
1

Handling Multiple Failures in IP Networks through
Localized On-demand Link State Routing

Glenn Robertson, Srihari Nelakuditi

Abstract—It has been observed that transient failures are fairly
common in IP backbone networks and there have been several
proposals based on local rerouting to provide high network
availability despite failures. While most of these proposals are
effective in handling single failures, they either cause loops or
drop packets in the case of multiple independent failures. To
ensure forwarding continuity even with multiple failures, we
propose Localized On-demand Link State (LOLS) routing. Under
LOLS, each packet carries a blacklist, which is a minimal set
of failed links encountered along its path, and the next hop is
determined by excluding the blacklisted links. We show that the
blacklist can be reset when the packet makes forward progress
towards the destination and hence can be encoded in a few bits.
Furthermore, blacklist-based forwarding entries at a router can
be precomputed for a given set of failures requiring protection.
While the LOLS approach is generic, this paper describes how it
can be applied to ensure forwarding to all reachable destinations
in case of any two link or node failures. Our evaluation of
this failure scenario based on various real network topologies
reveals that LOLS needs 6 bits in the worst case to convey the
blacklist information. We argue that this overhead is acceptable
considering that LOLS routing deviates from the optimal path
by a small stretch only while routing around failures.

I. INTRODUCTION

The Internet is increasingly being used for mission-critical
applications and it is expected to be always available. Un-
fortunately, service disruptions happen even in well-managed
networks due to link and node failures. There have been some
studies [1]–[3] on frequency, duration, and type of failures
in an IP backbone network. [2] reported that failures are
fairly common and most of them are transient: 46% last less
than a minute and 86% last less than ten minutes. To support
emerging time-sensitive applications in today’s Internet, these
networks need to survive failures with minimal service dis-
ruption. For example, a disruption time of longer than 50 ms
is considered intolerable for mission-critical applications [4].
Therefore, providing uninterrupted service availability despite
transient failures is a major challenge for service providers.

While a majority of the failures were observed to be single
failures, one study [2] has found that approximately 30%
of unplanned failures (which constitute 80% of all failures)
involve multiple links, which is a significant fraction that needs
to be addressed. Moreover, the extent of service disruption
caused by multiple failures can be quite significant. Hence, it
is important to devise schemes that protect the network against
not only single failures but also multiple independent failures.

Manuscript received August 08, 2011; revised Feb 19, 2012; accepted May
15, 2012 by the Associate Editor Marcus Brunner.

This work was supported in part by the National Science Foundation (NSF)
under grants CNS-0448272 and CNS-0551650.

G. Robertson and S. Nelakuditi are with the Department of Computer
Science and Engineering, University of South Carolina, Columbia, SC 29208.

Our work is motivated by this need, which is also the focus
of some of the recently proposed routing schemes [5]–[7].

The commonly deployed link state routing protocols such
as OSPF and ISIS are designed to route around failed links but
they lack the resiliency needed to support high availability [1].
The remedies suggested in [8], [9] can achieve convergence
in less than one second. However, bringing it down below the
50ms threshold runs the risk of introducing routing instability
due to hot-potato routing, which can cause relatively small
internal link-state changes to trigger a large churn of external
routes [10]. MPLS [11] can handle transient failures effectively
with its label stacking capability. However, we argue that
it is not scalable to configure many backup label switched
paths for protection against various combinations of multiple
independent failures. In [12], authors attempt to make MPLS
based recovery scalable to multiple failures, but assume that
probable failure patterns based on past statistics on the network
failures are known to the MPLS control plane.

There have been several fast reroute proposals for handling
transient failures in IP networks by having the adjacent nodes
perform local rerouting without notifying the whole network
about a failure [13]–[17]. However, most of these schemes
are designed to deal with single or correlated failures only.
Recently, [7] proposed an approach to handle dual link, but
only single node failures. On the other hand, failure carrying
packets (FCP) [5] and packet recycle (PR) [6] try to forward
packets to reachable destinations even in case of arbitrary
number of failures. The drawbacks, however, are that FCP
carries failure information in each packet all the way to the
destination whereas PR forwards packets along long detours.

We propose a scalable Localized On-demand Link State
(LOLS) routing [18] for protection against multiple failures.
LOLS considers a link as degraded1 if its current state (say
“down”) is worse than its globally advertised state (say “up”).
Under LOLS, each packet carries a blacklist (a minimal set of
degraded links encountered along its path), and the next hop
is determined by excluding the blacklisted links. A packet’s
blacklist is initially empty and remains empty when there is no
discrepancy between the current and the advertised states of
links along its path. But when a packet arrives at a node with a
degraded link adjacent to its next hop, that link is added to the
packet’s blacklist. The packet is then forwarded to an alternate
next hop. The packet’s blacklist is reset to empty when the next
hop makes forward progress, i.e., the next hop has a shorter
path to the destination than any of the nodes traversed by the
packet. With these simple steps, LOLS propagates the state of

1A down link is not considered degraded if it was advertised as down.

2

degraded links only when needed, and as far as necessary, and
ensures loop-free delivery to all reachable destinations.

LOLS has several attractive features: 1) When there are no
degraded links, forwarding under LOLS is identical to shortest
path forwarding; 2) Even with degraded links, LOLS paths
deviate from the optimal only by a small stretch; 3) LOLS
forwarding entries can be precomputed for a given scenario of
failures requiring protection; 4) Due to localized propagation
of a packet’s blacklist, it can be conveyed in just a few
bits. With these features, LOLS compares favorably against
FCP and PR. In short, unlike FCP, LOLS propagates failure
information only locally. Compared to PR, forwarding paths
are much shorter with LOLS. We provide a detailed contrast of
LOLS with these and other related works in the next section.

The rest of the paper is organized as follows. Section III
presents the LOLS approach for handling arbitrary number
of failures. Section IV describes a practical implementation
of LOLS for protection against a predefined set of failures.
Section V reports the results of the performance evaluation.
We discuss the issues related to the deployment of LOLS in
Section VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

Numerous approaches have been proposed in the past to
make networks more resilient to failures [17]. We categorize
them into schemes that protect against single or correlated
failures and those that can deal with multiple independent
failures. Also, some of them attempt to reduce the routing
overhead by controlling the range/frequency of link state
updates. Another group of schemes construct a set of diverse
paths for forwarding, even across domains. We briefly describe
a few schemes belonging to each of these categories in the
following. Finally, we elaborate on the similarities between
forwarding around failures by LOLS, and forwarding around
voids by geographic routing schemes like GPSR [19].

Single or Correlated Failures: The Not-via approach [20]
locally reroutes a packet around a known failure by encapsulat-
ing the packet to an address that implicitly identifies the failed
network component to be avoided. Another scheme, known as
Multiple Routing Configurations (MRC), proposed in [14] sep-
arates all failures into multiple routing configurations and lets
the packet carry the configuration information upon detecting
a failure, so that the downstream routers can select the path
consistently. Failure Inferencing based Fast Rerouting (FIFR)
infers failures based on a packet’s flight (the inbound interface
on which they are received), precomputes interface-specific
forwarding tables, and triggers local rerouting upon detecting
an adjacent failure. The above and other similar schemes [21]–
[26] offer resilience against single or correlated failures but are
not designed to recover from multiple unrelated failures. They
do, however, help make LOLS practical — blacklist size can
be reduced with interface-face specific forwarding, and not-via
addresses can be used to encode blacklist information.

Multiple Independent Failures: Convergence-free routing
using Failure Carrying Packets (FCP) [5] can recover from

an arbitrary number of failures. FCP, which was proposed
after LOLS, is most relevant to our work. FCP also carries
information about the failed links in the data packet and
intermediate routers exclude those links while computing the
next hop. But, unlike our scheme, the failure information
under FCP is carried all the way to the destination, which
is undesirable. Packet Re-cycling (PR) [6] is a technique that
also aims to reduce the number of bits needed to be carried
in a packet header to ensure successful rerouting. PR takes
advantage of cellular graph embeddings to reroute packets that
would otherwise be dropped in case of failures. It needs only
in the order of log2(d) bits in the header to cover all non-
disconnecting failure combinations, where d is the diameter
of the network. While the low header overhead is remarkable,
packets under PR take longer detours than LOLS. Similarly,
the backup paths under 2DMRC, an extension of MRC for
recovery against two link failures, have higher costs than those
under our scheme. This is because backup configurations under
2DMRC are insensitive to link costs and have global scope.
Another recently proposed scheme [7] handles dual link or
single node failures, whereas LOLS approach can handle two
or more independent link or node failures.

Localized Link State Updates: To make link state routing
scalable for mobile ad hoc networks, limited dissemination-
based schemes have been proposed [27]. Fisheye state routing
(FSR) [28] and hazy sighted link state (HSLS) [27] routing
schemes update the nearby nodes at a higher frequency than
the remote nodes that lie outside a certain scope. The drawback
is that the chosen scope can be more than sufficient in some
cases and less than necessary in other cases resulting in
needless updates or forwarding loops. LOLS can be considered
a form of limited dissemination based routing scheme that
ensures loop-free forwarding while notifying only a small
subset of nodes in the vicinity of a failure.

Forwarding over Diverse Set of Paths: RON [29] is a
pioneering approach for recovering from path outages using a
resilient overlay network. RON is primarily an attempt to over-
come the slow convergence of BGP. A set of routing deflection
rules are developed in [30] that enable routers to independently
deflect packets and thereby collectively construct a diverse set
of paths. This approach amounts to a form of implicit source
routing in which end-systems set a four byte tag in the packet
header to select non-shortest path routes. Path splicing, which
is proposed in [31], perturbs link weights to produce multiple
routing trees and allows traffic to switch trees at any hop en
route to the destination While the path splicing can sustain
connectivity in the face of multiple link and node failures,
there is a small probability of forwarding loops and the number
of splicing header bits needed is proportional to the number
of hops. In contrast, LOLS is an intra-domain approach that is
loop-free with less than one byte of overhead per packet and
it deviates from shortest paths only near a failure.

Geographic Position based Routing: Greedy Perimeter
Stateless Routing (GPSR) and similar schemes [19], [32] based
on geographical positions forward in greedy mode, where each
hop takes the packet closer (in terms of Euclidean distance) to

3

the destination. However, when the packet reaches a deadend,
i.e., when the forwarding node is closer to the destination
than any of its adjacent nodes, the forwarding is switched
to face mode. In face mode, a packet is forwarded along the
boundaries of a planarized subgraph. A packet is forwarded
back in greedy mode when it reaches a node closer to the
destination that the node at which it entered the face mode.
While position based routing is highly scalable, it yields
suboptimal paths compared to topology-based routing. We will
see in the following section that LOLS is similar in spirit
to position-based routing and can be thought of as switching
between greedy and recovery modes during a packet’s flight.

Protection Routing with Traffic Engineering: Various
traffic engineering approaches have been proposed in the
past to distribute load across a network [33]. One of the
recent proposals attempts to assign link weights such that
the load remains balanced even after a failure [34], but it
does not ensure forwarding continuity during convergence.
Towards providing protection and balancing traffic, a version
of MRC [35] has been suggested that optimizes link weights
for the backup configurations based on the observed traffic
patterns. However, this method does not scale well for all
possible link failures, and does not address multiple failure
scenarios. [36] proposes an efficient algorithm for computing
backup paths where spare capacity is shared between different
backup paths but it focuses only on single link or node
failures. Recently, a centralized routing approach [26] has been
proposed that incorporates both protection routing and traffic
engineering. While this approach has a great feature of trading
off protection and performance, it can not guarantee 100%
coverage even for single failures. Our focus is on ensuring
guaranteed forwarding to all reachable destinations despite
multiple failures, which in itself is a challenging problem
even without traffic engineering. However, we show later
in Section V that the potential overloading caused by local
rerouting with LOLS is not that significant.

III. LOCALIZED ON-DEMAND LINK STATE ROUTING

In this section, we start with an illustration to present the
intuition behind the localized on-demand link state routing
approach. We then formally describe the forwarding operation
at each router along the path traversed by the packet.

A. Intuition and Illustration

Consider the topology shown in Fig. 1. Suppose each link’s
state is advertised to be up with the labelled cost, but currently
the dashed links are down with cost ∞. Further assume that
the nodes adjacent to a dashed link are aware of its current
failed state (we use state and cost interchangeably as the cost
of a link reflects its state). We refer to the dashed links whose
current cost is worse than their advertised cost as degraded. If
a link’s current cost is worse than advertised, local rerouting
around that link can cause loops. On the other hand, if a link’s
current state is better than advertised, forwarding over that link
is loop-free. Hence, we focus only on degraded links.

Now, assume that A is the source and H is the destination
for a packet. The usual shortest path from A to H is via C.
But since A−C link is currently degraded, we have to find an
alternate next hop. We need to choose a next hop such that
the packet does not get caught in a forwarding loop. A way to
guarantee loop-freedom is to employ greedy forwarding [16]
that forwards the packet along a path with decreasing cost to
the destination, i.e., each hop makes forward progress towards
the destination. It is important that the path cost is determined
consistently at all nodes based on the advertised topology.

3

13

3

2

22

2

1
A

B

C

D

E

F

G

H

4

3

2

Fig. 1. Topology used for illustration. Degraded links are shown as dashed.

For example, in the topology of Fig. 1, the cost to reach
H from A, B, D is 5, 6, and 4 respectively. Therefore, when
A−C is degraded, the only feasible next hop from A is D, as
per greedy forwarding. Again at G, since G−H is degraded,
packets to H are deflected to F. Thus, a packet from A is
delivered to H successfully even though all nodes do not have
the accurate view of the network. However, greedy forwarding
is not always feasible even if there exists a path. A packet
may arrive at a deadend node whose cost to the destination
is smaller than any of the possible next hops. For example, in
Fig. 1, a packet from A destined to C is dropped when A−C is
degraded. Note that a packet encounters a deadend only when
there is a degraded link adjacent to the deadend node.

When there is no discrepancy between the advertised and
current states of a link, none of its adjacent nodes can be a
deadend if there exists a path to the destination. For example,
if A−C is advertised to be down, the cost to reach C from
A and D would be 6 and 4 respectively. Hence, D becomes a
feasible next hop for A to reach C. But triggering a network-
wide update upon every link state change causes significant
overhead. It would be ideal to inform only those nodes in the
neighborhood of the degraded link that would be affected by
the degradation. But it is hard to determine the right scope
for an update in the presence of multiple simultaneous or
overlapping failures in the network. As an alternative, we
propose localized on-demand link state (LOLS) routing which
includes degraded links that cause a deadend in the packet
itself so that forwarding by intermediate routers is loop-free.

Under LOLS, a packet can be thought of as being forwarded
in two modes: greedy and recovery. A packet is normally
forwarded in greedy mode to a next hop along the path
with decreasing cost (w.r.t. the advertised topology) to the
destination. When a packet hits a deadend in greedy mode,
instead of discarding the packet, it is forwarded in recovery
mode. In recovery mode, packets carry a blacklist, which
is a set of degraded links encountered along the path. A

4

packet’s next hop is chosen along a route that does not include
blacklisted links. The forwarding of a packet is switched back
to greedy mode, i.e., the blacklist is reset to empty, when
it arrives at a node with lower cost (w.r.t. the advertised
topology) to the destination than the node at which it entered
the recovery mode. Thus, LOLS effectively propagates link
state on demand, and only to as many nodes as necessary.
This approach ensures loop-free forwarding to reachable des-
tinations, even in the presence of many degraded links.

Note that there is no need for an explicit forwarding mode
in LOLS. The greedy and recovery modes are used for ease
of explanation only. Instead, a packet has a blacklist field in
the header (which is nonempty in recovery mode) and its next
hop is determined based on both its destination and blacklist.
Consider again the example scenario of Fig. 1, where a packet
is being forwarded from its source A to destination C. We have
seen that under greedy forwarding, A would not be able to
find a feasible next hop, and therefore, drops the packet. With
LOLS, instead of dropping the packet, A includes the link
A→C in the packet’s blacklist, and forwards it to the alternate
next hop D. Node D then computes the next hop without the
blacklisted link A→C and finds that the next hop is C itself.
Since the cost to the destination C from the next hop C is 0,
and therefore smaller than that from A (which made blacklist
nonempty) the blacklist is reset to ∅. The packet thus arrives
at C along the alternate path A→D→C.

Now consider another scenario where B is the source and
E is the destination for a packet. Since B→E is currently
degraded, B would include B→E in the packet’s blacklist and
forward to A. Similarly, A would add A→C to the blacklist
and forward to D. The node D determines C as the next hop
based on the packet’s blacklist. Before forwarding, it resets the
blacklist to ∅ since the cost of 2 from C to E is less than that
from B which is 3. Thus, the path taken by the packet would
be B→A→D→C→E. The corresponding blacklist values at
each of these hops would be {B→E}, {A→C, B→E}, ∅ and
∅ respectively. This illustrates how the blacklist of a packet
grows when necessary, and shrinks if possible during the flight
to its destination so as to ensure loop-free delivery.

These examples show how LOLS delivers a packet to its
destination if there exists a path. We provide a proof of this in
Appendix A. Moreover, only a few nodes near a degraded link
must be notified of the link’s state. In our example topology, a
packet to any destination is delivered by LOLS without nodes
G, F and H being informed of the degradation of A−C or
B−E, and without informing nodes A, B, C, D and E of the
degradation of G−H. Such an on-demand propagation of link
state makes LOLS a scalable scheme for reliable forwarding.

B. Blacklist and Next-Hop Computation

In the following, we first describe the greedy forwarding
procedure and then build upon it to develop the blacklist-
based forwarding algorithm. We also show that blacklist-based
forwarding can be performed by a simple table lookup based
on both destination and blacklist fields of a packet.

Before we present the algorithms, we introduce some nota-
tion used in this paper, which is listed in Table I. We denote
by Ẽ , the set of all links in the network and by c̃i→j , the
cost of a link i→j according to the most recent link state
advertisement. The set of links that are adjacent to i and
currently in the degraded state are denoted by B̃i. We use
Pi d(E) to refer to the shortest path from i to d with links
in E and the corresponding cost is denoted by Ci d(E).

TABLE I
NOTATION

Ṽ set of all nodes in the network
Ẽ set of all links in the network
c̃i→j cost of link i→j as per the last advertisement
B̃i set of degraded adjacent links known to i
Pi d(E) shortest path from i to d w.r.t. link set E
Ci d(E) cost of the shortest path from i to d w.r.t. E

1) Greedy Forwarding: The procedure Greedy for selecting
a next hop from node i to destination d, given the set of all
links E and the set of degraded links B, is shown in Alg 1.
A neighbor j is considered a feasible next hop if the cost of
the shortest path from j to d is smaller than that from i to d
(line 4). Greedy returns ∅ when there is no such feasible next
hop. If more than one feasible candidate exists, it picks the
neighbor j∗ by which i has the shortest path to d (lines 5-
8). We need to point out that Greedy is a variant of classic
greedy forwarding as it does not always choose a next hop with
maximum forward progress. Instead, Greedy chooses a next
hop such that it amounts to shortest path forwarding when
there are no degraded links, which is certainly a desirable
feature. Under this version of greedy forwarding, a node i
forwards a packet p destined for p.dest to next hop k, where
k = Greedy(i, p.dest, Ẽ , B̃i). It is important to note here that
node i is aware of only its adjacent degraded links B̃i. When
there is no feasible next hop, i.e., if k = ∅, the packet is
discarded. It is easy to show that forwarding using Greedy is
loop-free, since forward progress is consistently ascertained at
each hop w.r.t. the same set of links Ẽ [16].

Algorithm 1 : Greedy Forwarding : Greedy(i, d, E,B)
1: j∗ ⇐ ∅
2: h∗ ⇐ ∞
3: for all j ∈ neighbors(i, E \ B) do
4: if Cj d(E) < Ci d(E) then
5: h ⇐ c̃i→j + Cj d(E)
6: if h < h∗ then
7: j∗ ⇐ j
8: h∗ ⇐ h
9: return j∗

2) Blacklist-based Forwarding: Under LOLS, each packet
p carries a blacklist p.blist in its header, and it is forwarded
based on both p.dest and p.blist. The blist field of p is
initialized to ∅ at the source and revised as needed during
its forwarding. We show the LOLS forwarding procedure in
Alg 2. In LOLS, we first look for a next hop with the smallest
path cost and forward progress without the links in the packet’s
blacklist (line 1). If no such next hop is found, at least one

5

adjacent link of node i must be in a degraded state. Hence, we
update the packet’s blacklist by adding the degraded link(s) to
the blacklist. The degraded links adjacent to i that need to be
blacklisted are identified as follows. First, we find the neighbor
with the smallest path cost using only the links in Ẽ \ p.blist
(line 3). If the link to that neighbor is currently degraded, then
it is added to the blacklist (line 4-5). This process is repeated
until either i) we find a next hop, the link from node i to which
is not degraded, or ii) there is no such next hop (lines 4-6).
In the latter case (j=∅), the destination is unreachable and
the packet is dropped. Otherwise, it is forwarded to j. Before
forwarding, p.blist is reset to ∅ (lines 8-10), if j has shorter
path cost to p.dest than the forwardmost deadend node (defined
as the head node of the first link added to the p.blist). Thus,
only during the recovery (until forward progress can be made),
a packet is forwarded with the aid of a non-empty blacklist.

Algorithm 2 : Blacklist based Forwarding : LOLS(i, p)

1: j ⇐ Greedy(i, p.dest, Ẽ \ p.blist, B̃i)
2: if j = ∅ then
3: j ⇐ Greedy(i, p.dest, Ẽ \ p.blist, ∅)
4: while j 6= ∅ & i→j ∈ B̃i do
5: p.blist ⇐ p.blist ∪ {i→j}
6: j ⇐ Greedy(i, p.dest, Ẽ \ p.blist, ∅)
7: if j 6= ∅ and p.blist 6= ∅ then
8: k ⇐ Head(First(p.blist))
9: if Cj p.dest(Ẽ) < Ck p.dest(Ẽ) then

10: p.blist ⇐ ∅
11: return j

The rules for updating the blacklist of a packet p, p.blist,
at node i can be summarized as follows:

• link i→j is added to p.blist if
– i→j is currently in degraded state (i→j ∈ B̃i)
– had i→j not been degraded, j would be the next hop

(j ∈ Greedy(i, p.dest, Ẽ \ p.blist, ∅))
– no feasible next hop exists without i→j

(Greedy(i, p.dest, Ẽ \ p.blist, {i→j}) = ∅)
• p.blist is reset to ∅ if

– there exists a feasible next hop j
(j ∈ Greedy(i, p.dest, Ẽ \ p.blist, B̃i))

– the cost from j to p.dest is smaller than that from
any other node visited so far by p
(Cj p.dest(Ẽ) < Ck p.dest(Ẽ) where
k is Head(First(p.blist)))

Thus, blacklist-aided recovery ends and greedy forwarding
resumes when the packet arrives at a node which makes
forward progress. Such resetting of a packet’s blacklist keeps
it as minimal as possible and yet ensures loop-free forwarding.

C. Blacklist based Lookup Table for Forwarding

The description of blacklist-based forwarding thus far fo-
cused on the functionality in terms of how a next hop is
selected for a packet, and how its blacklist is updated along
the path to destination. We now show that blacklist-based
forwarding boils down to a simple table lookup using both the

p.dest and p.blist fields of a packet. Consider the operations
performed by a node i while forwarding a packet p. It has
to select a next hop j after excluding the links in p.blist and
also update the p.blist. The p.blist may get reset to ∅, remain
unchanged, or grow with the addition of adjacent links of i
that are currently degraded. In all these cases, the forwarding
operation amounts to mapping p.dest and p.blist to a next
hop j and a new p.blist based on the degraded links adjacent
to i (B̃i) and the last advertised state of all links Ẽ . This
mapping from 〈p.dest,p.blist〉 to 〈j,p.blist〉 can be computed
on-demand and remembered when node i first encounters this
〈p.dest,p.blist〉 pair. Thereafter, any packet with 〈p.dest,p.blist〉
combination can be forwarded simply by a table look up. This
mapping has to be recomputed only when B̃i changes which
is local, and when Ẽ changes which is infrequent.

The blacklist based forwarding tables at nodes A, D, and G
of the topology in Fig. 1 are shown in Table II. When a packet
p arrives at a node, its forwarding table is looked up with tuple
〈p.dest,p.blist〉 to determine the outgoing p.blist and the next-
hop. For instance, when a packet destined for E with blacklist
{B→E} arrives at node A, the packet’s blacklist is changed to
{A→C, B→E} and forwarded to D. When this packet arrives
at D with blacklist {A→C, B→E}, according to D’s table the
packet’s blacklist is reset to ∅ and forwarded to C. We now
describe how a node obtains its forwarding table.

The entries associated with blacklist of ∅ are computed in
advance and the other entries are installed on-demand. Let
us look at the forwarding table for node A. The usual next
hop to reach C, F, and H is C. But since the link A→C is
degraded, A has to find alternate next hops. For H, it selects
D as the next hop for H without having to blacklist A→C.
On the other hand, for reaching C, there is no feasible next
hop with an empty blacklist. So it has to add A→C to the
blacklist and choose D as the next hop with blist set to A→C.
Similarly for F, we must add A→C to the blacklist as well.
Packets for destination E may arrive at A with three possible
blacklists: ∅, B→E, or {A→C, B→E}. In the first case, the
next hop would be B with blist B→E, and in the latter two
cases next hop would be D with blist {A→C, B→E}.

Now consider the forwarding table at node D. Since it does
not have any adjacent degraded links, the blacklist of any
packet would not grow at node D but actually shrink. For
example, the cost to F from node A where the link A→C was
blacklisted is 4, while it is only 3 from the D’s next hop G.
So D resets the blacklist to ∅. In the case of G, which is not
an uncommon case, no additional entries are added since G
would not receive a packet with a non-empty blacklist even
though there are currently three degraded links in the network.
Thus, for reliable delivery, LOLS needs only a few additional
entries in the forwarding tables of nodes around failed links.

IV. PRACTICAL VERSION OF LOLS:
PROTECTION AGAINST PREDEFINED SET OF FAILURES

The LOLS approach as described above can deal with an
arbitrary number of failures. However, it requires a node to

6

TABLE II
BLACKLIST BASED FORWARDING TABLES AT NODES A, D AND G.

blacklist
∅ B→E A→C, B→E

next blist next blist next blist

B B ∅
C D A→C

D D ∅
E B A→C D A→C, B→E D A→C,B→E

de
st

in
at

io
n

F D A→C

G D ∅
H D ∅

(A)

blacklist
∅ A→C A→C,B→E

next blist next blist next blist

A A ∅
B A ∅
C A ∅ C ∅
E A ∅ C ∅

de
st

in
at

io
n

F G ∅ G ∅
G G ∅
H G ∅

(D)

blacklist
∅

next blist

A D ∅
B D ∅
C D ∅
D D ∅

de
st

in
at

io
n

E D ∅
F F ∅
H F ∅

(G)

dynamically compute a next hop for a packet whenever it
carries a new blacklist. Therefore, we develop a practical
version of LOLS that prepares for a number k (say 2) link
or node failures, precomputes the necessary blacklist-based
forwarding entries, and forwards each data packet with a
simple table lookup. In the following, we first describe how a
node can gather different blacklists carried in packets to the
same destination. We then show how the blacklist field in the
packet header can be represented using just a few bits.

A. Collection of Blacklists at a Router

We have illustrated earlier that for the failure scenario given
in Fig. 1, a packet destined to E may arrive at D with three
possible blacklists: ∅, B→E, or {A→C, B→E}, whereas the
blacklist in packets to all other destinations arriving at D is
always ∅. Given all such potential blacklists per destination at
each node, the necessary forwarding entries can be computed
as in Table II. Then, any packet can be forwarded around that
scenario of failures without any next-hop computation “on the
fly”. Therefore, the first step in preparing for a set of failures
is to infer the potential blacklists per destination at each node.

We collect this information by simulating the forwarding of
a virtual packet between every source and destination pair
for each failure scenario, according to the blacklist based
forwarding in Algorithm 2. For instance, when preparing for
any one or two link/node failures, the possible failure scenarios
that need to be simulated are: one link, one node, a pair of
links, a pair of nodes, or one link and one node. Note that
a virtual packet is not actually forwarded to the next hop.
Instead, each router independently simulates the forwarding
process. The blacklists carried by the virtual packets are
accumulated at all the routers these packets traverse.

Let Bd
i denote the set of possible blacklists seen by a node i

in packets destined for d. When a packet p arrives at a node i in
a simulation, Bd

i is updated, i.e., Bd
i ← Bd

i∪{p.blist}. Note that
p.blist is itself a set, and hence Bd

i is a set of sets. Once Bd
i is

accumulated, for each distinct blacklist b ∈ Bd
i , a forwarding

entry that maps 〈d,b〉 to 〈j,b′〉 is computed, where j is the
next hop and b′ is the outgoing blacklist. Henceforth, packets
are forwarded with a simple table lookup without any dynamic
computation. While this simulation procedure seems involved,

it need to be repeated only in response to infrequent long-term
changes in the globally advertised topology, since short-term
link and node failures are handled with local rerouting. An
analysis of the forwarding table computation complexity and
lookup overhead with LOLS is presented in Section VI-B.

B. Encoding Blacklist in a Packet

A straightforward way to convey a blacklist in the packet
header is to represent it as a list of link identifiers. While that is
a reasonable approach when dealing with arbitrary number of
failures, precomputation of potential blacklists and forwarding
tables at each node for protection against predefined failure
scenarios offers an opportunity to reduce the number of bits
needed to convey the blacklist information considerably.

The basic idea is to maintain Bd
i as an array of blacklists.

Then, a neighbor h of node i can convey the blacklist in
a packet destined for d by simply specifying the index into
Bd
i , or bindx. A bindx of 0 could be used to mean an empty

blacklist. In other words, instead of a blacklist, packets now
carry a bindx field which effectively conveys blacklist of
Bd
i [bindx] to node i. We should point out that every node

independently but consistently computes Bd
i for each node i.

Also, note that the bindx value is meaningful only between
neighbors and therefore it is local in scope. Hence, its value
could change at each hop. However, the forwarding table
lookup is similar to that based on blist, 〈d,b〉 is mapped to
〈j,b′〉 where b is the incoming bindx, j is the next hop and b′

is the outgoing bindx. The forwarding entries based on bindx
corresponding to Table II are shown in Table III. Instead of
blacklists {A→C}, {B→E}, {A→C, B→E}, in packets and
these tables, we can use indices 1, 1, 2 respectively. Since the
size of Bd

i would be much smaller than all possible blacklists,
the number of bits needed to encode bindx would be much
lower. We will show later in the evaluation that bindx takes
up less than a byte when preparing for two link/node failures.

It is possible that the addition of even a few bits to
the IP header could be considered an obstacle to practical
deployment of LOLS. Therefore, we propose an alternative
approach similar to Not-via to convey blacklist information
using encapsulation. With this approach, a node adjacent to a
failure would, instead of encoding the blacklist in the packet
header, encapsulate the packet with another header containing

7

TABLE III
BLACKLIST INDEX BASED FORWARDING ENTRIES CORRESPONDING TO TABLE II

bindx
0 1 2

next bindx next bindx next bindx

B B 0

C D 1

D D 0

E B 1 D 2 D 2

de
st

in
at

io
n

F D 1

G D 0

H D 0

(A)

bindx
0 1 2

next bindx next bindx next bindx

A A 0

B A 0

C A 0 C 0

E A 0 C 0

de
st

in
at

io
n

F G 0 G 0

G G 0

H G 0

(D)

bindx
0

next bindx

A D 0

B D 0

C D 0

D D 0

de
st

in
at

io
n

E D 0

F F 0

H F 0

(G)

a new destination address. This address has a special meaning
and performs the function of the bindx field in the packet.
In other words, a packet with destination d and blacklist b is
mapped to a destination with address d′. The encapsulated
destination address d′ indicates that the packet should be
forwarded “not-via” the corresponding blacklist b. Note that
similar to the bindx field in the packet, whose scope is
local to a forwarding node and the next-hop, the not-via-
blacklist addresses have only local meaning and are interpreted
consistently by the two adjacent nodes along a path.

With such an implementation of LOLS, a packet is for-
warded only based on the destination address field in the
packet instead of destination and bindx. Once again, except
that the blacklist information is conveyed by the destination
address instead of the bindx field, there is no difference in
a packet’s flight. Moreover, we can map between a (destina-
tion, bindx) and a private not-via address (given the range
of addresses), similar to the way bindx can be determined
consistently by neighboring nodes without explicit signaling.
The next section presents the evaluation results which demon-
strate that LOLS needs only a fairly small number of not-via
addresses in order to convey blacklist information.

V. PERFORMANCE EVALUATION OF LOLS

We present a proof in Appendix A that LOLS guarantees
loop-free forwarding if the destination is reachable. Therefore,
in this section, we focus on evaluating the overhead due to
LOLS. First, we show that LOLS is more scalable than FCP
in dealing with arbitrary failures. Second, we verify that LOLS
does not reroute packets along long detours, and also does not
cause overloading of links in the network.

For our evaluation, we use the Abilene topology as well
as five other backbone topologies that are obtained with
Rocketfuel [37]. These networks are summarized in Table IV.

A. Scalability of LOLS

We measure the scalability of LOLS in terms of: i) how
far the information about a degraded link is propagated via a
packet’s blacklist and ii) how large is the blacklist of a packet

TABLE IV
REAL NETWORKS USED IN EVALUATION

AS Number Name # of routers avg. degree

Abilene (US) 12 2.33

1221 Telstra (Australia) 108 2.82

1755 Ebone (Europe) 87 3.70

3257 Tiscali (Europe) 161 4.07

3967 Exodus (US) 79 3.72

6461 Abovenet (US) 141 5.30

under LOLS. Obviously, the shorter the propagation distance,
the smaller the blacklist size, the better the scalability.

Failure propagation distance: We keep track of the dis-
tance in hops from the node adjacent to a failure to the farthest
node that received the failure information through a packet’s
blacklist. Fig. 2 presents the failure propagation distance under
both LOLS and FCP for scenarios with 2, 3, and 4 failures.
Clearly, the propagation distance with LOLS is much shorter
than that under FCP. On average, LOLS propagates a failure
to nodes that are 2 or 3 hops away. But in some cases, it
needs to inform nodes that are farther than 5 hops to ensure
loop-free forwarding. This points out the limitation of schemes
such as [28] based on locally scoped updates with a fixed
scope. The chosen scope could be more than sufficient in
some cases and less than necessary in other cases resulting in
either unnecessary overhead or packet drops and forwarding
loops. At the other extreme, FCP guarantees to be loop-free by
carrying the blacklist information all the way to the destination
which in most cases is unnecessary. On the other hand, LOLS
localizes the blacklist propagation whenever possible and in
rare cases propagates the blacklist to distant nodes when
necessary for ensuring loop-free packet delivery.

Size of blacklist in a packet: Another measure of the
overhead of LOLS and FCP is the size of blacklist carried
by each packet. Apart from additional bits needed to convey
this information in the packet, blacklist size also impacts the
forwarding complexity at each hop. Therefore, we compare the
blacklist size under LOLS and FCP in Fig. 3. It is evident that
most LOLS packets do not have to carry a non-empty blacklist
even when there are 4 failed links/nodes in the network. On the
contrary, blacklist size under FCP is several times more than

8

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

FCP
LOLS

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

(a) Average propagation distance for 2 failures

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

FCP
LOLS

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

(b) Average propagation distance for 3 failures

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

FCP
LOLS

 0

 2

 4

 6

 8

 10

 12

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
ro

p
a
g
a

ti
o

n
 d

is
ta

n
c
e

(c) Average propagation distance for 4 failures

Fig. 2. Failure propagation distance: Using LOLS, information about a failure is propagated to nodes that are much fewer hops away than under FCP. The
above graphs depict the average propagation distance for 2, 3, or 4 failures, respectively. The error bars represent the 90th percentile distance for each case.

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

FCP
LOLS

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

(a) Average blacklist size for 2 failures

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

FCP
LOLS

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

(b) Average blacklist size for 3 failures

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

FCP
LOLS

 0

 1

 2

 3

 4

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

B
la

c
k
lis

t
s
iz

e
 p

e
r

p
a

c
k
e
t

(c) Average blacklist size for 4 failures

Fig. 3. Blacklist size in a packet: With LOLS, a packet’s blacklist is reset as soon as it makes forward progress towards the destination. Consequently, most
packets do not have to carry a non-empty blacklist. Overall, the size of blacklist in a packet under LOLS is only a fraction of that under FCP. The graphs
depict the average blacklist size of a packet for 2, 3, or 4 failures, respectively. The error bars represent the 90th percentile blacklist size for each case.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
a

th
 S

tr
e

tc
h

FCP
LOLS

(a) Average path stretch for 2 failures

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
a

th
 S

tr
e

tc
h

FCP
LOLS

(b) Average path stretch for 3 failures

 1

 1.02

 1.04

 1.06

 1.08

 1.1

Abilene AS1221 AS1755 AS3257 AS3967 AS6461

P
a

th
 S

tr
e

tc
h

FCP
LOLS

(c) Average path stretch for 4 failures

Fig. 4. Path stretch: Both LOLS and FCP yield low stretch paths. Although LOLS resets the blacklist upon forward progress, its stretch is similar to FCP’s.

that under LOLS. This is a testimony of the effectiveness of
on-demand state propagation approach of LOLS. These results
indicate that overheads due to LOLS are relatively small, and
establish LOLS as a scalable scheme for reliable delivery.

B. Optimality of LOLS

Under both LOLS and FCP, a packet takes the usual shortest
path until it encounters a failure and then gets rerouted
along the alternate path. Consequently, in the presence of
failures, these schemes may forward packets along longer
paths compared to the optimal paths computed based on
the global link state updates. Furthermore, with LOLS, it is
possible that after the packet’s blacklist gets reset, a failure
downstream towards the destination can cause a packet to

backtrack, gather a larger blacklist, and reach the destination
via a longer detour. FCP is not expected to have this problem
as it carries failure information all the way to the destination.
Hence, it is important to investigate whether the gains of LOLS
over FCP in terms of failure propagation and blacklist size
come at the expense of suboptimal paths. Additionally, we
study whether local rerouting of packets with LOLS causes
excessive overloading of some links in the network.

Path stretch: The stretch of a path between a pair of nodes
is defined as the ratio of the path cost under a given scheme,
and the optimal shortest path. Without failures, there is no
difference between the LOLS paths and the optimal shortest
paths, and so the stretch is 1. The stretch due to LOLS and FCP
for the pairs of nodes affected by failures is shown in Fig. 4.

9

TABLE V
MAXIMUM LINK UTILIZATION ACROSS DIFFERENT TOPOLOGIES

Topology Abilene AS1221 AS1755 AS3257 AS3967 AS6461

One failure (OSPF) 0.593 0.697 0.568 0.571 0.573 0.504

One failure (LOLS) 0.609 0.697 0.645 0.526 0.707 0.532

One failure (FCP) 0.609 0.697 0.645 0.526 0.707 0.532

Two failures (OSPF) 0.632 0.697 0.740 0.647 0.751 0.567

Two failures (LOLS) 0.738 0.697 0.817 0.675 0.840 0.535

Two failures (FCP) 0.706 0.697 0.817 0.675 0.840 0.535

Three failures (OSPF) 0.692 0.759 0.736 0.636 0.811 0.568

Three failures (LOLS) 0.738 0.803 0.819 0.675 0.804 0.532

Three failures (FCP) 0.728 0.803 0.817 0.675 0.804 0.532

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
lin

k
s

Link utilization [%]

OSPF
FCP

LOLS

(a) Maximum utilization for 1 failure

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
lin

k
s

Link utilization [%]

OSPF
FCP

LOLS

(b) Maximum utilization for 2 failures

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n
 o

f
lin

k
s

Link utilization [%]

OSPF
FCP

LOLS

(c) Maximum utilization for 3 failures

Fig. 5. Cumulative distribution of the top 20% utilized links in AS6461: OSPF represents shortest path routing excluding the failed links/nodes. Compared to
OSPF, LOLS increases the utilization on some moderately loaded links but does not heavily overload any one link. LOLS and FCP are almost indistinguishable.

The average stretch due to LOLS, across varying number of
failures, is less than 1.1 and quite similar to that of FCP. In
other words, resetting (forgetting) the blacklist upon making
forward progress does almost no harm in finding shortest paths
to the destination. These results affirm that compared to FCP,
the LOLS offers similar reliability and optimality, but better
scalability in dealing with an arbitrary number of failures.

Load Distribution: As mentioned earlier, LOLS does not
explicitly attempt to distribute load while rerouting around a
failure. However, to understand the impact of local rerouting
with LOLS on network congestion, we compare the load
distribution under LOLS with that of OSPF and FCP.

To simulate traffic matrix, we adopt the gravity model as it
was used in [26]. Briefly, this model generates traffic r(s, t)
between a source s and a destination t such that r(s, t) =
bs

eat∑
i∈V \{s} eai

. Here, bs represents the total traffic originating
at a node s, which is chosen randomly, and at represents the
“mass” of a node, which is proportional to the number of
links adjacent to that node. The larger the mass of a node, the
higher the traffic it attracts, thus the model’s name. In short,
the traffic originating at each node is chosen randomly, while
the traffic attracted by a node is derived based on this model.
Given the traffic matrix, we determine the load on every link
in the network under shortest path routing. We then provision
each link in the network with a capacity equal to twice that of
the highest link load in the network. Therefore, the utilization
for any link in the network is ≤ 0.5 prior to any failures.

To compare the distribution of load under LOLS with
that under OSPF and FCP, we run simulations of 1 to 3
random failures in the network and collect statistics over
100 runs of each category. For each scenario of failures, we
record the highest link utilization observed in the network,
which is shown in Table V. To provide more insight on the
performance, in Fig. 5, we plot the cumulative distribution of
utilization of the top 20% of links in the AS6461 topology
(other topologies also exhibited similar pattern and are not
shown here for brevity of space). Fig. 5 shows that the
performance of LOLS is comparable to FCP and lower than
OSPF but not by large margin. LOLS increases the utilization
of some moderately loaded links but does not heavily overload
any one particular link. We believe this is because LOLS
reroutes to the destination (not to the other end of the failed
link/node as done by other fast reroute schemes such as Not-
Via). Therefore, not all the flows that were previously passing
through the failed link/node are rerouted along the same
recovery path. Instead, these flows get rather distributed along
different alternate shortest paths to their respective destina-
tions, thus mitigating the potential for congestion with LOLS.
This aspect of LOLS requires more thorough investigation
which we intend to pursue as part of our future work.

VI. PERFORMANCE EVALUATION OF PRACTICAL LOLS

We now evaluate the practical version of LOLS that protects
against a predefined set of failures. We focus particularly on

10

recovering from up to two link or node failures. We demon-
strate that LOLS needs only a modest number of additional bits
or not-via addresses for providing protection against any two
link/node failures. In addition, we analyze the computational
complexity of both real-time forwarding and blacklist pre-
computation using practical LOLS.

A. Practicality of LOLS

First, we describe an optimization we implemented for
reducing the size of blacklist array at a router. Next, we present
a way to perform interface-specific forwarding that allows a
blacklist to be encoded using fewer bits. We then report the
evaluation results which reveal that LOLS needs only 6 bits to
encode a blacklist. Finally, we show how the blacklist can be
conveyed using a relatively small number of not-via addresses.

Reducing the array of blacklists at a router: Recall that
a blacklist carried by a packet under LOLS is a set of directed
links. When a link i→j fails, node i may add it to a packet’s
blacklist. Even in case of node j failure, node i may treat it
as a link failure, and hence blacklist i→j only. Ideally, we
need to blacklist node j or all the links adjacent to node j.
Otherwise, it is possible that a packet may get rerouted to
another node, say x, that is adjacent to j which adds x→j to
the blacklist. Apart from elongating the stretch, this increases
the set of unique blacklists at a router. This is because different
packets may arrive at the router carrying a different subset of
links adjacent to the failed node. To mitigate this problem, we
propose to infer node failures from the number of links in the
blacklist. When preparing for two failures, if there are three
or more links in the blacklist, we check to see if two of those
links are adjacent to the same node. For instance, if i→j and
x→j are two of the three links in the blacklist, we can blacklist
node j by adding all its adjacent links to the blacklist. While
this may appear to increase the size of a packet’s blacklist, it
actually reduces the set of blacklists at a router and in turn
the number of bits needed to encode blacklist in the packet.

Interface-specific forwarding: It is possible to achieve bet-
ter blacklist encoding by leveraging the existing router archi-
tectures. Currently, though forwarding is based on destination
IP address only, routers maintain a copy of the forwarding
table at each line card of an interface for lookup efficiency.
This allows us to compute a different forwarding table for
each interface and perform interface-specific forwarding. To
compute interface-specific forwarding tables, a set of possible
blacklists seen by the node has to be maintained per interface
as follows. Let Bd

h→i denote the set of possible blacklists seen
by a node i in packets destined for d arriving from the previous
hop h. When a packet p arrives through interface h→i in a
simulation, Bd

h→i is updated, i.e., Bd
h→i ← Bd

h→i ∪ {p.blist}.
Then, a neighbor h of node i can convey the blacklist in
a packet destined for d by simply specifying the index into
Bd
h→i. Since the size of Bd

h→i would be smaller than all
blacklists Bd

i seen by node i with many interfaces, the number
of bits needed to encode the index would be lower.

Blacklist encoding overhead with LOLS: We now present

TABLE VI
SIZE OF BLACKLIST ARRAY

Topology interface-specific interface-agnostic

Avg Max Avg Max

Abilene 0.79 6 4.36 10

AS1221 1.08 37 6.18 42

AS1775 1.43 41 9.40 58

AS3257 0.69 27 4.82 37

AS3967 1.23 31 7.77 55

AS6461 0.52 36 3.97 53

TABLE VII
NUMBER OF NOT-VIA ADDRESSES REQUIRED

AS Number interface-specific interface-agnostic

Abilene 31 79

1221 304 656

1755 774 1973

3257 755 1746

3967 781 2063

6461 1015 1979

the results of our evaluation of per-packet overhead with
LOLS to convey the blacklist information. Table VI shows the
average and maximum size of the blacklist array accumulated
at a node for dealing with two link/node failures in several
real topologies. Here, interface-specific corresponds to the ap-
proach described above where forwarding of a packet depends
on its incoming interface, and interface-agnostic refers to
conventional interface independent forwarding. These results
show that on average, a node sees less than 10 distinct black-
lists among all possible one or two link/node failures across all
topologies. As expected, interface-specific forwarding further
reduces the blacklist array size, bringing down the average to
less than 1.5. Even in the worse case, the maximum number
of distinct blacklists at a node even without being interface-
specific is less than 60. Therefore, 6 bits would be sufficient to
encode blacklist information for providing protection against
any one or two link/node failures in all of these topologies.

Blacklist encoding through not-via addresses: The above
evaluation results show that LOLS requires less than a byte
of space in the packet to encode the blacklist, which is
quite reasonable for guaranteeing protection against any two
failures in the network. To make this scheme more amenable
to practical deployment, we can convey blacklist information
using not-via addresses as explained in Section IV-B. To
reiterate, a packet with destination d which is supposed to
carry blacklist b is encapsulated in another packet with not-via
address d′, where d′ implicitly indicates that the packet should
be forwarded “not-via” the corresponding blacklist b. Note that
such an encapsulation is done only when a packet has to carry
a non-empty blacklist over a few hops near a failure. One may
argue that the Not-via scheme, which is designed for single
failures, could be applied for protection against two failures.
A straightforward application of Not-via for dealing with two

11

failures may potentially need O(|E|2|V|) not-via addresses (and
forwarding entries). We show that LOLS can handle two fail-
ures with several orders of magnitude less addresses. Table VII
gives the results for six real topologies considered in our
evaluation. As before, interface-specific forwarding requires
fewer addresses. Even with interface-agnostic forwarding on
topologies with up to 160 nodes, the implementation of LOLS
needs only around 2000 not-via addresses. Once again, these
results establish the scalability and practicality of LOLS.

B. Complexity Analysis of LOLS

LOLS deviates from the conventional destination based
forwarding and instead determines the next hop based on both
blacklist and destination. Therefore, it is pertinent to ask, what
is the cost of computing and looking up the blacklist based
forwarding table. Below, we analyze the complexity of the
practical version of LOLS for dealing with any two failures.

Blacklist based forwarding table lookup: The traditional
IP address lookup involves identifying the longest matching
prefix. A wide variety of methods have been proposed to
speed up lookup time [38]. A representative approach performs
binary search on prefix length, which takes O(logw) time,
where w is the number of bits in the IP address [38]. Along
those lines, it is possible to perform blacklist based forwarding
table lookup in O(log(w+ b)) time, where b is the number of
bits needed to encode blacklist. Considering that 6 bits are
sufficient to encode blacklist for the evaluated topologies, we
argue that the lookup time for forwarding under LOLS would
be in the same order as that of traditional forwarding.

Blacklist based forwarding table computation: The time
consuming part of this computation is the collection of black-
lists at each router. It involves simulating the forwarding
of packets for each possible failure scenario. Since typical
networks are sparse, as is the case with the real topologies
listed in Table IV, the number of failure scenarios to consider
are O(|Ṽ|2). For each failure scenario, we need |Ṽ| com-
putations of Dijkstra – one for each router in the network,
which takes O(|Ṽ|2 log |Ṽ|). We then simulate forwarding of
packets from nodes that are adjacent to failures to all other
nodes in the network, which is O(|Ṽ|). In general, it is not
necessary that a packet has to be forwarded all the way to its
destination, since blacklist gets reset upon forward progress.
Considering that blacklist propagation distance in most cases
is less than 4 hops, the overall complexity is O(|Ṽ|5 log |Ṽ)|.
While this complexity seems high, note that only when a
failure lasts beyond a threshold duration, non-adjacent nodes
get notified of the failure and recompute their blacklist based
forwarding tables. Since most failures are transient, they do
not trigger link state advertisements and cause recomputation
of forwarding tables. Nevertheless, we intend to improve
upon this complexity by making use of optimizations such
as incremental shortest path tree computation.

VII. ISSUES AND DISCUSSION

We have thus far presented LOLS, evaluated its perfor-
mance, and demonstrated its potential benefits. Now we dis-
cuss some of the issues pertinent to its practical deployment.

What would be the disruption time with LOLS? The disrup-
tion time due to a link failure under LOLS comprises the time
periods for the link failure detection and initiation of local
rerouting. There are various link failure detection mechanisms
employed in practice, with response time ranging from tens
of milliseconds to a few seconds. For example, a line card
can typically detect loss of electrical connectivity or loss of
light in tens of milliseconds. On the other hand, hellos as
implemented in IGP protocols result in much slower failure
detection, typically in seconds. Given the dominance of packet
over SDH/SONET links in backbone networks that have built-
in hardware failure detection capability, it is reasonable to
assume that the link failure detection time is around 20ms [9].
Assuming that the forwarding plane is pre-loaded with fail-
over forwarding tables, a router upon detecting an adjacent
failure can initiate local rerouting within a few milliseconds,
keeping the total disruption time sub-50ms.

How to realize changes to packet format and forwarding
process? A practical hurdle to deployment of LOLS is that
it requires carrying blacklist information in the packet and
forwarding based on both blacklist and destination. Though
the blacklist is mostly empty and less than a byte is needed
to encode it, LOLS necessitates changes to the forwarding
plane. A way to convey blacklist information in the packet
without changing its format is to employ not-via addressing
as described earlier. A straightforward application of not-via
addressing for dealing with two failures may potentially need
O(|Ẽ |2) not-via addresses (and forwarding entries) to convey
the two failure information.LOLS can deal with two failures
using much fewer number of not-via addresses as shown in
Table VII. This gain is due to the local semantics of these
addresses and thus at the expense of not-via address potentially
changing at a few hops around the failures. We plan to study
whether we can assign global addresses to convey blacklists
and eliminate this per-hop forwarding overhead without using
excessive number of not-via addresses. Another alternative
suggested previously [25] is to exploit the MPLS infrastructure
in todays hardware routers. A blacklist index may be embed-
ded into an MPLS label upon a packets entrance to an ISPs
network and swapped at each hop during forwarding. We need
to further explore different ways of implementing LOLS.

When to trigger link state advertisement and initiate route
convergence? The main idea behind LOLS is to perform
local rerouting in case of a failure instead of advertising it
to the whole network. This approach of suppressing failure
notification makes sense when most of the failures are short-
lived, lasting no longer than a few minutes [2]. However, if a
failure persists beyond a threshold duration (say 5 minutes),
it may be better to advertise it and let all routers in the
network recompute their routing tables. Longer threshold du-
ration increases the probability of multiple suppressed failures.

12

However, since LOLS continues forwarding despite multiple
failures, the choice of threshold value mainly affects the
routing optimality. We should however point out that currently
LOLS can not guarantee loop-free forwarding during route
convergence. Previously proposed approaches such as ordered
updates for avoiding loops during convergence only work
with single failures [39]. A recently proposed scheme for fast
reroute with fast convergence (FCFR) [40] is also meant for
single failures but amenable for extension to multiple failures.
We are currently integrating FCFR with LOLS to ensure loop-
free rerouting and convergence even with multiple failures.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented LOLS, a localized on-demand
link state routing for handling multiple failures in IP backbone
networks. The core idea behind LOLS is to have packets carry
a blacklist of degraded links encountered along the path that
are to be avoided in order to ensure loop-free forwarding. The
key feature of LOLS is that a packet’s blacklist is reset as soon
as it makes forward progress towards the destination, limiting
the propagation of failure information to just a few hops. We
have proved that LOLS guarantees loop-free forwarding to
reachable destinations regardless of the number of failures in
the network. We have evaluated the overhead due to LOLS
using several large real topologies and shown that it scales
better than the recently proposed scheme FCP which has
similar failure resilience objectives. We have also presented
a practical version of LOLS for protecting against predefined
failures, and shown that it needs only a modest number of
header bits or not-via addresses for handling any two link/node
failures. Our plan is to implement a prototype of LOLS using
Mininet system [41] to demonstrate its deployability.

IX. ACKNOWLEDGEMENTS

This research is partially funded by the National Science
Foundation (NSF) through grants CNS-0448272 and CNS-
0551650. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES

[1] G. I. et al, “Analysis of link failures in an IP backbone,” in Proc. ACM
IMW, Nov. 2002.

[2] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp.
749–762, Aug. 2008. [Online]. Available: http://dx.doi.org/10.1109/
TNET.2007.902727

[3] A. Gonza andlez and B. Helvik, “Analysis of failures characteristics in
the uninett ip backbone network,” in Advanced Information Networking
and Applications (WAINA), 2011 IEEE Workshops of International
Conference on, march 2011, pp. 198 –203.

[4] O. B. et al, “Achieving Sub-50 Milliseconds Recovery Upon BGP
Peering Link Failures,” in CoNEXT, Oct. 2005.

[5] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets.” in SIGCOMM, 2007, pp. 241–252.

[6] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling: Eliminating packet
losses due to network failures,” in HotNets, Oct. 2010.

[7] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. Hansen, “Fast
Recovery from Dual Link or Single Node failures in IP Networks Using
Tunneling,” IEEE/ACM Trans. Networking, vol. 18, no. 6, pp. 1988–
1999, Dec. 2010.

[8] C. Alattinoglu and S. Casner, “ISIS routing on the Qwest backbone: A
recipe for subsecond ISIS convergence,” NANOG meeting, Feb. 2002.

[9] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” in ACM SIGCOMM
Computer Communication Review, Jul. 2005.

[10] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of hot-
potato routing in IP networks,” in Proc. ACM Sigmetrics, Jun. 2004.

[11] V. Sharma and F. Hellstrand, “Framework for MPLS-based recovery,”
RFC 3469, Feb. 2003.

[12] M. Tacca, K. Wu, A. Fumagalli, and J.-P. Vasseur, “Local detection and
recovery from multi-failure patterns in mpls-te networks,” in Communi-
cations, 2006. ICC ’06. IEEE International Conference on, vol. 2, june
2006, pp. 658 –663.

[13] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via ad-
dresses,” Internet Draft(work in progress), Mar. 2006, draft-bryantshand-
IPFRR-notvia-addresses-02.txt.

[14] A. K. et al, “Fast IP Network Recovery using Multiple Routing Config-
urations,” in Proc. IEEE Infocom, Apr. 2006.

[15] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah, “Fast Local
Rerouting for Handling Transient Link Failures,” IEEE/ACM Trans.
Networking, vol. 15, no. 2, pp. 359–372, Apr. 2007.

[16] S. I. et al, “An approach to alleviate link overload as observed on an IP
backbone,” in Proc. IEEE Infocom, Mar. 2003.

[17] S. Rai, B. Mukherjee, and O. Deshpande, “IP Resilience within an
Autonomous System: Current Approaches, Challenges, and Future Di-
rections,” IEEE Commun. Mag., pp. 142–149, Oct. 2005.

[18] S. N. et al, “Blacklist-aided forwarding in static multihop wireless
networks,” in SECON, Sep. 2005.

[19] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for wireless networks,” in Proc. ACM Mobicom, 2000, pp. 243–254.
[Online]. Available: citeseer.ist.psu.edu/karp00gpsr.html

[20] S. Bryant, M. Shand, and S. Previdi, “IP Fast Reroute using Not-via
Addresses,” Internet Draft(work in progress), Jul. 2007, draft-ietf-rtgwg-
ipfrr-notvia-addresses-01.txt.

[21] A. Atlas, “U-turn alternates for IP/LDP fast-reroute,” IETF Internet
Draft, Feb. 2006, draft-atlas-ip-local-protect-uturn-03.txt.

[22] M. Menth, M. Hartmann, R. Martin, T. Cicic, and A. Kvalbein, “Loop-
free alternates and not-via addresses: A proper combination for ip fast
reroute?” Computer Networks, vol. 54, no. 8, pp. 1300–1315, 2010.

[23] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, M. Menth, R. Martin,
S. Gjessing, and O. Lysne, “Relaxed Multiple Routing Configurations:
IP Fast Reroute for Single and Correlated Failures,” IEEE Transactions
on Network and Service Management, vol. 6, no. 1, 2009.

[24] G. Retvari, J. Tapolcai, G. Enyedi, and A. Csaszar, “Ip fast reroute: Loop
free alternates revisited,” in INFOCOM, 2011.

[25] A. Li, X. Yang, and D. Wetherall, “SafeGuard: Safe Forwarding during
Routing Changes,” in CoNEXT, 2009.

[26] K.-W. Kwong, L. Gao, R. Guerin, and Z.-L. Zhang, “On the Feasibility
and Efficacy of Protection Routing in IP Networks,” in INFOCOM, 2010.

[27] C. Santivanez, R. Ramanathan, and I. Stavrakakis, “Making link-state
routing scale for ad hoc networks,” in Proc. ACM MobiHOC, 2001.

[28] M. Gerla, X. Hong, and G. Pei, “Fisheye state routing protocol for ad hoc
networks,” IETF Internet Draft, Jun. 2002, draft-ietf-manet-fsr-03.txt.

[29] D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in SOSP, 2001.

[30] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” in Proc. ACM Sigcomm, Sep. 2006.

[31] M. Motiwala, N. Feamster, and S. Vempala, “Path splicing: Reliable
connectivity with rapid recovery,” in SIGCOMM, 2008.

[32] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric
Ad-Hoc Routing: Of Theory and Practice,” in Proc. 22nd ACM Int.
Symposium on the Principles of Distributed Computing (PODC), 2003.
[Online]. Available: citeseer.ist.psu.edu/kuhn03geometric.html

[33] N. Wang, K. H. Ho, G. Pavlou, and M. Howarath, “An overview of rout-
ing optimization for internet traffic engineering,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[34] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot, “Igp link weight
assignment for operational tier-1 backbones,” IEEE/ACM Transactions
on Networking, vol. 15, no. 4, pp. 789–802, Aug. 2007.

http://dx.doi.org/10.1109/TNET.2007.902727
http://dx.doi.org/10.1109/TNET.2007.902727
citeseer.ist.psu.edu/karp00gpsr.html
citeseer.ist.psu.edu/kuhn03geometric.html

13

[35] A. Kvalbein, T. Cicic, and S. Gjessing, “Post-failure routing performance
with multiple routing configurations,” in IEEE INFOCOM 2007, E. M.
George Kesidis and R. Srikant, Eds. IEEE, 2007.

[36] W. Lau and S. Jha, “Failure-oriented path restoration algorithm for
survivable networks,” Network and Service Management, IEEE Trans-
actions on, vol. 1, no. 1, pp. 11 –20, 2004.

[37] N.Spring, R. Mahajan, and D. Wetherall, “Measureing ISP topologies
with Rocketfuel,” in ACM SIGCOMM, Aug. 2002.

[38] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy
of ip address lookup algorithms,” Network, IEEE, vol. 15, no. 2, pp. 8
–23, mar/apr 2001.

[39] P. Francois and O. Bonaventure, “Avoiding Transient Loops during
IGP Convergence in IP Networks,” ACM Transactions on Networking,
vol. 15, no. 6, pp. 1280–1292, Dec. 2007.

[40] G. Robertson, J. Bedenbaugh, and S. Nelakuditi, “Fast convergence with
fast reroute in ip networks,” in IEEE HPSR, Jun. 2010.

[41] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks (at scale!),” in ACM HotNets,
Oct. 2010.

APPENDIX

A. Proof of Loop-Free Forwarding with LOLS

We now prove that LOLS guarantees loop-free delivery of
a packet if the destination is reachable. Intuitively, this is true
because of the invariant that at each hop we have either (i) a
decrease in the cost to p.dest in G = (Ṽ, Ẽ); or ii) an addition
to p.blist; or iii) a decrease in the cost to p.dest in graph
G = (Ṽ, Ẽ \ p.blist). Based on this observation, we define a
metric on a packet’s forwarding state such that the metric is
always strictly decreasing at each hop, thereby guaranteeing
loop-freedom2. The formal proof is given below.

Theorem: Assuming that the set of all links Ẽ and the set of
all degraded links B̃ (where B̃ =

⋃
i B̃i) do not change during

the life time of a packet p, LOLS guarantees that if there exists
a path between p.source and p.dest in G = (Ṽ, Ẽ \ B̃), then p
will be delivered in a finite number of hops, and if there is no
path, p will be dropped in a finite number of hops.

Proof: We first prove that p will never be caught in
an infinite forwarding loop. Suppose i is the node currently
forwarding p. Let us assume that link costs are integers as they
can be scaled if necessary. Making use of the invariant property
mentioned above, we can define an integer metric m(p) based
on the forwarding state of p such that m(p) always decreases
at each hop. Specifically, we define m(p) = α×Ci p.dest(Ẽ)−
β×|p.blist|+Ci p.dest(Ẽ\p.blist), where |p.blist| is the size of
p’s blacklist3. Note that each of the three components of m(p)
corresponds to one of component in the invariant property. α
and β are integer parameters (of graph G = (Ṽ, Ẽ)) chosen
such that the combined effects of the invariant property make
m(p) decreasing at each hop. For example, we can choose
β > maxx,y,E{Cx y(E)|∀x, y ∈ Ṽ,∀E ⊆ Ẽ , Cx y(E) < ∞}.
In that way, when Ci p.dest(Ẽ) does not change in a hop, the

2Note that such a metric would have been impossible should there exists an
infinite forwarding loop. We also note that under LOLS, a packet p may be
forwarded to a node it has visited before. However, in such a circumstance, p
always has either a different p.cost or a different p.blist. Since the number of
combinations of cost and blacklist is finite for a given graph, LOLS guarantees
that p is never caught in an infinite forwarding loop.

3We define m(p) only when Ci p.dest(Ẽ\p.blist) < ∞. Otherwise, the
packet p is dropped by LOLS, and m(p) is undefined.

decrease of m(p) due to increase of |p.blist| (at least 1) always
dominates the (potential) increase of m(p) due to its third
component. Similarly, we can define α > β × (|Ẽ |+ 1), such
that any decrease of Ci p.dest(Ẽ) (at least 1) will dominate the
rest of m(p). Based on the definition of m(p), we observe that
m(p) is always an integer; it starts as a finite positive integer
and never goes negative; and it strictly decreases at every hop.
Therefore, p can not be caught in an infinite forwarding loop,
since that would imply an inevitable negative m(p) value after
certain number of steps. In other words, p is either delivered
or dropped after a finite number of hops.

We now show that p is always delivered if there exists
a path in (Ṽ, Ẽ \ B̃). We prove the contrapositive. Suppose
p is dropped. This can only happen when LOLS algorithm
returns ∅. In that case, there is no path from i to p.dest
in (Ṽ, Ẽ \ p.blist). Since p.blist ⊆ B̃, we therefore have
Ẽ \ p.blist ⊇ Ẽ \ B̃, and there is no path between i and p.dest
in (Ṽ, Ẽ \ B̃). Further, the fact that there exists a path from
p.source to i in (Ṽ, Ẽ \ B̃) implies that there exists no path
from p.source to p.dest in (Ṽ, Ẽ \ B̃). Otherwise, tracing back
from i to p.source and then to p.dest constitutes a path from
i to p.dest.

Finally, suppose there exists no path from p.source to p.dest
in (Ṽ, Ẽ \ B̃). Since p can not be delivered and will never be
caught in an infinite loop, the only possibility is that p will be
dropped in a finite number of hops, concluding the proof.

Glenn Robertson Glenn Robertson received the
B.S. in Electrical Engineering from the United
States Military Academy at West Point, the M.S. in
Computer Engineering from the Colorado Technical
University, and the Ph.D. in Computer Science and
Engineering from the University of South Carolina,
Columbia. Currently, he is an Assistant Professor at
United States Military Academy at West Point. His
current research focus is on designing fast reroute
schemes for IP backbone networks.

Srihari Nelakuditi (M’01) received the B.E. from
Andhra University College of Engineering, Visakha-
patnam, the M.Tech. from Indian Institute of Tech-
nology, Madras, and the Ph.D. in Computer Science
and Engineering from University of Minnesota, Min-
neapolis. He is currently an Associate Professor with
the University of South Carolina, Columbia. His
research interests are in resilient routing, wireless
networking, and mobile computing. Dr. Nelakuditi
was a recipient of the NSF CAREER Award in 2005.

	Introduction
	Related Work
	Localized On-demand Link State Routing
	Intuition and Illustration
	Blacklist and Next-Hop Computation
	Greedy Forwarding
	Blacklist-based Forwarding

	Blacklist based Lookup Table for Forwarding

	Practical Version of LOLS: Protection against Predefined Set of Failures
	Collection of Blacklists at a Router
	Encoding Blacklist in a Packet

	Performance Evaluation of LOLS
	Scalability of LOLS
	Optimality of LOLS

	Performance Evaluation of Practical LOLS
	Practicality of LOLS
	Complexity Analysis of LOLS

	Issues and Discussion
	Conclusions and Future Work
	Acknowledgements
	References
	Appendix
	Proof of Loop-Free Forwarding with LOLS

