 16/3C, 3<E<% (3c)
T = 200, — 1737301, H<E<L @)
500z, — 1468/3C), 1< E <5 (3e)
5000z; — 16318/3Cy, <& (3

“To prevent the discontinuity af, /(C; — 2;) whenz;, — C, this
function is approximated by a linear function whey/C; > 0.99.

MizeSKnormal := <Anormala cI)normall>: whereAnormaiand®normal
are the delay- and throughput-sensitive traffic costs,aesp
tively, under normal conditions. In other words, it seeks to

minimize Knormal (4)
w

The best costs\;,ma 8Nd D}y, ma Obtained from this first
phase are then used as benchmarks when optimizing for ro-
bustness in the second phase.

The second phase, calleobust optimizationoptimizes
routing against link failures. Leks,;; and®sy; denote the
costs of the delay- and throughput-sensitive traffic, respe
ﬁvely, when link! fails. To make routing robust against all
single link failures, we search for weight settings as folo

minvilr/nize Krait == {Atail, Prail) )

subject to
Anormal A:ormal (6)
Promal < (1 +X)Promal (7)

whereAqil = > p Ay and @i == )7, p Prairy Mea-
sure the compounded costs of the delay- and throughput-
sensitive traffic, respectively, over all single link fais.

Eq. (6) states that we are not willing to degrade the perfor-
mance of delay-sensitive traffice., allow SLA violations

in exchange for greater robustness, while Eq. (7) statés tha
such a trade-off is acceptable for throughput-sensitafi¢r
within a range specified by > 0. Eq. (6) reflects our earlier
assumption regarding penalties for SLA violations, while
Eq. (7) acknowledges the elastic nature of performance for
most throughput-sensitive applicatioesg, TCP.

4. REDUCING COMPUTATIONAL COSTS

The problem of computing optimal link weights in IP net-
works (even with a single traffic class and without optimiz-
ing for failure resilience) is NP-hard [5]. It is already a
computationally formidable task to find an exact solution
to Eqg. (4) that optimizes DTR routing under normal con-
ditions. It is even harder to find a solution to Eq. (5), which
needs to consider the impact of all possible single link fail
ures. Hence, to make robust DTR optimization practical, it
is necessary to develop a computationally efficient hdarist



4.1 Heuristic outline

As mentioned in the previous section and illustrated in
Fig. 1, our approach involves two phases. The first phase
builds on a tabu search heuristic to identify a good DTR link
weight setting for Eq. (4). In each step of this search (Phase
lain Fig. 1), both weights (one for each traffic class) of each
link are randomly perturbed. The weights generated from
this perturbation are accepted if they result in a lower net-
work costK normar This procedure is repeated across all links
during each iteration, and stopshen the resulting cost re-
ductions are less that¥ after P; diversifications, where a
diversification amounts to restarting the search from a new
random weight setting whenever the cost is not improved
after a certain number of iterations. Details about this ba-
sic building block can be found in [12]. In addition, fol-
lowing the motivations put forth in [19] and as detailed in
Section 4.4.1, we also leverage this first phase to collect in
formation for the identification of critical links.

Critical links are used in Phase 2 of the heuristic, which

the savings, and the optimization now becomes
minvilr/nize Krait := (Aail, Prail)

(8)

whereAgqi = > Ataily aNAdPrail = )1 Prail i

Given this, our goals are two-fold. For a given value of
|E.|, we want to explicitly identify which links to include
in E. to minimize the resulting inaccuracy. In addition, we
would like to develop an understanding of how sniall|
can be in practice, while preserving acceptable accuracy.

4.3 Defining link criticality

How to identify critical links, or define the criticality of
a link, is a question that earlier proposals [20, 7, 19] also
faced. Unfortunately, extending these definitions to DTR
failed to generate quality solutions, and we briefly hightig
the reasons as follows.

The explosion in the size of the solution space that re-
sulted from the introduction of two routings made the ran-
dom selection approach of [20] impractical. This was also

uses weight settings produced in Phase 1 and satisfying the?! issue with the load-based criterion of [7], as the use of
constraints of Egs. (6) and (7) — they can be gathered over theWo routings can result in a much wider range of load vari-

course of Phase 1. Starting from those weight settings,g”has
2 performs another tabu search to optimize Eq. (5). The
search terminates when cost reductions from new weight
perturbations are again less thdi after at least?, diver-
sifications. The weight setting’ that results in the smallest
value for K3, is chosen as the final solution.

Input traffic engineering instance

N\

Optimize normal network performance
and collect cost statistics

}

If cost statistics is not enough,
generate statistics until enough

Identify critical link set

I Optimize network robustness I

} Phase 1a
} Phase 1b

]- Phase 1c

> Phase 1

}

Phase 2

Finish
Figure 1: The flow of the proposed heuristic.

4.2 Critical links

The major complexity of the heuristic is in Phase 2, since
each step involves computing network costs for all possible
link failures. As in [20, 7, 19], this is what motivates the in
troduction of critical links, as once they have been idesdifi
K1, only needs to be evaluated for the failure of these links,
instead of all links. The resulting reduction in computatio
is then in direct proportion toF.| /|E|, whereE, C E de-
notes the set of critical links. The smallgt,|, the greater

SWe implicitly assume that a generated solution is good endiug
the stopping criterion is met.

ations across routing solutions. In addition, link load @ n
the most critical performance metric when considering the
routing of delay-sensitive traffic, which is an importanttco
ponent in our DTR model.

The reasons behind the failure of the approach of [19] to
the DTR setting are more subtle. Critical links in [19] are
links for which network costs vary wildly during the initial
phase of the optimization (our Phase 1a), when focusing on
weight settings that emulate the failure of those linkes,
large values. The intuition is to focus on links for which se-
lecting the right routing makes a significant differencanas
dicated by the cost fluctuations they produce across failure
emulating weight settings. In translating this intuitiond a
procedure, [19] introduces two thresholds that define regjio
of bad and good performance and tracks how often they are
crossed for each link in instances (weight settings) that-em
late the failure of that link. The problem with extendingsthi
approach to DTR is that the greater range of performance
variations present in DTR made it difficult to define thresh-
olds that were universally effective across network sg#tin
Also the methodology of [19] is unable to deal with differ-
ent link criticality for each routing. This motivated us to
re-examine the notion of link criticality and seek to define a
systematic procedure to quantify it.

Specifically, we define the “criticality” of a link as the dif-
ference in the network costs produced by Phase 2 of our
heuristic, with and without including the link. Thus, the
guestion is how to estimate this difference without comput-
ing the best network cost if the link were included in the
computation. For that purpose, letlgpotheticallyassume
(see Fig. 2(a)) that we can construct thistribution of net-
work costs,.e., Agil,; Or Pz, Under all “acceptable” rout-
ing solution§ when link! fails. Assuming the availability of

5A routing is acceptable if it satisfies Egs. (6) and (7).
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Figure 2: (a) Defining link criticality. (b) Two link cost
distributions.

this distribution, it is then possible to infer the likelyfedt
of including link{ or not in ., as we describe next.
Consider first the case where lifiks not in E... In such
case, because the procedure of selecting link weightsiis-obl
ious to network performance under the failure of linlour
best estimate for the resulting network cost is simply the
mean of the distribution of Fig. 2(a). In other words, thelfina
weight setting is essentially random when it comes to link
In contrast, when link is in E., the impact of its failure is
explicitly incorporated in the weight selection. Henceg th
selection process is biased against weight settings timat ge
erate high network costs when lirikails (the r.h.s. of the
curve in Fig. 2(a)), and favors weight settings that yielddo
performance (the l.h.s. of the curve in Fig. 2(a)). Choosing

the weight setting that produces the best such performance..
may not be feasible, since the final solution has to be a com-

promise across all failure scenarios. However, it is reason

able to assume that the final choice falls somewhere in the

“left-tail” of the distribution.

Based on the above observations, we propose to define

link criticality as the difference between the mean value of
network costs when linkfails, and some estimate of the left-
tail of this distribution. More formally, lef\s ; and ®s;
denote the mean values of the distribution of Fig. 2(a) fer th
delay and throughput-sensitive cost functions, Emﬂ,l and
5fai|,l the corresponding left-tdilmean values, we define the
criticality of link [ for the two traffic classes as:

Kfail,l - Kfail,l (9)

P, Drail,; — Prailr (10)

The higher the value gf, ; or ps;, the more critical link
lis. Fig. 2(b) shows two representative distributions fay, s
link I and!’. The network cost distribution for linK is rel-
atively narrow, so that its mean and left-tail mean are close
to each other. This indicates that even if we do not explic-
itly take link I’ into account during robust optimization, our
selection of a routing solution, which is essentially ramdo
in its performance under the failure of lirik will not per-
form too differently from one optimized for such a scenario.
In contrast, the wider distribution for linktranslates into a
much bigger difference between a random weight selection

PAL

"We define the left-tail as the smallest 10% costs.

and one that explicitly seeks to optimize performance under
the failure of linki.

4.4 |dentifying critical links

In order to use our proposed definition of link criticality,
we need to return to our initial hypothesis and obtain esti-
mates of the distributions of network costs following thié fa
ure of each link across all acceptable routings (link weight
settings). Obviously, this needs to be done without cagyin
out exhaustive computations explicitly failing every lifde
each routing under consideration. The approach we use to
construct our estimates of these distributions is inspingd
the methodology of [19], and extends it to reflect the larger
solution space we are dealing with.

4.4.1 Building cost distributions

As in [19], we take advantage of the fact that the opti-
mization first needs to compute the best network cost under
normal conditions. This is Phase l1a in Fig. 1, which per-
forms a tabu search that randomly perturbs individual link
weights while seeking to improve network cost. The infor-
mation gathered in this phase can be leveraged to build the
distributions of network costs under link failures. Thigica
be accomplished by realizing that some weight perturbation
closely resembile link failures.e., assigning a large enough
weight to a link has a similar impact on routing decisions
as failing the link (the latter is equivalent to assigninguiit
infinite” weight).

Specifically, if a Phase 1a weight perturbation results in
weights for a link that arbothin the intervallgwmax, Wmax|,
0 < g < 1, wmax is the maximum allowable weight value
(i.e., both traffic classes must be affecteal)d the network
costs before such perturbation are “acceptable” (moreien th
below), then the cost samples from this weight perturbation
can be used to build the estimated cost distributions of the
link. To ensure that we gather a sufficient number of sam-
ples, our definition of “acceptable” network costs for decid
ing on the eligibility of a cost sample in Phase la is based
on a slightly relaxed version of Egs. (6) and (7). Specificall
the cost of delay-sensitive traffic should be no more than
higher than the current best cost (the lowest cost discdvere
in Phase 1a so far), and the cost of throughput-sensitifre tra
fic should be no more thafi + x) times the current best
cost. In our experiments, we let= 0.5 andy as defined in
Eqg. (7). We sey = 0.7 to realize a reasonable trade-off be-
tween closely emulating failures and ensuring the gerarati
of a large enough number of samples by the end of Phase 1a.

Even with the above relaxations of our sampling strategy,
it is still possible that the number of valid samples gener-
ated in Phase 1a is insufficient to produce accurate essmate
of the cost distributions of all links. This is because it re-
quires weight perturbations that resultdathweights being
close towmax. TOO few samples would produce inaccurate
cost distributions, which could result in incorrect assest
of link criticality and compromise the quality of the final



routing solution. Our approach to this problem is to add an ~Ajgorithm 1 Critical link identification process.
optional phase, Phase 1b, that is carried out in case insuffi- Input - Sortedl, and Eq, target sizey of oritical ink set
cient samples are collected in Phase la. [12] provides more Result Critical link setE.

details on how to decide to proceed with Phase 1b or not, 1 n1 < |E|,n2 — |E|, Ec := Epn, U Eg n,

but here we note that it was rarely triggered in our experi- 2 "€ [Ean, U Eap,| > ndo

. . if 6o (EA,nyi—1) 2 Po (Ed ny—1) then
ments, and when it was, the added computational overhead, |pAn(2 . na 1_) T P (Eonom)

was marginal when compared to the overhead of Phase 2. 5 else
. . . 6 | n1e—=n1—1
4.4.2 Selecting critical links 7 | end
. . 8 end
After Phase 1a or 1b, the quantities; andps ;, defined 9 retUN B, := Ex n, U Eaon,

in Egs. (9) and (10) as the criticality of lilfor the two cost
functions, have been estimated. It remains to use this-infor
mation to decide which links belong f6.. This depends on
pa, andpg ; as well as the target sizeof E., and is carried
out in Phase 1c. Because each link has two distinct critical-
ity values, one for each traffic type, their orderings acoayd 4.5.1 Accuracy
to each may not be consistent. As a result, the first step of
Phase 1c is to normalize link criticality values as follows:

cluded inE, are failed, each experiment is repeated 5 times,
and we report averages and standard deviations.

To measure the accuracy of the critical search solution, we
introduce the following metrics:

Pag = PA,Z/ZJ.GE Atail,j s Do, = PQZ/ZJEE Ptail,j e G, Bert: Average numbers of SD pairs that violate the
The denominators in the above expressions representour es-  SLA delay bound across all single link failures, under
timates of the best possible network costs across all single full (full) and critical searchesit).

link failures, assuming it was possible to include all liriks * (35 (%): Difference in network costs for throughput-
Phase 2 of the optimization. Thus, the above expressions sensitive traffic i) between full and critical searctes
capture relative deviations incurred, for each traffic type A good solution satisfieSe ~ G andfs = 0.

when link! is notincluded inF,.. Note that although we have The performance of critical search is summarized in Ta-

estimates for the best possible network costs under failure ble 1 for different network topologies and differgat.| val-
we have not yet produced any routing capable of realizing ues that vary from 5% to 15% 6| (the values in the brack-

them. ets denote the standard deviations in the 5 runs of each ex-
Once the normalized criticality values have been obtained, periment). The results demonstrate that critical search co
Phase 1c uses them to progressively eliminate fErtinks sistently produces a reasonable approximation of fullear

that have the least effect on the expected, normalized erroracross different topologies, while considering only a $mal
of the optimization procedure. Specifically, links are first albeit carefully selected, number of links. Similar observ

sorted in descending order pf ; andps ; into two lists, Ex tions were also found for different network sizes, and more
andEgy, respectively. The two lists are then used to estimate results can be found in [12].

the normalized optimization errors, if only the tapdinks Another parameter, besides topology, that can influence
in a list are used in Phase 2 of the heuristic. These expectedhe accuracy of critical search is network load. We investi-

normalized errors are computed as follows: gate its impact in the context of a random topology with 30

Ba (Bam) i= Z Dass Po (Bom) = Z Do, nodes and 180 links. We set the maximum link utilization

to 0.9 (the average utilization is 0.56, up from 0.43 in Ta-

whereEy . QZGEE;EQ%E(I)M C Es denoteltGhEe\thg ofthe Dle 1). The results are shown in Table 2, and illustrate that
top-m links, in order of criticality, inE, andEs. good accuracy can still be realized with only a slightly &rg
Given these estimates, the next step is to remove links "umber of links £ 20% vs. 16-15%) now inE.. _

from E,, starting withE, = E and until the target size of The impact of higher network load can be explained as

|E.| = n is reached, while minimizing the optimization er- follows. At high loads, the delay-sensitive traffic becomes

ror. This procedure is detailed in Algorithm 1. more sensitive to queueing delays because of congestion.
. ] This amplifies the errors made by overlooking the cost im-

4.5 Critical links-based search pact of certain links. Similarly, the slope of the cost fioct

In this section, we demonstrate that the approach we haveof throughput-sensitive traffic increases with networkdioa
just described (denotexitical search is successfulinmeet- SO that at high loads a slight change in link load can signif-
ing our original goals, which we quantify by comparing it to icantly affect the cost. This in turn amplifies the magnitude
a “brute-force” solution withe, = E (termedfull search in of the errors incurred when omitting some links from the op-
terms of both its accuracy and Computationa| cost. The eva|_timizati0n. Both of those factors pOint to the need for some
uation Is Ca"'e‘? out over a range of topologies and traffic 8Critical search may produce a smaller cost for throughput-
loads (see Section 5.1 for details). Because network perfor sensitive traffic than full search does, because of the imexity
mance can experience greater fluctuations when links not in-of the lexicographic cost function.




Table 1: Critical vs. full search for different topologies.

Topology type [# nodes, # links] RandTopo [30,180]| NearTopo [30,180]| PLTopo [30,162] | ISP [16,70]
Avg link util 0.43 0.46 0.44 0.43
Bhui 0.19 21.39 1.13 1.04
|Bel _ 5oy Bert 2.60(0.82) 25.17 (5.73) 2.82(0.28) 3.32(0.74)
B~ °7° Ba (%) 7.96 (8.71) 24.55 (10.56) 3.11 (2.28) 14.22 (8.27)
[Ecl _ 10% Bert 1.30(0.35) 25.31(3.10) 2.40(0.13) 3.22(0.93)
[E] Ba (%) 4.09 (0.32) 18.59 (13.81) 5.61 (3.07) 18.01 (6.22)
[Ecl _ 5% Bert 0.99 (0.15) 22.33 (4.55) 1.76 (0.21) 1.99 (0.35)
el ’ Ba (%) 2.75(1.84) 19.42 (13.75) 8.03 (4.19) 10.08 (4.43)

. . ing robustness into account across different network wpol
Table 2: Critical vs. full search at high load. g op

Bean 180 gies of varying sizes and carrying different traffic pattern
[E]/TE] 10% 20% 25% and loads. Additionally, the choice of SLA target is also
Ber 5.77(2.91) | 2.23(0.94) | 2.19(0.73) . . i etis
Ba (3/0) 18.43 (16.28)| 22.90 (14.10)| 24.98 (9.76) of interest,e.g, to determine whether simply relaxing it can

substitute for a robust routing solution. Last but not least
the sensitivityof the solution to the accuracy of the “antic-
increase in the size of, to maintain the accuracy of the ipated” traffic matrices is of concern. This is especially so
critical search. since traffic matrix estimation is rife with potential inace-
cies,e.g, [13]. As aresult, it is also important to assess the
extent to which the benefits of robust optimization remain in
The other important aspect of critical search is the mag- the presence of deviations between the anticipated andlactu
nitude of computational savings it yields. As discussed in offered traffic.
Section 4.2, the bulk of savings comes from reducing the |n the rest of this section, we attempt to answer these
time spent in Phase 2, and their magnitude should be ap-questions, starting with a brief overview of the configura-
proximately proportional td — |E.|/|E|. This was vali-  tions (network topologies, traffic matrices, and other para
dated across a range of topologies and is illustrated in Ta-eter settings) used in the evaluation. Because of space con
ble 3 for a representative sample wjthi.|/|E| = 0.1. The straints, most configuration details are relegated to [Arad,
table shows that while the critical search approach skghtl the focus is instead on the results of the investigationclvhi
increases the time spent in Phase 1, this increase pales itan be summarized as follows:
comparison to the reduction of time spent in Phase 2. Ta- e Robust optimization affords significant benefits across

4.5.2 Computational savings

ble 3 shows a reduction in computation time from several most network topologiesg., minor loss in performance
days for a full search down to just a few hours for a critical under normal conditions and much smaller performance
search. These results were obtained on a 2.66 GHz Pen- degradations in the presence of failures.

tium Xeon machine. The other metric of importance when — These benefits grow as the path diversity offered
assessing computational cost is memory consumption. We by the network topology increases.

did not observe significant differences between the two ap- e Network size and load do not significantly affect the
proaches, with neither requiring more than 100 MB of mem- benefits of robust optimization.

ory throughout our experiments. — However, because high network loads can limit

path diversity, those benefits can be slightly lower

Table 3: Average computation times for critical vs. full at very high loads.

search (in hours). ° Relaxing S_LA _del_ay bounds is not a substitute for ro-
30-node, 240-ink topologies bust optimizationj.e., a looser SLA does not ensure
gﬁgge 1RandT020 i\‘eafTOgO greater robustness to failures.
Fil T3 T 5605 T 227 5882 e The benefits of using robust optimization remain even
Crt || 1.80 | 427 || 443 | 5.35 when the actual offered traffic deviates from that used

to compute the routing solutione., in some sense the
robustness to topological changes (failures) also ex-
5. EVALUATING ROBUSTNESS tends to traffic fluctuations.

The previous section addressed the feasibility of comput-
ing routing solutions capable of both efficiently meeting de
lay and throughput requirements and maintaining them in )
the presence of all single link failures. Next, we turn to 9-1-1 Network topologies
exploring the merits of this solution, and in particular as-  Both real and synthesized topologies are used. Our real
sessingvhenit is of benefit, and hovbig those benefits are.  topology emulates a North American ISP backbone network
Answering those questions calls for comparing the perfor- of 16 nodes and 70 links. For synthesized topologies, we
mance of routing solutions computed with and without tak- assume that nodes are randomly distributed in a unit square

5.1 Evaluation settings



Table 4: SLA violations across topologies.
Topology type [# nodes, # links] RandTopo [30,120]| NearTopo [30,120]| PLTopo [30,162]| ISP [16,70]
Robust 1.88(0.33) 126.09 (8.71) 1.76 (0.21) 1.99 (0.35)
No robust 6.80 (1.15) 147.36 (19.77) 11.25 (2.05) 4.49 (0.64)
Robust 7.83 (2.25) 307.35 (21.59) 10.85 (1.81) 10.93 (2.74)
No robust 31.40 (7.91) 379.53 (32.32) 72.58 (16.33) | 23.62(3.17)
Cost degradation of throughput-sensitive traffic (%)  3.24 (0.46) 5.89 (5.70) 7.01 (1.61) 12.35 (4.35)

Average SLA violations

Average top-10% SLA violationg

and connected using three different types of topologies: Egs. (6) and (7), so a smaller diversification interval of 30
e RandTopo Random graph of given average node de- iterations is used and the search terminates &fter 10 di-
gree. versifications produce cost improvements belbi’%. Un-
¢ NearTopo Nodes connectto thejrclosest neighbofs less otherwise specifietlr.|/|E| = 0.15 was used. Traffic
e PLTopa Power-law topology based on the preferential is split evenly over equal-cost paths. Each experiment was
attachment model [2]. repeated 5 times and the average results are reported. In the
Link propagation delays are determined by the Euclidean tables, the values in the brackets denote the standard-devia
(geographical for the real topology) distances betweeresod tions in the 5 runs of each experiment.
and scaled to ensure a reasonable match between the target
SLA boundd and the network diameter (coast-to-coast prop- 2-2  Effect of network topology
agation delay in the real topology). Unless otherwise speci  \We evaluate the benefits of robust optimization on topolo-
fied, a value of) = 25 ms is used. Link capacities were set gies introduced in Section 5.1.1. Two metrics of interest ar
at 500 Mbps, with different traffic patterns and intensities (i) the number of SLA violations in the presence of failures
(see below) used to generate heterogeneous load levels.  (as a measure of robustness); and (ii) the impact of robust op
512 Traffic matrices timization on the network cost of throughput-sensitivéfita
" (as a measure of the cost of robust optimization). Note that
The throughput-sensitive traffic matrix is generated using implicit in our earlier choice of = 0.2 we are willing to tol-
a gravity model [13, 14] with three different demand levels erate an increase in the network cost of throughput-seesiti
across nodes. The delay-sensitive traffic matrix is geaérat traffic of 20% in exchange for robustness. The purpose of (ii)
using the random model of [11] where we assume that eachis to ascertain whether throughput-sensitive traffic isiinc
SD pair generates delay-sensitive traffic. The total volume ring any additional penalty from robust optimization (rtca
of delay-sensitive traffic is specified as a fractibr f < 1 that we are giving precedence to delay-sensitive traffibén t
of the total network traffic volume. We uge= 30% in the optimization).
results we report on, but experiments with other values did  The results of this investigation for metric (i) are repdrte
not reveal strong sensitivity to this value. in Table 4, for scenarios where all topologies had an average
. link load around 0.42 under normal conditions. From the
5.1.3 Computational parameters table, we see that on average, robust optimization not only
Both the cost functions and the computational method of produces substantially fewer SLA violations across alt fai
Section 4 involve a number of parameters, and we briefly ures (by factors ranging from 2 to 7 in most ca8gsbut
specify the values used in generating the results of Sextidh  more importantly it yields drastic reductions when focgsin
to 5.6. Experiments with other values produced some changesn the “worst” top-10% of all failuresie., those with the
in the results, but none that significantly affected the aonc  highest number of SLA violations.
sions of this investigation. We take a closer look at how those benefits are achieved
In estimating the network cost for delay-sensitive traffic, in the case of RandTopo, for which detailed link-by-link re-
we used a packet size = 1500 bytes and a load thresh-  sults are presented in Fig. 3 that reports on both metrics (i)
old x = 0.95 in Eq. (1). This reflects a backbone environ- and (ii). Fig. 3(a) displays the often dramatic reductiothia
ment, where high link speeds make queueing delays negli-number of SLA violations that robust optimization affords,
gible except at very high loads. In allowing degradation of while Fig. 3(b) illustrates that throughput-sensitivefficais
the performance experienced by throughput-sensitivedraf  also afforded some protection, especially during the worst

in exchange for greater robustness, we chpse 0.2, i.e,, failure patterns. In addition, the last row of Table 4 shows
we allow a degradation of up to 20%. In Phase 1a of the op- that although we were willing to tolerate a degradation of up
timization heuristic, the diversification interval is sett00 to 20% in the cost of throughput-sensitive traffic under nor-
iterations and the search stops when = 20 diversifica-  mal conditions in exchange for greater robustness, the ac-
tions have all produced cost improvements betow 0.1%. tual degradation incurred is typically much smaller. Inesth

In Phase 2, each diversification round starts with a weight

. e 10 i ari ; ;
setting close to one that already satisfies the constraints o N€&rTopo is somewhat of an outlier in that even if some rednst
are seen, the number of SLA violations remains high even with

°A value g (> 1) is chosen such that the total number of links in  robust optimization. We will shortly explain the reason inetthis
the network matches a target value. behavior.
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Figure 4: Link loads after failure under robust optimiza-
tion. (a) Number of links experiencing load increase. (b)
Average increase in link load.

Figure 3: Network performance with and without robust
optimization.

words, the use of sub-optimal and potentially longer paths Fig. 4(a) shows that in RandTopo load increases after a fail-
selected by robust optimization only had a small impact on ure are distributed over a much greater number of links than
the performance of throughput-sensitive traffic. This ob- in NearTopo, Fig. 4(b) shows that the magnitudes of these
servation was consistent across all our experiments, $o thaincreases are much smaller in RandTopo. The few large uti-
from now on we focus on metric (i). lization increases in NearTopo are responsible for the com-
We now turn to the NearTopo topology that was identi- paratively larger number of SLA violations it experiences.
fied as somewhat of an outlier exhibiting smaller benefits .
from robust optimization than other topologies. Specifical  2-3  Effect of network size
Table 4 shows a relatively large number of SLA violations  Network size is another factor that can affect the benefits
even under robust optimization. This can be explained asof robust optimization. In investigating this possibilitye
follows: In NearTopo, nodes connect only to their nearest present RandTopo as an example. The network size is varied
neighbors. Paths between pairs of nodes geographically farfrom 30 to 50 nodes, while the mean node degree is fixed
aparte.g, at opposite sides of the network, are notonly long at 5. The average link utilization is roughly 0.43 across all
(in terms of hop counts), but share a small set of links in the topologies under normal conditions. Table 5 summarizes the

“core” of the network. This limited path diversity means number of SLA violations as the network size increases.
that core links are typically heavily loaded, and the associ
ated long queueing delays can then induce SLA violations
even in the absence of failures. Failures obviously make
matters worse, and whenever a core link fails, its traffic can
only be redistributed on few other links that are alreadywhea

Table 5: Average number of SLA violations in RandTopo
as a function of network size. (“R” and “NR” denote
robust and regular optimizations, respectively).

Size 30 nodes 40 nodes 50 nodes
ily loaded. This translates into even heavier congestiah an R NR R NR R NR
longer queueing delays on those links, which then result in Avg ((2)-;‘1’) (143-1%‘; (g-gg) (3546526; (3‘13:13) (nggﬁ
a large number of SLA violations. An obvious question is Top-10% || 16.58 | 84.05 || 6.52 | 20025 | 12.26 | 177.03
whether robust optimization would fare better, if links et (117 | (22.15) || 252) | (24.62) || (1.14) | (67.11)

core of the network were resized to eliminate SLA violations

at least under normal conditions. After performing such lin We find that the benefits of robust optimization persist

resizing [12], the average number of SLA violations after or even increase as the network grows. This is in part be-

failures decreases as expected (down to 18 when robust opticause larger networks typically offer greater path divgrsi

mization is used and 38 when it is not). However, the limited which robust optimization can leverage. Furthermore, the

path diversity that is still the rule in NearTopo impliestha greater network size does not preclude regular optimizatio

even then those benefits remain limited. from making locally bad decisions, which re-route delay-
The investigation of NearTopo illustrates that in general sensitive traffic over congested links in the presence 6f fai

the benefits of robust optimization depend on its ability to ure, hence triggering SLA violations. Similar results were

discover and use additional paths that regular optiminatio obtained when growing the network by adding links rather

would not consider, and do so without inducing severe con- than nodes, and the details can be found in [12].

gestion on these paths. This is not possible in NearTopo,

where the limited number of routing options in the core mean55'4 Effect of network load

that both regular and robust optimizations consider essen- Next, we investigate how network load affects the bene-

tially the same set of paths. To further illustrate the dffec fits of robust optimization. As mentioned earlier, highakli

of path diversity on robust optimization, we compare link loads can reduce path diversity in the network, in that fewer

utilization levels in RandTopo and NearTopo after failures alternate paths may be able to accommodate an increase in
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Figure 5: SLA violations in medium- and highly-loaded
networks.

Table 6: Average number of SLA violations in RandTopo
as a function of SLA bound under regular and robust
optimizations.

SCAbound(ms) | 25 | 30 | 45 | 60 [ 100
Regular optimization
o 6.80 4.51 16.22 23.94 30.24
Avg# SLAviolations | 1 "15y | (559) | (9.80) | (10.19) | (15.03)
Avg link util 0.42 0.44 0.46 0.48 0.50
Robust optimization
- 1.88 0.49 0.20 <0.01 0
Avg # SLA violations ©0.33) | (0.07) | 0.02) | (<0.01) ©)
Avg link util 0.42 0.43 0.45 0.46 0.48

optimization, even as the SLA bound becomes looser. As
a matter of fact, a looser SLA bound often resultgriore

load, and therefore accessible to robust optimization to im g A yiolations under regular optimization. Both resulte ar
prove robustness. The question is then whether enough alinyitive, though not obvious. Recall that the relativesinsi-

ternate paths remain for robust optimization to discover an
use, so as to offer meaningful improvements. In order to ex-

tivity to failures of robust optimization stems primariloin
its selection of paths that are slightly sub-optimal und®r n

plore this issue, we take a 30-node, 180-link RandTopo as am 3| conditions, but capable of preserving performancesn th
representative example that in the absence of congestion 'tpresence of failures. Because of their sub-optimalitys¢ho

offers a reasonable level of path diversity. We consider two paths are never considered by regular optimization. Hence

levels of network load: medium and high, with maximum
link utilizations of 0.74 and 0.9, respectively, under naim
conditions. In robust optimization for the highly-loadegt-n
work, we setE.|/|E| = 0.25 to achieve better accuracy of
thecritical search

Fig. 5 shows the number of SLA violations across all sin-
gle link failures, with and without robust optimization. As

the benefits of robust optimization are primarily a reflectio
of its ability to consider a different (broader) set of pattnen
regular optimization. As long as this difference remaims, s
will these benefits. Consider now the effect of relaxing the
SLA bound. A looser SLA bound means that more paths are
eligible for routing delay-sensitive traffic. This in ture-r
sults in new path choices for improving the performance of

network load increases, the higher link loads and assatiate ioughput-sensitive traffic. However, it does little taoige
higher queueing delays result in more paths with end-to-end e fact that regular optimization will still not considdret
delays at or close to the SLA bound. Thus, the lesser delaygh.gptimal paths that robust optimization does. In other

margins on many paths translate into more SLA violations
after link failures, irrespective of whether robust optiam
tion is used or not. In spite of this, we see that robust op-
timization still yields substantial improvements in miran

ing SLA violations even at high loads. This indicates that at
least in topologies with adequate path diversity, robust op
timization is still able to identify enough alternate patbs
ensure robustness by allowing traffic to be redistributed on
those paths in the presence of failures.

5.5 Effect of SLA delay constraint

In this section, we address the question of whether and to

what extent robustness is achievable simply by relaxing SLA
delay bounds. In other words, is robust optimization useful
only under the assumption of “tight” delay constraints? The

words, both optimizations have more paths to choose from,
but thedifferencesn their choices remain.
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Figure 6: End-to-end delay distribution across SD pairs
in the absence of failures under regular optimization.

results demonstrate that a looser SLA bound alone is not suf-

ficient to ensure greater robustness to failures. As a matter,
of fact, it may make matters worse and actually strengthen

the benefits of robust optimization.

We illustrate this using a 30-node, 120-link RandTopo as
an exampl&. Table 6 shows the number of SLA viola-
tions under both regular and robust optimizations for diffe
ent SLA bounds. Robust optimization consistently yields a
significantly smaller number of SLA violations than regular

Hits maximum end-to-end propagation delay was set to 25ms.

The reason behind thacreasednumber of SLA viola-
tions under regular optimization in RandTopo as the SLA
bound is relaxed is itself explored further in Fig. 6. The fig-
ure plots the distribution of end-to-end delays in the absen
of failures for delay-sensitive traffic under regular opdex
tion. The results suggest that as the SLA bound is relaxed,
the end-to-end delays of delay-sensitive traffic increase-c
mensurately. Hence, the number of flows close to the SLA
bound and, therefore, at risk of violating it after a failure
remains roughly constant. In other words, the relaxation of



the SLA bound is not used to improve the “failure-tolerance
margin” of delay-sensitive flows.e., increase the amount of
additional delay they can tolerate after a failure. In addit
the flexibility to consider longer paths for delay-senstiv
traffic to improve the performance of throughput-sensitive
traffic also results in higher link utilization (see Tablertda
Fig. 7). This makes it more likely that after a failure, link

traffic matrices representing tlaetualtraffic carried by the
network. In investigating the impact of differences betwee
Rp andRp, andRy and R, we focus on two types of traf-

fic uncertainties. The first emulates measurement errors and
random fluctuations in traffic intensities. The second t&rge
traffic variations caused by sporadic incidents that atfeet
traffic sunk or sourced by a few nodes.

loads will increase to a level where queueing delays become To capture random fluctuations in the intensity of traffic
high enough to affect end-to-end delays. Hence, it is more between individual SD pairs, we rely on a Gaussian model

likely that delay-sensitive flows, whose end-to-end delays
are close to the SLA bound prior to a failure, will experience
SLA violations after a failure. This explains the greatemu
ber of SLA violations under regular optimization as repdrte
in Table 6 for looser SLA bounds. Similar results were also
observed with the PLTopo and ISP topologies [12].

The previous results notwithstanding, there are instances
where a loose SLA bound lessens the benefits of robust op-

timization. This typically occurs in topologies with lirei
path diversity, where robust optimization has little paizin

in the first plac&. In other words, the conclusion that relax-
ing SLA bounds is no replacement for robust optimization
remains valid across topologies where it is effective.
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Figure 7: Maximum utilization of links carrying delay-
sensitive traffic in RandTopo under regular optimization.

5.6 Sensitivity to uncertain traffic matrices

The last aspect of our evaluation deals with the sensitivity
of the routing solutions we produce to errors/uncertadritie

the traffic matrices used to compute them. As alluded to at

the beginning of Section 5, traffic matrices are usually de-
rived from combining and averaging a broad range of mea-
surements. As a result, traffic matrices cannot be assume
to be accurate estimates of the actual traffic flowing through
a network at a particular point in time. In addition to aver-
aging and measurement inaccuracies, external facas,

flash-crowds, BGP route changes, etc., can also contribute

significant discrepancies between actual traffic and tHe tra
fic matrices used for optimization. The question is whether
this affects the effectiveness of robust optimization.

Let Rp andRr denote the delay- and throughput-sensitive
basetraffic matrices used by the optimization, respectively,

andﬁD = [FD(Sat)]|V|><|V\ andﬁT = [FT(Sat)]|V|><\V| the

1235ee [12] for an illustration of this behavior on NearTopo.

that has been shown appropriate in modeling such estimation

errors [3, 15]. This gives actual traffic intensities of them
p(s,t) = rp(s,t)+ N (0,erp[s,t]) (11)
rr(s,1) rr(s,t) + N (0,err [s,t]) (12)

whereN (0, o) denotes a normally distributed random vari-

able with zero mean and standard deviatione controls

the magnitude of possible traffic fluctuations. For example,

with ¢ = 0.2, the actual traffic intensities can fluctuate by
+40% around the estimated mean value with a likelihood of
about 95%. Conversely, the impact of sporadic incidents is
captured by using a hot-spot model that allows traffic surges
to (upload) or from (download) a small set of (server) nodes.
The hot-spot model involves selecting a small set of server
nodes, assigning a number of “clients” to each one of them,
and scaling the traffic intensities of the corresponding SD
pairs by a factor greater than one. Specifically, in the uploa
scenario, assuming that clients assigned to servei, the
corresponding traffic intensities arg (i, j) = v; ;7p [i, j]
andrr (i, j) = wi;rr [4, 7] for the delay- and throughput-
sensitive traffic, respectively, whetg; > 1 andpy; ; > 1.
Similar symmetric expressions hold for the download case.
The results of our investigation on the impact of traffic
variations from the random and hot-spot models are reported
in Figs. 8 and 9, respectively, for a 30-node, 180-link Rand-
Topo. In each model, 100 testing instances were randomly
generated. Details on the exact simulation settings cain aga
be found in [12]. In the case of random fluctuations; 0.2
was used. For hot-spots, we randomly selected 10% of the
nodes as servers and 50% of nodes as clientsygnand
wi; were uniformly distributed between 2 andi., the
traffic volume could increase by 100-500% for those SD
pairs. The figures focus on the top-10% worst failures to
magnify possible differences. The vertical bars in the fig-

Jires denote the standard deviations among the 100 testing

instances. The main conclusions are that (i) the benefits of
robust optimization remain even with reasonably large de-
viations between estimated and actual traffic matrices,
robust optimization still performs much better in the fa€e o
failures; (i) Computing a routing robust to failures appea

to also afford some level of robustness against unexpected
traffic fluctuationsi.e., routing performance is roughly equal
for the estimated and actual traffic matrices.

6. CONCLUSION

The paper explores the extent to which DTR-based rout-
ing solutions can offer both flexibility in supporting mul-
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Figure 8: Impact of traffic uncertainty: random fluctua-
tion scenario.
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