
26 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

Achieving Bounded Matching Delay and
Maximized Throughput in

Information Dissemination Management
Ming Chen, Xiaorui Wang, and Ben Taylor

Abstract—The demand for high performance information
dissemination is increasing in many applications, such as e-
commerce and security alerting systems. These applications
usually require that the desired information be matched between
numerous sources and sinks based on established subscriptions
in a timely manner while a maximized system throughput be
achieved to find more matched results. Existing work primarily
focuses on only one of the two requirements, either timeliness
or throughput. This can lead to an unnecessarily underutilized
system or poor guarantees on matching delays. In this paper, we
propose an integrated solution that controls both the matching
delay and CPU utilization in information dissemination systems
to achieve bounded matching delay for high-priority information
and maximized system throughput in an example information
dissemination system. In addition, we design an admission control
scheme to meet the timeliness requirements for selected low-
priority information. Our solution is based on optimal control
theory for guaranteed control accuracy and system stability.
Empirical results on a hardware testbed demonstrate that our
controllers can meet the timeliness requirements while achieving
maximized system throughput.

Index Terms—real-time and embedded systems, Feedback con-
trol real-time scheduling, distributed systems, end-to-end task,
quality of service, distributed model predictive control.

I. INTRODUCTION

DURING the last decade, information dissemination has
started to play a critical role in the design and devel-

opment of a large class of applications. For example, buyers
and sellers need to be matched based on their interests in
e-commerce systems, and notified immediately when new
business opportunities are identified. Likewise, in security
alerting systems, threats detected by various sensors must
be reported to the appropriate authorities within certain time
constraint. In these applications, matches between numerous
(e.g., thousands of) sources and numerous sinks should be
found accurately, efficiently, and more importantly, in a timely
manner. These requirements have been generally described
as Valuable Information at the Right Time (VIRT) [2]. This
emphasizes that consumers of information should receive the
accurate information that is of interest to them as soon as it

Manuscript received December 16, 2009; revised June 3, 2010. The
associate editor coordinating the review of this paper and approving it for
publication was R. Stadler.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Tennessee, Knoxville, TN 37996 (e-mail:
{mchen11, xwang, btaylo22}@utk.edu).

This paper is a significantly extended version of a conference paper [1].
Digital Object Identifier 10.1109/TNSM.2011.012111.00004

PublisherPublishers

PublisherSubscribers

PublisherConsumers
data

Webservice Specification

Publisher

Subscriptions

Metadata matching

Registry

Consumer

INFOD

Publisher
Entries

Consumer
Entries

Fig. 1. INFOD: an example information dissemination system.

is available or whenever it is requested. In the meantime, a
maximal possible system throughput should be achieved to
find more matched results between data sources and sinks.

INFOD (INFOrmation Dissemination) [3] is an example
information dissemination system that aims to support timely
delivery of valuable information for a wide range of ap-
plications. As shown in Fig. 1, information sources and
sinks are defined as publishers and consumers, respectively.
Subscriptions are prescribed requests of information from
publishers to subscribers and submitted by subscribers on
behalf of consumers. Unlike other information dissemination
systems that hold data itself, INFOD serves as an information
broker and only allows publishers and consumers to advertise
their attributes and constraints, which are generally referred
to as metadata, in a database called registry. For example, a
traffic sensor (publisher) may have its location and the abstract
description of the traffic it monitors as metadata, while a driver
(consumer) may have his location and name as metadata. An
example subscription can be: all sensors (publishers) send their
traffic information to all drivers (consumers) within 10 miles
no later than 10 seconds after a jam occurs. Metadata can
be updated periodically and aperiodically. When a metadata
update arrives, INFOD needs to find new matched results
between the metadata of publishers and consumers based on
the subscriptions, which we refer to as subscription reeval-
uation or metadata matching. Based on the matched results,
publishers are informed where to send filtered information.
The information (data) is then sent to the matched consumers

1932-4537/11/$25.00 c⃝ 2011 IEEE

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 27

without passing through INFOD. The main function of the
INFOD system is to find new matched results within a certain
time constraint. Meanwhile, more matched results are desired
by reevaluating the maximized number of subscriptions, which
means that the registry server should be efficiently utilized.

To guarantee both the bounded matching delay and efficient
system utilization in information dissemination systems faces
several major challenges. First, when an update arrives, the
system may need to reevaluate all subscriptions to find new
matched results between the publishers and consumers. For
example, a driver may constantly update his location attribute.
As a result, all subscriptions in the registry need to be
continuously reevaluated by rerunning metadata matching to
ensure that the driver receives information from the right
locations. However, given the large number of publishers and
consumers, reevaluating all subscriptions may cause severe
system overload and unacceptably long delays. Therefore, to
guarantee bounded matching delay and avoid system over-
load, only a few of the subscriptions can be selected for
reevaluation. Second, metadata updates may arrive at unpre-
dictable intervals. Given a constant number of subscription
reevaluations, the registry may suffer either over- or under-
utilization, depending on whether the interval is short or
long. Over-utilization may lead to unbounded matching delay,
while under-utilization may lead to unnecessarily low system
throughput, resulting in incomplete matched results. Both
unbounded matching delays and unnecessarily under-utilized
systems are undesirable. For example, a driver may fail in
finding the fastest route, either due to a late notification of
traffic information, or because the registry fails to find the
existing matched traffic information. Third, subscriptions may
have different priorities. For example, subscriptions of traffic
information for police should have a higher priority than those
for ordinary drivers. Therefore, reevaluation preference should
be given to high-priority subscriptions.

To address all the challenges, we propose a mechanism by
applying a batching window to group those updates at small
interarrival intervals and release them all together. We differen-
tiate subscriptions by two priorities: high and low. After each
release, all high-priority subscriptions are reevaluated first,
and then a certain number of low-priority subscriptions are
selected for reevaluation. The low-priority subscriptions are
reevaluated in a round-robin way. The number of subscriptions
that are reevaluated after each batching window is defined as
job budget. Clearly, both the batching window size and job
budget affect the matching delay and utilization of the registry
server. Therefore, it is important to determine the batching
window size and job budget in an integrated way such that
the average matching delay of all high-priority subscriptions
are guaranteed to meet the specified constraint, and the registry
server can be efficiently utilized to achieve maximized system
throughput.

In this paper, we present a novel solution to control both
the matching delay of the high-priority subscriptions and CPU
utilization of the registry server in an integrated manner.
Under our control solution, the average matching delay of all
the high-priority subscriptions can converge to the specified
constraint, while the CPU utilization is controlled to a desired
set point so that the system can reevaluate the maximized

number of subscriptions. In addition, we present an admission
controller to guarantee that all the low-priority subscriptions
can be reevaluated at least once within a certain time con-
straint. Specifically, the contributions of our work are five-
fold:

∙ We propose a novel batching mechanism to address the
challenges of metadata matching in information dissem-
ination systems;

∙ We model the average matching delay and CPU utiliza-
tion of the registry server and validate the model with
data measured on a hardware testbed.

∙ We design a Multiple-Input-Multiple-Output (MIMO)
control solution based on the system model to guarantee
the timeliness of all the high-priority subscriptions and
system throughputs simultaneously and present a detailed
analysis of system stability based on optimal control
theory.

∙ We design an admission controller to guarantee the
timeliness of all the low-priority subscriptions.

∙ We implement our control solution based on a real
information dissemination system and present empirical
results on a hardware testbed to demonstrate that our
solution can guarantee the timeliness for all the subscrip-
tions and achieve maximized system throughputs.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III introduces the overall
architecture of the system. Section IV and Section V present
the system modeling, controller design and analysis of the two
controllers. Section VI describes the implementation details.
Section VII presents the results of our experiments and Section
VIII concludes the paper.

II. RELATED WORK

Some related work has been done to guarantee the average
response time and CPU utilization in computing systems. For
example, Horvath et al. address End-to-End response time
control in multi-tier web servers by using dynamic voltage
scaling [4]. Wang et al. present a load balancing controller to
control the relative response time among virtualized servers
[5]. However, those solutions aim to control the average
response time of web applications by conducting dynamic
frequency and voltage scaling (DVFS). The key difference
between their projects and our work is that they try to
minimize system resource usage by running the CPU at the
lowest possible DVFS level to achieve power savings, while
our work tries to utilize the system resource to the maximum
degree by evaluating as many low-priority subscriptions as
possible. Diao et al. develop MIMO control algorithms to
control the processor and memory utilization for Apache
web servers [6]. Chen et al. also propose a hierarchical
control architecture to guarantee the deadline of power grid
computing tasks by controlling CPU utilization [7]. This paper
is different because we control not only CPU utilization but
also the average delay of metadata matching in information
dissemination systems. Our experimental results presented in
Section VII-C demonstrate that the proposed integrated control
solution can achieve both bounded delay and maximized sys-
tem throughput, while controlling CPU utilization or average

28 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

matching delay separately leads to either delay requirement
violation or under-utilized systems.

Our previous work [8] presents an initial solution to control
only the processing delay of metadata matching. This paper is
significantly different because: 1) we design a batching mech-
anism that can handle unpredictable update interarrival inter-
vals; 2) we simultaneously control matching delay (including
waiting time and processing time) and CPU utilization, based
on the optimal control theory, for better system throughputs; 3)
we design an admission controller to guarantee the matching
interval of all low-priority subscriptions to meet the specified
constraint. We use our previous work as a baseline in our
evaluation.

Information dissemination has recently received a lot of
attention. For example, Bullet, a multi-receiver data dissemina-
tion mesh that aims for the high-bandwidth data dissemination
for large-scale distributed systems, has been presented by
Kostić et al. [9]. Voulgaris et al. propose a self-organizing
content-based publisher/subscriber system for dynamic large-
scale collaborative networks [10]. Iamnitchi et al. develop
an interest-aware information dissemination system for small-
world communities [11]. However, most related work pri-
marily attempts to improve the efficiency and accuracy of
information dissemination from the viewpoints of matching
algorithm, system architecture, and security concern. In a com-
plimentary way, this paper studies information dissemination
systems from the view of the system level by focusing on
a different, but equally important, problem, i.e., guaranteeing
bounded delay while achieving maximized system throughput.

Batch and priority-based algorithms have been applied
in a number of other computing systems, e.g., scheduling
for clusters [12][13], memory controllers [14], and network
switching [15][16]. However, all these algorithms are de-
signed for specific scenarios with different goals, such as
performance/engergy optimization, and decreased packet loss
rate. To our best knowledge, those algorithms cannot be
applied in information dissemination systems like INFOD due
to different scenarios and goals. Mitzenmacher et al. utilize
information freshness in servers to do load balancing [17].
In our paper, we consider information fresh as long as the
average matching delay of the related subscription evaluations
is shorter than the desired bound.

Some other previous work has been done on quality of ser-
vice management in databases. For example, some on-demand
updating algorithms have been developed to improve CPU
utilization by skipping unnecessary updates [18][19][20][21].
However, those studies are based on the assumption that
workload is either periodic sensor updates or aperiodic user
transactions, and then adapt the number of updates for desired
CPU utilization. All these methods cannot be directly applied
to information dissemination systems.

Control theory has been applied in a number of other
computing systems, e.g., data services [22], power manage-
ment [23][24], and Internet servers [25][26][27]. A survey of
feedback performance control in various computing systems
is presented in [28]. Most of these solutions focus on different
problems, such as allocating computing resources to meet with
application level performance goals. In this work, we apply
control-based methodology to guarantee the timeliness of sub-

waiting time

average matching delay

average
process time

average
waiting time

updates batching window

update release time update arrival time

… …
t

Fig. 2. Illustration of batching window.

scription reevaluation and system throughputs in information
dissemination systems.

III. SYSTEM OVERVIEW

In this section, we first introduce the batching mechanism
used in our solution, and then give a high-level description
of the architecture that features two control loops. Finally we
discuss the coordination between the two control loops.

A. Batching Mechanism

As shown in Fig. 2, we employ a batching window to
accumulate all the updates that come within the window
and release them in a batch. At the end of each batching
window, defined as the releasing time, all the high-priority
subscriptions are chosen for reevaluation first, and then some
of the low-priority subscriptions are reevaluated. All the low-
priority subscriptions are picked up in a round-robin way.
Specifically, we refer to the length of time between two
adjacent releasing times as the batching window size. We
define the difference between the arrival time and the releasing
time of an updates as the waiting time of that update. The
difference between the releasing time and the time when a
subscription is completed is defined as the processing time of
that subscription. The average matching delay of all the high-
priority subscriptions after a releasing time is calculated as the
sum of the average waiting time of all the batched updates in a
batching window and the following average processing time of
all the reevaluated high-priority subscriptions after the batched
updates are released.

In this paper, the number of all reevaluated subscriptions
each second is defined as the overall throughput of the
system. After each release, the job budget (i.e., the number
of all subscriptions to be reevaluated) should be maximized
so that more low-priority subscriptions can be reevaluated after
each batching window. The number of reevaluated low-priority
subscriptions each second is defined as the throughput of low-
priority subscriptions. Hereinafter, we refer to both the overall
throughput and the throughput of low-priority subscriptions as
system throughputs. In addition, the average time that all the
low-priority subscriptions take to be reevaluated at least once
is defined as the average matching interval.

B. Control Architecture

Our control architecture consists of two control loops: the
integrated control loop and the admission control loop. We
now introduce them respectively.

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 29

Updates

Job slaves
pool

()b k

efR

New subscriptions

Scheduler

()d k

subscriptions

… …

Integrated
Controller

Admission
Controller

Admission
enforcer

Batcher

()u k
()wk

()ln k
Matching interval

Monitor

CPU utilization
& Delay Monitor

Fig. 3. Integrated control architecture.

As shown in Fig. 3, the key components in the integrated
control loop include the integrated controller, delay and CPU
utilization monitor, updates batcher, and scheduler. The control
loop is invoked periodically at the end of every control period
as follows: 1) The monitor measures the average matching
delay and CPU utilization in the last control period, and sends
the values to the controller. The average matching delay and
CPU utilization are the controlled variables in the control
loop; 2) The controller calculates the appropriate job budget
and batching window size for the next control period based on
the differences between the set points and measured controlled
variables. The job budget and batching window size are the
manipulated variables in the control loop; 3) Based on the
calculated batching window size, all the updates that arrive
within the window are released in a batch. At the releasing
time, the batcher calculates the average waiting time of all
updates in the window and notifies the scheduler in the
database; 4) After receiving the notification from the batcher,
the scheduler, based on the calculated job budget, schedules
all the high-priority subscriptions and the desired number of
low-priority subscriptions to be reevaluated in the system.

The key components in the admission control loop include
the admission controller, the matching interval monitor, and
the admission enforcer. The control loop is also invoked
periodically. The controlled variable is the average matching
interval and the manipulated variable is the number of low-
priority subscriptions that the system is able to admit. The
controller calculates the number of low-priority subscriptions
that the system is able to admit for the next control period.
Based on the calculated number of low-priority subscriptions
that the system is able to admit, the admission enforcer
admits all the new high-priority subscriptions and then, applies
some possible admission control schemes for the arriving low-
priority subscriptions. After a subscription is admitted, it is
inserted into the subscription table from which the scheduler
chooses subscriptions to be reevaluated.

C. Coordination of Control Loops

Clearly, without effective coordination, the two control
loops (i.e., the integrated control loop and admission control
loop) may conflict with each other so that the system stability
may be impaired. The job budget (i.e., the number of all the
subscriptions to be reevaluated) manipulated by the integrated
control loop will have a direct impact on the average matching
interval of all the low-priority subscriptions. The number

of low-priority subscriptions admitted in the system may
influence the average matching delay of all the high-priority
subscriptions and CPU utilization of the registry server as
well. In this subsection, we discuss the coordination of the
two control loops.

In information dissemination systems, when new metadata
updates continuously arrive, high-priority subscriptions are
usually required to be reevaluated more frequently than low-
priority subscriptions so that high-priority information can be
disseminated in a more timely manner. Therefore, the desired
average matching interval of all the low-priority subscriptions
is usually greater than the desired average matching delay of
all the high-priority subscriptions. As a result, the admission
control loop is configured with a control period that is multiple
of the control period of the integrated control loop. Without
loss of generality, the admission control loop can be designed
based on a system model in which the integrated control
loop is working in its steady state. The impact of the steady
state variation of the integrated control loop on the admission
control loop can be modeled as a model variation. A larger
control period of the admission control loop, compared with
that of the integrated control loop, implies a smaller model
variation but a slower reaction speed. In Section V-C, we
have proven that the closed-loop system of the admission
control loop is stable only if the variation is within a certain
range. On the other side, the admission controller changes
the number of the low-priority subscriptions from which
the scheduler may choose subscriptions for reevaluation. If
the total number of subscriptions admitted to the system is
extremely small so that it is smaller than the job budget, the
average matching delay and CPU utilization may be smaller
than their set points. Therefore, the admission control loop
does not affect the integrated control loop provided that the
number of subscriptions admitted to the system is greater than
the job budget.

Since the core of each control loop is the controller, we
introduce the design and analysis of the two controllers in the
next two sections, respectively. The implementation details of
other components are given in Section VI.

IV. INTEGRATED CONTROLLER

In this section, we present the problem formulation, mod-
eling, design, and analysis of the integrated controller.

A. Problem Formulation

We first introduce the following notation.

∙ Ref : The reference vector, Ref =
[
𝑅𝑑 𝑅𝑢

]𝑇
, where

𝑅𝑑 and 𝑅𝑢 are the reference values of the average
matching delay and CPU utilization, respectively.

∙ 𝑇 : The control period of the integrated controller.
∙ 𝑤(𝑘), 𝑝(𝑘), and 𝑑(𝑘): The average waiting time of all the

batched update, the average processing time of the high-
priority subscriptions, and the average matching delay in
the 𝑘𝑡ℎ control period, respectively. Specifically, 𝑑(𝑘) =
𝑝(𝑘) + 𝑤(𝑘).

∙ 𝑢(𝑘), 𝑠(𝑘), and 𝑏(𝑘): The average CPU utilization, batch-
ing window size, and job budget, respectively, in the 𝑘𝑡ℎ

control period.

30 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

∙ 𝑑, 𝑢, 𝑠 and 𝑏: The operating points of 𝑑(𝑘), 𝑢(𝑘), 𝑠(𝑘),
and 𝑏(𝑘).

The goal of the integrated control is to simultaneously
control both the average matching delay of the high-priority
subscriptions and CPU utilization to their respective set points,
𝑅𝑑 and 𝑅𝑢. The purpose of controlling the average matching
delay is to guarantee that all the matched results of high-
priority subscriptions can be disseminated within a time
constraint after a metadata update arrives. The purpose of
controlling the CPU utilization is to achieve maximized system
throughputs (i.e., the overall throughput and throughput for
low-priority subscriptions) so that more subscriptions can be
reevaluated to find more matched results between data sources
and sinks. The selection of the set point of the CPU utilization
is a compromise between the control accuracy of the average
matching delay and system throughputs. The higher the CPU
utilization, the larger the system throughputs, but the more
difficult it is to control the average matching delay accurately,
which may result in undesired large oscillations.

In this paper, the integrated controller is formulated as
an optimal control problem to find the optimal batching
window size and maximize the job budget (i.e., the number
of subscriptions to be reevaluated) while controlling matching
delay and CPU utilization to their set points.

B. System Modeling

In order to have an effective controller design, it is important
to model the dynamics of the controlled system, namely the
relationship between the controlled variables (i.e., 𝑑(𝑘) and
𝑢(𝑘)) and the manipulated variables (i.e., 𝑏(𝑘) and 𝑠(𝑘)).
However, a well-established physical equation is usually un-
available for computing systems. Instead of trying to build
a physical equation between the manipulated variables and
controlled variables, we infer their relationship by collecting
data in experiments and establish a statistical model based on
the measured data. Therefore, we apply a standard approach
called system identification [29] to this problem.

We use the following difference equation to model the
controlled system [30]:

y(k) =

𝑛𝑎∑
𝑖=1

Aiy(k − i) +

𝑛𝑏∑
𝑖=1

Biv(k − i), (1)

where y(k) =
[
𝑑(𝑘)− 𝑑 𝑢(𝑘)− 𝑢

]𝑇
and v(k) =[

𝑏(𝑘)− 𝑏 𝑠(𝑘)− 𝑠
]T

, the input and output vector, respec-
tively. 𝑛𝑎 and 𝑛𝑏 are the orders of the control outputs and
control inputs. Ai and Bi are the model parameters whose
values need to be determined by system identification.

To have an accurate model, we need to identify the op-
erating points of the controlled system [31]. The operating
points of the outputs (i.e., 𝑑 and 𝑢) are typically chosen to lie
close to the reference values (i.e., 𝑅𝑑 and 𝑅𝑢). Meanwhile,
the operating points of the inputs (i.e., 𝑏 and 𝑠) are identified
by preliminary experiments such that the operating points of
the outputs can be reached.

For system identification, we need to first determine the
right orders for the system, i.e., 𝑛𝑎 and 𝑛𝑏, in the difference
equation (1). The order values are normally a compromise

between model simplicity and model accuracy. To stimulate
the system by using pseudo-random digital white noise is a
standard way used in system identification [30]. In this paper,
we stimulate the system by mapping a sequence of white noise
to the system inputs (i.e., 𝑏(𝑘) and 𝑠(𝑘)) around their operating
points and then measure the control outputs (i.e., 𝑑(𝑘) and
𝑢(𝑘)) in each control period. Our experiments are conducted
on the testbed introduced in Section VI. Based on the collected
data, we use the Least Squares Method (LSM) to iteratively
estimate the values of parameters Ai and Bi. In this paper,
we choose 𝑛𝑎 = 1 and 𝑛𝑏 = 1 for a trade-off between model
complexity and model accuracy.

We then generate another sequence of white noise to
validate the results of system identification. Figure 4 shows
the measured outputs from the open-loop system and the
predicted outputs from the model. The errors measured in
Root Mean Squared Error (RMSE) are sufficiently small (i.e.,
0.113 and 0.031 for the average matching delay and the
CPU utilization, respectively), which measures the root of the
average square of the difference between the measured and
the predicted outputs. The errors have also been calculated
as 𝑅2, which measures how well the system outputs can be
predicted by the model [30]. The accuracy measured in 𝑅2 is
around 73% and 80% for the average matching delay and the
CPU utilization, respectively. We can see that the predicted
outputs of the selected model are sufficiently close to the
actual system outputs. Therefore, the resultant system model
from our system identification is:

y(k) = A1y(k − 1) +B1v(k − 1), (2)

where 𝐴1 and 𝐵1 are 2 × 2 constant matrices whose values
are determined by system identification.

C. Controller Design

We apply the Linear Quadratic Regulator (LQR) control
theory [32] to design the controller based on the system model
(2). LQR is an optimal control technique that can deal with
coupled MIMO control problems and has small computational
overhead at runtime. To design the controller, we first convert
our system model to a state space model. The state variables
are defined as follows:

x(k) =

[
e(𝑘)
eI(𝑘)

]
, (3)

where e(𝑘) = Ref −
[
𝑑(𝑘) 𝑢(𝑘)

]𝑇
and eI(𝑘) = eI(𝑘 −

1) + e(𝑘) are the control error vector and the accumulated
control error vector, respectively. After some transformation,
our final state space model of the controlled system is:[

e(𝑘 + 1)
eI(𝑘 + 1)

]
= A

[
e(𝑘)
eI(𝑘)

]
+Bv(𝑘) +

[
I−A1

0

]
r,

(4)
where

A =

[
A1 0
I I

]
,B =

[−B1

0

]
,

r = Ref −
[
𝑑 𝑢

]𝑇
.

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 31

The detailed derivation can be found in [31] and is omitted
here. Based on the state space model (4), we then design the
LQR controller by choosing gains to minimize the following
quadratic cost function:

J =
∞∑
𝑘=1

[
e(k)T eI(k)T

]
Q

[
e(𝑘)
eI(𝑘)

]
+

∞∑
𝑘=1

vT(k)Rv(k).

(5)
The first item in (5) represents the control errors and ac-
cumulated control errors. By minimizing the first item, the
closed-loop system can converge to the desired set points. The
second item in (5) represents the control efforts. Minimizing
the second item ensures that the controller will minimize the
changes in the control inputs, i.e., the changes of the job
budget and batching window size. Q and R are weighting
matrices that determine the trade-off between the control errors
and control efforts. A general rule to determine the values
of Q and R is that a larger Q leads to faster response to
workload variations, while a larger R makes the system less
sensitive to system noise. In our paper, the control accuracy of
the average matching delay 𝑑(𝑘) is more important than the
CPU utilization 𝑢(𝑘). Therefore, we give a higher weight to
𝑑(𝑘) than that to 𝑢(𝑘) in Q. The LQR controller is designed
by using the Matlab command dlqry to solve the optimization
problem (5). The controller gain matrix K is as follows:

K =
[
KP KI

]
, (6)

where KP, KI are constant controller parameters for the error
vector e(𝑘) and the accumulating error vector eI(𝑘), respec-
tively, so that the cost function (5) is minimized. Consequently,
the control inputs in the 𝑘𝑡ℎ control period, i.e., the job budget
and the batching window size, are computed as:[

𝑏(𝑘)− 𝑏
𝑠(𝑘)− 𝑠

]
= −K

[
e(𝑘)
eI(𝑘)

]
(7)

D. Control Analysis for Model Variations

A fundamental benefit of the control-theoretic approach is
that it gives us theoretical confidence in system stability, even
when the controller is used under different working conditions.
In this subsection, we analyze the system stability when the
integrated controller is applied to a system whose model is
different from the nominal model described by (2). One of
the major model variations is due to the varying arrival time
of updates within the batching window. In this subsection, we
give the stability analysis for varying arrival time of updates.

In system identification, we assume that all the updates
arrive at the middle of a batching window and the average
waiting time of updates is equal to half of the batching window
size, i.e., 𝑤(𝑘) = 0.5𝑠(𝑘). However, in real systems, updates
may arrive at any time within a batching window and the
average waiting time of updates is unknown a priori. To
verify that the closed-loop system is stable when the average
waiting time is any proportion of the batching window size, we
model the variation of arrival time as 𝑤(𝑘) = 𝑔 ⋅ 𝑠(𝑘), where
0 ≤ 𝑔 ≤ 1. We define 𝑔 as the waiting-time factor. Without
loss of generality, we outline the general steps to analyze the
stability as follows.

1) We model the variation of the average arrival time as 𝑔
in the matrix 𝐵1 in the system model (2) as follows:

B′
1 =

[
𝑏11 𝑏12 − 0.5 + 𝑔
𝑏21 𝑏22

]
, (8)

where B′
1 is the varied matrix of B1 at runtime. 𝑏12

models the relationship between the batching window
size and matching delay;

2) Derive the closed-loop system model by substituting the
derived control inputs v(𝑘) into the system model (2) by
replacing B1 with B′

1 . The closed-loop system model
is in the following form:[

e(𝑘)
eI(𝑘)

]
= (A−B′K)

[
e(𝑘 − 1)
eI(𝑘 − 1)

]
+

[
I−A1

0

]
r,

(9)
where B′ =

[−B′
1 0

]
, and r = Ref −

[
𝑑 𝑢

]𝑇
.

3) Derive the stability condition of the closed-loop sys-
tem described by (9). According to control theory, the
closed-loop system is stable if all eigenvalues of the
matrix (A−B′K) are located inside the unit circle.

Following the steps above, we have proven that the closed-
loop system is stable when 𝑔 varies from 0 to 1 at runtime,
which means that the system can be guaranteed to be stable
no matter when the updates arrive.

V. ADMISSION CONTROLLER

In this section, we present the problem formulation, mod-
eling, and design of the admission controller.

A. Problem Formulation

We first introduce some notations. 𝑇𝑟𝑒𝑓 is the set point of
the average matching interval. 𝑇𝑎 is the control period of the
admission controller. 𝑡(𝑘) is the measured average matching
interval in the 𝑘𝑡ℎ admission control period. 𝑛(𝑘) and 𝑤𝑖𝑛(𝑘)
are the average job budget and the average batching window
size in the 𝑘𝑡ℎ admission control period, respectively. 𝑛𝑙(𝑘)
and 𝑛ℎ(𝑘) are the number of low-priority and high-priority
subscriptions, respectively, admitted in the registry.

The goal of the admission controller is to guarantee that
all the low-priority subscriptions are reevaluated at least once
within a time constraint so that the matching interval of
all the low-priority subscriptions is bounded. The decision
on how many low-priority subscriptions should be admitted
into the system is affected by many factors, such as the job
budget, the batching window size, and the number of high-
priority subscription in the registry. In this paper, we present
a controller to calculate the maximum number of low-priority
subscriptions periodically.

B. System Modeling

Unlike the integrated controller, we model the system
in an analytical way. Since the system reevaluates all the
high-priority subscriptions first and then reevaluates some
low-priority subscriptions in a round-robin way, there are
(𝑛(𝑘) − 𝑛ℎ(𝑘)) low-priority subscriptions reevaluated after
each batching window. Note that we assume that the job
budget is always larger than the number of high-priority

32 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

0
0.5

1
1.5

2
2.5

3

500 1000 1500 2000 2500

M
at

ch
in

g
de

la
y

(s
)

Time (s)

Measured output
Model output

Time (s)
(a) Matching delay

0.2

0.4

0.6

0.8

1

500 1000 1500 2000 2500

C
PU

 u
til

iz
at

io
n

Time (s)

Measured output
Model output

(b) CPU utilization

Fig. 4. System model validation.

subscriptions in the system, i.e., (𝑛(𝑘) > 𝑛ℎ(𝑘)). This is a
valid assumption in that if 𝑛(𝑘) < 𝑛ℎ(𝑘), the system is unable
to guarantee the average matching delay of all the high-priority
subscriptions. Therefore, the average matching interval of all
the low-priority subscriptions is calculated as follows:

𝑡(𝑘) =
𝑛𝑙(𝑘 − 1)

𝑛(𝑘 − 1)− 𝑛ℎ(𝑘 − 1)
𝑤𝑖𝑛(𝑘 − 1). (10)

The variation of 𝑛(𝑘) and 𝑤𝑖𝑛(𝑘) is very small during the
steady state of the integrated controller. We also assume that
the number of high-priority subscriptions 𝑛ℎ(𝑘) in the system
has small variations within a certain period of time. The
assumption is valid in real information dissemination systems
since only most important subscriptions will be set as high-
priority. As a result, we can take 𝑛(𝑘) = 𝑛, 𝑤𝑖𝑛(𝑘) = 𝑤𝑖𝑛
and 𝑛ℎ(𝑘) = 𝑛ℎ, where 𝑛, 𝑤𝑖𝑛 and 𝑛ℎ are constants. Hence,
we get the system model as follows:

𝑡(𝑘) = 𝑝𝑛𝑙(𝑘 − 1), (11)

where 𝑝 = 𝑤𝑖𝑛
𝑛−𝑛ℎ

.

C. Controller Design and Analysis

Proportional-Integral(PI) control [29] can provide robust
control performance despite considerable modeling errors.
Based on the system model (11), we design a PI controller
as follows:

𝑛𝑙(𝑘) = 𝑛𝑙(𝑘 − 1) +𝐾1𝑒(𝑘)−𝐾1𝐾2𝑒(𝑘 − 1), (12)

where 𝑒(𝑘) = 𝑇𝑟𝑒𝑓 −𝑡(𝑘) is the control error. Using the Root-
Locus method [29], we can choose our control parameters as
𝐾1 = 1/𝑝 and 𝐾2 = 0 such that our closed-loop transfer
function is:

𝐺(𝑧) = 𝑧−1. (13)

Now we reevaluate the control performance when the
system (11) changes due to the variation of 𝑛, 𝑤𝑖𝑛 and 𝑛ℎ.
Without of loss of generality, we model the overall variation
as 𝑔𝑝 and the real system at runtime can be modeled as:

𝑡(𝑘) = 𝑝′𝑛𝑙(𝑘 − 1), (14)

where 𝑝′ = 𝑔𝑝 ⋅ 𝑝. We apply the PI controller (12) on the real
system model (14) to get the closed-loop transfer function at
runtime as:

𝐺(𝑧) =
𝑔𝑝

𝑧 − (1− 𝑔𝑝)
. (15)

Based on control theory, in order for the system to be stable,
the poles of the closed-loop system at runtime (15) must be
within the unit circle, that is, 0 < 𝑔𝑝 < 2. This analysis shows
that the closed-loop system at runtime (15) can be guaranteed
to be stable despite significant variations of 𝑛, 𝑤𝑖𝑛 and 𝑛ℎ,
as long as those variations do not result in a 𝑝′ that is greater
than twice the nominal value of 𝑝. Since the average job budget
𝑛(𝑘) increases proportionally to the increment of the average
batching window size 𝑤𝑖𝑛(𝑘) and the variations are very small
in the steady state of the integrated controller, it is very rare
that 𝑝′ is greater than twice the value of 𝑝.

To handle models with 𝑝′ that are outside the established
stability range, an online model estimator, implemented in our
previous work [33], can be adopted to dynamically correct
the models based on the relationship between the controlled
variable and manipulated variable such that system stability
can be guaranteed despite significant variations.

We now analyze the steady state error of the closed-loop
system at runtime (i.e., 𝑔 ∕= 1). Based on the final value
theorem [29], we have

lim
𝑧→1

(𝑧−1)𝐺(𝑧)𝑇𝑟𝑒𝑓
𝑧

𝑧 − 1
= lim

𝑧→1
(

𝑔𝑝𝑧

𝑧 − (1− 𝑔𝑝)
𝑇𝑟𝑒𝑓) = 𝑇𝑟𝑒𝑓 .

(16)
This analysis shows that the admission controller (12) can
efficiently control the average matching interval of the low-
priority subscriptions to the desired the reference value 𝑇𝑟𝑒𝑓

as long as the system is stable.

VI. SYSTEM IMPLEMENTATION

In this section, we introduce the testbed we use for the
experiments and the implementation details of the control
loops we introduced in Section III.

A. Testbed and Application

We use the INFOD system introduced in Section I as a
representative information dissemination system to test our
control solution. In INFOD, while publishers, consumers,
and subscribers are distributed in nature, metadata matching
is a separate process from the information dissemination
process itself and runs in a database system called registry to
completely find all the right matching results in a centralized
way. The INFOD registry is implemented in Oracle Database
11.1g on a server, which is equipped with Intel Core 2 Duo
Xeon 5160 3.0GHz. Since our objective is to evaluate the
performance of the control loops running in the registry, all

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 33

the distributed INFOD publishers, consumers, and subscribers
are implemented on another server to generate workloads for
the registry for simplified experimental setup. The workload
server is equipped with AMD Athlon 64x2 4200+ 1.0GHz.
The two servers are connected via a network switch.

The objective of the INFOD project is to develop a proto-
type information dissemination system that can find matched
information among numerous sources and sinks in a timely
manner. To evaluate the functionality of the prototype system,
several use cases, including an emergency response system
and a cyber-attack detection system, have been implemented
and tested. For example, the emergency response use case
introduces unique requirements for information dissemination
management. In emergency situations, it is best to know the
resources and entities that can be requested prior to any inci-
dent. Most pub-sub systems evaluate policies and constraints
after an incident occurs. With a lot of policies defined for every
possible incident, it requires an officer to be familiar with all
these policies and act based on them, which is impractical. In
the INFOD model, the entities are matched before an event
occurs, and only the information being sent to individual
entities changes based on the incident. For instance, in an
industrial area, it would be beneficial if the local authorities
know what resources are required and available, in order to
respond to a specific industrial accident. After an accident
occurs, only the decision to request these resources needs to
be made. In this use case, the E911 center creates subscriptions
which characterize events and the necessary actions to be
taken once an event happens. The event types, the actions
to be initiated, and the specific consumers to be alerted are all
defined in the subscription.

In this paper, as an example, all the metadata match-
ing algorithms, metadata updates, subscriptions, publishers,
subscribers, and consumers are directly adopted from the
emergency response system, which has been used in a real-
world application. Since the example information dissemi-
nation system is configured for only one application, each
metadata update may involve all subscriptions registered in
the registry.

Metadata matching is implemented as expression filters [34]
and configured as event-based tasks with a priority of 3 out
of the five priorities (1 to 5, with 1 as the highest) provided
by the Oracle database scheduler to let the controllers have
the highest priority to run. Due to the complicate constraints
involved and high running overhead of expression filters, meta-
data matching is the major workload in the registry compared
with other workloads such as metadata updates, notification
sending. The execution time of each subscription reevaluation
ranges from 4𝑚𝑠 to 20𝑚𝑠 based on the complexity of its
constraints.

According to queuing theory, the arrival of requests at a
server can often be realistically characterized as a Poisson
process [35]. Without loss of generality, we use updates whose
arrival pattern follows the Poisson process with specific values
of 𝜆 (i.e., the average number of arriving updates every
second) in this paper. We refer to 𝜆 in Poisson process as
the update arrival rate. The updates in our testbed have some
typical arrival rates, ranging from 2 to 10. Note that our control
algorithm is not limited to Poisson process. As proven in

Section IV-D, our control algorithm is insensitive to arrival
patterns of updates.

B. Integrated Control Loop

We now introduce the implementation details of each com-
ponent in the integrated control loop.

Updates Batcher: The updates batcher is implemented as a
two-threaded daemon in Java. One thread listens on a TCP/IP
socket to receive updates from the clients and records the
arrival time of each update. The other thread serves as one of
the actuators in the integrated control loop and is invoked from
time to time based on the batching window size calculated
by the integrated controller. Upon each invocation (i.e., the
releasing time), it calculates the average waiting time of all the
updates within the batching window and invokes the scheduler
in the registry. The updates batcher communicates with the
registry through JDBC (Java DataBase Connectivity), a Java
package enabling Java programs to execute SQL statements
in databases [36].

Scheduler: The scheduler is an application-level Oracle
PL/SQL procedure implemented on top of the internal sched-
uler of the Oracle database. Oracle provides a package called
DBMS_SCHEDULER from which we can call a collection
of scheduling functions and procedures to manage jobs (e.g.,
create, configure and schedule) [37]. The application-level
scheduler is invoked by the updates batcher and serves as the
other actuator for controlling the average matching delay and
CPU utilization.

Delay and CPU utilization Monitor: The monitor is
implemented as a PL/SQL procedure. The monitor calculates
the average matching delay as the sum of the average waiting
time of each update and average processing time of all high-
priority subscriptions reevaluated in this control period, and
the CPU utilization in this control period based on the statis-
tical information in the view of V$OSSTAT in the database
[38].

Integrated Controller: The integrated controller is a pe-
riodic job in the database. The controller is assigned the
highest priority (i.e., 1) such that it can be guaranteed to run
periodically even when the system becomes overloaded. The
period of the integrated controller is selected based on a trade-
off between the sensitivity to system noise and reaction speed
of the controller. On one hand, each control period should be
long enough to include multiple batching windows such that
the influence of the system disturbance and noise incurred to
the controlled variables can be reduced. On the other hand,
a longer control period leads to slower reaction to workload
variations. In this paper, the batching window size calculated
by the integrated controller is within the range of (1𝑠, 4𝑠) (i.e.,
the operating region) based on our preliminary experiments.
Therefore, the control period is set as 20𝑠 to include at least 5
batching windows. The measured average overhead of running
the whole control loop is about 100𝑚𝑠, roughly 0.5% of a
control period. This amount of overhead should be accpetable
to most systems.

C. Admission Control Loop

Now we introduce the implementation details of the ad-
mission control loop. The matching interval monitor is im-

34 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

0

1

2

3

4

0.7 0.75 0.8 0.85 0.9

M
at

ch
in

g
de

la
y

(s
)

Set point of CPU utilization

Set point
Matching delay

(a) Matching delay

0.9

1

ut
ili

za
tio

n Set point
CPU utilization

0.7

0.8

0.7 0.75 0.8 0.85 0.9

C
PU

u

Set point of CPU utilization

(b) CPU utilization

50

60

70

80

0.7 0.75 0.8 0.85 0.9

O
ve

ra
ll

th
ro

ug
hp

ut

Set point of CPU utilization

(c) Overall throughput

Fig. 5. Selection of set points for CPU utilization control.

plemented as a PL/SQL procedure. The average matching
interval is calculated by dividing the admission control period
by the number of runs for each low-priority subscription in
the last control period and then taking the average. Similar
to the integrated controller, the admission controller is also
a periodic job in the database with the highest priority. The
period of the admission controller is selected to be multiple of
both the specified constraint of the matching interval and the
control period of the integrated controller. In our experiments,
all the low-priority subscriptions should be reevaluated at least
once within a time constraint of 10𝑠. Therefore, the control
period of the admission controller is set as 60𝑠 to include at
least 6 reevaluations and 3 periods of the integrated controller,
which is a compromise between the system noise and timely
reaction of the admission controller.

VII. EXPERIMENTATION

In this section, we first test different set points of CPU
utilization to justify the selection of the set point for CPU
utilization in our experiments. We then evaluate the integrated
controller without the admission controller and compare it
with two baselines. Finally, we examine the closed-loop sys-
tem with both of the two controllers.

In all of the experiments, we use 2𝑠 as the set point of the
average matching delay and 0.8 as the set point of the CPU
utilization. For the admission controller, we use 10𝑠 as the

set point of the average matching interval for all low-priority
subscriptions. The steady states of both the average matching
delay and CPU utilization are defined as ±10% of the set
point.

A. Set Point Selection for CPU Utilization Control

As explained in Section IV-A, the selection of the set
point of CPU utilization is a trade-off between the control
accuracy of the matching delay and overall throughput. In
this subsection, we test the effect of set points of CPU
utilization on the control accuracy and overall throughput
(i.e., the number of reevaluated subscriptions per second) with
experiments.

We first run the integrated controller with different set
points of CPU utilization, from 0.70, 0.75, 0.80, 0.85 to 0.90,
while keeping the set point of the average matching delay
constantly at 2𝑠. The reason why we do not vary the set point
of the matching delay is that the constraint of matching delay
is usually specified by customers. We then plot the mean
and standard deviation of 50 outputs in the steady state for
the average matching delay, CPU utilization, and the overall
throughput in Fig. 5. As shown in Figs. 5(a) and (b), both
the average matching delay and the CPU utilization have
mean values approximately equal to their set points with only
small deviations when the set point of the CPU utilization
is smaller than 0.9. However, as the set point increases to
0.9, both the average matching delay and CPU utilization
have mean values deviating from the set point with significant
oscillations. This is because the system becomes overloaded
and the system model is nonlinear when the CPU utilization
approaches 0.9. As shown in Fig. 5(c), the overall throughput
steadily improves as the set point increases from 0.7 to 0.85
and reaches the maximal value at the CPU utilization of 0.85
with small oscillations. However, as the set point increases to
0.90, the overall throughput begins to oscillate significantly
due to the large oscillation of the CPU utilization.

To ensure that the controller works safely in the operating
region, we choose 0.80 as the set point to allow some leeway
for the nonlinear region. This experiment gives us a good
reference to choose the set point for CPU utilization.

B. Control Performance of the Integrated Controller

In this subsection, we first demonstrate the performance of
the open-loop system to show the importance of controlling
the matching delay and CPU utilization. We then evaluate the
performance of the integrated controller with different update
arrival rates.

The open-loop system is the system without any match-
ing delay or CPU utilization management, in which all the
subscriptions are reevaluated upon the arrival of each update.
In this experiment, we use an update arrival rate of 4 (i.e.,
𝜆 = 4), which is a typical arrival rate in real systems. Figure
6 shows the average matching delay and CPU utilization of
the open-loop system with 400 subscriptions. We can see
that reevaluating all subscriptions upon each update causes
severe system overload (i.e., the CPU utilization is almost
0.93 with some CPU time for I/O waiting.) and unacceptably
long delays (i.e., the delay is greater than 30𝑠 at times). This

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 35

0

10

20

30

0 1000 2000 3000 4000

M
at

ch
in

g
de

la
y

(s
)

Time (s)

Matching delay
Set point

(a) Matching delay

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000

C
PU

 u
til

iz
at

io
n

Time (s)

CPU utilization
Set point

(b) CPU utilization

Fig. 6. A typical run of the open-loop system.

0

1

2

3

4

0 1000 2000 3000 4000

M
at

ch
in

g
de

la
y

(s
)

Time (s)

Matching delay
Set point

(a) Matching delay

0

0.2

0.4
0.6

0.8

1

0 1000 2000 3000 4000

C
PU

 u
til

iz
at

io
n

Time (s)

CPU utilization
Set point

(b) CPU utilization

Fig. 7. A typical run of the integrated controller.

experiment shows that unbounded matching delay and system
overutilization will occur without matching delay or CPU
utilization management in information dissemination systems.
Figure 7 shows that the integrated controller successfully
achieves the desired matching delay and CPU utilization with
only small oscillation.

In real information dissemination systems, the update arrival
rate may vary due to different factors, such as working hours.
To evaluate the integrated controller under varying arrival
rates, we run experiments and plot the mean and standard
deviation of 50 outputs in the steady state when the arrival
rates vary from 2, 4, 6, 8 to 10. The standard deviation
indicates the intensity of oscillation of the outputs in the
steady state. From Fig. 8, we can see that the mean of the
average matching delay and CPU utilization are all around
the set points with only small standard deviations (the largest
is 0.18𝑠 and 0.03, respectively). This experiment shows that
the integrated controller can, precisely, achieve the desired
average matching delay and CPU utilization under different
update arrival rates.

C. Comparison with Baselines

One of the advantages of the integrated controller is that
it can simultaneously control both the matching delay and
CPU utilization to achieve maximized system throughputs so
that more valuable information can be timely disseminated. To
highlight this advantage, we compare our integrated controller
with two baselines: Delay-only and Util-only, in terms of
control accuracy, overall throughput, and throughput for low-
priority subscriptions.

Comparison with Delay-only: Delay-only is a Single-
Input-Single-Output (SISO) controller that is proposed in [8].
It has a fixed batching window size and controls only the

average matching delay of the high-priority subscriptions by
manipulating the job budget. We tune it with different batching
window sizes to make it have the best overall throughput while
controlling the average matching delay with an accuracy close
to that of the integrated controller. We find that a window size
of 1.95𝑠 produces the best results. We test Delay-only with
different update arrival rates and plot the mean and standard
deviation of 50 outputs in the steady state for average matching
delay, CPU utilization, overall throughput, and throughput for
low-priority subscriptions. As shown in Figs. 8(a), the average
matching delay of Delay-only with different arrival rates is all
approximately equal to the set point with small oscillations
(with the largest standard deviation as 0.25𝑠.). However, as
shown in Fig. 8(b), Delay-only has a poor CPU utilization
because it only controls matching delay. As a result, Delay-
only has a poor overall throughput and a poor throughput
for low-priority subscriptions, as shown in Figs. 9(a) and (b).
Based on this experiment, we can see that only controlling
the average matching delay without controlling the CPU
utilization cannot guarantee maximized system throughput for
low-priority subscriptions.

Comparison with Util-only: Util-only is another SISO
controller that only controls CPU utilization by manipulating
the job budget with a fixed batching window size. We first
fix the batching window size for Util-only at the mean of the
batching window size of the integrated controller in the steady
state (i.e., 1.8𝑠). We plot the mean and standard deviation of
50 outputs in the steady state for average matching delay and
CPU utilization under different update arrival rates, as shown
in Figs. 8. We can see that Util-only violates the specified
delay constraint though its CPU utilization converges to the
set point with small oscillations. To have a fair comparison,
we then tune Util-only with different batching window sizes

36 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

0
0.5

1
1.5

2
2.5

3

2 4 6 8 10

M
at

ch
in

g
de

la
y

(s
)

Update arrival rate

Set point Integrated
Delay-only Util-only

Update arrival rate
(a) Matching delay

0.2
0.4

0.6

0.8
1

PU
 u

til
iz

at
io

n

Set point Integrated
D l l Util l

0
2 4 6 8 10

C

Update arrival rate

Delay-only Util-only

(b) CPU utilization

Fig. 8. Control accuracy comparison among Delay-only, Util-only, and the integrated controller.

0

20

40

60

80

2 4 6 8 10

O
ve

ra
ll

th
ro

ug
hp

ut

Update arrival rate

Integrated Delay-only Util-only

(a) Overall throughput

0

10

20

30

40

2 4 6 8 10
Th

ro
ug

hp
ut

 fo
r

lo
w

-p
rio

rit
y

su
bs

Integrated Delay-only Util-only

2 4 6 8 10
Update arrival rate

(b) Throughput for low-priority subscriptions

Fig. 9. Throughput comparison among Delay-only, Util-only, and the integrated controller.

0

10

20

30

40

50

0 1200 2400 3600 4800

M
at

ch
in

g
in

te
rv

al
 (s

)

Time (s)

Matching interval
Set point

(a) Without the admission controller

0

5

10

15

0 1200 2400 3600 4800

M
at

ch
in

g
in

te
rv

al
 (s

)

Time (s)

Matching interval
Set point

(b) The admission controller

Fig. 10. Performance of the admission controller.

so that it has an average matching delay close to the set point
of 2𝑠. By iterative tuning and testing, we find that a batching
window size of 1.6𝑠 gives us the best results. We then compare
Util-only with the integrated controller in terms of overall
throughput and throughput for low-priority subscriptions. As
shown in Figs. 9(a), since both Util-only and the integrated
controller control the CPU utilization to the set point of 0.8,
they have almost the same overall throughput. However, due
to a smaller batching window size, Util-only has a smaller job
budget, which results in a lower throughput for low-priority
subscriptions, as shown in Fig. 9(b).

The two experiments show that only controlling either
matching delay or CPU utilization results in poor system
throughputs or violates the specified delay requirement. In
contrast, the integrated controller, by controlling both match-
ing delay and CPU utilization, can meet the specified con-
straint for matching delay and achieve maximized possible
system throughputs.

D. Control Performance of the Admission Controller

In this subsection, we evaluate the system with both the
admission controller and the integrated controller. This exper-
iment emulates a scenario common to many information dis-
semination systems, in which new low-priority subscriptions
arrive at runtime. Figure 10(a) shows the performance of the
system without the admission controller (only running the inte-
grated controller). The admission enforcer manually calculates
the maximum number of low-priority subscriptions that the
system is able to admit without violating the time constraint
of 10𝑠 at the beginning. As shown in Fig. 10(a), the registry
indeed achieves the desired average matching interval when
the number of low-priority subscriptions remains the same.
However, new low-priority subscriptions arrive at runtime and
the registry admits all of the new low-priority subscriptions
without any admission control. As a result, the total number
of low-priority subscriptions in the registry increases from
340 to 600, 800, and 1000 at time 1200𝑠, 2400𝑠, and 3600𝑠,
respectively. Consequently, the average matching interval in-

CHEN et al.: ACHIEVING BOUNDED MATCHING DELAY AND MAXIMIZED THROUGHPUT IN INFORMATION DISSEMINATION MANAGEMENT 37

creases and violates the desired time constraint. Figure 10(b)
shows the performance of the admission controller running
together with the integrated controller in the same scenario.
With the admission controller, the average matching interval is
controlled to approach the set point with small oscillation. This
is because that the admission enforcer denies new low-priority
subscription arrivals based on the maximum number of low-
priority subscriptions calculated by the admission controller.
This experiment shows that the admission controller can
effectively guarantee that the average matching interval of all
low-priority subscriptions meets the specified time constraint.

VIII. CONCLUSIONS

Existing information dissemination systems control meta-
data matching delay and resource utilization separately. How-
ever, both bounded matching delay and maximized system
throughputs are critical for information dissemination systems
to find the maximum number of matched results and then
disseminate valuable information within application-specified
time constraints. In this paper, we have proposed an integrated
controller to control both the matching delay of all the high-
priority subscriptions and the CPU utilization of the registry
server in an example information dissemination system. In
addition, we have designed an admission controller to effi-
ciently guarantee the average matching constraint for all low-
priority subscriptions as well. Our empirical results on a phys-
ical testbed demonstrate that our solution can guarantee the
timeliness requirements while achieving maximized system
throughputs.

ACKNOWLEDGEMENTS

This work was supported, in part, by NSF under a CAREER
Award CNS-0845390 and two CSR grants CNS-0720663 and
CNS-0915959, by ONR under grant N00014-09-1-0750, and
by a subcontract from the Department of Homeland Security-
sponsored Southeast Region Research Initiative (SERRI) at
the National Nuclear Security Administration’s Y-12 National
Security Complex.

REFERENCES

[1] M. Chen, X. Wang, and B. Taylor, “Integrated control of matching delay
and CPU utilization in information dissemination systems," in 17th IEEE
International Workshop Quality-of-Service, July 2009.

[2] F. Hayes-Roth, “Model-based communication networks and VIRT: or-
ders of magnitude better for information superiority," Military Commun.
Conf., Oct. 2006.

[3] INFOD-WG, Information Dissemination in the Grid Environment - Base
Specifications, Open Grid Forum (2004-2007), May 2007.

[4] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage
scaling in multi-tier web servers with end-to-end delay control," IEEE
Trans. Comput., vol. 56, no. 4, pp. 444-458, 2007.

[5] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response time
guarantees for virtualized enterprise servers," in 30th IEEE Real-Time
Syst. Symp., Dec. 2008.

[6] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury,
“Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache web server," in 8th IEEE/IFIP
Netw. Operations Management Symp., 2002.

[7] M. Chen, C. Nolan, X. Wang, S. Adhikari, F. Li, and H. Qi, “Hierar-
chical utilization control for real-time and resilient power grid," in 21st
Euromicro Conf. Real-Time Syst., July 2009.

[8] M. Chen, X. Wang, R. Gunasekaran, H. Qi, and M. Shankar, “Control-
based real-time metadata matching for information dissemination," in
15th IEEE International Conf. Embedded Real-Time Comput. Syst.
Applicat., Aug. 2008.

[9] D. Kostić, A. C. Snoeren, A. Vahdat, R. Braud, C. Killian, J. W. Ander-
son, J. Albrecht, A. Rodriguez, and E. Vandekieft, “High-bandwidth data
dissemination for large-scale distributed systems," ACM Trans. Comput.
Syst., vol. 26, no. 1, pp. 1-61, 2008.

[10] S. Voulgaris, E. Riviére, A.-M. Kermarrec, and M. van Steen, “Sub-2-
sub: self-organizing content-based publish subscribe for dynamic large
scale collaborative networks," in 5th International Workshop on Peer-
to-Peer Syst., Feb. 2006.

[11] A. Iamnitchi and I. Foster, “Interest-aware information dissemination in
small-world communities," in Proc. 4th High Performance Distributed
Comput., Apr. 2005.

[12] G. S. Choi, J.-H. Kim, D. Ersoz, A. B. Yoo, and C. R. Das, “Coschedul-
ing in clusters: is it a viable alternative?" in Super Computing, 2004.

[13] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Adaptive
parallel job scheduling with flexible coscheduling," IEEE Trans. Parallel
Distrib. Syst., vol. 16, no. 11, 2005.

[14] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
enhancing both performance and fairness of shared DRAM systems," in
35th International Symp. Comput. Architecture, 2008.

[15] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead," IEEE/ACM Trans. Networking, vol. 11, no. 5,
2003.

[16] X. Cao, J. James, J. Li, and C. Xin, “Group schedule serialized traffic
in optical burst switching networks," in 4th IEEE International Conf.
Broadband Commun., Netw., Syst., Sept. 2007.

[17] M. Mitzenmacher, “How useful is old information?" IEEE Trans.
Parallel Distrib. Syst., vol. 11, no. 1, pp. 6-20, 2000.

[18] T. Gustafsson and J.Hansson, “Data management in realtime systems:
a case of on-demand updates in vehicle control systems," in 10th IEEE
Real-Time Embedded Technol. Applicat. Symp., May 2004.

[19] K. Kang, S. Son, and J. Stankovic, “Managing deadline miss ratio and
sensor data freshness in real-time databases," IEEE Trans. Knowledge
Data Eng., vol. 16, no. 10, Oct. 2004.

[20] M. Amirijoo, J. Hansson, and S.Son, “Specification and management of
QoS in real-time databases supporting imprecise computations," IEEE
Trans. Comput., vol. 55, no. 3, pp. 304-319, Mar. 2006.

[21] J. R. Haritsa, M. J. Carey, and M. Livny, “Value-based scheduling in
real-time database systems," VLDB J.: Very Large Data Bases, vol. 2,
no. 2, pp. 117-152, 1993.

[22] M. Amirijoo, N. Chaufette, J. Hansson, S. H. Son, and S. Gunnarsson,
“Generalized performance management of multi-class real-time impre-
cise data services," in 26th IEEE Real-Time Syst. Symp., 2005.

[23] C. Lefurgy, X. Wang, and M. Ware, “Server-level power control," in 4th
IEEE International Conf. Autonomic Comput., 2007.

[24] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-
niques and thermal-RC modeling for accurate and localized dy-
namic thermal management," in Proc. 8th International Symp. High-
Performance Comput. Architecture, 2002.

[25] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra,
“Controlling quality of service in multi-tier web applications," in 26th
International Conf. Distributed Comput. Syst., 2006.

[26] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic, “ControlWare: a
middleware architecture for feedback control of software performance,"
in 22th International Conf. Distributed Comput. Syst., July 2002.

[27] S. Parekh, J. Hellerstein, T. S. Jayram, N. Gandhi, D. Tilbury, and
J. Bigus, “Using control theory to achieve service level objectives in
performance management," Real-Time Syst., vol. 23, no. 1/2, pp. 127-
141, 2002.

[28] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
performance control in software services," IEEE Control Syst., vol. 23,
no. 3, June 2003.

[29] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of
Dynamic Systems, 3rd edition. Prentice Hall, 1997.

[30] M. Verhaegen and V. Verdult, Filtering and System Identification, A
Least Squares Approach. Cambridge University Press, 2007.

[31] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[32] P. Dorato, C. T. Abdallah, and V. Cerone, Linear Quadratic Control:
An Introduction. Krieger Publishing Co., 2000.

[33] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control
for chip multiprocessors with online with online model estimation," in
36th International Symp. Comput. Architecture, 2009.

[34] Rules Manager and Expression Filter Developer’s Guide 11g Release 1
(11.1), Oracle, Aug. 2008.

38 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 8, NO. 1, MARCH 2011

[35] U. N. Bhat, An Introduction to Queueing Theory: Modeling and Analysis
in Applications. Birkhäuser, 2008.

[36] Oracle Database JDBC Developer’s Guide and Reference 11g Release
1 (11.1), Oracle, July 2008.

[37] D. Raphaely, Oracle Database PL/SQL Packages and Types Reference
11g Release 1 (11.1.), Oracle, Sep. 2007.

[38] Oracle Database Reference 11g Release 1 (11.1), Oracle, Aug. 2008.

Ming Chen received the BEng and MEng degrees in electrical engineering
from Northwestern Polytechnic University, Xian, China, in 2002 and 2005,
respectively. He is currently a Ph.D. candidate in computer engineering in the
Department of Electrical Engineering and Computer Science, University of
Tennessee, Knoxville. From 2005 to 2006, he worked as a software engineer
at ZTE Corp., China, developing embedded software. His research interests
include real-time systems and power-aware computing.

Xiaorui Wang is an Assistant Professor in the Department of Electrical
Engineering and Computer Science at the University of Tennessee, Knoxville.
He received the Ph.D. degree from Washington University in St. Louis in
2006, and the B.S. degree from Southeast University, China, in 1995, both in
Computer Science. He is the recipient of the NSF CAREER Award in January
2009, the Chancellor’s Award for Professional Promise and the College
of Engineering Research Fellow Award from the University of Tennessee
in 2009 and 2010, respectively, the Power-Aware Computing Award from
Microsoft Research in 2008, and the IBM Real-Time Innovation Award in
2007. He also received the Best Paper Award from the 29th IEEE Real-
Time Systems Symposium (RTSS) in 2008. He is an author or coauthor
of more than 50 refereed publications. In 2005, he worked at the IBM
Austin Research Laboratory, designing power control algorithms for high-
performance computing servers. From 1998 to 2001, he was a senior software
engineer and then a project manager at Huawei Technologies Co. Ltd, China,
developing distributed management systems for optical networks. His research
interests include real-time embedded systems, power-aware computer systems,
and cyber-physical systems. He is a member of the IEEE and the IEEE
Computer Society.

Ben Taylor is currently a Master student in the Department of Electrical
Engineering and Computer Science at the University of Tennessee, Knoxville.
He received his B.S. degree from the same department in 2008.

