

Pezaros, D.P., Hoerdt, M. and Hutchison, D. (2011) Low-overhead end-
to-end performance measurement for next generation networks. IEEE
Transactions on Network and Service Management, 8 (1). pp. 1-14.

http://eprints.gla.ac.uk/43719/

Deposited on: 13 June 2011

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/5079.html
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Transactions_on_Network_and_Service_Management.html
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Transactions_on_Network_and_Service_Management.html

TNSM-I8-P0369

1

Abstract— Internet performance measurement is commonly

perceived as a high-cost control-plane activity and until now it
has tended to be implemented on top of the network’s forwarding
operation. Consequently, measurement mechanisms have often
had to trade relevance and accuracy over non-intrusiveness and
cost effectiveness.

In this paper, we present the software implementation of an in-
line measurement mechanism that uses native structures of the
Internet Protocol version 6 (IPv6) stack to piggyback
measurement information on data-carrying traffic as this is
routed between two points in the network. We carefully examine
the overhead associated with both the measurement process and
the measurement data, and we demonstrate that direct two-point
measurement has minimal impact on throughput and on system
processing load. The results of this paper show that adequately
engineered measurement mechanisms that exploit selective
processing do not compromise the network’s forwarding
efficiency, and can be deployed in an always-on manner to reveal
the true performance of network traffic over small timescales.

Index Terms—Computer Networks, Computer Performance,
Next Generation Networking, Computer Instrumentation,
Network Measurement

I. INTRODUCTION

HE increased diversity of Next Generation Networks
(NGN)s in terms of interconnection technologies, devices

and services necessitates the evolution of automated self-*
properties for problem diagnosis and operational optimisation
[1]. This is in contrast to the original design philosophy of the
Internet protocols that placed accountability of resource usage
towards the end of their priority list [2]. The fundamental
prerequisite for automated network management is the
existence of ubiquitous and always-on mechanisms to
accurately measure the temporal performance of traffic routed
over the infrastructure, in short timescales. Such mechanisms
will need to embrace the implementation of an extensible set
of performance metrics, in order to capture the diverse Quality

Manuscript received December 16, 2009; revised June 03, 2010; approved
by IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT Editor R.
Stadler.

D. P. Pezaros is with the School of Computing Science, University of
Glasgow, Glasgow, G12 8QQ, UK (phone: +44-141-330-6051; fax: +44-141-
330-4913; e-mail: dimitrios.pezaros@glasgow.ac.uk).

Mickaël Hoerdt was with the Computing Department, Lancaster
University, Lancaster, LA1 4WA, UK (e-mail: mickael.hoerdt@gmail.com).

David Hutchison is with the Computing Department, Lancaster University,
Lancaster, LA1 4WA, UK (e-mail: dh@comp.lancs.ac.uk).

of Service (QoS) requirements of the numerous traffic types,
and their consequential dependence on different factors of
performance degradation. Although Internet measurement
research has received much attention during the last decade, a
disproportionally small amount of work has been devoted to
the design of mechanisms that will directly measure the data-
carrying traffic performance. Active measurement systems that
directly probe a path to assess its temporal performance
characteristics are based either on synthetic traffic that does
not necessarily reflect the performance of the actual data-
carrying traffic [3], or on transport/application-layer
mechanisms that render them applicable only to a subset of the
traffic [4]. At the same time, passive monitoring infrastructures
that observe the operational traffic at a single point in the
network need to correlate and post-process immense amounts
of data before conducting a conclusive performance
measurement, and they therefore operate at long timescales
[5][6][7]. Active and passive measurement mechanisms cannot
be easily extended to operate at an Internet-wide scale and in
an always-on manner, mainly due to the overhead they incur
either on the network (e.g. additional probe traffic) or on
system resources (e.g. tracing traffic at gigabit speeds requires
dedicated equipment [8]). Clearly, the ever expanding Internet
is in need of more pervasive mechanisms that will be able to
ubiquitously measure the performance of the data-carrying
traffic itself, in an extensible and configurable manner.

In this paper, we argue that such measurement
instrumentation will need to be a native part of the network
stack and to operate in-line, embedding measurement
indicators into the existing operational traffic and hence
directly assessing its performance Although traditional active
and passive measurement systems do not touch the data-
carrying traffic in order to minimise overhead, we argue that
the overhead they incur results from their inherent limitation of
not being a native part of the network’s main forwarding
mechanism. We present an in-kernel software prototype of in-
line measurement, the first mechanism that uses native
network-layer structures of the next generation Internet
Protocol (IPv6) to encode measurement information into the
data-carrying traffic [9]. We show how minimal measurement
modules can be completely integrated with the network stack
of end-systems, and we demonstrate that properly-engineered
measurement mechanisms can be efficient, have minimal
impact on traffic performance, and at the same time be part of
an extensible framework that can implement numerous

Low-Overhead End-to-end Performance
Measurement for Next Generation Networks

Dimitrios P. Pezaros, Member, IEEE, Mickaël Hoerdt, and David Hutchison, Member, IEEE

T

TNSM-I8-P0369

2

performance metrics. In-line measurement adopts two
fundamental principles that make it particularly applicable:
modularity, to enable the separation of the traffic
instrumentation (real-time) process from the rest of the
measurement functionality, and selective (measurement)
processing at pre-identified network nodes as opposed to hop-
by-hop. We have particularly focused on the rigorous
performance evaluation and the exact quantification of the
system cost involved in performing the real-time traffic
instrumentation. In contrast to software router performance,
which has been extensively studied [10][11], we concentrate
on the end-to-end mode of operation where traffic is sent and
received from user-space applications, and show that the
impact of a software-only in-line measurement prototype on
end-to-end traffic throughput is small and statistically
insignificant. Throughput is mainly bound by the minimum-
sized packets and by the end-system user/kernel context
switching. We demonstrate that in-line measurement incurs an
overhead which is close to two orders of magnitude less than
that incurred by traditional active and passive approaches. In
addition, we show that the overall processing impact of the
instrumentation process is also statistically insignificant, and
we quantify the exact processing time spent on each
measurement sub-routine. We conclude that in-line end-to-end
network measurement that can reveal the actual traffic-
perceived performance over short time-scales is a flexible and
low-overhead mechanism, and can operate in an always-on
manner as part of the end-systems’ protocol stacks.

The remainder of this paper is structured as follows: Section
II describes the design of in-line measurement and its different
modes of operation, and section III describes the in-kernel
implementation of a set of measurement modules. Section IV
compares the measurement data overhead of in-line
measurement with active and passive measurement systems,
and Section V quantifies the impact of the measurement
process to end-to-end application throughput. Section VI
analyses the processing overhead incurred on the instrumented
end-systems. Section VII discusses the benefits of in-line
measurement and its implications on network operations and
management. Section VIII outlines related work, and section
IX concludes the paper.

II. IN-LINE MEASUREMENT

The traditional separation between data and control planes
in the Internet has not allowed the integration of measurement
mechanisms with the network’ main forwarding operation. The
protocol stack is strictly standardised and hence any attempt to
introduce new structures below the application layer to carry
measurement information along the data-carrying traffic would
require a major rework of virtually all networked systems.
Options that could potentially be exploited exist in a number
of protocol layers; however, they have not been originally
designed for measurement and are severely restrictive. For
example, TCP provides a timestamp option which is, however,

not adequate for high precision timing data required for packet
delay measurements. Defining a new TCP option to carry
measurement indicators is an alternative yet not an ideal one
due to the limited space and also its applicability only to a
subset of traffic (TCP). The convergent network layer that
could potentially be exploited for ubiquitous traffic
instrumentation does not allow for arbitrary optional structures
to be piggybacked on IP datagrams. Only a set of standardised
options exists, and moreover these need to be processed en-
route by every IP node. Therefore, not only can new options
not realistically be implemented at an Internet-wide scale, even
if they did, option-carrying traffic would most certainly exhibit
different en-route processing from the rest of the traffic. The
introduction of a ‘thin layer’ – similar to the one suggested in
[12] – between the existing network and transport layers could
provide for the necessary structures and encoding to carry
measurement indicators within the data-carrying traffic, but it
would not maintain backward compatibility, since it would
require changes to the IP stack of –at least – all end-devices.

The Next Generation Internet Protocol however, overcomes
these limitations by introducing a ‘thin layer’ natively within
the ubiquitous network layer. IPv6 adopts the notion of
selective network-layer processing through the extension
headers concept, and in particular the destination options
extension header. The protocol specifies general formatting
and alignment requirements and leaves options to be defined
by programmers and engineers. Destination options are
inserted after the main IPv6 header at a source node and are
processed only by the packet’s ultimate or explicitly pre-
identified destination nodes. This is achieved by encoding
IPv6 extension headers as an intermediate layer between
network and transport, identified through a unique next header
(protocol) number. Hence, the presence of a destination
options extension header within a datagram will not impact its
processing by intermediate nodes which will only process the
main IPv6 header and will not examine the next (extension)
header.

In-line measurement [9] is a novel point-to-point
mechanism that exploits these native IPv6-layer structures to
instrument data-carrying traffic with measurement options, and
to integrate measurement functionality with the network’s
main forwarding mechanism. It is realistically applicable over
the IPv6 Internet in an always-on manner, due to its modularity
and selective measurement processing. Modularity ensures
minimal operational overhead and independence from
particular measurement infrastructures and processes. Only the
minimal traffic instrumentation process is implemented as part
of a system’s network stack, while higher-level applications
can be developed independently. In addition, distinct
measurement modules implement different performance
metrics, again ensuring minimal additional processing.
Selective processing, which is inherited from the design of
IPv6, ensures minimal impact on instrumented traffic and
identical treatment with the rest of the traffic by the forwarding
IPv6 nodes.

TNSM-I8-P0369

3

Fig. 1. Unidirectional (a) packet delay and (b) packet loss IPv6 destination
options

Fig. 2. In-line Measurement Operation

The alleviation of per-hop (measurement) option processing
ensures that additional operations take place only at specific
pre-identified systems which can be adequately provisioned
and not impact traffic performance. We have defined two IPv6
destination options to measure end-to-end unidirectional
packet delay, and packet loss, respectively. Their fields, byte
alignment and their encapsulation in an IPv6 destination
options extension header are shown in Fig. 1. Each IPv6
option is identified by a unique option type byte whose
encoding specifies the action to be taken by a node if it is
supposed to process an option that it does not support.
Therefore, not only selective processing but also backward
compatibility is preserved. This is an important aspect since
experimental options can be deployed before (or while) being
standardised. The two options shown in Fig. 1 are
representative of the different modes of operation assumed by
the in-line measurement process, in a number of ways.

Unidirectional delay is a stateless per-packet measurement
which involves two nodes independently recording system
time. Similar to timestamp representations in UNIX and NTP,
two (unsigned) 64-bit timestamps are encoded within the
option to record time at the source and the destination of an
instrumented path, respectively. The 32-bit seconds field spans
about 136 years, while the 32-bit fraction field allows for a
maximum time resolution of around 232 picoseconds, well
below the resolution of today’s end-systems (microseconds to
nanoseconds) [13]. In order to maintain compatibility with
NTP, we have kept the same prime epoch.

On the other hand, packet loss is a stateful measurement,
since packets are tagged with a network-level sequence
number before departure from a source node with respect to
some flow specification. Delay measurement consists of two
independent measurement actions taken at the source and
destination nodes, and hence the option’s content is amended
at both nodes, whereas for packet loss the destination node
simply records the option without amending its content.
Finally, the packet loss measurement option demonstrates the
smallest possible structure that can be encoded as an IPv6
option due to the protocol’s alignment requirements [14].

Fig. 2 shows the operation of in-line measurement on data-
carrying traffic. At the source of an instrumented path, a
measurement option-bearing header can be constructed and
inserted into the packet. Upon arrival at the destination, the
presence of the header will trigger a direct measurement
action, implementing the relevant performance metric. The
self-contained header can then be extracted from the packet
and consumed by higher-level measurement applications. It is
important to note that intermediate network nodes treat
instrumented traffic identically with the rest of the traffic, with
no need to be aware of the measurement process. Also, in-line
measurement instrumentation is equally applicable end-to-end
and edge-to-edge. Packets can be transparently instrumented
between ingress and egress nodes of network topologies, and
point-to-point metrics such as packet delay and traffic matrices
can be directly measured instead of being approximated or
computed offline. However, such in-network instrumentation
would require hardware support in order to accommodate the
high network speeds and be integrated with routers’ data-path
operation. We have presented a hardware-assisted in-network
implementation of in-line measurement in [15].

III. IN-KERNEL MEASUREMENT MODULE

IMPLEMENTATION

A prototype in-line measurement system that demonstrates
the mechanism’s operation as an integral part of the protocol
stack has been implemented for Linux 2.6 kernels. The core
instrumentation functionality has been implemented as a set of
Loadable Kernel Modules (LKMs) that can be linked to a
running kernel on-demand. This design provides the efficiency
of deploying measurement functionality as part of the OS
kernel, and at the same time employs modularity to minimise
the actively used processing logic and its operational
overhead, by loading only the necessary components to
perform a certain type of measurement. Basic instrumentation
is unidirectional, and hence an end-system can be the source of
an instrumented path, the destination, or both, depending on
which measurement modules are loaded at a given time.

TNSM-I8-P0369

4

T
ra

ff
ic

 f
lo

w
T

ra
ff
ic

 f
lo

w

T
ra

ff
ic

 f
lo

w
T

ra
ff
ic

 f
lo

w

Fig. 3. Generic operation of a SRC and a DST measurement module

Irrespective of the particular measurement implemented,

there are distinct operations performed at the source and the
destination of an instrumented path by the corresponding
measurement modules. The source is responsible for initiating
the measurement by creating the appropriate header and
piggybacking it to outgoing packets. The presence of such
header within an incoming packet triggers a direct end-to-end
measurement at the destination, where – depending on the
measurement – the header is amended or simply recorded and
then extracted from the packet to maintain full opaqueness
from the higher layers. Fig. 3 shows the generic operation and
functional decomposition of the SRC and DST measurement
modules. The only static modification to the Linux kernel has
been the insertion of two hooks to operate on incoming and
outgoing packets from within the IPv6 instance’s entry and
exit functions, respectively. The hooks pass the socket buffer
that represents and manages the packet in question to the SRC
and DST modules installed at any given time. The provision of
measurement instrumentation at the border of the kernel’s IPv6
instance offers a number of advantages. First, it allows
timestamps to be inserted before a packet spends considerable
processing time in the protocol stack of the systems’ kernel
(although buffering at the device level as well as interrupt
coalescing can still distort true network time). And second, it
allows for the transparent instrumentation of packets
regardless of their ultimate source and destination systems.
Although this paper focuses on the end-to-end inline
measurement instrumentation, the functions can be equally
used to instrument datagrams as they are forwarded at an
intermediate system operating as a software router.

A generic SRC measurement module implements a number
of functions that enable sampling, filtering, packet handling,
and insertion of the measurement indicators to outgoing
packets. Two systematic sampling schemes have been
deployed to instrument one-in-N packets and at most one
packet every M microseconds, respectively. A five-entry filter
specification enables selective traffic instrumentation based on
IPv6 source and destination addresses, transport protocol, and
transport layer source and destination ports. Sampling and
filtering specifications can be altered dynamically by a user
process through a system call to the kernel module while the
latter is loaded. A shared control structure is used to (re)set the

filtering and sampling specifications which will subsequently
be read by the module code before attempting to instrument
the next datagram. When a packet satisfies the given filtering
and sampling criteria, the necessary space is created to the
managing socket buffer to accommodate the size of the IPv6
extension header related to the corresponding measurement. If
necessary, the buffer’s headroom is grown by the appropriate
number of bytes (skb_cow) and the data area is expanded
(skb_push) towards the head of the socket buffer accordingly
[16]. Finally, the corresponding in-line measurement header is
created, updated with the relevant values, and inserted between
the main IPv6 and the upper layer header of the packet. For the
unidirectional delay measurement, a system call is used to read
the clock counter structure and return a 64-bit microsecond
timestamp from the start of the UNIX era, which is then
converted to NTP format (a delta between the epoch times is
added to the seconds field, and microseconds are converted to
second fraction) and inserted in the src timestamp fields of the
corresponding measurement header. The dst timestamp fields
are initialised to zero. It is worth noting that for a two-point
measurement implementation, the dst timestamp field need not
be initialised at the source and carried along with the packet. It
can instead be added at the destination. However, this design
choice was made in accordance to the IPv6 specification which
states that the source constructs the entire extension header
[14]. At the same time, this design maintains opaqueness for a
potential edge-to-edge instantiation where the header is
amended at an intermediate node and it is then carried within
the packet up to its ultimate destination.

For the packet loss measurement, the SRC module maintains
flow state using a linked structure whose unique elements are
identified by a five-tuple identical to the one used for the filter
specification. It is worth noting that each entry of the flow
table can be set to an individual value or to wildcard, and
therefore entries can resemble individual transport protocol
source-destination pairs (microflows) or flow aggregates (e.g.
all traffic routed to a particular destination, all TCP traffic,
etc.). Each element holds an incremental sequence number of
the most recent packet seen to belong to the specific flow, and
a timestamp indicating the arrival time of this packet. At any
given point, the temporal difference from the arrival time of
the most recent packet, indicates the inactivity timer of the
corresponding flow. The flow table has a fixed size of one
thousand entries upon exhaustion of which any new entry
replaces the oldest existing entry (with the highest inactivity
timer). It is reasonable to assume that the flow table size can
mostly accommodate the number of flows running in parallel
at an end-system. At the same time, the memory occupancy of
the flow table is only 45 KB. An asynchronous periodic
process examines the inactivity timer of each entry of the flow
table, and removes entries that have been inactive for longer
than a given threshold value. This process prevents
unnecessary space being occupied by the flow table, and also
implicitly facilitates fast entry retrieval by disassociating
inactive entries. Keeping flow state at the network layer may

TNSM-I8-P0369

5

seem to be an overhead component; however, it facilitates an
opaque and independent network-layer packet loss
implementation, equally applicable to all current and future
transport and application layer protocols (e.g. TCP, UDP,
etc.). It also provides the flexibility of defining flows of
different granularity according to the measurement scope.
Using existing transport protocol control blocks (e.g. the hash
table of active sockets) to embed the necessary structures for
packet loss measurement would make the overall operation
less opaque, since modifications at different layers (and for
different protocols) of the stack would be necessary. At the
same time, packet loss measurement would be applicable only
for individual microflows (and not flow aggregates) that would
originate locally. The flow specification would not extend to
flows routed through (but not originated at) a particular node.

The SRC module needs to avoid causing fragmentation
when instrumenting traffic with in-line measurement
indicators, since this would have a detrimental effect on the
performance of instrumented packets which would be largely
different from the rest of the traffic. This is less of an issue for
UDP applications (e.g. VoIP) since they very rarely use large
packet sizes. For bulk TCP traffic, however, which is carried
within maximum-sized segments, the SRC module needs to
communicate its space requirements to the stack. A TCP
implementation computes the Maximum Segment Size (MSS)
to transmit based on the minimum value between the MSS it
receives from the remote end (in a SYN or SYN+ACK
message), and its own medium’s Maximum Transfer Unit
(MTU) after subtracting the space reserved for the IP and TCP
headers plus any IP options, if present [17]. The SRC in-line
measurement module can communicate its space requirements
by setting the ext_header_len variable in a connections’
tcp_opt structure to the measurement extension header’s size.
However, this would require the measurement module to
monitor the active connections’ hash table and adjust the
corresponding variables for connections that match the
filtering criteria of the measurement process. In addition, when
a socket is locally constructed in response to an application
request, the local MSS value will be computed before any
packet reaches the measurement instrumentation module. The
most cost- effective way (which has been adopted by this
implementation) to alter the MSS in order to accommodate
space for the measurement headers is to monitor incoming
SYN or SYN+ACK packets, and if they match the
measurement filter specification, to clamp the advertised MSS
(within the packet structure) of the remote end to
min(local_MSS, remote_MSS) – hdr_ext_len. If, for any
reason, (e.g. existing TCP sessions that have negotiated MSS
prior to the initiation of a SRC measurement module) the
addition of a measurement header would cause fragmentation,
the SRC module will leave the packet unaltered.

A generic DST measurement module implements one main
function to retrieve the measurement extension header and its
operation is triggered by the presence of such header in an
incoming IPv6 packet. For the unidirectional delay

measurement, a system timestamp of packet arrival at the
destination of an instrumented path is read and inserted in the
corresponding fields of the measurement header, whereas for
the packet loss measurement the contents of the header remain
intact. The main purpose of the DST module is to capture the
measurement extension header and to subsequently remove it
from the packet. It is worth noting that removal of the
measurement extension header is not compulsory but it is
included for opaqueness. If the header is not removed by the
intended destination of an instrumented path (or if e.g. a DST
module is not running at the destination), the stack will simply
ignore it and process the rest of the packet.

The module adjusts the packet structure’s size (skb_pull)
and updates certain fields (next header, payload length) of the
immediately preceding protocol header, accordingly. The
extracted header is inserted into a FIFO queue and can be read
by higher-level measurement processes through a system call
to the kernel module. The FIFO structure has a fixed length of
ten thousand bytes and it therefore imposes an upper limit on
the amount of memory consumed by in-line measurement
headers extracted from arriving datagrams. A consuming
application can retrieve per-packet measurement records from
the queue, either one-at-a-time or in bulks. A read operation
from a consuming application results in the corresponding
number of bytes being freed from the queue. When the queue
if full, extension headers from newly arriving datagrams are
not stored until space has been freed. It is left to the
application to determine the appropriate pace to consume
measurement data (depending also on the temporal traffic rate)
in order to maintain an appropriate queue length and avoid
newly arriving data being dropped locally. The chosen size for
the data structure allowed user space applications to consume
results continuously without losing any packet information.

IV. MEASUREMENT DATA OVERHEAD

The overhead associated with the operation of network
measurement mechanisms is typically judged with respect to
the measurement process and the measurement data injected
into the network. In-line measurement does not generate
additional synthetic load between two instrumented points in
the network. Rather, measurement indicators are inserted in the
data-carrying traffic itself which creates a small and constant
data overhead of either 8 or 24 bytes per-packet for measuring
packet loss and delay, respectively, and it is irrespective of the
traffic type, rate or any other characteristics. This accounts for
a byte overhead of 0.5% when measuring packet loss of
maximum-sized Ethernet segments (1518 bytes) and can get
up to 23% when measuring the delay of minimum-sized
TCP/IPv6 acknowledgment packets. Although the latter
percentage may seem quite significant, it is worth pointing out
that acknowledgments consist entirely of headers and hence
the addition of the measurement extension does not really
cause data traffic reduction. In addition, it is envisaged that
measurement instrumentation will mainly be targeted at the

TNSM-I8-P0369

6

larger and maximum-sized packets that carry the actual user
data, and minimum-sized acknowledgement packets will only
occasionally and very selectively be instrumented when
particular aspects of this type of traffic will be considered.

Measuring the same properties using an active measurement
mechanism would require the generation of synthetic load of
identical characteristics, volume and duration to the traffic to
be measured. Hence, letting alone the bandwidth consumed by
active measurement processes and the consequential side-
effects on network performance degradation, they also impose
linearly increasing data overhead with respect to the target
traffic characteristics. In terms of bytes, the generation of an
additional packet results in a link-layer byte overhead from 64
to 1518 bytes (for e.g. an Ethernet segment), which is a
deficiency ranging from 63% to 99.48% when compared to in-
line measurement. At the same time, the direct per-packet in-
line measurement conducted at the destination of an
instrumented path does not require offline measurement data to
be shipped and correlated over the network, as it is the case
with passive monitoring systems. The data correlation required
from two distinct passive monitoring devices in order to
measure a characteristic of the interconnecting path (such as
the unidirectional delay) equals twice the amount of the per-
packet captured data plus the capture library header that
normally stores measurement data such as timestamps [5]. This
would at least sum up to 2x56 bytes per packet for IPv4 and
2x76 bytes per packet for IPv6 (to include network and
transport layer headers and e.g. the libpcap header), which
results in a data overhead deficiency between 78.6% and
94.7% compared to in-line measurement.

V. END-TO-END THROUGHPUT OVERHEAD

ASSESSMENT

We now turn our attention to a rigorous experimental
evaluation of a software-based end-to-end in-line performance
measurement implementation with respect to the overhead
incurred by the measurement process itself.

A. Experimental Environment and Parameters

The experimental environment consisted of two Sun Fire
X4100 servers equipped with one 2.2 GHz AMD Opteron™
processor (single-core), with 128 KB of L1 cache and 1MB of
L2 cache. The machines have 2 GB of 400 MHz DDR
synchronous memory. The network interfaces are Gigabit
Ethernet Intel® PRO/1000 residing in a PCI-X 100 MHz slot.
The two systems were connected via a Force10 E1200
switch/router configured as an IPv6 router that didn’t drop any
packets during the experiments. The end-systems ran Linux
2.6.20, (re)compiled to support the in-line measurement hooks,
and had the corresponding SRC and DST kernel modules
loaded to perform end-to-end in-line unidirectional delay and
packet loss measurement, respectively.

An application-level traffic generator has been used to
operate on top of the socket layer to resemble the packet
generation patterns and performance of application flows.

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Traffic Rate
kilo-packets per second

Specified Rate (log-scale)
A

ct
ua

l R
at

e
(lo

g-
sc

al
e)

Instrumented Linux - Packet Delay
Instrumented Linux - Packet Loss
Native Linux

Fig. 4. Actual vs. specified traffic rate for instrumented and native Linux

Iperf was used to generate a range of CBR UDP/IPv6 flows

assuming different packet sizes and different transmission rates
[18]. The minimum packet size supported by Iperf in order to
stream its own measurement indicators between the client and
the server processes is 56 bytes of application-level data. This
results in a minimum Iperf/UDP/IPv6 datagram of 104 bytes,
and a 112-byte or 128-byte minimum-sized datagram for one-
way loss and one-way delay in-line measurement
instrumentation, respectively. We have therefore chosen 56,
512 and 1400-byte application-level packets to represent
minimum, medium and maximum-sized IPv6 datagrams.
Traffic rates were varied between 1 Mb/s and 1 Gb/s, which is
the typical maximum transfer rate for commodity
hardware/software end-system configurations. For each
combination of transmission rate and packet size, the
experiments were replicated three times. Wildcard filtering
and sampling specifications were used for the SRC delay and
loss modules to instrument all outgoing traffic.

B. Instrumentation impact on end-to-end throughput

We have studied the impact of traffic instrumentation on
end-to-end application-level throughput due to the additional
per-packet operations incurred. The nested combination of
different packet sizes and transmission rates used for the
experiments has been normalised to kilo-packets per second,
using the decimal conversion for high orders of magnitude of
transmission speeds. Fig. 4 shows the effective end-to-end rate
achieved (in kilo-packets per second) versus the rate specified
by the traffic generation process for the native and
instrumented Linux, respectively. Each point in the graph
represents the mean packet rate taken from the three
experiment replications for a given set of parameters. For most
packet rates, the overhead incurred from the SRC and DST
modules for both the packet delay and packet loss
measurement instrumentation is negligible since the specified

TNSM-I8-P0369

7

rate is sustained. For the highest rates, from 180 up to the
theoretical maximum of 880 kilo-packets per second (for 56-
byte, application-level packets), the system operates under
stress and this is evident from the deviation of the effective
rate from the specified rate for native Linux. These traffic rates
correspond to minimum-sized (56-byte) packets transmitted at
200 Mb/s up to 1Gb/s. Mean throughput reduction of 3.4%
and 6% for packet delay and loss instrumentation,
respectively, only occurs at these high-load rates, when even
native Linux’s effective throughput is reduced by 15.3% on
average. The additional flow classification and table lookup
operations undertaken by the loss SRC module make it more
costly on average than the stateless packet delay measurement.
It is visually evident that the use of minimum-sized packets at
high transmission rates has a far more detrimental effect on the
end-to-end throughput than in-kernel measurement
instrumentation. In addition, this is the worst-case performance
bound incurred by in-line measurement instrumentation, and it
can be seen that by employing a moderate systematic sampling
scheme (e.g. instrumenting 1-in-10 packets), measurement cost
on throughput can drop below 1%. This becomes clearer by
comparing the maximum effective application throughput for
each of the three different packet sizes, as shown in TABLE I.
Using 1400-byte packets, native Linux throughput
approximates the maximum application-level theoretical
transmission rate for a system equipped with 1Gb/s interfaces,
due to per-packet header overheads [8]. The difference
between the maximum effective throughput achieved by native
and instrumented Linux is minimal for maximum and medium-
sized packets, varying between 1.5% and 3.4% for
unidirectional delay, and between 0.6% and 1.3% for packet
loss instrumentation, respectively. On the other hand,
throughput of minimum-sized packets is massively decreased
even for native Linux, reaching only 181 Mb/s. However, this
throughput reduction does not reflect the modules’ overhead;
rather, it is caused by the increased context switch between
user and kernel address space when the end-systems operate
under high load.

We have experimentally evaluated this claim by using the
pktgen [19] in-kernel traffic generator to stress test the
systems’ maximum transmission rates. We modified the pktgen
source code to include the in-line traffic instrumentation and
compared its effective throughput with a clean pktgen instance.
With 56-byte (application-level) packets, the one-way delay
and the packet loss instrumented versions achieved 641 kpps
(604Mb/s) and 619 kpps (584Mb/s), respectively. The original
pktgen version reached 677 kpps (638Mb/s). These
significantly higher throughput values verify the costly user
space/kernel context switch.

TABLE I. MAXIMUM END-TO-END APPLICATION THROUGHPUT

Traffic
instrumentation

Maximum application throughput by
packet size (Mb/s)

56-byte 512-byte 1400-byte

Packet delay 154 822 922
Packet loss 134 840 930

Native Linux 181 851 936

The measurement modules’ impact on throughput even
under maximum system load (in terms of packet-per-second
generation) remains below 6% and 9%, for packet delay and
loss instrumentation, respectively. Although it is evident that a
measurement process would tune itself to not instrument
minimum-sized datagrams transmitted at maximum rate since
they do not represent any typical end-to-end application-level
load, this stress-test demonstrates the low overhead of in-line
traffic instrumentation even under maximum system load.
Again, employing a moderate systematic sampling scheme
would result in measurement cost reduction below 1% under
extreme load conditions.

C. Factorial design and analysis

After looking at the mean impact of the instrumentation
process on end-to-end throughput, we will now assess the
importance and statistical significance of these values, with
respect to other influencing parameters, such as the traffic
generation rate and the datagram size. For this purpose, we
have constructed a full three-factor factorial experimental
design with replications, and analysed the corresponding
regression model. The response variable has been the ratio of
the effective end-to-end throughput over the specified
transmission rate of the traffic generation process. The three
predictor variables that affect the response are the presence of
the measurement modules (A), the transmission rate (B), and
the packet size (C). The analysis will enable separating the
effects of each factor on performance, and determining if a
factor has a significant effect or if the observed differences in
the response variable are due to random variations caused by
uncontrolled experimental parameters. The model for the 3-
factor full factorial design, with factors A, B, and C at a, b, and
c levels, respectively and r replications is:

 1,..., ; 1,..., ; 1,..., ; 1,...,
ijkl i j k ABij ACik BCjk ABCijk ijkly e

i a j b k c l r

µ α β ξ γ γ γ γ= + + + + + + + +

= = = = (1)

The model includes the mean response µ, 23-1 effects and

the experimental error; three main effects, three two-way
factor interactions and one three-way factor interaction
between all predictors. αi is the effect of factor A at level i, γABij
is the interaction between factors A and B at levels i and j,
respectively, and so on. In our case, the measurement module
factor has two levels, indicating whether the SRC and DST
modules are loaded or not. Transmission rates assume
continuous values from 1 Mb/s up to 1 Gb/s, and the packet
size factor has three levels for 56, 512, and 1400-byte packets,
respectively. For each factor-level combination, the
experiment was repeated three times. The importance of each
factor is measured by the proportion of the total variation in
the response that it explains. Its statistical significance is then
calculated using the typical analysis of variance procedure
which compares the contribution of the factor to variation with
respect to that of the unexplained variation due to errors [20].

TNSM-I8-P0369

8

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

-0
.1

0.
0

0.
1

Predicted Response

R
es

id
ua

l

-3 -2 -1 0 1 2 3
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Normal quantile

R
es

id
ua

l q
ua

nt
ile

Fig. 5. Residuals versus predicted response and normal quantile-quantile plot
of the residuals

However, the underlying assumptions in deriving the

expressions for model effects are that the model errors are
statistically independent, additive, normally distributed and
have a constant standard deviation σe, and that the effects of
factors are additive [21]. These assumptions lead to the
observations being independent and normally distributed with
constant variance. Fig. 5 shows that the assumptions of
normality and independence of errors do not hold for our
regression models. The scatter plot of residuals (model errors)
versus predicted response show clear trends that cannot be
ignored since the two quantities lie in the same order of
magnitude. Also, the normal quantile-quantile plots of the
residuals show that they heavily deviate from normality. As it
was expected, obvious transformations of the models’ response
variable did not satisfy the normality and independence
assumptions either, mainly due to its skewness (the ratio of the
effective versus specified throughput for the majority of
experiments is close to or equal to 1). Therefore, in order to
robustly measure the importance and significance of each
factor we have used nonparametric bootstrap to estimate the
sampling distribution of the model effects and their sums of
squares, without making any assumptions about the form of the
population and without deriving the sampling distribution
explicitly [22]. For each of the two types of traffic
instrumentation, the set 1 2{ , ,..., }nS X X X= of the effective

throughput ratio of all runs is considered as a sample from the
population 1 2{ , ,..., }NP x x x= of all possible outcomes.

Nonparametric bootstrap draws a sample of size n with
replacement from among the elements of S to form the
resulting bootstrap sample * * * *

1 11 12 1{ , ,..., }.nS X X X= In effect,

the sample S is treated as an estimate of the population P,
where each element Xi of S is selected for the bootstrap sample
with probability 1/n. This process is mimicking the original
selection of the sample S from the population P, and is
repeated a large number of times selecting many bootstrap
samples. The key bootstrap analogy is that the population is to
the sample as the sample is to the bootstrap samples.
Consequently, a statistic * *()b bT t S= computed for each of the

bootstrap samples has a distribution around the original
estimator ()T t S= of the sample analogous to the sampling

distribution of T around the population parameter
().t Pθ = One thousand bootstrap samples were used to

estimate the distributions of the sums of squares and of all the
model effects.

TABLE II. shows the percentage of variation allocated to
factors, interactions and errors. For both packet delay and
packet loss measurement instrumentation, the overall model
explains more than 94% percent of the variation in end-to-end
effective throughput ratio, since the variation due to errors is
less than 6%. In both cases, the measurement modules’
contribution to variation is minimal, accounting for less than
0.6%, and can therefore be safely ignored. Transmission rate
explains 18.05% of the variation in effective throughput for
the packet delay instrumentation, and 19.96% for the packet
loss instrumentation. Clearly, the most important parameter is
packet size that explains more than 50% of the variation in
both models. The interaction between transmission rate and
packet size for both models explains 24.09% and 23.43% of
the variation, respectively. On the contrary, the two-way
interactions between the measurement modules and the
transmission rate and packet size are unimportant since they
account for less than 1% of the variation in both models.
Likewise the three-way interaction between the predictors can
also be safely ignored for both models. Overall, the allocation
of variation shows that the presence of the measurement
modules does not impact the applications’ end-to-end effective
throughput.

Fig. 6 and Fig. 7 show all the bootstrapped model
coefficients with their 95% bias-corrected, accelerated (BCa)
percentile confidence intervals for the packet delay and packet
loss instrumentation models, respectively. BCa improves on the
percentile method – which also does not assume normality –
by correcting bias and skewness [22]. The figures show the
contrasts of the k-1 levels of each factor, omitting the base
level. For the measurement modules, the base level is their
absence from the traffic generation process, and for the packet
size factor is the 1400-byte value. All k levels for each factor
sum to zero. The coefficients that have a statistically
significant effect on the effective throughput ratio, at a 0.05
significance level, deviate from the zero reference line. For
example, if we look at Fig. 6 it is evident that the choice of a
small packet size (56 bytes) has a significant effect in
decreasing the effective throughput due to the large number of
packets that need to be generated to sustain the highest
bandwidth levels.

TABLE II. ALLOCATION OF VARIATION OF FACTORS (%)

Allocation of variation (%)
Traffic

instrumentation
Factors

Module Rate P_size Errors

Packet Delay 0.46 18.05 51.67 5.19
Packet Loss 0.59 16.96 52.37 5.87

 Interactions
mod/rate mod/p_size rate/p_size 3-factor

Packet Delay 0.16 0.31 24.09 0.06
Packet Loss 0.16 0.56 23.43 0.06

TNSM-I8-P0369

9
-0

.0
6

-0
.0

4
-0

.0
2

0.
00

0.
02

0.
0

4

Effects

95
%

 B
C

a
C

.I.

Module p_size(56) p_size(512)
Module

p_size(56)
Module

p_size(512)

-0
.0

00
6

-0
.0

00
2

0.
0

00
2

Effects

95
%

 B
C

a
C

.I.

Rate
Module
Rate

Rate
p_size(56)

Rate
p_size(512)

Module
Rate

p_size(56)

Module
Rate

p_size(512)

Fig. 6. Unidirectional delay instrumentation: model effects with 95% BCa
Confidence Intervals

-0
.0

6
-0

.0
2

0.
00

0.
02

0
.0

4

Effects

95
%

 B
C

a
C

.I.

Module p_size(56) p_size(512)
Module

p_size(56)
Module

p_size(512)

-0
.0

00
6

-0
.0

00
2

0.
0

00
2

Effects

95
%

 B
C

a
C

.I.

Rate
Module
Rate

Rate
p_size(56)

Rate
p_size(512)

Module
Rate

p_size(56)

Module
Rate

p_size(512)

Fig. 7. Packet loss instrumentation: model effects with 95% BCa Confidence
Intervals

To a lesser extent, increasing transmission rate has a similar

effect (rightmost plot) since the system does not have the
internal capacity to generate the highest bit rates (approaching
1 Gb/s) irrespective of packet size. It is worth noting here that
maximum network capacity is defined with respect to the link-
layer transmission capabilities, and it is therefore normal for
the application to never reach the maximum nominal
bandwidth since headers from lower levels cause additional
byte overhead. Both Fig. 6 and Fig. 7 agree on the statistically
significant effect that transmission rate and minimum packet
size have on decreasing the effective end-to-end throughput.
The interaction between transmission rate and packet size also
has a statistically significant effect, especially for minimum-
sized packets. On the contrary, the presence of the
measurement modules does not impact end-to-end throughput
in a statistically significant way at a 0.05 significance level,
since the 95% confidence intervals of the coefficient for both
models include zero. In addition, all the interactions between
the measurement modules and the rest of the factors are
insignificant at the 0.05 confidence level.

Therefore, after this rigorous experimental design analysis,
it is safe to conclude that the per-packet, in-line measurement
traffic instrumentation does not negatively impact end-to-end
effective throughput in a statistically significant way.

VI. SYSTEM PROCESSING OVERHEAD

A. System-wide instrumentation impact

After demonstrating that in-line traffic instrumentation does
not have a statistically significant impact on application-
perceived performance, this section focuses on the system
processing impact of the in-line measurement modules at the
two instrumented end-systems that insert and record/remove
the measurement extension header, respectively. We have used
the oprofile tool to examine the modules’ system-wide
processing impact on the source and destination end-systems
[23]. Oprofile is capable of profiling all running code of a
system, including interrupt handlers, the kernel, shared
libraries and applications by leveraging hardware registers of
the CPU that provide performance counters for cache misses,
CPU cycles, etc. We have measured the mean CPU utilisation
of all running code on the two instrumented end-systems

during the traffic generation process with and without the
modules being loaded, and compared the differences. Due to
profiling granularity restrictions, we have accounted for
functions individually consuming at least 0.001% of CPU
time, and we then normalised them to sum to 100%. For each
function, the average CPU utilisation over three replications of
the experiments was calculated, and then the distribution of
per-function CPU utilisation was computed. By computing the
differences in the utilisation distributions between the
instrumented and native end-systems, we calculated the mean
difference in per-function CPU utilisation and computed the
95% quantile confidence intervals, which are shown in Fig. 8
and Fig. 9. It can be seen that for both types of in-line traffic
instrumentation and at all packet transmission rates, the
difference in CPU utilisation at a 0.05 significance level for
both the source and the destination end-systems includes zero
and is therefore statistically insignificant. More specifically, it
can be seen that the confidence intervals cover a minimal
region of less than 4% and therefore the variability in CPU
consumption by the various systems processes is minimum.
This implies that the presence of the SRC and DST modules
on systems’ protocol stacks for either unidirectional delay or
packet loss instrumentation does not incur a significant system-
wide processing overhead by not causing any system process
(like e.g. kernel socket buffer functions) to significantly
increase its CPU consumption, even when instrumenting traffic
at high packet rates.

TABLE III shows the mean CPU utilisation (%) of each
function of the delay and loss measurement modules. As it will
become apparent in the following subsection, individual
utilisation values should be treated as relative estimates, since
the profiler would not accumulate the utilisation of external
function calls to the caller function. However, it is useful to
compare the differences in the overall CPU utilisation between
the two types of measurement instrumentation.

TABLE III. MEAN PER-FUNCTION CPU UTILISATION (%)
 Mean CPU Utilisation (%)

filter_tests sampling make_room insert retrieve
Delay

measurement
0.83 0.11 0.26 0.33 4.27

1.53
Loss

measurement
1.12 0.19 0.21 0.54 2.52

2.06

TNSM-I8-P0369

10
-2

-1
0

1
2

Per-symbol %CPU Overhead (95% C.I.)

Traffic Rate (1000 x Packets/s)

C
P
U

 U
til

is
at

io
n

O
ve

rh
ea

d
 (%

)

1 4 8 17 25 38 41 58 66 75 100 151 226 452 678

-0
.5

0.
0

0.
5

Per-symbol %CPU Overhead (95% C.I.)

Traffic Rate (1000 x Packets/s)

C
P
U

 U
til

is
at

io
n

O
ve

rh
ea

d
 (%

)

1 4 8 17 25 38 41 58 66 75 83 141 181 301 527 753

Fig. 8. Unidirectional delay instrumentation: impact on system-wide CPU
utilisation

-0
.5

0.
0

0
.5

Per-symbol %CPU Overhead (95% C.I.)

Traffic Rate (1000 x Packets/s)

C
P
U

 U
til

is
at

io
n

O
ve

rh
e
ad

 (
%

)

1 4 8 17 25 41 42 59 67 83 84 144 186 333 583 833

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1
.5

Per-symbol %CPU Overhead (95% C.I.)

Traffic Rate (1000 x Packets/s)

C
P
U

 U
til

is
at

io
n

O
ve

rh
ea

d
 (%

)

1 4 8 17 25 41 42 59 67 83 84 144 186 333 583 833

Fig. 9. Packet loss instrumentation: impact on system-wide CPU utilization

The SRC module incurs less CPU overhead for the packet
delay instrumentation than it does for packet loss, due to the
internal (flow) state that is maintained by the latter. In order to
insert the appropriate sequence number to each datagram, the
SRC module needs to match it against a given flow
specification held in memory, and to subsequently update this
specification to include the latest reference values. This is
clearly more costly than the stateless per-packet operation of
reading one system timestamp, undertaken by the one-way
delay SRC module. On the contrary, the DST module
undertakes a more costly operation when performing a delay
measurement, since it needs to amend the measurement header
with an additional system-local indicator. All other operations
being equal (e.g. extension header extraction, amendment of
the socket buffer structure, etc.), the packet loss DST module
merely stores the existing header without modifying it.

B. Detailed kernel instrumentation

Oprofile is an external CPU sampling utility and it can
provide for system-wide percentage profiling, but cannot
accurately assess the exact CPU utilisation of individual
functions. This is due to the external profiler sampling the
innermost function and therefore utilisation is not attributed to
the caller functions. Therefore, in order to get absolute values
of CPU usage for the in-line measurement modules, we have
used the ReaD Time Stamp Counter (RDTSC) CPU
instruction to instrument every single function of the modules’
code and compute its processing cost. During each
experimental run, we recorded the processing time for each
instrumentation function of the last one thousand packets.
Most (per-packet) processing times assumed values around a
single mode with a few observations deviating and creating
skewness in the distribution, hence the median was chosen as
the index of central tendency for the per-function processing
time distributions in each experimental run [21]. Then the

mean processing time over the three replications of each
experiment was chosen for each function.

Fig. 10 and Fig. 11 show the three-dimensional scatter plots
of the per-packet processing time in CPU cycles versus traffic
rate and packet size for each instrumentation function of the
delay and loss-measurement modules, respectively. In each
scatter plot, a plane is also drawn based on the linear model of
the processing time with respect to the transmission rate and
the packet size. The plane helps to visually identify the
dependence of the response variable to the two altering factors.
The first four functions are employed by the SRC module and
the latter by the DST module. For both types of
instrumentation, packet filtering and header insertion functions
assume small values independently of packet size and
transmission rate. This was expected since both functions
perform invariable operations based on the header contents of
each packet. So does packet sampling, although its operation is
minimal since it was set to sample all packets for the present
experiments. It can be seen that header insertion is more than
twice as costly for the stateful packet loss instrumentation as it
is for packet delay. This is due to the additional flow
classification and lookup operations are conducted by the
packet loss SRC module, in order to determine the correct
sequence number to insert to the in-line measurement header.
The most costly function is make_room_for_ext_hdr that
invokes the corresponding system calls to increase the socket
buffer’s headroom and to push the packet contents accordingly
[16]. These heavily depend on the packet structure’s size since
larger data blocks need to be moved in the kernel; to some
extent the cross-function calls also increase consumption under
high CPU load. This important attribute is not captured by the
external profiler’s values in TABLE III which do, however,
demonstrate the overall relative cost difference between the
SRC and DST modules of the two types of instrumentation.

TNSM-I8-P0369

11

filter_tests()

0200 800 1400

 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

sampling()

0200 800 1400

 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

make_room_for_ext_hdr()

0200 800 1400

 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

insert_ext_hdr()

0200 800 1400

 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

retrieve_ext_hdr()

0200 800 1400

 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

Fig. 10. Unidirectional delay instrumentation: CPU Cycles consumed by the SRC and DST modules’ functions

filter_tests()

0200 800 1400
 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

sampling()

0200 800 1400
 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

make_room_for_ext_hdr()

0200 800 1400
 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

insert_ext_hdr()

0200 800 1400
 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

retrieve_ext_hdr()

0200 800 1400
 0

 2
00

 4
00

 6
00

 8
00

10
00

12
00

14
00

 0
 200

 400
 600

 800
1000

Packet Size (Bytes)

T
ra

ffi
c

R
at

e
(M

b/
s)

C
P

U
 C

yc
le

s

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

C
P

U
 C

y
c
le

s
 (

x
1
0

3
)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

T
ra

ff
ic

 R
a
te

 (
G

b
/s

)

Fig. 11. Packet loss instrumentation: CPU Cycles consumed by the SRC and DST modules’ functions

Retrieve_ext_hdr is the second most costly function whose

CPU cycles consumption mainly depends on the packet size.
This is due to the removal of the measurement extension
header and the corresponding adjustment of the packet
structure’s headroom (inverse operation from that undertaken
by the SRC module’s make_room_for_ext_hdr), and also
due to copying each extracted header to a memory queue
which can then be read by higher-level applications. It is up to
these consumer applications to decide on the method and the
temporal interval at which they should read the extracted
headers. The instrumentation modules take care not to exhaust
memory resources by maintaining a fixed-size structure, after
exhaustion of which (due to, for example, a consumer process
reading data only infrequently) no further measurement
extension headers are stored. The slightly higher CPU
consumption of this function for the unidirectional delay
measurement, relates to the successive memory copies of the
larger (delay) measurement extension header.

TABLE IV shows the overall processing time of in-line end-
to-end packet instrumentation for the two types of
measurements in microseconds, on the 2.2 GHz CPU of our
instrumented end-systems. Overall processing time is the sum
of all SRC and DST modules’ functions for each type of
measurement. It can be seen that the total processing time of
the software-only in-line measurement instrumentation is
minimal, on the order of one microsecond.

TABLE IV. OVERALL TRAFFIC INSTRUMENTATION TIME BY

APPLICATION-LEVEL PACKET SIZE ON 2.2 GHZ CPU
Total Instrumentation Time (µsec)

 56-byte 512-byte 1400-byte
Unidirectional Delay 0.71 0.88 1.08

Packet Loss 0.81 0.97 1.16

Moreover, the two most costly functions are dominated by

memory access operations (such as e.g. skb_cow, skb_pull,
etc.), implying that the CPU has to spend idling cycles if the
data were not in its cache. Hence, the overall ‘true’ processing
time can be further reduced by exploiting data locality during
packet processing.

The impact of increasing packet size on the processing time
is minimal, since on average, 1400-byte packets only incur a
0.36 µsec additional overhead with respect to minimum-sized
packets. The total stateless packet delay instrumentation is on
average 0.09 µsec less costly than packet loss instrumentation
which maintains internal (flow) state, regardless of packet size.

VII. DISCUSSION

In-line measurement is a mechanism to measure the
performance of the data-carrying Internet traffic while this is
routed between a source and a destination (either the ultimate
end-points or intermediate ones, between for example, network

TNSM-I8-P0369

12

ingress and egress). It merges the benefits of active and
passive measurement into what can be seen as a hybrid:
directly implementing a chosen performance metric in short
timescales (similar to active), by observing and instrumenting
the existing operational traffic (similar to passive). At the same
time, it overcomes the major limitations of active and passive
measurement: first, it avoids the “Heisenberg” effect of active
measurement where the additional traffic perturbs the network
and biases the resulting analysis; it also avoids the need for
correlation and analysis of passive measurement traces, and
the consequential need to operate in long timescales. The main
challenge for such in-line measurement mechanism is to have a
small impact on the network traffic and on the instrumented
systems, so that it can form the basis for a measurement plane
for the next generation Internet and operate at an always-on
manner. In this paper, we have focused on the end-to-end
software implementation of in-line measurement, and we
showed that an in-kernel prototype system can be seamlessly
integrated with the network stack and incur minimal overhead.
In a different study, we have built a system for instrumenting
traffic with in-line measurement headers between the edges of
network topologies [15]. In that case, hardware is exploited in
order to keep pace with the multi-gigabit rates, and to facilitate
in-line measurement instrumentation as a native part of
routers’ data (fast) path.

In its current form, in-line measurement has been designed
as a two-point mechanism in order not to incur significant
additional processing to the data-carrying traffic, and to
demonstrate how the measurement functionality needs only to
occur at specific pre-identified nodes which can be adequately
provisioned. However, the mechanism can be easily extended
to implement different performance metrics such as hop-by-
hop or round-trip delay and loss. The appropriate header
structures would need to be defined in order to carry the
relevant indicators for the desired metrics. For example, for
measuring intermediate path delays between multiple network
nodes, header fields would need to hold the relevant number of
timestamps along with the corresponding node identifiers.
However, increasing the number of instrumentation points
along a path reduces selective processing and introduces
additional overhead on the instrumented traffic which when
accumulated can be non-negligible. Therefore, the associated
overhead should be carefully considered when implementing
performance metrics that require processing from intermediate
network nodes.

One important property of in-line measurement is that the
mechanism is independent from particular measurement
processes and/or infrastructures. Therefore, it can be integrated
with higher-level processes developed to measure specific
properties of a path. For example, a process to measure
capacity or available bandwidth of a path can generate its own
traffic load (e.g. trains of packet-pairs) and use the in-line
measurement headers to measure packet inter-spacing at
source and destination, taking advantage of the kernel-level
timestamps. Using the filter specification of the in-line

measurement prototype, an application process can choose a
particular subset of traffic to be instrumented by the kernel.
The seamless integration of in-line measurement with the
network stack, its potential always-on operation, together with
its different instantiations (end-to-end, edge-to-edge),
constitute it a promising candidate mechanism for network
operations and management. It provides a unified and
extensible framework able to instrument any type of traffic
over any type of network, and produce accurate results that
reflect the temporal performance experienced by the
operational network load.

Although measurement functionality has been incorporated
in a number of protocols, particularly those handling real-time
traffic such as RTP, in-line measurement can become a
universal mechanism for the measurement and management of
all traffic carried over the next generation Internet
infrastructure. In contrast to transport and application-level
measurement which can be deployed end-to-end and used only
by the relevant end-systems, in-line measurement can be
equally exploited by end-systems and by network operators. At
the same time, it can be exploited by any new protocol
deployment, which will not need to build its own redundant
instrumentation mechanisms to tune the application-level end-
to-end performance.

End-to-end deployment of in-line measurement on
individual microflows and flow aggregates can provide an
accurate description of the service levels delivered to
customers, and enable performance-based charging, especially
for intolerant applications with real-time requirements.
Summaries of temporal performance indicators can be
exchanged between the end-system and the service provider to
give timely views of user-perceived performance, and
potentially enable the last-mile topologies to be provisioned
on-demand according to the application requirements and the
service-level agreement. Similar, yet totally static, approaches
on service differentiation are being used by some providers
who give the ability to users to flex their network speed for a
given time interval. By using in-line measurement data
available at end-systems, providers can offer more fine-grained
service differentiation based on ephemeral needs of particular
application flows.

An in-network edge-to-edge deployment can also be of
particular relevance to operators for directly measuring the
performance of their topologies, and not having to infer it
through correlating sampled traces at much longer timescales.
Large objects such as traffic matrices and also edge-to-edge
delay and loss can be directly computed for different traffic
types and at different levels of aggregation. At the same time,
since measurement is based on the actual data-carrying traffic,
an operator can integrate performance indicators with network
control structures that can enable, for example, load-sensitive
routing and traffic differentiation. Distributed measurement
infrastructures can aggregate and consume measurement
indicators from instrumented nodes, and can construct
network-wide views of performance in short timescales.

TNSM-I8-P0369

13

VIII. RELATED WORK

Active and passive measurement mechanisms do not
typically enhance the packet forwarding functions of the data-
carrying traffic. Active measurement infrastructures and tools
(e.g. [3][4][18][19]) operate on synthetic traffic, whereas
passive measurement systems observe the operational network
traffic (e.g. [5][6][7]). Particular implementations, mainly of
active measurement, have been designed to operate in the
kernel in order to provide for increased control and efficiency
over the measurement process yet they still do not interfere
with the protocol stack operations of the data-carrying packets.
Such tools include MAD [24] which is a kernel-level daemon
to support real-time scheduling of probe streams, pktgen [19]
which is a high performance traffic generator included in the
Linux kernel, PeriScope [25] which is a kernel-level API
enabling the definition of new probing structures, and pktd
[26] which is a kernel daemon used to provide controlled
access to the network device for higher-level measurement
software. Reports of these tools do not provide detailed results
of system impact since this varies depending on the different
measurement processes used alongside.

A number of in-line measurement mechanisms have more
recently been designed to offer measurement capabilities at
different locations of the networking stack. Inline
Measurement TCP (ImTCP) [27] and the Measurement
Manager Protocol (MGRP) [28] operate at the TCP layer of
the network stack and multiplex measurement and application
traffic in order to infer network bandwidth. The former alters
the TCP sending process to measure available bandwidth,
whereas the latter uses measurement traffic to piggyback
application data. In contrast to in-line measurement described
in this paper, these tools implement a particular performance
metric and do not constitute a wider framework for
performance measurement. The evaluation of each system
mainly focuses on the accuracy of the bandwidth measurement
process and not so much on their overall system impact, which
still needs to be analysed. Sidecar [29] suggests re-using
retransmitted TCP segments to probe the network, and
BitProbes [30] proposes to insert measurement information
within the application payload of packets. Again, both papers
focus on the relevance of their measurement results and not on
the system-wide impact of the implementations.

Our solution is more generic than the propositions described
above. Every packet can be tagged without any application or
transport layer dependency. Consequently, it becomes easier to
implement as it only requires the presence of an extensible
optional framework, which is already natively present within
IPv6 in the form of extension headers. Nevertheless, on the
host side, there could be significant overhead incurred, since
the measurement instrumentation can happen on virtually
every IP packet. In this work, we have used fine-grained
system performance analysis to demonstrate that this is not the
case even if all data-carrying packets are tagged back-to-back.
The work in [31] focuses on assessing the overall system
impact of the TCP/IP stack implementation and uses

techniques of host profiling similar to the one that we have
used in this work. More recently, system-level performance
evaluation of network protocol processing has been conducted
on top of multicore systems, but focused on the hardware
performance hit albeit without evaluating any protocol in
particular [32].

IX. CONCLUSION

Following the legacy of telecommunication networks, the
Internet has adopted a clear separation between control and
data plane operations. At the same time, end-to-end data and
control traffic is multiplexed at the level of individual
datagrams (packets) under a single best-effort delivery service,
which constitutes accountability of resource usage and traffic
performance evaluation non-trivial in short timescales.
Performance measurement tends to be an ad hoc activity that is
conducted independently of the network’s main forwarding
mechanism. Inevitably, most research focuses on performance
modelling for the characterisation of traffic behaviour and for
network provisioning. Ubiquitous mechanisms for
instrumenting the data-carrying traffic, and therefore enabling
for a unified framework for direct and pervasive performance
measurement, have not been seriously considered because of
the (often over-estimated) associated overhead on the
Internet’s data delivery mechanism.

However, the Next Generation Internet Protocol (IPv6)
provides the necessary mechanisms that can be exploited for
optional structures to be defined and encoded natively, as part
of the ubiquitous network layer. In-line traffic instrumentation
with measurement (and possibly control) information has a
tremendous potential to become the cornerstone for automated
Next Generation Networks (NGN) operations. The particularly
low associated overhead, as demonstrated in this paper, should
act as a driving force for future protocol designers to seriously
consider the introduction of ‘thin layers’ for optional
processing within the protocol stacks, in order to
accommodate change and extensibility in NGNs.

In this paper we have thoroughly evaluated the impact of the
software prototype of IPv6-based in-line measurement on
throughput and on end-system resource consumption. Through
rigorous and formal statistical analysis, we have demonstrated
that an always-on traffic instrumentation mechanism can be
seamlessly integrated with the network’s main forwarding
operation, while incurring minimal and statistically
insignificant overhead. When operating under extreme load
conditions, effective throughput reduction does not exceed
9%, whereas when transmitting at gigabit speeds with
maximum-sized datagrams, end-to-end throughput reduction
stays below 1.5%. These are worst-case figures when
instrumenting every packet with measurement indicators. It is
evident that by employing a moderate sampling scheme which
will maintain measurement accuracy, the throughput reduction
can be truly negligible. Per-packet CPU utilisation of the
overall end-to-end traffic instrumentation process stays on the

TNSM-I8-P0369

14

order of one microsecond at a commodity 2.2 GHz processor,
while the system-wide impact of the measurement modules on
resource consumption is negligible.

REFERENCES

[1] Autonomic Network Architecture (ANA) Project, http://www.ana-
project.org

[2] D. D. Clark, The Design Philosophy of the Darpa Internet Protocols,
ACM SIGCOMM '88, Stanford, California, USA, August 16-19, 1988

[3] W. Matthews, L. Cottrell, The PingER Project: Active Internet
Performance Monitoring for the HENP Community, IEEE
Communications Magazine, May 2000

[4] M. Alves, L. Corsello, D. Karrenberg, C. Ögüt, M. Santcroos, R. Sojka,
H. Uijterwaal, R. Wilhelm, New Measurements with the RIPE NCC
Test Traffic Measurements Setup, Passive and Active Measurement
Workshop (PAM2002), USA, March 25-26, 2002

[5] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki,
F. Tobagi, Design and Deployment of a Passive Monitoring
Infrastructure, PAM2001, Amsterdam, NL, April 23-24, 2001

[6] D. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, C. Diot.
Analysis of measured single-hop delay from an operational backbone
network, IEEE INFOCOM’02, New York, June 2002

[7] N. Brownlee, Using NeTraMet for Production Traffic Measurement,
IFIP/IEEE International Symposium on Integrated Network
Management (IM’01), Seattle, USA, May 14-18, 2001

[8] F. Schneider, J. Wallerich, A. Feldmann, Packet Capture in 10-Gigabit
Ethernet Environments Using Contemporary Commodity Hardware, in
Proc. Passive and Active Measurement Conference (PAM2007), LNCS
4427, pp. 207-217, Louvain-la-neuve, Belgium, April 5-6, 2007

[9] D. P. Pezaros, D. Hutchison, F. Garcia, R. Gardner, J. Sventek, In-line
Service Measurements: An IPv6-based Framework for Traffic
Evaluation and Network Operations, IEEE/IFIP NOMS’04, April 2004

[10] A. Bianco, R. Birke, D. Bolognesi, J. M. Finochietto, G. Galante, M.
Mellia, M. L. N. P. P. Prashant, F. Neri, Click vs. Linux: Two Efficient
Open-Source IP Network Stacks for Software Routers, IEEE Workshop
on High Performance Switching and Routing (HPSR’05), Hong Kong,
May 12-14, 2005

[11] R. Bolla, R. Bruschi, Linux Software Router: Data Plane Optimization
and Performance Evaluation, Journal of Networks (JNW), Academy
Publisher, vol. 2, no. 3, pp. 6-11, 2007

[12] M. Luckie, A. McGregor, IPMP: IP Measurement Protocol, Passive and
Active Measurement Workshop (PAM2002), USA, March 25-26, 2002

[13] D. L. Mills, S. Venters, Timestamp Capture Principles, on-line resource,
2009: http://www.eecis.udel.edu/~mills/stamp.html

[14] S. Deering, R. Hinden, Internet Protocol, version 6 (IPv6) Specification,
IETF Network Working Group, RFC 2460, December 1998

[15] D. P. Pezaros, K. Georgopoulos, D. Hutchison, High-speed, in-band
performance measurement instrumentation for next generation IP
networks, Computer Networks (2010), Elsevier,
doi:10.1016/j.comnet.2010.06.014

[16] K. Wehrle, F. Pählke, H. Ritter, D. Müller, M. Bechler, The Linux
Networking Arhitecture, Pearson Prentice Hall, New Jersey, 2005

[17] R. Braden, RFC1122, Requirements for Internet Hosts –
Communication Layers, IETF Standard, Network Working Group,
October 1989

[18] Iperf – The TCP/UDP Banwidth Measurement Tool, On-line Resource,
available at: http://dast.nlanr.net/Projects/Iperf/

[19] R. Olsson, pktgen the linux packet generator, The Linux Symposium,
Ottawa, Canada , July 20-23, 2005

[20] W. Venables, B. Ripley, Modern Applied Statistics with S, Fourth
Edition, Springer Science+Business Media, ISBN 9780387954578,
2002

[21] R. Jain, The Art of Computer Systems Performance Analysis, John
Wiley and Sons, Inc., ISBN 0471503363, 1991

[22] B. Efron, R. Tibshirani, An introduction to the bootstrap, New York:
Chapman and Hall, ISBN 0412042312, 1993

[23] OProfile, a system-wide profiler for Linux systems, on-line resource,
available at: http://oprofile.sourceforge.net/

[24] J. Sommers, P. Barford, An Active Measurement System for Shared
Environments, -Internet Measurement Conference (IMC’07), San Diego,
USA, October 24-26, 2007

[25] K. Harfoush, A. Bestavros, J. Byers, PeriScope: An Active
Measurement API, Passive and Active Measurement Workshop
(PAM2002), USA, March 25-26, 2002

[26] J. M. González, V. Paxson, pktd: A Packet Capture and Injection
Daemon, Passive and Active Measurement Workshop (PAM2003), La
Jolla, California, April 6-8, 2003

[27] T. Tsugawa, G. Hasegawa, M. Murata, Implementation and evaluation
of an inline network measurement algorithm and its application to TCP-
based service, in Proceedings of 4th IEEE/IFIP Workshop on End-to-
End Monitoring Techniques and Services (E2EMON 2006), Apr. 2006

[28] P. Papageorge, J. McCann, M. Hicks, Passive aggressive measurement
with MGRP, ACM SIGCOMM’09, Barcelona, Spain, August 17-21,
2009

[29] R. Sherwood, N. Spring, Touring the Internet using TCP Sidecar, ACM
SIGCOMM Internet Measurement Conference (IMC’06), Rio de
Janeiro, Brazil, October 25-27, 2006

[30] T. Isdal, M. Piatek, A. Krishnamurthy, T.E. Anderson, Leveraging
Bittorrent for End Host Measurements. Passive and Active
Measurement Conference (PAM’07), Louvain-la-neuve, Belgium, April
5-6, 2007

[31] J. Kay, J. Pasquale, Profiling and Reducing Processing Overheads in
TCP/IP, IEEE/ACM Transactions on Networking, 4(6):817-828,
December 1996

[32] M. Faulkner, A. Brampton, S. Pink, Evaluating the Performance of
Network Protocol Processing on Multi-core Systems, IEEE International
Conference on Advanced Information Networking and Applications
(AINA’09), Bradford, UK, May 26-29, 2009

Dimitrios P. Pezaros (M’00) is tenure-track Lecturer
(Assistant Professor) at the School of Computing
Science, University of Glasgow. Previously, he has
worked as a postdoctoral and senior research associate on
a number of UK Engineering and Physical Sciences
Research Council (EPSRC) and EU-funded projects, on
the areas of performance measurement and evaluation,
network management, cross-layer optimisation, QoS
analysis and modelling, and network resilience. He holds
a B.Sc. (2000) and a Ph.D. (2005) in Computer Science

from Lancaster University, and has been a doctoral fellow of Agilent
Technologies (2000–2004). Dimitris is a member of the IEEE and the ACM.

Mickaël Hoerdt was awarded a PhD in Computer
Science (Networking) from University of Strasbourg,
LSIIT in 2005. His subject was multicast routing
scalability and Internet topology mapping. He
subsequently did one post-doc year at NTNU, Q2S-
Trondheim, Norway, and three years as a research
associate in the Vrouter project at Lancaster University,
Infolab21, UK. He then worked as an invited researcher

in the Ecode European project at the INL Networking Lab in Louvain-la
Neuve, Belgium for six months. He is now a full time theology student at the
Brussels Bible Institute in Belgium.

David Hutchison is Director of InfoLab21 and Professor
of Computing at Lancaster University, and has worked
in the areas of computer communications and
networking for more than 25 years. He has recently
focused his research efforts towards network resilience.
He has completed many UK, European and industry-
funded research contracts and published many papers as
well as writing and editing books on these and related
areas. He has been an expert evaluator and member or

chair of various advisory boards and committees in the UK (EPSRC, DTI,
OFTEL, e-Science, UKLight, UKCRC, JISC, DCKTN) and within the EU
through several Framework Programmes. Also, he has served as member or
chair of numerous TPCs (including the flagship ACM SIGCOMM and IEEE
Infocom), and of journal editorial boards. He is an editor of the renowned
Lecture Notes in Computer Science and of the Wiley CNDS book series

	citation_temp.pdf
	http://eprints.gla.ac.uk/43719/

