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Abstract— Internet performance measurement is commonly 

perceived as a high-cost control-plane activity and until now it 
has tended to be implemented on top of the network’s forwarding 
operation. Consequently, measurement mechanisms have often 
had to trade relevance and accuracy over non-intrusiveness and 
cost effectiveness.  

In this paper, we present the software implementation of an in-
line measurement mechanism that uses native structures of the 
Internet Protocol version 6 (IPv6) stack to piggyback 
measurement information on data-carrying traffic as this is 
routed between two points in the network. We carefully examine 
the overhead associated with both the measurement process and 
the measurement data, and we demonstrate that direct two-point 
measurement has minimal impact on throughput and on system 
processing load. The results of this paper show that adequately 
engineered measurement mechanisms that exploit selective 
processing do not compromise the network’s forwarding 
efficiency, and can be deployed in an always-on manner to reveal 
the true performance of network traffic over small timescales. 
 

Index Terms—Computer Networks, Computer Performance, 
Next Generation Networking, Computer Instrumentation, 
Network Measurement 
 

I. INTRODUCTION 

HE increased diversity of Next Generation Networks 
(NGN)s in terms of interconnection technologies, devices 

and services necessitates the evolution of automated self-* 
properties for problem diagnosis and operational optimisation 
[1]. This is in contrast to the original design philosophy of the 
Internet protocols that placed accountability of resource usage 
towards the end of their priority list [2]. The fundamental 
prerequisite for automated network management is the 
existence of ubiquitous and always-on mechanisms to 
accurately measure the temporal performance of traffic routed 
over the infrastructure, in short timescales. Such mechanisms 
will need to embrace the implementation of an extensible set 
of performance metrics, in order to capture the diverse Quality 
 

Manuscript received December 16, 2009; revised June 03, 2010; approved 
by IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT Editor R. 
Stadler. 

D. P. Pezaros is with the School of Computing Science, University of 
Glasgow, Glasgow, G12 8QQ, UK (phone: +44-141-330-6051; fax: +44-141-
330-4913; e-mail: dimitrios.pezaros@glasgow.ac.uk).  

Mickaël Hoerdt was with the Computing Department, Lancaster 
University, Lancaster, LA1 4WA, UK (e-mail: mickael.hoerdt@gmail.com). 

David Hutchison is with the Computing Department, Lancaster University, 
Lancaster, LA1 4WA, UK (e-mail: dh@comp.lancs.ac.uk). 

of Service (QoS) requirements of the numerous traffic types, 
and their consequential dependence on different factors of 
performance degradation. Although Internet measurement 
research has received much attention during the last decade, a 
disproportionally small amount of work has been devoted to 
the design of mechanisms that will directly measure the data-
carrying traffic performance. Active measurement systems that 
directly probe a path to assess its temporal performance 
characteristics are based either on synthetic traffic that does 
not necessarily reflect the performance of the actual data-
carrying traffic [3], or on transport/application-layer 
mechanisms that render them applicable only to a subset of the 
traffic [4]. At the same time, passive monitoring infrastructures 
that observe the operational traffic at a single point in the 
network need to correlate and post-process immense amounts 
of data before conducting a conclusive performance 
measurement, and they therefore operate at long timescales 
[5][6][7]. Active and passive measurement mechanisms cannot 
be easily extended to operate at an Internet-wide scale and in 
an always-on manner, mainly due to the overhead they incur 
either on the network (e.g. additional probe traffic) or on 
system resources (e.g. tracing traffic at gigabit speeds requires 
dedicated equipment [8]). Clearly, the ever expanding Internet 
is in need of more pervasive mechanisms that will be able to 
ubiquitously measure the performance of the data-carrying 
traffic itself, in an extensible and configurable manner.  

In this paper, we argue that such measurement 
instrumentation will need to be a native part of the network 
stack and to operate in-line, embedding measurement 
indicators into the existing operational traffic and hence 
directly assessing its performance Although traditional active 
and passive measurement systems do not touch the data-
carrying traffic in order to minimise overhead, we argue that 
the overhead they incur results from their inherent limitation of 
not being a native part of the network’s main forwarding 
mechanism. We present an in-kernel software prototype of in-
line measurement, the first mechanism that uses native 
network-layer structures of the next generation Internet 
Protocol (IPv6) to encode measurement information into the 
data-carrying traffic [9]. We show how minimal measurement 
modules can be completely integrated with the network stack 
of end-systems, and we demonstrate that properly-engineered 
measurement mechanisms can be efficient, have minimal 
impact on traffic performance, and at the same time be part of 
an extensible framework that can implement numerous 
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performance metrics. In-line measurement adopts two 
fundamental principles that make it particularly applicable: 
modularity, to enable the separation of the traffic 
instrumentation (real-time) process from the rest of the 
measurement functionality, and selective (measurement) 
processing at pre-identified network nodes as opposed to hop-
by-hop. We have particularly focused on the rigorous 
performance evaluation and the exact quantification of the 
system cost involved in performing the real-time traffic 
instrumentation. In contrast to software router performance, 
which has been extensively studied [10][11], we concentrate 
on the end-to-end mode of operation where traffic is sent and 
received from user-space applications, and show that the 
impact of a software-only in-line measurement prototype on 
end-to-end traffic throughput is small and statistically 
insignificant. Throughput is mainly bound by the minimum-
sized packets and by the end-system user/kernel context 
switching. We demonstrate that in-line measurement incurs an 
overhead which is close to two orders of magnitude less than 
that incurred by traditional active and passive approaches. In 
addition, we show that the overall processing impact of the 
instrumentation process is also statistically insignificant, and 
we quantify the exact processing time spent on each 
measurement sub-routine. We conclude that in-line end-to-end 
network measurement that can reveal the actual traffic-
perceived performance over short time-scales is a flexible and 
low-overhead mechanism, and can operate in an always-on 
manner as part of the end-systems’ protocol stacks.  

The remainder of this paper is structured as follows: Section 
II describes the design of in-line measurement and its different 
modes of operation, and section III describes the in-kernel 
implementation of a set of measurement modules. Section IV 
compares the measurement data overhead of in-line 
measurement with active and passive measurement systems, 
and Section V quantifies the impact of the measurement 
process to end-to-end application throughput. Section VI 
analyses the processing overhead incurred on the instrumented 
end-systems. Section VII discusses the benefits of in-line 
measurement and its implications on network operations and 
management. Section VIII outlines related work, and section 
IX concludes the paper. 

 

II. IN-LINE  MEASUREMENT 

The traditional separation between data and control planes 
in the Internet has not allowed the integration of measurement 
mechanisms with the network’ main forwarding operation. The 
protocol stack is strictly standardised and hence any attempt to 
introduce new structures below the application layer to carry 
measurement information along the data-carrying traffic would 
require a major rework of virtually all networked systems. 
Options that could potentially be exploited exist in a number 
of protocol layers; however, they have not been originally 
designed for measurement and are severely restrictive. For 
example, TCP provides a timestamp option which is, however, 

not adequate for high precision timing data required for packet 
delay measurements. Defining a new TCP option to carry 
measurement indicators is an alternative yet not an ideal one 
due to the limited space and also its applicability only to a 
subset of traffic (TCP). The convergent network layer that 
could potentially be exploited for ubiquitous traffic 
instrumentation does not allow for arbitrary optional structures 
to be piggybacked on IP datagrams. Only a set of standardised 
options exists, and moreover these need to be processed en-
route by every IP node. Therefore, not only can new options 
not realistically be implemented at an Internet-wide scale, even 
if they did, option-carrying traffic would most certainly exhibit 
different en-route processing from the rest of the traffic. The 
introduction of a ‘thin layer’ – similar to the one suggested in 
[12] – between the existing network and transport layers could 
provide for the necessary structures and encoding to carry 
measurement indicators within the data-carrying traffic, but it 
would not maintain backward compatibility, since it would 
require changes to the IP stack of  –at least – all end-devices. 

The Next Generation Internet Protocol however, overcomes 
these limitations by introducing a ‘thin layer’ natively within 
the ubiquitous network layer. IPv6 adopts the notion of 
selective network-layer processing through the extension 
headers concept, and in particular the destination options 
extension header. The protocol specifies general formatting 
and alignment requirements and leaves options to be defined 
by programmers and engineers. Destination options are 
inserted after the main IPv6 header at a source node and are 
processed only by the packet’s ultimate or explicitly pre-
identified destination nodes. This is achieved by encoding 
IPv6 extension headers as an intermediate layer between 
network and transport, identified through a unique next header 
(protocol) number. Hence, the presence of a destination 
options extension header within a datagram will not impact its 
processing by intermediate nodes which will only process the 
main IPv6 header and will not examine the next (extension) 
header.  

In-line measurement [9] is a novel point-to-point 
mechanism that exploits these native IPv6-layer structures to 
instrument data-carrying traffic with measurement options, and 
to integrate measurement functionality with the network’s 
main forwarding mechanism. It is realistically applicable over 
the IPv6 Internet in an always-on manner, due to its modularity 
and selective measurement processing. Modularity ensures 
minimal operational overhead and independence from 
particular measurement infrastructures and processes. Only the 
minimal traffic instrumentation process is implemented as part 
of a system’s network stack, while higher-level applications 
can be developed independently. In addition, distinct 
measurement modules implement different performance 
metrics, again ensuring minimal additional processing. 
Selective processing, which is inherited from the design of 
IPv6, ensures minimal impact on instrumented traffic and 
identical treatment with the rest of the traffic by the forwarding 
IPv6 nodes. 
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Fig. 1. Unidirectional (a) packet delay and (b) packet loss IPv6 destination 
options 

 
 

Fig. 2. In-line Measurement Operation 

 
 

The alleviation of per-hop (measurement) option processing 
ensures that additional operations take place only at specific 
pre-identified systems which can be adequately provisioned 
and not impact traffic performance. We have defined two IPv6 
destination options to measure end-to-end unidirectional 
packet delay, and packet loss, respectively. Their fields, byte 
alignment and their encapsulation in an IPv6 destination 
options extension header are shown in Fig. 1. Each IPv6 
option is identified by a unique option type byte whose 
encoding specifies the action to be taken by a node if it is 
supposed to process an option that it does not support. 
Therefore, not only selective processing but also backward 
compatibility is preserved. This is an important aspect since 
experimental options can be deployed before (or while) being 
standardised. The two options shown in Fig. 1 are 
representative of the different modes of operation assumed by 
the in-line measurement process, in a number of ways.  

Unidirectional delay is a stateless per-packet measurement 
which involves two nodes independently recording system 
time. Similar to timestamp representations in UNIX and NTP, 
two (unsigned) 64-bit timestamps are encoded within the 
option to record time at the source and the destination of an 
instrumented path, respectively. The 32-bit seconds field spans 
about 136 years, while the 32-bit fraction field allows for a 
maximum time resolution of around 232 picoseconds, well 
below the resolution of today’s end-systems (microseconds to 
nanoseconds) [13]. In order to maintain compatibility with 
NTP, we have kept the same prime epoch.  

On the other hand, packet loss is a stateful measurement, 
since packets are tagged with a network-level sequence 
number before departure from a source node with respect to 
some flow specification. Delay measurement consists of two 
independent measurement actions taken at the source and 
destination nodes, and hence the option’s content is amended 
at both nodes, whereas for packet loss the destination node 
simply records the option without amending its content. 
Finally, the packet loss measurement option demonstrates the 
smallest possible structure that can be encoded as an IPv6 
option due to the protocol’s alignment requirements [14].  

Fig. 2 shows the operation of in-line measurement on data-
carrying traffic. At the source of an instrumented path, a 
measurement option-bearing header can be constructed and 
inserted into the packet. Upon arrival at the destination, the 
presence of the header will trigger a direct measurement 
action, implementing the relevant performance metric. The 
self-contained header can then be extracted from the packet 
and consumed by higher-level measurement applications. It is 
important to note that intermediate network nodes treat 
instrumented traffic identically with the rest of the traffic, with 
no need to be aware of the measurement process. Also, in-line 
measurement instrumentation is equally applicable end-to-end 
and edge-to-edge. Packets can be transparently instrumented 
between ingress and egress nodes of network topologies, and 
point-to-point metrics such as packet delay and traffic matrices 
can be directly measured instead of being approximated or 
computed offline. However, such in-network instrumentation 
would require hardware support in order to accommodate the 
high network speeds and be integrated with routers’ data-path 
operation. We have presented a hardware-assisted in-network 
implementation of in-line measurement in [15]. 

 

III.  IN-KERNEL MEASUREMENT MODULE 

IMPLEMENTATION 

A prototype in-line measurement system that demonstrates 
the mechanism’s operation as an integral part of the protocol 
stack has been implemented for Linux 2.6 kernels. The core 
instrumentation functionality has been implemented as a set of 
Loadable Kernel Modules (LKMs) that can be linked to a 
running kernel on-demand. This design provides the efficiency 
of deploying measurement functionality as part of the OS 
kernel, and at the same time employs modularity to minimise 
the actively used processing logic and its operational 
overhead, by loading only the necessary components to 
perform a certain type of measurement. Basic instrumentation 
is unidirectional, and hence an end-system can be the source of 
an instrumented path, the destination, or both, depending on 
which measurement modules are loaded at a given time. 



TNSM-I8-P0369 
 

4

T
ra

ff
ic

 f
lo

w
T

ra
ff
ic

 f
lo

w

T
ra

ff
ic

 f
lo

w
T

ra
ff
ic

 f
lo

w

 
Fig. 3. Generic operation of a SRC and a DST measurement module 

 
Irrespective of the particular measurement implemented, 

there are distinct operations performed at the source and the 
destination of an instrumented path by the corresponding 
measurement modules. The source is responsible for initiating 
the measurement by creating the appropriate header and 
piggybacking it to outgoing packets. The presence of such 
header within an incoming packet triggers a direct end-to-end 
measurement at the destination, where – depending on the 
measurement – the header is amended or simply recorded and 
then extracted from the packet to maintain full opaqueness 
from the higher layers. Fig. 3 shows the generic operation and 
functional decomposition of the SRC and DST measurement 
modules. The only static modification to the Linux kernel has 
been the insertion of two hooks to operate on incoming and 
outgoing packets from within the IPv6 instance’s entry and 
exit functions, respectively. The hooks pass the socket buffer 
that represents and manages the packet in question to the SRC 
and DST modules installed at any given time. The provision of 
measurement instrumentation at the border of the kernel’s IPv6 
instance offers a number of advantages. First, it allows 
timestamps to be inserted before a packet spends considerable 
processing time in the protocol stack of the systems’ kernel 
(although buffering at the device level as well as interrupt 
coalescing can still distort true network time). And second, it 
allows for the transparent instrumentation of packets 
regardless of their ultimate source and destination systems. 
Although this paper focuses on the end-to-end inline 
measurement instrumentation, the functions can be equally 
used to instrument datagrams as they are forwarded at an 
intermediate system operating as a software router. 

A generic SRC measurement module implements a number 
of functions that enable sampling, filtering, packet handling, 
and insertion of the measurement indicators to outgoing 
packets. Two systematic sampling schemes have been 
deployed to instrument one-in-N packets and at most one 
packet every M microseconds, respectively. A five-entry filter 
specification enables selective traffic instrumentation based on 
IPv6 source and destination addresses, transport protocol, and 
transport layer source and destination ports. Sampling and 
filtering specifications can be altered dynamically by a user 
process through a system call to the kernel module while the 
latter is loaded. A shared control structure is used to (re)set the 

filtering and sampling specifications which will subsequently 
be read by the module code before attempting to instrument 
the next datagram. When a packet satisfies the given filtering 
and sampling criteria, the necessary space is created to the 
managing socket buffer to accommodate the size of the IPv6 
extension header related to the corresponding measurement. If 
necessary, the buffer’s headroom is grown by the appropriate 
number of bytes (skb_cow) and the data area is expanded 
(skb_push) towards the head of the socket buffer accordingly 
[16]. Finally, the corresponding in-line measurement header is 
created, updated with the relevant values, and inserted between 
the main IPv6 and the upper layer header of the packet. For the 
unidirectional delay measurement, a system call is used to read 
the clock counter structure and return a 64-bit microsecond 
timestamp from the start of the UNIX era, which is then 
converted to NTP format (a delta between the epoch times is 
added to the seconds field, and microseconds are converted to 
second fraction) and inserted in the src timestamp fields of the 
corresponding measurement header. The dst timestamp fields 
are initialised to zero. It is worth noting that for a two-point 
measurement implementation, the dst timestamp field need not 
be initialised at the source and carried along with the packet. It 
can instead be added at the destination. However, this design 
choice was made in accordance to the IPv6 specification which 
states that the source constructs the entire extension header 
[14]. At the same time, this design maintains opaqueness for a 
potential edge-to-edge instantiation where the header is 
amended at an intermediate node and it is then carried within 
the packet up to its ultimate destination. 

For the packet loss measurement, the SRC module maintains 
flow state using a linked structure whose unique elements are 
identified by a five-tuple identical to the one used for the filter 
specification. It is worth noting that each entry of the flow 
table can be set to an individual value or to wildcard, and 
therefore entries can resemble individual transport protocol 
source-destination pairs (microflows) or flow aggregates (e.g. 
all traffic routed to a particular destination, all TCP traffic, 
etc.). Each element holds an incremental sequence number of 
the most recent packet seen to belong to the specific flow, and 
a timestamp indicating the arrival time of this packet. At any 
given point, the temporal difference from the arrival time of 
the most recent packet, indicates the inactivity timer of the 
corresponding flow. The flow table has a fixed size of one 
thousand entries upon exhaustion of which any new entry 
replaces the oldest existing entry (with the highest inactivity 
timer). It is reasonable to assume that the flow table size can 
mostly accommodate the number of flows running in parallel 
at an end-system. At the same time, the memory occupancy of 
the flow table is only 45 KB. An asynchronous periodic 
process examines the inactivity timer of each entry of the flow 
table, and removes entries that have been inactive for longer 
than a given threshold value. This process prevents 
unnecessary space being occupied by the flow table, and also 
implicitly facilitates fast entry retrieval by disassociating 
inactive entries. Keeping flow state at the network layer may 



TNSM-I8-P0369 
 

5

seem to be an overhead component; however, it facilitates an 
opaque and independent network-layer packet loss 
implementation, equally applicable to all current and future 
transport and application layer protocols (e.g. TCP, UDP, 
etc.). It also provides the flexibility of defining flows of 
different granularity according to the measurement scope. 
Using existing transport protocol control blocks (e.g. the hash 
table of active sockets) to embed the necessary structures for 
packet loss measurement would make the overall operation 
less opaque, since modifications at different layers (and for 
different protocols) of the stack would be necessary. At the 
same time, packet loss measurement would be applicable only 
for individual microflows (and not flow aggregates) that would 
originate locally. The flow specification would not extend to 
flows routed through (but not originated at) a particular node. 

The SRC module needs to avoid causing fragmentation 
when instrumenting traffic with in-line measurement 
indicators, since this would have a detrimental effect on the 
performance of instrumented packets which would be largely 
different from the rest of the traffic. This is less of an issue for 
UDP applications (e.g. VoIP) since they very rarely use large 
packet sizes. For bulk TCP traffic, however, which is carried 
within maximum-sized segments, the SRC module needs to 
communicate its space requirements to the stack. A TCP 
implementation computes the Maximum Segment Size (MSS) 
to transmit based on the minimum value between the MSS it 
receives from the remote end (in a SYN or SYN+ACK 
message), and its own medium’s Maximum Transfer Unit 
(MTU) after subtracting the space reserved for the IP and TCP 
headers plus any IP options, if present [17]. The SRC in-line 
measurement module can communicate its space requirements 
by setting the ext_header_len variable in a connections’ 
tcp_opt structure to the measurement extension header’s size. 
However, this would require the measurement module to 
monitor the active connections’ hash table and adjust the 
corresponding variables for connections that match the 
filtering criteria of the measurement process. In addition, when 
a socket is locally constructed in response to an application 
request, the local MSS value will be computed before any 
packet reaches the measurement instrumentation module. The 
most cost- effective way (which has been adopted by this 
implementation) to alter the MSS in order to accommodate 
space for the measurement headers is to monitor incoming 
SYN or SYN+ACK packets, and if they match the 
measurement filter specification, to clamp the advertised MSS 
(within the packet structure) of the remote end to 
min(local_MSS, remote_MSS) – hdr_ext_len. If, for any 
reason, (e.g. existing TCP sessions that have negotiated MSS 
prior to the initiation of a SRC measurement module) the 
addition of a measurement header would cause fragmentation, 
the SRC module will leave the packet unaltered. 

A generic DST measurement module implements one main 
function to retrieve the measurement extension header and its 
operation is triggered by the presence of such header in an 
incoming IPv6 packet. For the unidirectional delay 

measurement, a system timestamp of packet arrival at the 
destination of an instrumented path is read and inserted in the 
corresponding fields of the measurement header, whereas for 
the packet loss measurement the contents of the header remain 
intact. The main purpose of the DST module is to capture the 
measurement extension header and to subsequently remove it 
from the packet. It is worth noting that removal of the 
measurement extension header is not compulsory but it is 
included for opaqueness. If the header is not removed by the 
intended destination of an instrumented path (or if e.g. a DST 
module is not running at the destination), the stack will simply 
ignore it and process the rest of the packet.  

The module adjusts the packet structure’s size (skb_pull) 
and updates certain fields (next header, payload length) of the 
immediately preceding protocol header, accordingly. The 
extracted header is inserted into a FIFO queue and can be read 
by higher-level measurement processes through a system call 
to the kernel module. The FIFO structure has a fixed length of 
ten thousand bytes and it therefore imposes an upper limit on 
the amount of memory consumed by in-line measurement 
headers extracted from arriving datagrams. A consuming 
application can retrieve per-packet measurement records from 
the queue, either one-at-a-time or in bulks. A read operation 
from a consuming application results in the corresponding 
number of bytes being freed from the queue. When the queue 
if full, extension headers from newly arriving datagrams are 
not stored until space has been freed. It is left to the 
application to determine the appropriate pace to consume 
measurement data (depending also on the temporal traffic rate) 
in order to maintain an appropriate queue length and avoid 
newly arriving data being dropped locally. The chosen size for 
the data structure allowed user space applications to consume 
results continuously without losing any packet information. 

 

IV.  MEASUREMENT DATA  OVERHEAD 

The overhead associated with the operation of network 
measurement mechanisms is typically judged with respect to 
the measurement process and the measurement data injected 
into the network. In-line measurement does not generate 
additional synthetic load between two instrumented points in 
the network. Rather, measurement indicators are inserted in the 
data-carrying traffic itself which creates a small and constant 
data overhead of either 8 or 24 bytes per-packet for measuring 
packet loss and delay, respectively, and it is irrespective of the 
traffic type, rate or any other characteristics. This accounts for 
a byte overhead of 0.5% when measuring packet loss of 
maximum-sized Ethernet segments (1518 bytes) and can get 
up to 23% when measuring the delay of minimum-sized 
TCP/IPv6 acknowledgment packets. Although the latter 
percentage may seem quite significant, it is worth pointing out 
that acknowledgments consist entirely of headers and hence 
the addition of the measurement extension does not really 
cause data traffic reduction. In addition, it is envisaged that 
measurement instrumentation will mainly be targeted at the 
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larger and maximum-sized packets that carry the actual user 
data, and minimum-sized acknowledgement packets will only 
occasionally and very selectively be instrumented when 
particular aspects of this type of traffic will be considered.  

Measuring the same properties using an active measurement 
mechanism would require the generation of synthetic load of 
identical characteristics, volume and duration to the traffic to 
be measured. Hence, letting alone the bandwidth consumed by 
active measurement processes and the consequential side-
effects on network performance degradation, they also impose 
linearly increasing data overhead with respect to the target 
traffic characteristics. In terms of bytes, the generation of an 
additional packet results in a link-layer byte overhead from 64 
to 1518 bytes (for e.g. an Ethernet segment), which is a 
deficiency ranging from 63% to 99.48% when compared to in-
line measurement. At the same time, the direct per-packet in-
line measurement conducted at the destination of an 
instrumented path does not require offline measurement data to 
be shipped and correlated over the network, as it is the case 
with passive monitoring systems. The data correlation required 
from two distinct passive monitoring devices in order to 
measure a characteristic of the interconnecting path (such as 
the unidirectional delay) equals twice the amount of the per-
packet captured data plus the capture library header that 
normally stores measurement data such as timestamps [5]. This 
would at least sum up to 2x56 bytes per packet for IPv4 and 
2x76 bytes per packet for IPv6 (to include network and 
transport layer headers and e.g. the libpcap header), which 
results in a data overhead deficiency between 78.6% and 
94.7% compared to in-line measurement. 

 

V. END-TO-END THROUGHPUT OVERHEAD 

ASSESSMENT 

We now turn our attention to a rigorous experimental 
evaluation of a software-based end-to-end in-line performance 
measurement implementation with respect to the overhead 
incurred by the measurement process itself. 

A. Experimental Environment and Parameters 

The experimental environment consisted of two Sun Fire 
X4100 servers equipped with one 2.2 GHz AMD Opteron™ 
processor (single-core), with 128 KB of L1 cache and 1MB of 
L2 cache. The machines have 2 GB of 400 MHz DDR 
synchronous memory. The network interfaces are Gigabit 
Ethernet Intel® PRO/1000 residing in a PCI-X 100 MHz slot. 
The two systems were connected via a Force10 E1200 
switch/router configured as an IPv6 router that didn’t drop any 
packets during the experiments. The end-systems ran Linux 
2.6.20, (re)compiled to support the in-line measurement hooks, 
and had the corresponding SRC and DST kernel modules 
loaded to perform end-to-end in-line unidirectional delay and 
packet loss measurement, respectively. 

An application-level traffic generator has been used to 
operate on top of the socket layer to resemble the packet 
generation patterns and performance of application flows. 
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Fig. 4. Actual vs. specified traffic rate for instrumented and native Linux 

 
Iperf was used to generate a range of CBR UDP/IPv6 flows 

assuming different packet sizes and different transmission rates 
[18]. The minimum packet size supported by Iperf in order to 
stream its own measurement indicators between the client and 
the server processes is 56 bytes of application-level data. This 
results in a minimum Iperf/UDP/IPv6 datagram of 104 bytes, 
and a 112-byte or 128-byte minimum-sized datagram for one-
way loss and one-way delay in-line measurement 
instrumentation, respectively. We have therefore chosen 56, 
512 and 1400-byte application-level packets to represent 
minimum, medium and maximum-sized IPv6 datagrams. 
Traffic rates were varied between 1 Mb/s and 1 Gb/s, which is 
the typical maximum transfer rate for commodity 
hardware/software end-system configurations. For each 
combination of transmission rate and packet size, the 
experiments were replicated three times. Wildcard filtering 
and sampling specifications were used for the SRC delay and 
loss modules to instrument all outgoing traffic. 

B. Instrumentation impact on end-to-end throughput 

We have studied the impact of traffic instrumentation on 
end-to-end application-level throughput due to the additional 
per-packet operations incurred. The nested combination of 
different packet sizes and transmission rates used for the 
experiments has been normalised to kilo-packets per second, 
using the decimal conversion for high orders of magnitude of 
transmission speeds. Fig. 4 shows the effective end-to-end rate 
achieved (in kilo-packets per second) versus the rate specified 
by the traffic generation process for the native and 
instrumented Linux, respectively. Each point in the graph 
represents the mean packet rate taken from the three 
experiment replications for a given set of parameters. For most 
packet rates, the overhead incurred from the SRC and DST 
modules for both the packet delay and packet loss 
measurement instrumentation is negligible since the specified 
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rate is sustained. For the highest rates, from 180 up to the 
theoretical maximum of 880 kilo-packets per second (for 56-
byte, application-level packets), the system operates under 
stress and this is evident from the deviation of the effective 
rate from the specified rate for native Linux. These traffic rates 
correspond to minimum-sized (56-byte) packets transmitted at 
200 Mb/s up to 1Gb/s. Mean throughput reduction of 3.4% 
and 6% for packet delay and loss instrumentation, 
respectively, only occurs at these high-load rates, when even 
native Linux’s effective throughput is reduced by 15.3% on 
average. The additional flow classification and table lookup 
operations undertaken by the loss SRC module make it more 
costly on average than the stateless packet delay measurement. 
It is visually evident that the use of minimum-sized packets at 
high transmission rates has a far more detrimental effect on the 
end-to-end throughput than in-kernel measurement 
instrumentation. In addition, this is the worst-case performance 
bound incurred by in-line measurement instrumentation, and it 
can be seen that by employing a moderate systematic sampling 
scheme (e.g. instrumenting 1-in-10 packets), measurement cost 
on throughput can drop below 1%. This becomes clearer by 
comparing the maximum effective application throughput for 
each of the three different packet sizes, as shown in TABLE I. 
Using 1400-byte packets, native Linux throughput 
approximates the maximum application-level theoretical 
transmission rate for a system equipped with 1Gb/s interfaces, 
due to per-packet header overheads [8]. The difference 
between the maximum effective throughput achieved by native 
and instrumented Linux is minimal for maximum and medium-
sized packets, varying between 1.5% and 3.4% for 
unidirectional delay, and between 0.6% and 1.3% for packet 
loss instrumentation, respectively. On the other hand, 
throughput of minimum-sized packets is massively decreased 
even for native Linux, reaching only 181 Mb/s. However, this 
throughput reduction does not reflect the modules’ overhead; 
rather, it is caused by the increased context switch between 
user and kernel address space when the end-systems operate 
under high load.  

We have experimentally evaluated this claim by using the 
pktgen [19] in-kernel traffic generator to stress test the 
systems’ maximum transmission rates. We modified the pktgen 
source code to include the in-line traffic instrumentation and 
compared its effective throughput with a clean pktgen instance. 
With 56-byte (application-level) packets, the one-way delay 
and the packet loss instrumented versions achieved 641 kpps 
(604Mb/s) and 619 kpps (584Mb/s), respectively. The original 
pktgen version reached 677 kpps (638Mb/s). These 
significantly higher throughput values verify the costly user 
space/kernel context switch. 

 
TABLE I. MAXIMUM  END-TO-END APPLICATION THROUGHPUT 

Traffic 
instrumentation 

Maximum application throughput by 
packet size (Mb/s) 

56-byte 512-byte 1400-byte 

Packet delay 154 822 922 
Packet loss 134 840 930 

Native Linux 181 851 936 

The measurement modules’ impact on throughput even 
under maximum system load (in terms of packet-per-second 
generation) remains below 6% and 9%, for packet delay and 
loss instrumentation, respectively. Although it is evident that a 
measurement process would tune itself to not instrument 
minimum-sized datagrams transmitted at maximum rate since 
they do not represent any typical end-to-end application-level 
load, this stress-test demonstrates the low overhead of in-line 
traffic instrumentation even under maximum system load. 
Again, employing a moderate systematic sampling scheme 
would result in measurement cost reduction below 1% under 
extreme load conditions. 

C. Factorial design and analysis 

After looking at the mean impact of the instrumentation 
process on end-to-end throughput, we will now assess the 
importance and statistical significance of these values, with 
respect to other influencing parameters, such as the traffic 
generation rate and the datagram size. For this purpose, we 
have constructed a full three-factor factorial experimental 
design with replications, and analysed the corresponding 
regression model. The response variable has been the ratio of 
the effective end-to-end throughput over the specified 
transmission rate of the traffic generation process. The three 
predictor variables that affect the response are the presence of 
the measurement modules (A), the transmission rate (B), and 
the packet size (C). The analysis will enable separating the 
effects of each factor on performance, and determining if a 
factor has a significant effect or if the observed differences in 
the response variable are due to random variations caused by 
uncontrolled experimental parameters. The model for the 3-
factor full factorial design, with factors A, B, and C at a, b, and 
c levels, respectively and r replications is: 

 
 

           1,..., ;   1,..., ;   1,..., ;   1,...,
ijkl i j k ABij ACik BCjk ABCijk ijkly e

i a j b k c l r

µ α β ξ γ γ γ γ= + + + + + + + +

= = = = (1) 
 
The model includes the mean response µ, 23-1 effects and 

the experimental error; three main effects, three two-way 
factor interactions and one three-way factor interaction 
between all predictors. αi is the effect of factor A at level i, γABij 
is the interaction between factors A and B at levels i and j, 
respectively, and so on. In our case, the measurement module 
factor has two levels, indicating whether the SRC and DST 
modules are loaded or not. Transmission rates assume 
continuous values from 1 Mb/s up to 1 Gb/s, and the packet 
size factor has three levels for 56, 512, and 1400-byte packets, 
respectively. For each factor-level combination, the 
experiment was repeated three times. The importance of each 
factor is measured by the proportion of the total variation in 
the response that it explains. Its statistical significance is then 
calculated using the typical analysis of variance procedure 
which compares the contribution of the factor to variation with 
respect to that of the unexplained variation due to errors [20].  
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Fig. 5. Residuals versus predicted response and normal quantile-quantile plot 
of the residuals 

 
However, the underlying assumptions in deriving the 

expressions for model effects are that the model errors are 
statistically independent, additive, normally distributed and 
have a constant standard deviation σe, and that the effects of 
factors are additive [21]. These assumptions lead to the 
observations being independent and normally distributed with 
constant variance. Fig. 5 shows that the assumptions of 
normality and independence of errors do not hold for our 
regression models. The scatter plot of residuals (model errors) 
versus predicted response show clear trends that cannot be 
ignored since the two quantities lie in the same order of 
magnitude. Also, the normal quantile-quantile plots of the 
residuals show that they heavily deviate from normality. As it 
was expected, obvious transformations of the models’ response 
variable did not satisfy the normality and independence 
assumptions either, mainly due to its skewness (the ratio of the 
effective versus specified throughput for the majority of 
experiments is close to or equal to 1). Therefore, in order to 
robustly measure the importance and significance of each 
factor we have used nonparametric bootstrap to estimate the 
sampling distribution of the model effects and their sums of 
squares, without making any assumptions about the form of the 
population and without deriving the sampling distribution 
explicitly [22]. For each of the two types of traffic 
instrumentation, the set 1 2{ , ,..., }nS X X X= of the effective 

throughput ratio of all runs is considered as a sample from the 
population 1 2{ , ,..., }NP x x x= of all possible outcomes. 

Nonparametric bootstrap draws a sample of size n with 
replacement from among the elements of S to form the 
resulting bootstrap sample * * * *

1 11 12 1{ , ,..., }.nS X X X= In effect, 

the sample S is treated as an estimate of the population P, 
where each element Xi of S is selected for the bootstrap sample 
with probability 1/n. This process is mimicking the original 
selection of the sample S from the population P, and is 
repeated a large number of times selecting many bootstrap 
samples. The key bootstrap analogy is that the population is to 
the sample as the sample is to the bootstrap samples. 
Consequently, a statistic * *( )b bT t S= computed for each of the 

bootstrap samples has a distribution around the original 
estimator ( )T t S= of the sample analogous to the sampling 

distribution of T around the population parameter 
( ).t Pθ = One thousand bootstrap samples were used to 

estimate the distributions of the sums of squares and of all the 
model effects. 

TABLE II. shows the percentage of variation allocated to 
factors, interactions and errors. For both packet delay and 
packet loss measurement instrumentation, the overall model 
explains more than 94% percent of the variation in end-to-end 
effective throughput ratio, since the variation due to errors is 
less than 6%. In both cases, the measurement modules’ 
contribution to variation is minimal, accounting for less than 
0.6%, and can therefore be safely ignored. Transmission rate 
explains 18.05% of the variation in effective throughput for 
the packet delay instrumentation, and 19.96% for the packet 
loss instrumentation. Clearly, the most important parameter is 
packet size that explains more than 50% of the variation in 
both models. The interaction between transmission rate and 
packet size for both models explains 24.09% and 23.43% of 
the variation, respectively. On the contrary, the two-way 
interactions between the measurement modules and the 
transmission rate and packet size are unimportant since they 
account for less than 1% of the variation in both models. 
Likewise the three-way interaction between the predictors can 
also be safely ignored for both models. Overall, the allocation 
of variation shows that the presence of the measurement 
modules does not impact the applications’ end-to-end effective 
throughput. 

Fig. 6 and Fig. 7 show all the bootstrapped model 
coefficients with their 95% bias-corrected, accelerated (BCa) 
percentile confidence intervals for the packet delay and packet 
loss instrumentation models, respectively. BCa improves on the 
percentile method – which also does not assume normality – 
by correcting bias and skewness [22]. The figures show the 
contrasts of the k-1 levels of each factor, omitting the base 
level. For the measurement modules, the base level is their 
absence from the traffic generation process, and for the packet 
size factor is the 1400-byte value. All k levels for each factor 
sum to zero. The coefficients that have a statistically 
significant effect on the effective throughput ratio, at a 0.05 
significance level, deviate from the zero reference line. For 
example, if we look at Fig. 6 it is evident that the choice of a 
small packet size (56 bytes) has a significant effect in 
decreasing the effective throughput due to the large number of 
packets that need to be generated to sustain the highest 
bandwidth levels. 

 
TABLE II.  ALLOCATION  OF VARIATION  OF FACTORS (%) 

Allocation of variation (%) 
Traffic 

instrumentation 
Factors 

Module Rate P_size Errors 

Packet Delay 0.46 18.05 51.67 5.19 
Packet Loss 0.59 16.96 52.37 5.87 

 Interactions 
mod/rate mod/p_size rate/p_size 3-factor 

Packet Delay 0.16 0.31 24.09 0.06 
Packet Loss 0.16 0.56 23.43 0.06 
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Fig. 6. Unidirectional delay instrumentation: model effects with 95% BCa 
Confidence Intervals 
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Fig. 7. Packet loss instrumentation: model effects with 95% BCa Confidence 
Intervals 

 
To a lesser extent, increasing transmission rate has a similar 

effect (rightmost plot) since the system does not have the 
internal capacity to generate the highest bit rates (approaching 
1 Gb/s) irrespective of packet size. It is worth noting here that 
maximum network capacity is defined with respect to the link-
layer transmission capabilities, and it is therefore normal for 
the application to never reach the maximum nominal 
bandwidth since headers from lower levels cause additional 
byte overhead. Both Fig. 6 and Fig. 7 agree on the statistically 
significant effect that transmission rate and minimum packet 
size have on decreasing the effective end-to-end throughput. 
The interaction between transmission rate and packet size also 
has a statistically significant effect, especially for minimum-
sized packets. On the contrary, the presence of the 
measurement modules does not impact end-to-end throughput 
in a statistically significant way at a 0.05 significance level, 
since the 95% confidence intervals of the coefficient for both 
models include zero. In addition, all the interactions between 
the measurement modules and the rest of the factors are 
insignificant at the 0.05 confidence level. 

Therefore, after this rigorous experimental design analysis, 
it is safe to conclude that the per-packet, in-line measurement 
traffic instrumentation does not negatively impact end-to-end 
effective throughput in a statistically significant way. 

 

VI.  SYSTEM PROCESSING OVERHEAD 

A. System-wide instrumentation impact 

After demonstrating that in-line traffic instrumentation does 
not have a statistically significant impact on application-
perceived performance, this section focuses on the system 
processing impact of the in-line measurement modules at the 
two instrumented end-systems that insert and record/remove 
the measurement extension header, respectively. We have used 
the oprofile tool to examine the modules’ system-wide 
processing impact on the source and destination end-systems 
[23]. Oprofile is capable of profiling all running code of a 
system, including interrupt handlers, the kernel, shared 
libraries and applications by leveraging hardware registers of 
the CPU that provide performance counters for cache misses, 
CPU cycles, etc. We have measured the mean CPU utilisation 
of all running code on the two instrumented end-systems 

during the traffic generation process with and without the 
modules being loaded, and compared the differences. Due to 
profiling granularity restrictions, we have accounted for 
functions individually consuming at least 0.001% of CPU 
time, and we then normalised them to sum to 100%. For each 
function, the average CPU utilisation over three replications of 
the experiments was calculated, and then the distribution of 
per-function CPU utilisation was computed. By computing the 
differences in the utilisation distributions between the 
instrumented and native end-systems, we calculated the mean 
difference in per-function CPU utilisation and computed the 
95% quantile confidence intervals, which are shown in Fig. 8 
and Fig. 9. It can be seen that for both types of in-line traffic 
instrumentation and at all packet transmission rates, the 
difference in CPU utilisation at a 0.05 significance level for 
both the source and the destination end-systems includes zero 
and is therefore statistically insignificant. More specifically, it 
can be seen that the confidence intervals cover a minimal 
region of less than 4% and therefore the variability in CPU 
consumption by the various systems processes is minimum. 
This implies that the presence of the SRC and DST modules 
on systems’ protocol stacks for either unidirectional delay or 
packet loss instrumentation does not incur a significant system-
wide processing overhead by not causing any system process 
(like e.g. kernel socket buffer functions) to significantly 
increase its CPU consumption, even when instrumenting traffic 
at high packet rates. 

TABLE III shows the mean CPU utilisation (%) of each 
function of the delay and loss measurement modules. As it will 
become apparent in the following subsection, individual 
utilisation values should be treated as relative estimates, since 
the profiler would not accumulate the utilisation of external 
function calls to the caller function. However, it is useful to 
compare the differences in the overall CPU utilisation between 
the two types of measurement instrumentation. 

 
TABLE III.  MEAN PER-FUNCTION CPU UTILISATION  (%) 
 Mean CPU Utilisation (%) 

filter_tests sampling make_room insert retrieve 
Delay 

measurement 
0.83 0.11 0.26 0.33 4.27 

1.53 
Loss 

measurement 
1.12 0.19 0.21 0.54 2.52 

2.06 
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Fig. 8. Unidirectional delay instrumentation: impact on system-wide CPU 
utilisation 
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Fig. 9. Packet loss instrumentation: impact on system-wide CPU utilization 

 
 

The SRC module incurs less CPU overhead for the packet 
delay instrumentation than it does for packet loss, due to the 
internal (flow) state that is maintained by the latter. In order to 
insert the appropriate sequence number to each datagram, the 
SRC module needs to match it against a given flow 
specification held in memory, and to subsequently update this 
specification to include the latest reference values. This is 
clearly more costly than the stateless per-packet operation of 
reading one system timestamp, undertaken by the one-way 
delay SRC module. On the contrary, the DST module 
undertakes a more costly operation when performing a delay 
measurement, since it needs to amend the measurement header 
with an additional system-local indicator. All other operations 
being equal (e.g. extension header extraction, amendment of 
the socket buffer structure, etc.), the packet loss DST module 
merely stores the existing header without modifying it. 

B. Detailed kernel instrumentation 

Oprofile is an external CPU sampling utility and it can 
provide for system-wide percentage profiling, but cannot 
accurately assess the exact CPU utilisation of individual 
functions. This is due to the external profiler sampling the 
innermost function and therefore utilisation is not attributed to 
the caller functions. Therefore, in order to get absolute values 
of CPU usage for the in-line measurement modules, we have 
used the ReaD Time Stamp Counter (RDTSC) CPU 
instruction to instrument every single function of the modules’ 
code and compute its processing cost. During each 
experimental run, we recorded the processing time for each 
instrumentation function of the last one thousand packets. 
Most (per-packet) processing times assumed values around a 
single mode with a few observations deviating and creating 
skewness in the distribution, hence the median was chosen as 
the index of central tendency for the per-function processing 
time distributions in each experimental run [21]. Then the 

mean processing time over the three replications of each 
experiment was chosen for each function.  

Fig. 10 and Fig. 11 show the three-dimensional scatter plots 
of the per-packet processing time in CPU cycles versus traffic 
rate and packet size for each instrumentation function of the 
delay and loss-measurement modules, respectively. In each 
scatter plot, a plane is also drawn based on the linear model of 
the processing time with respect to the transmission rate and 
the packet size. The plane helps to visually identify the 
dependence of the response variable to the two altering factors. 
The first four functions are employed by the SRC module and 
the latter by the DST module. For both types of 
instrumentation, packet filtering and header insertion functions 
assume small values independently of packet size and 
transmission rate. This was expected since both functions 
perform invariable operations based on the header contents of 
each packet. So does packet sampling, although its operation is 
minimal since it was set to sample all packets for the present 
experiments. It can be seen that header insertion is more than 
twice as costly for the stateful packet loss instrumentation as it 
is for packet delay. This is due to the additional flow 
classification and lookup operations are conducted by the 
packet loss SRC module, in order to determine the correct 
sequence number to insert to the in-line measurement header. 
The most costly function is make_room_for_ext_hdr that 
invokes the corresponding system calls to increase the socket 
buffer’s headroom and to push the packet contents accordingly 
[16]. These heavily depend on the packet structure’s size since 
larger data blocks need to be moved in the kernel; to some 
extent the cross-function calls also increase consumption under 
high CPU load. This important attribute is not captured by the 
external profiler’s values in TABLE III which do, however, 
demonstrate the overall relative cost difference between the 
SRC and DST modules of the two types of instrumentation. 
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Fig. 10. Unidirectional delay instrumentation: CPU Cycles consumed by the SRC and DST modules’ functions 
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Fig. 11. Packet loss instrumentation: CPU Cycles consumed by the SRC and DST modules’ functions 

 
Retrieve_ext_hdr is the second most costly function whose 

CPU cycles consumption mainly depends on the packet size. 
This is due to the removal of the measurement extension 
header and the corresponding adjustment of the packet 
structure’s headroom (inverse operation from that undertaken 
by the SRC module’s make_room_for_ext_hdr), and also 
due to copying each extracted header to a memory queue 
which can then be read by higher-level applications. It is up to 
these consumer applications to decide on the method and the 
temporal interval at which they should read the extracted 
headers. The instrumentation modules take care not to exhaust 
memory resources by maintaining a fixed-size structure, after 
exhaustion of which (due to, for example, a consumer process 
reading data only infrequently) no further measurement 
extension headers are stored. The slightly higher CPU 
consumption of this function for the unidirectional delay 
measurement, relates to the successive memory copies of the 
larger (delay) measurement extension header.  

TABLE IV shows the overall processing time of in-line end-
to-end packet instrumentation for the two types of 
measurements in microseconds, on the 2.2 GHz CPU of our 
instrumented end-systems. Overall processing time is the sum 
of all SRC and DST modules’ functions for each type of 
measurement. It can be seen that the total processing time of 
the software-only in-line measurement instrumentation is 
minimal, on the order of one microsecond. 

 
TABLE IV.  OVERALL TRAFFIC INSTRUMENTATION TIME BY 

APPLICATION-LEVEL PACKET SIZE ON 2.2 GHZ CPU 
Total Instrumentation Time (µsec) 

 56-byte 512-byte 1400-byte 
Unidirectional Delay 0.71 0.88 1.08 

Packet Loss 0.81 0.97 1.16 

 
Moreover, the two most costly functions are dominated by 

memory access operations (such as e.g. skb_cow, skb_pull, 
etc.), implying that the CPU has to spend idling cycles if the 
data were not in its cache. Hence, the overall ‘true’ processing 
time can be further reduced by exploiting data locality during 
packet processing. 

The impact of increasing packet size on the processing time 
is minimal, since on average, 1400-byte packets only incur a 
0.36 µsec additional overhead with respect to minimum-sized 
packets. The total stateless packet delay instrumentation is on 
average 0.09 µsec less costly than packet loss instrumentation 
which maintains internal (flow) state, regardless of packet size. 

 

VII.  DISCUSSION 

In-line measurement is a mechanism to measure the 
performance of the data-carrying Internet traffic while this is 
routed between a source and a destination (either the ultimate 
end-points or intermediate ones, between for example, network 
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ingress and egress). It merges the benefits of active and 
passive measurement into what can be seen as a hybrid: 
directly implementing a chosen performance metric in short 
timescales (similar to active), by observing and instrumenting 
the existing operational traffic (similar to passive). At the same 
time, it overcomes the major limitations of active and passive 
measurement: first, it avoids the “Heisenberg” effect of active 
measurement where the additional traffic perturbs the network 
and biases the resulting analysis; it also avoids the need for 
correlation and analysis of passive measurement traces, and 
the consequential need to operate in long timescales. The main 
challenge for such in-line measurement mechanism is to have a 
small impact on the network traffic and on the instrumented 
systems, so that it can form the basis for a measurement plane 
for the next generation Internet and operate at an always-on 
manner. In this paper, we have focused on the end-to-end 
software implementation of in-line measurement, and we 
showed that an in-kernel prototype system can be seamlessly 
integrated with the network stack and incur minimal overhead. 
In a different study, we have built a system for instrumenting 
traffic with in-line measurement headers between the edges of 
network topologies [15]. In that case, hardware is exploited in 
order to keep pace with the multi-gigabit rates, and to facilitate 
in-line measurement instrumentation as a native part of 
routers’ data (fast) path.  

In its current form, in-line measurement has been designed 
as a two-point mechanism in order not to incur significant 
additional processing to the data-carrying traffic, and to 
demonstrate how the measurement functionality needs only to 
occur at specific pre-identified nodes which can be adequately 
provisioned. However, the mechanism can be easily extended 
to implement different performance metrics such as hop-by-
hop or round-trip delay and loss. The appropriate header 
structures would need to be defined in order to carry the 
relevant indicators for the desired metrics. For example, for 
measuring intermediate path delays between multiple network 
nodes, header fields would need to hold the relevant number of 
timestamps along with the corresponding node identifiers. 
However, increasing the number of instrumentation points 
along a path reduces selective processing and introduces 
additional overhead on the instrumented traffic which when 
accumulated can be non-negligible. Therefore, the associated 
overhead should be carefully considered when implementing 
performance metrics that require processing from intermediate 
network nodes.  

One important property of in-line measurement is that the 
mechanism is independent from particular measurement 
processes and/or infrastructures. Therefore, it can be integrated 
with higher-level processes developed to measure specific 
properties of a path. For example, a process to measure 
capacity or available bandwidth of a path can generate its own 
traffic load (e.g. trains of packet-pairs) and use the in-line 
measurement headers to measure packet inter-spacing at 
source and destination, taking advantage of the kernel-level 
timestamps. Using the filter specification of the in-line 

measurement prototype, an application process can choose a 
particular subset of traffic to be instrumented by the kernel. 
The seamless integration of in-line measurement with the 
network stack, its potential always-on operation, together with 
its different instantiations (end-to-end, edge-to-edge), 
constitute it a promising candidate mechanism for network 
operations and management. It provides a unified and 
extensible framework able to instrument any type of traffic 
over any type of network, and produce accurate results that 
reflect the temporal performance experienced by the 
operational network load.  

Although measurement functionality has been incorporated 
in a number of protocols, particularly those handling real-time 
traffic such as RTP, in-line measurement can become a 
universal mechanism for the measurement and management of 
all traffic carried over the next generation Internet 
infrastructure. In contrast to transport and application-level 
measurement which can be deployed end-to-end and used only 
by the relevant end-systems, in-line measurement can be 
equally exploited by end-systems and by network operators. At 
the same time, it can be exploited by any new protocol 
deployment, which will not need to build its own redundant 
instrumentation mechanisms to tune the application-level end-
to-end performance.  

End-to-end deployment of in-line measurement on 
individual microflows and flow aggregates can provide an 
accurate description of the service levels delivered to 
customers, and enable performance-based charging, especially 
for intolerant applications with real-time requirements. 
Summaries of temporal performance indicators can be 
exchanged between the end-system and the service provider to 
give timely views of user-perceived performance, and 
potentially enable the last-mile topologies to be provisioned 
on-demand according to the application requirements and the 
service-level agreement. Similar, yet totally static, approaches 
on service differentiation are being used by some providers 
who give the ability to users to flex their network speed for a 
given time interval. By using in-line measurement data 
available at end-systems, providers can offer more fine-grained 
service differentiation based on ephemeral needs of particular 
application flows.  

An in-network edge-to-edge deployment can also be of 
particular relevance to operators for directly measuring the 
performance of their topologies, and not having to infer it 
through correlating sampled traces at much longer timescales. 
Large objects such as traffic matrices and also edge-to-edge 
delay and loss can be directly computed for different traffic 
types and at different levels of aggregation. At the same time, 
since measurement is based on the actual data-carrying traffic, 
an operator can integrate performance indicators with network 
control structures that can enable, for example, load-sensitive 
routing and traffic differentiation. Distributed measurement 
infrastructures can aggregate and consume measurement 
indicators from instrumented nodes, and can construct 
network-wide views of performance in short timescales. 
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VIII.  RELATED WORK 

Active and passive measurement mechanisms do not 
typically enhance the packet forwarding functions of the data-
carrying traffic. Active measurement infrastructures and tools 
(e.g. [3][4][18][19]) operate on synthetic traffic, whereas 
passive measurement systems observe the operational network 
traffic (e.g. [5][6][7]). Particular implementations, mainly of 
active measurement, have been designed to operate in the 
kernel in order to provide for increased control and efficiency 
over the measurement process yet they still do not interfere 
with the protocol stack operations of the data-carrying packets. 
Such tools include MAD [24] which is a kernel-level daemon 
to support real-time scheduling of probe streams, pktgen [19] 
which is a high performance traffic generator included in the 
Linux kernel, PeriScope [25] which is a kernel-level API 
enabling the definition of new probing structures, and pktd 
[26] which is a kernel daemon used to provide controlled 
access to the network device for higher-level measurement 
software. Reports of these tools do not provide detailed results 
of system impact since this varies depending on the different 
measurement processes used alongside.  

A number of in-line measurement mechanisms have more 
recently been designed to offer measurement capabilities at 
different locations of the networking stack. Inline 
Measurement TCP (ImTCP) [27] and the Measurement 
Manager Protocol (MGRP) [28] operate at the TCP layer of 
the network stack and multiplex measurement and application 
traffic in order to infer network bandwidth. The former alters 
the TCP sending process to measure available bandwidth, 
whereas the latter uses measurement traffic to piggyback 
application data. In contrast to in-line measurement described 
in this paper, these tools implement a particular performance 
metric and do not constitute a wider framework for 
performance measurement. The evaluation of each system 
mainly focuses on the accuracy of the bandwidth measurement 
process and not so much on their overall system impact, which 
still needs to be analysed. Sidecar [29] suggests re-using 
retransmitted TCP segments to probe the network, and 
BitProbes [30] proposes to insert measurement information 
within the application payload of packets. Again, both papers 
focus on the relevance of their measurement results and not on 
the system-wide impact of the implementations. 

Our solution is more generic than the propositions described 
above. Every packet can be tagged without any application or 
transport layer dependency. Consequently, it becomes easier to 
implement as it only requires the presence of an extensible 
optional framework, which is already natively present within 
IPv6 in the form of extension headers. Nevertheless, on the 
host side, there could be significant overhead incurred, since 
the measurement instrumentation can happen on virtually 
every IP packet. In this work, we have used fine-grained 
system performance analysis to demonstrate that this is not the 
case even if all data-carrying packets are tagged back-to-back. 
The work in [31] focuses on assessing the overall system 
impact of the TCP/IP stack implementation and uses 

techniques of host profiling similar to the one that we have 
used in this work. More recently, system-level performance 
evaluation of network protocol processing has been conducted 
on top of multicore systems, but focused on the hardware 
performance hit albeit without evaluating any protocol in 
particular [32]. 

 

IX.  CONCLUSION 

Following the legacy of telecommunication networks, the 
Internet has adopted a clear separation between control and 
data plane operations. At the same time, end-to-end data and 
control traffic is multiplexed at the level of individual 
datagrams (packets) under a single best-effort delivery service, 
which constitutes accountability of resource usage and traffic 
performance evaluation non-trivial in short timescales. 
Performance measurement tends to be an ad hoc activity that is 
conducted independently of the network’s main forwarding 
mechanism. Inevitably, most research focuses on performance 
modelling for the characterisation of traffic behaviour and for 
network provisioning. Ubiquitous mechanisms for 
instrumenting the data-carrying traffic, and therefore enabling 
for a unified framework for direct and pervasive performance 
measurement, have not been seriously considered because of 
the (often over-estimated) associated overhead on the 
Internet’s data delivery mechanism. 

However, the Next Generation Internet Protocol (IPv6) 
provides the necessary mechanisms that can be exploited for 
optional structures to be defined and encoded natively, as part 
of the ubiquitous network layer. In-line traffic instrumentation 
with measurement (and possibly control) information has a 
tremendous potential to become the cornerstone for automated 
Next Generation Networks (NGN) operations. The particularly 
low associated overhead, as demonstrated in this paper, should 
act as a driving force for future protocol designers to seriously 
consider the introduction of ‘thin layers’ for optional 
processing within the protocol stacks, in order to 
accommodate change and extensibility in NGNs.  

In this paper we have thoroughly evaluated the impact of the 
software prototype of IPv6-based in-line measurement on 
throughput and on end-system resource consumption. Through 
rigorous and formal statistical analysis, we have demonstrated 
that an always-on traffic instrumentation mechanism can be 
seamlessly integrated with the network’s main forwarding 
operation, while incurring minimal and statistically 
insignificant overhead. When operating under extreme load 
conditions, effective throughput reduction does not exceed 
9%, whereas when transmitting at gigabit speeds with 
maximum-sized datagrams, end-to-end throughput reduction 
stays below 1.5%. These are worst-case figures when 
instrumenting every packet with measurement indicators. It is 
evident that by employing a moderate sampling scheme which 
will maintain measurement accuracy, the throughput reduction 
can be truly negligible. Per-packet CPU utilisation of the 
overall end-to-end traffic instrumentation process stays on the 
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order of one microsecond at a commodity 2.2 GHz processor, 
while the system-wide impact of the measurement modules on 
resource consumption is negligible. 
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