Un1vers1ty
Qf Glasgow

Pezaros, D.P., Hoerdt, M. and Hutchison, D. (2011) Low-overhead end-
to-end performance measurement for next generation networks. IEEE
Transactions on Network and Service Management, 8 (1). pp. 1-14.

http://eprints.gla.ac.uk/43719/

Deposited on: 13 June 2011

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/5079.html
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Transactions_on_Network_and_Service_Management.html
http://eprints.gla.ac.uk/view/journal_volume/IEEE_Transactions_on_Network_and_Service_Management.html

TNSM-18-P0369

Low-Overhead End-to-end Performance
Measurement for Next Generation Networks

Dimitrios P. Pezarodvlember, IEEEMickaél Hoerdt, and David Hutchisodember, IEEE

Abstract— Internet performance measurement is commonly
perceived as a high-cost control-plane activity andintil now it
has tended to be implemented on top of the network’forwarding
operation. Consequently, measurement mechanisms tawften
had to trade relevance and accuracy over non-intrugeness and
cost effectiveness.

In this paper, we present the software implementabin of an in-
line measurement mechanism that uses native struces of the
Internet Protocol version 6 (IPv6) stack to piggybek
measurement information on data-carrying traffic as this is
routed between two points in the network. We carefily examine
the overhead associated with both the measurementqeess and
the measurement data, and we demonstrate that diretwo-point
measurement has minimal impact on throughput and orsystem
processing load. The results of this paper show thadequately
engineered measurement mechanisms that exploit sefige
processing do not compromise the network’s forwardig
efficiency, and can be deployed in an always-on maer to reveal
the true performance of network traffic over smalltimescales.

Index Terms—Computer Networks, Computer Performance,
Next Generation Networking, Computer Instrumentation,
Network Measurement

|. INTRODUCTION

of Service (QoS) requirements of the numerousitraypes,
and their consequential dependence on differenbrfmcof
performance degradation. Although Internet measenédm
research has received much attention during thedtsade, a
disproportionally small amount of work has beenales to
the design of mechanisms that will directly meadte data-
carrying traffic performanceActive measurement systems that
directly probe a path to assess its temporal pedace
characteristics are based either on syntheticidréffat does
not necessarily reflect the performance of the actiata-
carrying traffic [3], or on transport/applicatioayer
mechanisms that render them applicable only tdoaedwof the
traffic [4]. At the same timegyassivemonitoring infrastructures
that observe the operational traffic at a singlénfpan the
network need to correlate and post-process immamsrints
of data before conducting a conclusive performance
measurement, and they therefore operate at longstiates
[5][6][7]. Active and passive measurement mechagsisannot
be easily extended to operate at an Internet-wgdéesand in
an always-on manner, mainly due to the overheay itiheur
either on the network (e.g. additional probe tcffor on
system resources (e.g. tracing traffic at gigahétesls requires
dedicated equipment [8]). Clearly, the ever expagdinternet
is in need of more pervasive mechanisms that wilbble to

HE increased diversity of Next Generation Networksibiquitously measure the performance of the datasica

(NGN)s in terms of interconnection technologiesvickes
and services necessitates the evolution of aut@mssdf-*
properties for problem diagnosis and operationsihtgation
[1]. This is in contrast to the original designIpkophy of the

traffic itself, in an extensible and configurablamner.

In this paper, we argue that such measurement
instrumentation will need to be a native part of tietwork
stack and to operatdan-line, embedding measurement

Internet protocols that placed accountability cfonerce usage indicators into the existing operational traffic darhence

towards the end of their priority list [2]. The fiemental

directly assessing its performance Although traddi active

prerequisite for automated network management i tland passive measurement systems do not touch tze da

existence of ubiquitous and always-on mechanisms
accurately measure the temporal performance dfdnafuted
over the infrastructure, in short timescales. Songithanisms
will need to embrace the implementation of an esitda set
of performance metrics, in order to capture thedig Quality

Manuscript received December 16, 2009; revised 0@n2010; approved
by IEEETRANSACTIONS ONNETWORK AND SERVICE MANAGEMENT Editor R.
Stadler.

D. P. Pezaros is with the School of Computing Smerlniversity of
Glasgow, Glasgow, G12 8QQ, UK (phone: +44-141-33816 fax: +44-141-
330-4913; e-mail: dimitrios.pezaros@glasgow.ac.uk).

Mickaél Hoerdt was with the Computing Departmentantaster
University, Lancaster, LA1 4WA, UK (e-mail: mickaeberdt@gmail.com).

David Hutchison is with the Computing Departmergntaster University,
Lancaster, LA1 4WA, UK (e-mail: dh@comp.lancs.ag-uk

tarrying traffic in order to minimise overhead, amgue that
the overhead they incur results from their inhehemtation of
not being a native part of the network’s main fomag
mechanism. We present an in-kernel software prp&otfin-
line measurementthe first mechanism that uses native
network-layer structures of the next generationermét
Protocol (IPv6) to encode measurement informatido the
data-carrying traffic [9]. We show how minimal massment
modules can be completely integrated with the netvetack

of end-systems, and we demonstrate that propedineered
measurement mechanisms can be efficient, have mlinim
impact on traffic performance, and at the same timgart of
an extensible framework that can implement numerous

TNSM-18-P0369

performance metrics. In-line measurement
fundamental principles that make it particularlypbgable:
modularity, to enable the separation of the
instrumentation (real-time) process from the rest tloe
measurement functionality, andelective (measurement)

processingat pre-identified network nodes as opposed to hopeuld potentially be exploited
rigerouinstrumentation does not allow for arbitrary op#bstructures

by-hop. We have particularly focused on the
performance evaluation and the exact quantificatérthe
system cost involved in performing the real-timaffic
instrumentation. In contrast to software routerfgenance,

adopts twwt adequate for high precision timing data requfor packet

delay measurements. Defining a new TCP option toyca

traffiomeasurement indicators is an alternative yet notlaal one

due to the limited space and also its applicabiibty to a
subset of traffic (TCP). The convergent networkelayhat
for ubiquitous tiaff

to be piggybacked on IP datagrams. Only a setanidstrdised
options exists, and moreover these need to be gsedeen-
route by every IP node. Therefore, not only can og@tions

which has been extensively studied [10][11], wecsmrrate not realistically be implemented at an Internetenvétale, even
on the end-to-end mode of operation where traffisent and if they did, option-carrying traffic would most ¢ainly exhibit
received from user-space applications, and show the different en-route processing from the rest of tiladfic. The
impact of a software-only in-line measurement pggie on introduction of a ‘thin layer’ — similar to the orseiggested in
end-to-end traffic throughput is small and stataty [12] — between the existing network and transpayefs could
insignificant. Throughput is mainly bound by thenimium- provide for the necessary structures and encodingatry
sized packets and by the end-system user/kernelexton measurement indicators within the data-carryinffitrabut it
switching. We demonstrate that in-line measurenmenirs an would not maintain backward compatibility, sincewbuld

overhead which is close to two orders of magnitieds than
that incurred by traditional active and passiverapphes. In
addition, we show that the overall processing impzcthe
instrumentation process is also statistically ingigant, and

require changes to the IP stack of —at least eraltdevices.
The Next Generation Internet Protocol however, coeres

these limitations by introducing a ‘thin layer’ naly within

the ubiquitous network layer. IPv6 adopts the notiof

we quantify the exact processing time spent on eacklective network-layer processing through the resten
measurement sub-routine. We conclude that in-linkte-end headers concept, and in particular tthestination options
network measurement that can reveal the actuafictraf extension header. The protocol specifies genenahdtiing

perceived performance over short time-scales Iexdbfe and
low-overhead mechanism, and can operate in an sloay
manner as part of the end-systems’ protocol stacks.

The remainder of this paper is structured as f@ld8ection
Il describes the design of in-line measurementitndifferent
modes of operation, and section Il describes ti&ernel
implementation of a set of measurement modulestic®ety
compares the measurement data overhead of
measurement with active and passive measuremetansys

and alignment requirements and leaves options tdefieed
by programmers and engineers. Destination optiorss a
inserted after the main IPv6 header at a source aod are
processed only by the packet's ultimate or expjicjire-
identified destination nodes. This is achieved kmgoeling
IPv6 extension headers as an intermediate layewneleat
network and transport, identified through a unige&t header

in-lirotocol) number. Hence, the presence of a dditina

options extension header within a datagram willingdact its

and Section V quantifies the impact of the measargm processing by intermediate nodes which will onlpgass the

process to end-to-end application throughput. SectVI

analyses the processing overhead incurred on gheimented
end-systems. Section VII discusses the benefitandine

measurement and its implications on network opamatiand
management. Section VIl outlines related work, aedtion
IX concludes the paper.

[I. IN-LINE MEASUREMENT

The traditional separation between data and copleoies
in the Internet has not allowed the integrationmgfasurement
mechanisms with the network’ main forwarding opieratThe
protocol stack is strictly standardised and hemyeadtempt to
introduce new structures below the application dagecarry
measurement information along the data-carryini¢ravould
require a major rework of virtually all networkegsgems.
Options that could potentially be exploited existai number
of protocol layers; however, they have not beeryioaily
designed for measurement and are severely regtricEor
example, TCP provides a timestamp option whichasyever,

main IPv6 header and will not examine the nexteesion)
header.

In-line measurement[9] is a novel point-to-point
mechanism that exploits these native IPv6-layarctires to
instrument data-carrying traffic with measuremeptians, and
to integrate measurement functionality with thewoek's
main forwarding mechanism. It is realistically a@ppble over
the IPv6 Internet in an always-on manner, duestonibdularity
and selective measurement processing. Modularigures
minimal operational overhead and independence from
particular measurement infrastructures and prose&3ay the
minimal traffic instrumentation process is impler@ehas part
of a system’s network stack, while higher-level laggtions
can be developed independently. In addition, distin
measurement modules implement different performance
metrics, again ensuring minimal additional proaegsi
Selective processing, which is inherited from thesign of
IPv6, ensures minimal impact on instrumented trafind
identical treatment with the rest of the trafficthy forwarding
IPv6 nodes.

TNSM-18-P0369

24 32

,,,,,,,,,,,,,,,,,,,,,,,,,

} Option Type = 33 | Opt Data len = 20
I

Reserved

Pointer T Overflow Flags

src_timestamp : Seconds

src_timestamp : Seconds Fraction

dst_timestamp : Seconds

dst_timestamp : Seconds Fraction

(@)

24 32

,,,,,,,,,,,,,,,,,,,,,,,,,

Option Type =3 ‘ Opt Data len = 4

(Sequence Number

(b)
Fig. 1. Unidirectional (a) packet delay and (b) ketdoss IPv6 destination
options

The alleviation of per-hop (measurement) optiorcpssing
ensures that additional operations take place ahlgpecific
pre-identified systems which can be adequately ipimved
and not impact traffic performance. We have defitveal IPv6
destination options to measure end-to-end unideat
packet delay, and packet loss, respectively. Theluls, byte
alignment and their encapsulation in an IPv6 dattn
options extension header are shown in Fig. 1. B&ut®
option is identified by a uniqueption type byte whose
encoding specifies the action to be taken by a ribdteis

Measurement is triggered
and/or data is removed

Measurement trigger
and/or data added

Fig. 2. In-line Measurement Operation

Fig. 2 shows the operation of in-line measurementata-
carrying traffic. At the source of an instrumentpdth, a
measurement option-bearing header can be consirzoid
inserted into the packet. Upon arrival at the desion, the
presence of the header will trigger a direct meament
action, implementing the relevant performance roetiihe
self-contained header can then be extracted frampttket
and consumed by higher-level measurement applicatio is
important to note that intermediate network nodesatt
instrumented traffic identically with the rest bkttraffic, with

supposed to process an option that it does not astpp no need to be aware of the measurement process. iAline

Therefore, not only selective processing but alsckivard
compatibility is preserved. This is an importanpext since
experimental options can be deployed before (oteythieing
standardised. The two options shown in Fig.
representative of the different modes of operatissumed by
the in-line measurement process, in a number ofway

Unidirectional delay is a stateless per-packet oressent
which involves two nodes independently recordingtesy
time. Similar to timestamp representations in UNiIXd NTP,
two (unsigned) 64-bit timestamps are encoded witthie
option to record time at the source and the deitimaf an
instrumented path, respectively. The 32-bit secdiedts spans
about 136 years, while the 32-bit fraction fieldoals for a
maximum time resolution of around 232 picosecondsl|
below the resolution of today’s end-systems (miecosds to
nanoseconds) [13]. In order to maintain compatibilvith
NTP, we have kept the same prime epoch.

On the other hand, packet loss is a stateful meawmnt,
since packets are tagged with a network-level sempie
number before departure from a source node withesto
some flow specification. Delay measurement congi$tsvo
independent measurement actions taken at the samde
destination nodes, and hence the option’s congeatriended
at both nodes, whereas for packet loss the destnabde
simply records the option without amending its eoit
Finally, the packet loss measurement option dematest the
smallest possible structure that can be encodednal’v6
option due to the protocol’s alignment requireméghdg.

measurement instrumentation is equally applicahtéte-end
and edge-to-edge. Packets can be transparentharimested
between ingress and egress nodes of network topslognd

1 angoint-to-point metrics such as packet delay anifi¢renatrices

can be directly measured instead of being apprdeithar
computed offline. However, such in-network instrumagion
would require hardware support in order to acconmat®dhe
high network speeds and be integrated with rougasi-path
operation. We have presented a hardware-assisteetwork
implementation of in-line measurement in [15].

[ll. IN-KERNEL MEASUREMENTMODULE

IMPLEMENTATION

A prototype in-line measurement system that dematest
the mechanism’s operation as an integral part efpifotocol
stack has been implemented for Linux 2.6 kernele Gore
instrumentation functionality has been implemerded set of
Loadable Kernel Modules (LKMs) that can be linked &
running kernel on-demand. This design provideseffieiency
of deploying measurement functionality as part loé 1OS
kernel, and at the same time employs modularitgnit@mise
the actively used processing logic and its openatio
overhead, by loading only the necessary componémts
perform a certain type of measurement. Basic ingntation
is unidirectional, and hence an end-system cahdsdurce of
an instrumented path, the destination, or bothedéimg on
which measurement modules are loaded at a given tim

TNSM-18-P0369

IPv6 Instance IPv6 Instance

Traffic flow
-—
Traffic flow
—

ip6_output_finish(skb) { ip6_rev(skb) {

for (each registered src_module)
*ip6_output_packets|i](skb);
I

for (each registered dst_module)
*ip6_input_packets[i](skb);
I

I* SRC LKM code */

ip6_output)ackets[r;gok_num] = process; 1 DST LKM code */

process (skb) { ip6_input_packets[hook_num] = process;
sampling();
filter_tests(skb);
make_room_for_ext_hdr(skb); 3
insert_ext_hdr(skb);

process (skb) {
retrieve_ext_hdr(skb);

Traffic flow
-~
Traffic flow
—

SN]
Fig. 3. Generic operation of a SRC and a DST measemt module

Irrespective of the particular measurement implaegin
there are distinct operations performed at thecsoand the
destination of an instrumented path by the cornedy
measurement modules. Theurceis responsible for initiating
the measurement by creating the appropriate headdr
piggybacking it to outgoing packets. The presentesuch
header within an incoming packet triggers a dieu-to-end

filtering and sampling specifications which will lsequently
be read by the module code before attempting touiment
the next datagram. When a packet satisfies thendiitering
and sampling criteria, the necessary space is exteiat the
managing socket buffer to accommodate the sizde@fiRPv6
extension header related to the corresponding mexasumt. If
necessary, the buffer's headroom is grown by th@rgpiate
number of bytesskb_cow and the data area is expanded

(skb_push towards the head of the socket buffer accordingly

[16]. Finally, the corresponding in-line measuretregader is
created, updated with the relevant values, andtesdetween
the main IPv6 and the upper layer header of th&giaEor the
unidirectional delay measurement, a system caibéxl to read
the clock counter structure and return a 64-bitrasecond
timestamp from the start of the UNIX era, which tien

converted to NTP format (a delta between the epivobs is

added to the seconds field, and microseconds areeted to
second fraction) and inserted in tre timestamgields of the
corresponding measurement header. @$etimestamgields

are initialised to zero. It is worth noting that fa two-point

measurement at thdestination where — depending on the measurement implementation, ti&t timestamfield need not

measurement — the header is amended or simplydeda@nd
then extracted from the packet to maintain full queness
from the higher layers. Fig. 3 shows the generierafion and
functional decomposition of the SRC and DST measarg
modules. The only static modification to the Lirkernel has
been the insertion of two hooks to operate on irngnand
outgoing packets from within the IPv6 instance’srerand
exit functions, respectively. The hooks pass thekasbbuffer
that represents and manages the packet in questibe SRC
and DST modules installed at any given time. Thwvigion of
measurement instrumentation at the border of theeks IPv6
instance offers a number of advantages. First, lldwa
timestamps to be inserted before a packet spendsdesable
processing time in the protocol stack of the systekernel
(although buffering at the device level as well iaterrupt
coalescing can still distort true network time).dAsecond, it

be initialised at the source and carried along #ithpacket. It
can instead be added at the destination. Howelvisr design
choice was made in accordance to the IPv6 spetidficavhich
states that the source constructs the entire ésterteeader
[14]. At the same time, this design maintains ogsgss for a
potential edge-to-edge instantiation where the dead
amended at an intermediate node and it is themedawithin
the packet up to its ultimate destination.

For the packet loss measurement, the SRC moduleaires
flow state using a linked structure whose uniquameints are
identified by a five-tuple identical to the one dder the filter
specification. It is worth noting that each entrytbe flow
table can be set to an individual value or to wéldg and
therefore entries can resemble individual transpoatocol
source-destination pairs (microflows) or flow aggates (e.g.
all traffic routed to a particular destination, alCP traffic,

allows for the transparent instrumentation of p#ske€tc.). Each element holds an incremental sequencier of

regardless of their ultimate source and destinatigstems.

the most recent packet seen to belong to the $pdéoifv, and

Although this paper focuses on the end-to-end énlind timestamp indicating the arrival time of this ketc At any

measurement instrumentation, the functions can dpeally
used to instrument datagrams as they are forwaededn
intermediate system operating as a software router.

given point, the temporal difference from the aatitime of
the most recent packet, indicates the inactivityeti of the
corresponding flow. The flow table has a fixed safeone

A generic SRC measurement module implements a numiBousand entries upon exhaustion of which any netwye

of functions that enable sampling, filtering, packandling,
and insertion of the measurement indicators to auoty

replaces the oldest existing entry (with the higheactivity
timer). It is reasonable to assume that the fldvletasize can

packets. Two systematic sampling schemes have bédBastly accommodate the number of flows running anafel

deployed to instrumenbne-in-N packets and amost one
packet every M microsecondgspectively. A five-entry filter
specification enables selective traffic instruméatabased on
IPv6 source and destination addresses, transpatidqui, and
transport layer source and destination ports. Samphnd
filtering specifications can be altered dynamicdlly a user
process through a system call to the kernel modhiée the
latter is loaded. A shared control structure iduse(re)set the

at an end-system. At the same time, the memorypagay of
the flow table is only 45 KB. An asynchronous pdito
process examines the inactivity timer of each eatrthe flow
table, and removes entries that have been inaftiivéionger
than a given threshold value.
unnecessary space being occupied by the flow table,also
implicitly facilitates fast entry retrieval by dissociating
inactive entries. Keeping flow state at the netwlarjer may

This process prevents

TNSM-18-P0369

seem to be an overhead component; however, iitéded an
opaque and independent network-layer packet

implementation, equally applicable to all curremid auture
transport and application layer protocols (e.g. TCB®P,
etc.). It also provides the flexibility of defininffows of
different granularity according to the measuremsobpe.
Using existing transport protocol control blocksy(ehe hash
table of active sockets) to embed the necessaugtstes for
packet loss measurement would make the overallatiper
less opaque, since modifications at different lay@nd for
different protocols) of the stack would be necessat the
same time, packet loss measurement would be apfdicely
for individual microflows (and not flow aggregatekat would
originate locally. The flow specification would nektend to
flows routed through (but not originated at) a jgatar node.

measurement, a system timestamp of packet arrivahea

losiestination of an instrumented path is read aneried in the

corresponding fields of the measurement headerresisefor
the packet loss measurement the contents of trdeheamain
intact. The main purpose of the DST module is fotwee the
measurement extension header and to subsequemtbyeeit
from the packet. It is worth noting that removal tife
measurement extension header is not compulsoryitbist
included for opaqueness. If the header is not remhdyy the
intended destination of an instrumented path (exdf a DST
module is not running at the destination), thelstaidl simply
ignore it and process the rest of the packet.

The module adjusts the packet structure’s sg (pul)
and updates certain fieldsgxt header, payload lengtbf the
immediately preceding protocol header, accordingihe

The SRC module needs to avoid causing fragmentatientracted header is inserted into a FIFO queuecande read

when instrumenting traffic with
indicators, since this would have a detrimentaéaffon the
performance of instrumented packets which wouldabgely
different from the rest of the traffic. This is $esf an issue for
UDP applications (e.g. VolP) since they very ranedg large
packet sizes. For bulk TCP traffic, however, whistcarried

in-line measuremenby higher-level measurement processes through tarsysall

to the kernel module. The FIFO structure has adftemgth of
ten thousand bytes and it therefore imposes anrupi¢ on

the amount of memory consumed by in-line measuremen
headers extracted from arriving datagrams. A coirgym
application can retrieve per-packet measurememirdscfrom

within maximum-sized segments, the SRC module needsthe queue, either one-at-a-time or in bulks. A repdration
communicate its space requirements to the stackflC®# from a consuming application results in the corossiing
implementation computes the Maximum Segment SizEEM number of bytes being freed from the queue. Whengtireue
to transmit based on the minimum value betweerMB& it if full, extension headers from newly arriving dattams are
receives from the remote end (in a SYN or SYN+ACKuot stored until space has been freed. It is leftthe
message), and its own medium’'s Maximum Transfert Unapplication to determine the appropriate pace taseme
(MTU) after subtracting the space reserved forlthand TCP measurement data (depending also on the tempaffit trate)
headers plus any IP options, if present [17]. TREn-line in order to maintain an appropriate queue lengtth avoid
measurement module can communicate its space easgrits newly arriving data being dropped locally. The ahosize for
by setting theext_header_lenvariable in a connections’ the data structure allowed user space applicatmr®nsume
tcp_optstructure to the measurement extension headees siresults continuously without losing any packet infation.
However, this would require the measurement modole

monitor the active connections’ hash table and sidjhe
corresponding variables for connections that mathk
filtering criteria of the measurement process.ddigon, when
a socket is locally constructed in response to @uliation
request, the local MSS value will be computed befany
packet reaches the measurement instrumentationlenctie
most cost- effective way (which has been adoptedthiy
implementation) to alter the MSS in order to accadate
space for the measurement headers is to monit@mimg

IV. MEASUREMENTDATA OVERHEAD

The overhead associated with the operation of métwo
measurement mechanisms is typically judged witlpeeisto
the measurement process and the measurement gadtedn
into the network. In-line measurement does not geae
additional synthetic load between two instrumerpeéhts in
the network. Rather, measurement indicators aegtied in the
data-carrying traffic itself which creates a snalld constant

SYN or SYN+ACK packets, and if they match thegata overhead of either 8 or 24 bytes per-packentasuring

measurement filter specification, to clamp the atised MSS
(within the packet structure) of the remote end
min(local_MSS, remote_MSS) — hdr_ext. ldfy for any
reason, (e.g. existing TCP sessions that have iatghtMSS
prior to the initiation of a SRC measurement mopule
addition of a measurement header would cause fraigtien,
the SRC module will leave the packet unaltered.

packet loss and delay, respectively, and it ispeetive of the

@ affic type, rate or any other characteristicsisTaccounts for

a byte overhead of 0.5% when measuring packet ¢dss
maximum-sized Ethernet segments (1518 bytes) andget
up to 23% when measuring the delay of minimum-sized
TCP/IPv6 acknowledgment packets. Although the Hdatte
percentage may seem quite significant, it is wpdmting out

A generic DST measurement module implements on@ Mahat acknowledgments consist entirely of headerd laence

function to retrieve the measurement extension éreadd its
operation is triggered by the presence of such dread an
incoming IPv6 packet.

the addition of the measurement extension doesrewmity
cause data traffic reduction. In addition, it isvisaged that

For the unidirectional delayheasurement instrumentation will mainly be targestcthe

TNSM-18-P0369 6

larger and maximum-sized packets that carry thaahatser
data, and minimum-sized acknowledgement packetsomy
occasionally and very selectively be instrumentetienv
particular aspects of this type of traffic will bensidered.
Measuring the same properties using an active memasumt
mechanism would require the generation of synthetd of
identical characteristics, volume and durationhe traffic to
be measured. Hence, letting alone the bandwidteuwoad by
active measurement processes and the consequsit&l
effects on network performance degradation, they ahpose
linearly increasing data overhead with respecth® target
traffic characteristics. In terms of bytes, the eyation of an
additional packet results in a link-layer byte dwead from 64
to 1518 bytes (for e.g. an Ethernet segment), whscta
deficiency ranging from 63% to 99.48% when compadceih-
line measurement. At the same time, the directppeket in-
line measurement conducted at the destination of
instrumented path does not require offline measargmata to
be shipped and correlated over the network, as thé case
with passive monitoring systems. The data corr@atequired
from two distinct passive monitoring devices in erdo
measure a characteristic of the interconnecting f&ich as

Traffic Rate
kilo-packets per second

1000.0
|

—®— |nstrumented Linux - Packet Delay
Instrumented Linux - Packet Loss
—®— Native Linux

10.0 100.0
Il Il

Actual Rate (log-scale)

1.0

0.1

an T T T T T
0.1 1.0 10.0 100.0 1000.0

Specified Rate (log-scale)

Fig. 4. Actual vs. specified traffic rate for ingtnented and native Linux

Iperf was used to generate a range of CBR UDP/IPv6 flows

the unidirectional delay) equals twice the amounthe per-
packet captured data plus the capture library et
normally stores measurement data such as timest&inghis
would at least sum up to 2x56 bytes per packetPgd and
2x76 bytes per packet for IPv6 (to include netwanhd
transport layer headers and e.g. tigpcap header), which
results in a data overhead deficiency between 78z6fb
94.7% compared to in-line measurement.

assuming different packet sizes and different trassion rates
[18]. The minimum packet size supported by Iperbider to
stream its own measurement indicators betweenlidwat @and
the server processes is 56 bytes of applicatiogt@ata. This
results in a minimum IperffUDP/IPv6 datagram of lf)Aes,
and a 112-byte or 128-byte minimum-sized datagramohe-
way loss and one-way delay in-line
instrumentation, respectively. We have thereforeseh 56,

measurement

512 and 1400-byteapplication-level packets to represent
minimum, medium and maximum-sized [Pv6 datagrams.
V.END-TO-ENDTHROUGHPUTOVERHEAD Traffic rates were varied between 1 Mb/s and 1 Glafsch is
ASSESSMENT the typical maximum transfer rate for commodity
We now turn our attention to a rigorous experimentd'ardware/software —end-system configurations. Forchea
evaluation of a software-based end-to-end in-liegiggmance Combination of transmission rate and packet side t
measurement implementation with respect to the hmaet experiments were replicated three times. Wildcalteriing
incurred by the measurement process itself. and sampling specifications were used for the SB@ydand
loss modules to instrument all outgoing traffic.
A.Experimental Environment and Parameters
The experimental environment consisted of two Sire F }] o)
X4100 servers equipped with one 2.2 GHz AMD Opt&fon We have stugﬁed. the impact of traffic mstrumemton
processor (single-core), with 128 KB of L1 cachd aMB of end-to-end application-level throughput due to dldelitional
L2 cache. The machines have 2 GB of 400 MHz DDREr-packet operations incurred. The nested comibmadf
synchronous memory. The network interfaces are mgadiﬁerent packet sizes and transmission rates usedthe
Ethernet Intel® PRO/1000 residing in a PCI-X 100 Mslot. €XPeriments has been normalised to kilo-packetsspeond,
The two systems were connected via a Forcel0 E1288N9 the decimal conversion for high orders of niagle of
switch/router configured as an IPV6 router thantlidrop any ~transmission speeds. Fig. 4 shows the effectivetessnd rate
packets during the experiments. The end-systemsLiranx achieved (in Iglo-packets_ per second) versus tttesqaeqfled
2.6.20, (re)compiled to support the in-line measwet hooks, PY the traffic generation process for the natived an
and had the corresponding SRC and DST kernel medul@Strumented Linux, respectively. Each point in tgeaph

loaded to perform end-to-end in-line unidirectiodalay and 'ePresents the mean packet rate taken from thee thre
packet loss measurement, respectively. experiment replications for a given set of paramseteor most

An application-level traffic generator has been duge packet rates, the overhead incurred from the SRC ST

operate on top of the socket layer to resemblepieket Modules for both the packet delay and packet
generation patterns and performance of applicdliovs. measurement instrumentation is negligible sincestecified

B.Instrumentation impact on end-to-end throughput

loss

TNSM-18-P0369

rate is sustained. For the highest rates, from U8Qo the
theoretical maximum of 880 kilo-packets per secfod 56-
byte, application-level packets), the system opsrainder
stress and this is evident from the deviation & dffective
rate from the specified rate for native Linux. Taémffic rates
correspond to minimum-sized (56-byte) packets tréed at
200 Mb/s up to 1Gb/s. Mean throughput reductiorB @6
and 6% for packet delay and loss
respectively, only occurs at these high-load raid®n even
native Linux’s effective throughput is reduced by.3% on
average. The additional flow classification andlg¢alookup
operations undertaken by the loss SRC module makerie
costly on average than the stateless packet dedagumement.
It is visually evident that the use of minimum-sizgackets at
high transmission rates has a far more detrimesfifatt on the
end-to-end throughput than in-kernel
instrumentation. In addition, this is the worsteagrformance
bound incurred by in-line measurement instrumesratand it
can be seen that by employing a moderate systesatipling
scheme (e.g. instrumenting 1-in-10 packets), measemt cost
on throughput can drop below 1%. This becomes etehy
comparing the maximum effective application througthfor
each of the three different packet sizes, as shoWwABLE I.
Using 1400-byte packets, native Linux
approximates the maximum application-level theogdti
transmission rate for a system equipped with 1@iésfaces,
due to per-packet header overheads [8]. The diftere
between the maximum effective throughput achieweddiive
and instrumented Linux is minimal for maximum anddium-
sized packets, varying between 1.5%
unidirectional delay, and between 0.6% and 1.3%pfcket
loss instrumentation, respectively. On the othemdha
throughput of minimum-sized packets is massivelgreased
even for native Linux, reaching only 181 Mb/s. Heee this
throughput reduction does not reflect the modutesrhead;
rather, it is caused by the increased context bwliietween
user and kernel address space when the end-systesmate
under high load.

We have experimentally evaluated this claim by gigime
pktgen [19] in-kernel traffic generator to stress tese th
systems’ maximum transmission rates. We modifiegpkigen
source code to include the in-line traffic instrumzion and
compared its effective throughput with a clgdmgeninstance.
With 56-byte (application-level) packets, the orsywdelay
and the packet loss instrumented versions achiédddkpps
(604Mb/s) and 619 kpps (584Mb/s), respectively. dhiginal
pktgen version reached 677 kpps (638Mb/s). The
significantly higher throughput values verify thesty user
space/kernel context switch.

TABLE I. MAXIMUM END-TO-ENDAPPLICATION THROUGHPUT
Maximum application throughput by

instrErriglr?tation packet size (Mbrs)
56-byte 512-byte 1400-byte
Packet dele 154 822 922
Packet los 134 84C 93C
Native Linux 181 851 936

measuremeR

throughpu

The measurement modules’ impact on throughput even
under maximum system load (in terms of packet-pepsd
generation) remains below 6% and 9%, for packedaydahd
loss instrumentation, respectively. Although ieisdent that a
measurement process would tune itself to not imstni
minimum-sized datagrams transmitted at maximum satee
they do not represent any typical end-to-end apptio-level

instrumentatiotgad, this stress-test demonstrates the low ovdribéan-line

traffic instrumentation even under maximum systevadl
Again, employing a moderate systematic samplingeseh
would result in measurement cost reduction below ukfider
extreme load conditions.

C.Factorial design and analysis

After looking at the mean impact of the instruméota
focess on end-to-end throughput, we will now asdbe
importance and statistical significance of theskies with
respect to other influencing parameters, such astffic
generation rate and the datagram size. For thipager we
have constructed a full three-factor factorial ekpental
design with replications, and analysed the cornedjy
regression model. The response variable has beeratio of
the effective end-to-end throughput over the spetif
fransmission rate of the traffic generation procddee three
predictor variables that affect the response aetiesence of
the measurement module), the transmission ratéB), and
the packet size(). The analysis will enable separating the
effects of each factor on performance, and deténgiif a
factor has asignificanteffect or if the observed differences in

and 3.4% fipe response variable are duerdadom variationscaused by

uncontrolled experimental parameters. The modelttier 3-
factor full factorial design, with factow, B, and C a#, b, and
c levels, respectively andreplications is:

Yiu = H+ & +ﬁj +4& + Vagij T 7acik T 7ecik 7 ascik T i

i=1.a;j=1.b k= 1,.c |I= 1r., 1)

The model includes the mean respopsé®1 effects and
the experimental error; three main effects, three-way
factor interactions and one three-way factor irttoa
between all predictors; is the effect of factoA at leveli, yag;j
is the interaction between factofsand B at levelsi andj,
respectively, and so on. In our case, the measutemedule
factor has two levels, indicating whether the SR@ ®ST
modules are loaded or not. Transmission rates a&ssum

Lntinuous values from 1 Mb/s up to 1 Gb/s, andpheket

size factor has three levels for 56, 512, and 1#a8-packets,
respectively. For each factor-level combination, e th
experiment was repeated three times. The importaheach
factor is measured by the proportion of the totliation in
the response that it explains. Its statistical ifitance is then
calculated using the typical analysis of varianececpdure
which compares the contribution of the factor toiation with
respect to that of the unexplained variation duertors [20].

TNSM-18-P0369

@
1.0
I

//'*

0.1
o
0.8
L

0.6

00
w
K
o oo
o
Lo
o
00 ° g™

Residual

Residual quantile
0.4

)
@
0.2

o
a
o
o
<
o
@
°
@
@
@
@

o

0.0
I

-0.2
1

T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -3 -2 -1 0 1 2 3

Predicted Response Normal quantile

Fig. 5. Residuals versus predicted response amdai@uantile-quantile plot
of the residuals

distribution of T around the population
6 =t(P).One thousand bootstrap samples were used

estimate the distributions of the sums of squanesdd all the
model effects.

TABLE Il. shows the percentage of variation all@xhto
factors, interactions and errors. For both paclelayd and
packet loss measurement instrumentation, the dveradiel
explains more than 94% percent of the variatioarid-to-end
effective throughput ratio, since the variation daeerrors is

parameter

to

less than 6%. In both cases, the measurement nsddule

contribution to variation is minimal, accounting fless than
0.6%, and can therefore be safely ignored. Trarssomsrate
explains 18.05% of the variation in effective thgbput for

However, the underlying assumptions in deriving thehe packet delay instrumentation, and 19.96% fer ghcket

expressions for model effects are that the modedrerare
statistically independent, additive, normally distted and

loss instrumentation. Clearly, the most importaatameter is
packet size that explains more than 50% of theatian in

have a constant standard deviatmn and that the effects of both models. The interaction between transmissair and

factors are additive [21]. These assumptions leadthie
observations being independent and normally digteith with
constant variance. Fig. 5 shows that the assumngptioin
normality and independence of errors do not hold dor
regression models. The scatter plot of residuatsd@herrors)
versus predicted response show clear trends thatotebe
ignored since the two quantities lie in the samdeorof
magnitude. Also, the normal quantile-quantile plofsthe
residuals show that they heavily deviate from nditgnaAs it
was expected, obvious transformations of the modedponse
variable did not satisfy the normality and indepeamke
assumptions either, mainly due to its skewnessrétie of the
effective versus specified throughput for the mgjorof
experiments is close to or equal to 1). Thereforegrder to
robustly measure the importance and significanceeath
factor we have usedonparametric bootstrapo estimate the
sampling distribution of the model effects and th&ims of
squares, without making any assumptions aboutottme 6f the
population and without deriving the sampling disftion
explicitly [22]. For each of the two types of traff
instrumentation, the seS={ X, X,..., X} of the effective

throughput ratio of all runs is considered as aparfrom the
population P ={x, X,..., %} of all possible outcomes.

packet size for both models explains 24.09% and33. of
the variation, respectively. On the contrary, theo-tvay
interactions between the measurement modules aed
transmission rate and packet size are unimporiace ghey
account for less than 1% of the variation in bothdeis.
Likewise the three-way interaction between the joteds can
also be safely ignored for both models. Overal, alocation
of variation shows that the presence of the measeme
modules does not impact the applications’ end-t-effective
throughput.

th

Fig. 6 and Fig. 7 show all the bootstrapped model

coefficients with their 95% bias-corrected, accated BC,)
percentile confidence intervals for the packet ylalad packet
loss instrumentation models, respectiv@®, improves on the
percentile method — which also does not assume alityra-
by correcting bias and skewness [22]. The figutesasthe

contrasts of the&k-1 levels of each factor, omitting the base

level. For the measurement modules, the base Isviieir

absence from the traffic generation process, anthiopacket
size factor is the 1400-byte value. Allevels for each factor
sum to zero. The coefficients that have a statilijic
significant effect on the effective throughput oatat a 0.05
significance level, deviate from the zero referetioe. For

example, if we look at Fig. 6 it is evident thaé tbhoice of a

Nonparametric bootstrap draws a sample of size th Wigmg| packet size (56 bytes) has a significant ceffim
replacement from among the elements of S to for@ tRyecreasing the effective throughput due to theelamgmber of

resulting bootstrap sampl& ={ X, X,..., X,}. In effect,
the sampleS is treated as an estimate of the populatton

packets that need to be generated to sustain thleedti
bandwidth levels.

where each elemei of Sis selected for the bootstrap sample

with probability 1/n. This process is mimicking the original

selection of the sampl& from the populationP, and is
repeated a large number of times selecting manystrap
samples. The key bootstrap analogy is that the [ptpn is to

the sample as the sample is to the bootstrap samp
Consequently, a statisti€, = t(S,) computed for each of the

bootstrap samples has a distribution around theginadi

estimator T =t(S) of the sample analogous to the sampling

TABLE Il. ALLOCATION OFVARIATION OF FACTORS(%)

Allocation of variation (%
Traffic Factors
instrumentation | Module Rate P_size Errors
Packet Dela 0.4€ 18.0¢ 51.67 5.1¢
e Packet Loss 0.59 16.96 52.37 5.87
Interactions
mod/rate | mod/p_size rate/p_size 3-facto
Packet Dela 0.1¢€ 0.31 24.0¢ 0.0€
Packet Los 0.1¢€ 0.5€ 23.4¢ 0.0€

TNSM-18-P0369

0.0002
L

bt
gt

34

L
Frrereon et
L
-0.0002
L

95% BCacC.l
-0.06 -004 -0.02 0.00 002 004
I
1
[S———
95% BCaCL.l

-0.0006
L

{

T T T T T T T T T
Module
Rate

Wolie Mol

Module Module Rate Rate e e
Module psize(s6) p_size(512) p_size(s6) p_size(512) p_size(56) p_size(512) p_size(56) p_size(512)

Effects Effects

Fig. 6. Unidirectional delay instrumentation: moddélects with 95%BCa
Confidence Intervals

To a lesser extent, increasing transmission radealgmilar
effect (rightmost plot) since the system does nawvehthe
internal capacity to generate the highest bit réapproaching
1 Gb/s) irrespective of packet size. It is worthimp here that
maximum network capacity is defined with respedti® link-
layer transmission capabilities, and it is therefanrmal for
the application to never
bandwidth since headers from lower levels causetiaddl
byte overhead. Both Fig. 6 and Fig. 7 agree orsthtstically
significant effect that transmission rate and mimmpacket
size have on decreasing the effective end-to-ermlugfmput.
The interaction between transmission rate and pagtke also
has a statistically significant effect, especidtly minimum-
sized packets. On the contrary, the presence of
measurement modules does not impact end-to-endghpait
in a statistically significant way at a 0.05 sige@ince level,
since the 95% confidence intervals of the coefficir both
models include zero. In addition, all the interacs between
the measurement modules and the rest of the faetms
insignificant at the 0.05 confidence level.

Therefore, after this rigorous experimental desigalysis,
it is safe to conclude that the per-packet, in-hmeasurement
traffic instrumentation does not negatively impaot-to-end
effective throughput in a statistically significamay.

VI. SYSTEMPROCESSINGVERHEAD

A.System-wide instrumentation impact

After demonstrating that in-line traffic instrumation does
not have a statistically significant impact on aqgttion-
perceived performance, this section focuses onsistem
processing impact of the in-line measurement madatethe
two instrumented end-systems that insert and réeondve
the measurement extension header, respectivehhaie used

0.0002
L

Ly
]
[]
[

I I
P —
[I N—

-0.02 0.00 0.02 0.04

95% BCacC.l
I
prremen ool
95% BCacC.l.
0.0002
L

I
L
[

-0.06
I
-0.0006
L

{

T T T T T T T T T
Module
Rate

Wolile Mol

Module Nodule Rate Rate Rate Rate
Module p_size(s6) psize(s1) p.sie(s6) p_size(s12) Rate p_size(56) p_size(512) p_size(S6) p_size(512)

Effects Effects

Fig. 7. Packet loss instrumentation: model effedth 95% BCa Confidence
Intervals

during the traffic generation process with and with the
modules being loaded, and compared the differeriges.to
profiling granularity restrictions, we have accaaht for
functions individually consuming at least 0.001% ©PU
time, and we then normalised them to sum to 10086.e&ch
function, the average CPU utilisation over thrgdications of

reach the maximum nomindhe experiments was calculated, and then the lligioin of

per-function CPU utilisation was computed. By cotimuyithe
differences in the utilisation distributions betweehe
instrumented and native end-systems, we calculiiednean
difference in per-function CPU utilisation and cartgd the
95% quantile confidence intervals, which are shawfig. 8

and Fig. 9. It can be seen that for both typesdinie traffic

thiestrumentation and at all packet transmission statine
difference in CPU utilisation at a 0.05 significankevel for
both the source and the destination end-systenhsdies zero
and is therefore statistically insignificant. Maecifically, it
can be seen that the confidence intervals coverirdmal

region of less than 4% and therefore the varigbitit CPU

consumption by the various systems processes ignonin.

This implies that the presence of the SRC and D®dules
on systems’ protocol stacks for either unidirectiodelay or
packet loss instrumentation does not incur a sigmif system-
wide processing overhead by not causing any syptecess
(like e.g. kernel socket buffer functions) to sfgantly

increase its CPU consumption, even when instrumegmitaffic

at high packet rates.

TABLE Il shows the mean CPU utilisation (%) of &éac
function of the delay and loss measurement modAke4. will
become apparent in the following subsection, irtisgi
utilisation values should be treated as relatitenades, since
the profiler would not accumulate the utilisatioh external
function calls to the caller function. However,ist useful to
compare the differences in the overall CPU utildabetween
the two types of measurement instrumentation.

the oprofile tool to examine the modules’ system-wide

processing impact on the source and destinatiorsgstems
[23]. Oprofile is capable of profiling all runningode of a
system, including interrupt handlers, the kernehared
libraries and applications by leveraging hardwagisters of
the CPU that provide performance counters for caoisses,
CPU cycles, etc. We have measured the mean CHEhtith
of all running code on the two instrumented endesys

TABLE Illl. MEAN PER-FUNCTIONCPUUTILISATION (%)

Mean CPU Utilisation (%
filter_tests| sampling make_room insert retrieve
Delay 0.83 0.11 0.26 0.33 4.27
measurement 1.53
Loss 112 | 019 | 021 | 054 2.52
measurement 2.06

TNSM-18-P0369

Source End-System

CPU Utilisation Difference (%)
o
[
H—

T T
17 25 38 41 58 66 75 100 151 226 452 678

Traffic Rate (1000 x Packets/s)

Destination End-System

05

CPU Utilisation Difference (%)

LIS L s s S B e s e s B B B B B B B B B B
1 4 8 17 25 38 41 58 66 75 83 141 181 301 527 753

Traffic Rate (1000 x Packets/s)

Fig. 8. Unidirectional delay instrumentation: impam system-wide CPU
utilisation

10

Source End-System

Il Il
[
[
-l
"
L)
[
251
e
——
—_—
i

CPU Utilisation Difference (%)
20 15 10 05 00 05 10 15

I e e e B B B e e L. L L S B B BB B S B
1 4 8 17 25 41 42 59 67 83 84 144 186 333 583 833

Traffic Rate (1000 x Packets/s)

Destination End-System

CPU Utilisation Difference (%)

I e e e B B B e e L. L L S B B BB B S B
1 4 8 17 25 41 42 59 67 83 84 144 186 333 583 833

Traffic Rate (1000 x Packets/s)

Fig. 9. Packet loss instrumentation: impact onesysivide CPU utilization

The SRC module incurs less CPU overhead for th&gbac mean processing time over the three replicationseath

delay instrumentation than it does for packet lakg to the
internal (flow) state that is maintained by thedatIn order to

experiment was chosen for each function.
Fig. 10 and Fig. 11 show the three-dimensionaltscatots

insert the appropriate sequence number to eaclgrdatathe of the per-packet processing time in CPU cyclesugtraffic
SRC module needs to match it against a given flovate and packet size for each instrumentation fonaf the
specification held in memory, and to subsequentigate this delay and loss-measurement modules, respectivelyeatch
specification to include the latest reference valuEhis is scatter plot, a plane is also drawn based on tigadimodel of
clearly more costly than the stateless per-packetation of the processing time with respect to the transmisside and
reading one system timestamp, undertaken by thewage the packet size. The plane helps to visually idgnthe
delay SRC module. On the contrary, the DST moduldependence of the response variable to the tworgjtiactors.

undertakes a more costly operation when perforrairdglay
measurement, since it needs to amend the measurbester
with an additional system-local indicator. All otheperations
being equal (e.g. extension header extraction, dment of
the socket buffer structure, etc.), the packet @S3 module
merely stores the existing header without modifyitng

B.Detailed kernel instrumentation

Oprofile is an external CPU sampling utility and cian
provide for system-wide percentage profiling, bunmot
accurately assess the exact CPU utilisation ofviddal
functions. This is due to the external profiler géing the
innermost function and therefore utilisation is atitibuted to
the caller functions. Therefore, in order to gesa@bte values
of CPU usage for the in-line measurement moduleshave
used the ReaD Time Stamp Counter
instruction to instrument every single functiontieé modules’
code and compute its processing cost.
experimental run, we recorded the processing tioneefich
instrumentation function of the last one thousaratkgts.
Most (per-packet) processing times assumed valtmmd a
single mode with a few observations deviating arehting
skewness in the distribution, hence the medianchkasen as
the index of central tendency for the per-functfmocessing
time distributions in each experimental run [21heh the

During eaﬁ'G

The first four functions are employed by the SRGIaole and
the latter by the DST module. For both types

instrumentation, packet filtering and header ingarfunctions
assume small values independently of packet sizé

transmission rate. This was expected since botletifurs

perform invariable operations based on the heaoleteats of
each packet. So does packet sampling, althougipégation is
minimal since it was set to sample all packetstli@ present
experiments. It can be seen that header insesiomore than
twice as costly for the stateful packet loss insntation as it
is for packet delay. This is due to the additiorfiaiw

classification and lookup operations are condudbgdthe
packet loss SRC module, in order to determine threect
sequence number to insert to the in-line measurehwader.
The most costly function isnake_room_for_ext _hdr that

(RDTSC) CPliyokes the corresponding system calls to increélasesocket

buffer's headroom and to push the packet conterusrdingly
]. These heavily depend on the packet strucisige since
larger data blocks need to be moved in the ketoekome
extent the cross-function calls also increase aopsion under
high CPU load. This important attribute is not capd by the
external profiler's values in TABLE Il which do,olwever,
demonstrate the overall relative cost differencevben the
SRC and DST modules of the two types of instruntenta

of

an

TNSM-18-P0369 11

filter_tests() sampling() make_room_for_ext_hdr() insert_ext_hdr() retrieve_ext_hdr()

- S e T < Se e
x = x| = = —
g 3 2 83 2 33 2 83 2 83 2
T o O T O T of O T O T o 9
> © =~ > © = > @© = > @ = > @ =
o ©° o o ° i) O < i) o e i) o e i)
z 3 g 23 g 23 e B3 ¢ 23 b
o e O o O 7 6 & O o O o
o & o =] o &= o & o E
o © o © o | . © o © o ©
ol 24 = o 2 F ol 24 2 r ol L ot r s .
S 200 800 1400 S 200 800 1400 S 200 800 1400 S 200 800 1400 S 200 800
Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes)
Fig. 10. Unidirectional delay instrumentation: CBlYcles consumed by the SRC and DST modules’ funstio
filter_tests() sampling() make_room_for_ext_hdr() insert_ext_hdr() retrieve_ext_hdr()
T < T T e T e 5 <
= = = = = —
g3 2 83 2 83 2 83 2 83 2
2 e S Le @ 2« 8 2 @ L. ()
o ° o o ° o o °) o ° k) o @)
= © o © D < T D < © D o« ©
o o o o o o o o o o o o o o o
(&) o o o (&} 1%} O 3} o 3}
y % o % 3 % 3 % 3 %
(=} 0 ; o r— 0 ; o 0 ; o ; (=} 0 ;
S'200 800 1400 S 200 800 1400 S'200 800 1400 S'200 00 1400 S 200 800 1400
Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes) Packet Size (Bytes)
Fig. 11. Packet loss instrumentation: CPU Cyclesamed by the SRC and DST modules’ functions
Retrieve_ext_hdr is the second most costly function whose
CPU cycles consumption mainly depends on the pasiket TABLE IV. OVERALL TRAFFICINSTRUMENTATIONTIME BY
This is due to the removal of the measurement sidan APPLICATION-LEVEL PACKETSIZEON2.2GHZ CPY
. . Total Instrumentation Timau§ec)
header and the corrgspondmg ad!ustment of the epack 56-byte | 51z-byte | 140Cbyte
structure’s headroom (inverse operation from thatentaken Unidirectional Dela | 0.71 0.8¢ 1.0¢
by the SRC module’snake_room_for_ext hdr), and also Packet Loss 0.81 0.97 116

due to copying each extracted header to a memoeueju

which can then be read by higher-level applicatitinis up to ~ Moreover, the two most costly functions are dongdaby

these consumer applications to decide on the methddthe Memory access operations (such as skij. cow skb_pull

temporal interval at which they should read theramted ©tc.), implying that the CPU has to spend idlingley if the

headers. The instrumentation modules take careormthaust data were not in its cache. Hence, the overale*tprocessing

memory resources by maintaining a fixed-size stmactafter time can be further reduced by exploiting data ligcauring

exhaustion of which (due to, for example, a consupnecess Packet processing.

reading data only infrequently) no further measwem The impact of increasing packet size on the pragssne

extension headers are stored. The slightly high&uU C is minimal, since on average, 1400-byte packety orur a

consumption of this function for the unidirectiondelay 0-36usec additional overhead with respect to minimureciz

measurement' relates to the successive memoryxopme paCketS. The total stateless paCket delay instrtatien is on

larger (delay) measurement extension header. average 0.09sec less costly than packet loss instrumentation
TABLE IV shows the overall processing time of indiend- which maintains internal (flow) state, regardlekparcket size.

to-end packet instrumentation for the two types of

measurements in microseconds, on the 2.2 GHz CPaliof

instrumented end-systems. Overall processing tarteé sum VII. DisCUsSION

of all SRC and DST modules’ functions for each tygfe In-line measurement is a mechanism to measure the

measurement. It can be seen that the total procesisie of performance of the data-carrying Internet traffikiley this is

the software-only in-line measurement instrumeatatis routed between a source and a destination (eitlgetltimate

minimal, on the order of one microsecond. end-points or intermediate ones, between for exaymatwork

TNSM-18-P0369

ingress and egress). It merges the benefits ofveacdind

12

measurement prototype, an application process hanse a

passive measurement into what can be seen as ad:hybparticular subset of traffic to be instrumentedthg kernel.

directly implementing a chosen performance metnicshort

timescales (similar to active), by observing anstrisimenting
the existing operational traffic (similar to pagivAt the same
time, it overcomes the major limitations of actaed passive
measurement: first, it avoids the “Heisenberg” effef active

measurement where the additional traffic pertunesrtetwork
and biases the resulting analysis; it also avdwsrteed for
correlation and analysis of passive measuremenegraand
the consequential need to operate in long timescalke main
challenge for such in-line measurement mechanismhsve a
small impact on the network traffic and on the rimstented
systems, so that it can form the basis for a measemt plane
for the next generation Internet and operate aflaays-on

manner. In this paper, we have focused on the emahd

software implementation of in-line measurement, ame

showed that an in-kernel prototype system can benlessly
integrated with the network stack and incur minioaérhead.
In a different study, we have built a system fatinmenting
traffic with in-line measurement headers betweendtiges of
network topologies [15]. In that case, hardwarexgloited in

order to keep pace with the multi-gigabit rates| amfacilitate

in-line measurement instrumentation as a nativet fdr
routers’ data (fast) path.

In its current form, in-line measurement has beesighed
as a two-point mechanism in order not to incur ifiggnt
additional processing to the data-carrying traffand to
demonstrate how the measurement functionality neatisto
occur at specific pre-identified nodes which carabequately
provisioned. However, the mechanism can be eastsnded
to implement different performance metrics suchhap-by-
hop or round-trip delay and loss. The appropriatader
structures would need to be defined in order taycéne
relevant indicators for the desired metrics. Foaregle, for
measuring intermediate path delays between multiptevork
nodes, header fields would need to hold the relewamber of
timestamps along with the corresponding node iflerdi
However, increasing the number of instrumentatiainis
along a path reduces selective processing and dintes
additional overhead on the instrumented traffic clthivhen
accumulated can be non-negligible. Therefore, gsodated
overhead should be carefully considered when impigimg
performance metrics that require processing fraerimediate
network nodes.

One important property of in-line measurement it tthe
mechanism is
processes and/or infrastructures. Therefore, iteaimtegrated
with higher-level processes developed to measuezifip

The seamless integration of in-line measuremenh \tlite
network stack, its potential always-on operatiagether with

its different instantiations (end-to-end, edge-tge),
constitute it a promising candidate mechanism fetwork
operations and management. It provides a unified an
extensible framework able to instrument any typetraffic
over any type of network, and produce accuratelteshbat
reflect the temporal performance experienced by the
operational network load.

Although measurement functionality has been incataul
in a number of protocols, particularly those hamgllieal-time
traffic such as RTP, in-line measurement can became
universal mechanism for the measurement and mareagesh
all traffic carried over the next generation Inttrn
infrastructure. In contrast to transport and apion-level
measurement which can be deployed end-to-end attiargy
by the relevant end-systems, in-line measurement lma
equally exploited by end-systems and by networkatpes. At
the same time, it can be exploited by any new aito
deployment, which will not need to build its owrdvadant
instrumentation mechanisms to tune the applicdgost end-
to-end performance.

End-to-end deployment of in-line measurement
individual microflows and flow aggregates can pdavian
accurate description of the service levels delider®
customers, and enable performance-based chargipgcially
for intolerant applications with real-time requirents.
Summaries of temporal performance indicators can
exchanged between the end-system and the sendguiler to
give timely views of user-perceived performance,d an
potentially enable the last-mile topologies to bevisioned
on-demand according to the application requiremants the
service-level agreement. Similar, yet totally staipproaches
on service differentiation are being used by somwriders
who give the ability to users to flex their netwaeed for a
given time interval. By using in-line measuremeratad
available at end-systems, providers can offer rfineegrained
service differentiation based on ephemeral needsmdfcular
application flows.

An in-network edge-to-edge deployment can also be o
particular relevance to operators for directly nuemg the
performance of their topologies, and not havingirtier it
through correlating sampled traces at much lonigegscales.
Large objects such as traffic matrices and alsce¢dgdge

on

be

independent from particular measuremetelay and loss can be directly computed for difiereaffic

types and at different levels of aggregation. At same time,
since measurement is based on the actual datarzatrgffic,

properties of a path. For example, a process tosumea an operator can integrate performance indicatotts métwork

capacity or available bandwidth of a path can gateeits own
traffic load (e.g. trains of packet-pairs) and uke in-line

control structures that can enable, for examplagigensitive
routing and traffic differentiation. Distributed amurement

measurement headers to measure packet inter-spatinginfrastructures can aggregate and consume measureme

source and destination, taking advantage of theekdevel
timestamps. Using the filter specification of the-line

indicators from instrumented nodes, and can cocistru
network-wide views of performance in short timessal

TNSM-18-P0369

VIIl. RELATED WORK

13

techniques of host profiling similar to the onettlae have

Active and passive measurement mechanisms do r#€d in this work. More recently, system-level perfance

typically enhance the packet forwarding functiofishe data-
carrying traffic. Active measurement infrastructi@nd tools
(e.g. [3][4][18][19]) operate on synthetic traffiayhereas
passive measurement systems observe the operatigtmairk
traffic (e.g. [5][6][7]). Particular implementatisn mainly of
active measurement, have been designed to operateei
kernel in order to provide for increased contradl @&fficiency
over the measurement process yet they still doimetfere
with the protocol stack operations of the datayéag packets.
Such tools include MAD [24] which is a kernel-levademon
to support real-time scheduling of probe strearktgem [19]
which is a high performance traffic generator ined in the
Linux kernel, PeriScope [25] which is a kernel-lev&PI

enabling the definition of new probing structuresid pktd
[26] which is a kernel daemon used to provide cuied

access to the network device for higher-level mesamant
software. Reports of these tools do not provideitist results
of system impact since this varies depending ondtfferent
measurement processes used alongside.

evaluation of network protocol processing has beerducted
on top of multicore systems, but focused on thedware
performance hit albeit without evaluating any pomtoin
particular [32].

IX. CONCLUSION

Following the legacy of telecommunication networkise
Internet has adopted a clear separation betweemot@nd
data plane operations. At the same time, end-toelttd and
control traffic is multiplexed at the level of indtlual
datagrams (packets) under a single best-efforv@sgliservice,
which constitutes accountability of resource usage traffic
performance evaluation non-trivial in short timdesa
Performance measurement tends to be an ad hoatitat is
conducted independently of the network’s main fodiey
mechanism. Inevitably, most research focuses oforpeance
modelling for the characterisation of traffic belwawr and for

network provisioning. Ubiquitous mechanisms for

A number of in-line measurement mechanisms havee manstrumenting the data-carrying traffic, and therefenabling

recently been designed to offer measurement cajedbiht
different locations of the networking stack.

for a unified framework for direct and pervasivefpemance

Inlinemeasurement, have not been seriously considerealibeof

Measurement TCP (ImTCP) [27] and the Measuremethe (often over-estimated) associated overhead loa t

Manager Protocol (MGRP) [28] operate at the TCRedayf
the network stack and multiplex measurement andicaion
traffic in order to infer network bandwidth. Therfieer alters

Internet’s data delivery mechanism.
However, the Next Generation Internet Protocol @)Pv
provides the necessary mechanisms that can beitexpfor

the TCP sending process to measure available betigwi optional structures to be defined and encoded elgtias part

whereas the latter uses measurement traffic toypak
application data. In contrast to in-line measurentscribed
in this paper, these tools implement a particuknfggmance

of the ubiquitous network layer. In-line trafficsinumentation
with measurement (and possibly control) informatioes a
tremendous potential to become the cornerstonautimated

metric and do not constitute a wider framework folNext Generation Networks (NGN) operations. Theipaldrly
performance measurement. The evaluation of eactemsys low associated overhead, as demonstrated in tpisrpshould

mainly focuses on the accuracy of the bandwidthsuesment
process and not so much on their overall systenaétpvhich
still needs to be analysed. Sidecar [29] suggestssing

act as a driving force for future protocol designier seriously
consider the introduction of ‘thin layers’ for omtial

processing within the protocol stacks, in order to

retransmitted TCP segments to probe the networkd amccommodate change and extensibility in NGNs.

BitProbes [30] proposes to insert measurement rimgtion
within the application payload of packets. Agaioftbpapers
focus on the relevance of their measurement reaotdsnot on
the system-wide impact of the implementations.

Our solution is more generic than the propositidescribed
above. Every packet can be tagged without any egujin or
transport layer dependency. Consequently, it besa@asier to
implement as it only requires the presence of aensible
optional framework, which is already natively pnaseithin
IPv6 in the form of extension headers. Neverthelessthe
host side, there could be significant overhead rirecly since
the measurement instrumentation can happen onalkrtu
every IP packet. In this work, we have used firaimged
system performance analysis to demonstrate tratghiot the
case even if all data-carrying packets are tagge#-to-back.
The work in [31] focuses on assessing the ovenatesn

In this paper we have thoroughly evaluated the ehpathe
software prototype of IPv6-based in-line measurenam
throughput and on end-system resource consumgitmough
rigorous and formal statistical analysis, we hagemdnstrated
that an always-on traffic instrumentation mechanisam be
seamlessly integrated with the network’'s main fodiey
operation, while incurring minimal and statistigall
insignificant overhead. When operating under exédoad
conditions, effective throughput reduction does esteed
9%, whereas when transmitting at gigabit speedsh wit
maximum-sized datagrams, end-to-end throughput ctemu
stays below 1.5%. These are worst-case figures when
instrumenting every packet with measurement indisatlt is
evident that by employing a moderate sampling sehefrich
will maintain measurement accuracy, the throughpdtiction
can be truly negligible. Per-packet CPU utilisatioh the

impact of the TCP/IP stack implementation and usewerall end-to-end traffic instrumentation procetsy/s on the

TNSM-18-P0369

order of one microsecond at a commodity 2.2 GHzessor,
while the system-wide impact of the measurementutesdon
resource consumption is negligible.

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

[11]

[12]
[13]
[14]

[15]

(16]

[17]

(18]
(19]

(20]

[21]
[22]

(23]

REFERENCES

Autonomic Network Architecture (ANA) Project, httfwww.ana-
project.org

D. D. Clark, The Design Philosophy of the Darpaeinet Protocols,
ACM SIGCOMM '88, Stanford, California, USA, Auguks-19, 1988
W. Matthews, L. Cottrell, The PingER Project: Adivinternet
Performance Monitoring for the HENP Community,
Communications Magazine, May 2000

M. Alves, L. Corsello, D. Karrenberg, C. Ogiit, Maricroos, R. Sojka,
H. Uijterwaal, R. Wilhelm, New Measurements withetRIPE NCC
Test Traffic Measurements Setup, Passive and AdWeasurement
Workshop (PAM2002), USA, March 25-26, 2002

C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owekar®. Papagiannaki,
F. Tobagi, Design and Deployment of a Passive Noinig
Infrastructure, PAM2001, Amsterdam, NL, April 23;2001

D. Papagiannaki, S. Moon, C. Fraleigh, P. ThiranTébagi, C. Diot.
Analysis of measured single-hop delay from an dpmral backbone
network, IEEE INFOCOM’'02, New York, June 2002

N. Brownlee, Using NeTraMet for Production TraffMeasurement,
IFIP/IEEE International Symposium on Integrated ek
Management (IM'01), Seattle, USA, May 14-18, 2001

F. Schneider, J. Wallerich, A. Feldmann, Packett@apin 10-Gigabit
Ethernet Environments Using Contemporary CommoHiydware, in
Proc. Passive and Active Measurement Conferenc®@@A7), LNCS
4427, pp. 207-217, Louvain-la-neuve, Belgium, Aprib, 2007

D. P. Pezaros, D. Hutchison, F. Garcia, R. GardheBventek, In-line
Service Measurements: An IPv6-based Framework foaffi¢
Evaluation and Network Operations, IEEE/IFIP NOM&' 0April 2004
A. Bianco, R. Birke, D. Bolognesi, J. M. Finoch@&tlG. Galante, M.
Mellia, M. L. N. P. P. Prashant, F. Neri, Click \$nux: Two Efficient
Open-Source IP Network Stacks for Software Rout&f&E Workshop
on High Performance Switching and Routing (HPSR'G¥)ng Kong,
May 12-14, 2005

R. Bolla, R. Bruschi, Linux Software Router: Datiari® Optimization
and Performance Evaluation, Journal of NetworksWJNAcademy
Publisher, vol. 2, no. 3, pp. 6-11, 2007

M. Luckie, A. McGregor, IPMP: IP Measurement Pratod®assive and
Active Measurement Workshop (PAM2002), USA, Maréh2s, 2002
D. L. Mills, S. Venters, Timestamp Capture Prineglon-line resource,
20009: http://www.eecis.udel.edu/~mills/stamp.html

S. Deering, R. Hinden, Internet Protocol, versiofif&6) Specification,
IETF Network Working Group, RFC 2460, December 1998

D. P. Pezaros, K. Georgopoulos, D. Hutchison, Higeed, in-band
performance measurement instrumentation for nextemgion IP
networks, Computer Networks (2010),
doi:10.1016/j.comnet.2010.06.014

K. Wehrle, F. Pahlke, H. Ritter, D. Muller, M. Béeh The Linux
Networking Arhitecture, Pearson Prentice Hall, Ni=ssey, 2005

R. Braden, RFC1122, Requirements for Internet Hosts
Communication Layers, IETF Standard, Network WogkiGroup,
October 1989

Iperf — The TCP/UDP Banwidth Measurement Tool, e-IResource,
available at: http://dast.nlanr.net/Projects/Iperf/

R. Olsson, pktgen the linux packet generator, Timent Symposium,
Ottawa, Canada , July 20-23, 2005

W. Venables, B. Ripley, Modern Applied StatisticithwS, Fourth
Edition, Springer Science+Business Media, ISBN @B3®54578,
2002

R. Jain, The Art of Computer Systems Performancalysis, John
Wiley and Sons, Inc., ISBN 0471503363, 1991

B. Efron, R. Tibshirani, An introduction to the lswap, New York:
Chapman and Hall, ISBN 0412042312, 1993

OProfile, a system-wide profiler for Linux systenm)-line resource,
available at: http://oprofile.sourceforge.net/

Elsevier,

[24]

[25]

[26]

[27]

IEEE[28]

[29]

[30]

[31]

[32]

14

J. Sommers, P. Barford, An Active Measurement 3yster Shared
Environments, -Internet Measurement Conference (OV}; San Diego,
USA, October 24-26, 2007

K. Harfoush, A. Bestavros, J. Byers, PeriScope: Auctive
Measurement API, Passive and Active Measurement k¥kiop
(PAM2002), USA, March 25-26, 2002

J. M. Gonzédlez, V. Paxson, pktd: A Packet Capturd &jection
Daemon, Passive and Active Measurement Workshop1@Q3), La
Jolla, California, April 6-8, 2003

T. Tsugawa, G. Hasegawa, M. Murata, Implementagiod evaluation
of an inline network measurement algorithm andpplication to TCP-
based service, in Proceedings of 4th |IEEE/IFIP \&fook on End-to-
End Monitoring Techniques and Services (E2EMON 2086r. 2006
P. Papageorge, J. McCann, M. Hicks, Passive aggeeseasurement
with MGRP, ACM SIGCOMM’'09, Barcelona, Spain, Augukt-21,
2009

R. Sherwood, N. Spring, Touring the Internet ushi@P Sidecar, ACM
SIGCOMM Internet Measurement Conference (IMC’06)jo Rde
Janeiro, Brazil, October 25-27, 2006

T. Isdal, M. Piatek, A. Krishnamurthy, T.E. AndemnsoLeveraging
Bittorrent for End Host Measurements. Passive andtivA
Measurement Conference (PAM'07), Louvain-la-nelelgium, April
5-6, 2007

J. Kay, J. Pasquale, Profiling and Reducing Pracgs®verheads in
TCP/IP, IEEE/ACM Transactions on Networking, 4(@)78328,
December 1996

M. Faulkner, A. Brampton, S. Pink, Evaluating therfBrmance of
Network Protocol Processing on Multi-core SystelBEE International
Conference on Advanced Information Networking angplications
(AINA'09), Bradford, UK, May 26-29, 2009

| Dimitrios P. Pezaros (M'00) is tenure-track Lecturer
(Assistant Professor) at the School of Computing
Science, University of Glasgow. Previously, he has
worked as a postdoctoral and senior research assani

a number of UK Engineering and Physical Sciences
Research Council (EPSRC) and EU-funded projects, on
the areas of performance measurement and evaluation
network management, cross-layer optimisation, QoS
analysis and modelling, and network resilience hdlels

a B.Sc. (2000) and a Ph.D. (2005) in Computer $eien

from Lancaster University, and has been a doctéeibw of Agilent

Technologies (2000-2004). Dimitris is a membethef EEE and the ACM.

Mickaél Hoerdt was awarded a PhD in Computer
Science (Networking) from University of Strasbourg,
LSIT in 2005. His subject was multicast routing
scalability and Internet topology mapping. He
subsequently did one post-doc year at NTNU, Q2S-
Trondheim, Norway, and three years as a research
associate in the Vrouter project at Lancaster Usitye
Infolab21, UK. He then worked as an invited reskarc

in the Ecode European project at the INL Networklmh in Louvain-la
Neuve, Belgium for six months. He is now a full ¢éinheology student at the
Brussels Bible Institute in Belgium.

David Hutchison is Director of InfoLab21 and Professor
of Computing at Lancaster University, and has wdrke
in the areas of computer communications and
networking for more than 25 years. He has recently
focused his research efforts towards network eesik.

He has completed many UK, European and industry-
funded research contracts and published many pagers
well as writing and editing books on these andteela

Infocom), and of journal editorial boards. He is edlitor of the renowned
Lecture Notes in Computer Science and of the WIIBYDS book series

areas. He has been an expert evaluator and member o
chair of various advisory boards and committeeshan UK (EPSRC, DTI,
OFTEL, e-Science, UKLight, UKCRC, JISC, DCKTN) amdthin the EU
through several Framework Programmes. Also, hesbaged as member or
chair of numerous TPCs (including the flagship AGMGCOMM and IEEE

	citation_temp.pdf
	http://eprints.gla.ac.uk/43719/

