
An English Draft of Dr. Yong Wang

A Formal Model of QoS-Aware Web
Service Orchestration Engine
Yong Wang
College of Computer Science and Technology,

Beijing University of Technology, Beijing, China

Abstract. QoS-aware applications can satisfy not only the functional requirements of the customers, but
also the QoS requirements. QoS-aware Web Service orchestration translates the QoS requirements of the
customers into those of its component Web Services. In a system viewpoint, we discuss issues on QoS-
aware Web Service orchestration and design a typical QoS-aware Web Service orchestration engine called
QoS-WSOE. More importantly, we establish a formal model of QoS-WSOE based on actor systems theory.
Within the formal model, we use a three-layered pyramidal structure to capture the requirements of the
customers with a concept named QoS-Aware WSO Service, characteristics of QoS-WSOE with a concept
named QoS-Aware WSO System, and structures and behaviors of QoS-WSOE with a concept named QoS-
Aware WSO Behavior. Conclusions showing that a system with QoS-Aware WSO Behavior is a QoS-Aware
WSO System and further can provide QoS-Aware WSO Service are drawn.

Keywords: Web Services; Web Service Orchestration; Web Service Orchestration Engine; Actor Systems;
QoS; Formal Model

1. Introduction

Web Service (WS) is a new distributed component which emerged about ten years ago, which uses WSDL[12]
as its interface description language, SOAP[22] as its communication protocol and UDDI[11] as its directory
service. Because WS uses the Web as its provision platform, it is suitable to be used to develop cross-
organizational business integrations.

Cross-organizational business processes are usual forms in e-commerce that orchestrate some business
activities into a workflow. WS Orchestration (WSO) provides a solution for such business process based on
WS technologies, hereby representing a business process where business activities are modeled as component
WSes.

From a WS viewpoint, WSO provides a workflow-like pattern to orchestrate existing WSes to create a
new composite WS, and embodies the added values of WS. In particular, We use the term WSO, rather

Correspondence and offprint requests to: Yong Wang, Pingleyuan 100, Chaoyang District, Beijing, China. e-mail:
wangy@bjut.edu.cn

ar
X

iv
:1

30
6.

55
30

v2
 [

cs
.S

E
]

 3
 D

ec
 2

01
3

2 Yong Wang

than another term – WS Composition, because there are also other WS composition patterns, such as WS
Choreography (WSC) [17]. However, about WSC and the relationship of WSO and WSC[23], we do not
explain more, because it is not the focus of this paper.

In this paper, we focus on WSO, exactly, the QoS-aware WSO engine (runtime of WSO) and its formal
model. A QoS-aware WSO enables the customers to be satisfied with not only their functional requirements,
but also their QoS requirements, such as performance requirements, reliability requirements, security re-
quirements, etc. A single execution of a WSO is called a WSO instance. A QoS-aware WSO engine provides
runtime supports for WSOs with assurance of QoS implementations. These runtime supports include life-
time operation on a WSO instance, queue processing for request from the customers and incoming message
delivery to a WSO instance.

WS and WSO are with a continuously changing and evolving environment. The customers, the require-
ments of the customers, and the component WSes are all changing dynamically. To assure safe adaptation
to dynamically changing and evolving requirements, it is important to have a rigorous semantic model of the
system: the component WSes, the WSO engine that provides WSO instance management and invocation
of the component WSes, the customer accesses, and the interactions among these elements. Using such a
model, designs can be analyzed to clarify assumptions that must be met for correct operation.

We design a typical QoS-aware WSO engine, called QoS-WSOE in this paper. An architecture of QoS-
WSOE is given, and more importantly, a formal model of QoS-WSOE is established based on actor systems
theory[14][7][8]. In the formal model, we introduce the notion of QoS-Aware WSO Service, QoS-Aware
WSO System, and QoS-Aware WSO Behavior. And we draw conclusions that: (1) if a QoS-aware
WSO engine is a QoS-Aware WSO System, then it provides QoS-Aware WSO Service for customers;
(2) if a QoS-aware engine has QoS-Aware WSO Behavior, then it is a QoS-Aware WSO System and
further provides QoS-Aware WSO Service.

This paper is organized as follows. In section 2, we introduce the related works. The actor computational
model and the three layered pyramidal architecture are introduced in section 3. We illustrate a WS compo-
sition example called BuyingBooks in section 4. We design QoS-WSOE in section 5. And in section 6, formal
model of QoS-WSOE is established. Finally, we conclude our works and point out future works.

2. Related Works

The main efforts on WSO of the industry are trying to establish a uniform WSO description language
specification, such as the early WSFL[18], XLANG[26], and lately converged WS-BPEL[16]. Such WSO
description languages based on different mathematical models have constructs to model invocation of WSes,
manipulate information transferred between WSes, control execution flows of these activities and inner
transaction processing mechanisms. The WSO description language can be used to define various WSOs
under different requirements and acts as a so-called meta language. WSOs described by such meta languages
actually are pure texts and must be enabled by the meta language interpreter called WSO engine, such as
the famous open source ActiveBPEL[1], ReSpecT tuple centres based WS-BPEL engine[2], a multi-agent
system based WS-BPEL engine[3] and event-driven architecture based WS-BPEL engine[4].

In industry, there are many research works to give the meta languages correctness verifications based on
different theoretical tools[6]. [30] formalizes WS-BPEL[16] with Petri-Net. [10] uses process algebra to give
WS-BPEL a theoretical foundation. [20] establishes a calculus to verify correctness of WS-BPEL. Semantics
and verifications of WS-BPEL are researched in [24]. [5] uses a kind of formal specification to orchestrate
WSes. Unlike these formalizations, our formal model focuses on the correctness of the WSO engine, that is,
correctness of a runtime system of WSO, but not correctness of the meta languages.

QoS-aware WSO engine can process not only the functional requirements modeled by the WSO descrip-
tion language, but also the QoS requirements of the customers. For example, a WSO must complete within
three hours and the cost running some WSO must be under twenty dollars. A QoS-aware WSO translates
the QoS requirements of the customers into QoS requirements of component WSes. Such a translation is
accomplished by the implementation of the so-called QoS-aware Service Selection Algorithm (QSSA). There
are many kind of such service selection algorithms, such as [32], which uses the so-called local service se-
lection approach and the global allocation approach based on integer programming, and another one in
[31], which models the service selection problem (SSP) in two ways: one defines SSP as a multi-dimensional
multi-choice 0-1 knapsack problem (MMKP) based on combinatorial model and the other captures SSP as
a multi-constraint optimal path problem (MCOP) based on graph model, and gives heuristic algorithms of

A Formal Model of QoS-Aware Web Service Orchestration Engine 3

the two ways. We do not research SSP itself, but use the implementation of a QSSA above as a component
of our WSO engine QoS-WSOE.

Note that QoS-aware WSO implies that the WSes involved in this WSO also must be QoS-aware. In this
paper, we assume that the WSes are all QoS-aware. About QoS of WS, the readers please refer to [21] and
[19]. [19] also involves implementations of QoS-aware WSes.

Actor[14][7] is a basic concurrent computing model and can be used in reasoning about open distributed
systems[8]. In [28] and [29], actors are used to reason about middleware of resource management in dis-
tributed computing and even QoS-aware middleware. Our works follow the works above, especially [29].
That is, in this paper, we adopt the way for formalization of open distributed systems in [29] which uses a
pyramidal refinement to capture the concepts of customer requirements, system requirements, system be-
haviors and their relationships. Our works focus on QoS-aware WSO engine, a software system different
to the multimedia resource management middleware in [29] with respect to different QoS aspects and QoS
management, different system functions and architecture, different system components and behaviors. That
is, the formal model in this paper is a different one from that in [29].

3. Actors and the Three Layered Pyramidal Architecture

An actor[14][7] is a basic concurrent computation unit which encapsulates a set of local states, a control
thread and a set of local computations. It has a unique mail address and maintains a mail box to receive
messages sent by other actors. Through processing the messages stored in the main box sequentially, an
actor computes locally and blocks when its mail box is empty.

During processing a message from its mail box, an actor may perform three candidate actions: (1)(send
)sending messages asynchronously to other actors; (2)(create) creating new actors with new behaviors;
(3)(ready) becoming ready again to process the next message from the mail box or block if the mail box is
empty.

Note that synchronization[13] can also be achieved among actors. Also there are many works to abstract
at a high-level from aspects of distributed computing, such as policy management[9], interaction policies[25],
resource management[28], communication and coordination of agents[15], worldwide computing[27], etc.

The actor computational model can be used to reason about the behavior of a computer system, espe-
cially the behavior of a distributed system[28]. [29] uses actors to reason about the behavior of QoS-aware
distributed middleware and presents a so-called pyramidal structure to capture the concepts of customer
requirements, system requirements, system behavior and their relationships. Our works are greatly inspired
by this pyramidal structure and are with the similar goal but different system. That is, our QoS-aware WSO
Engine called QoS-WSOE has similar requirements, but different behavior, with the QoS-aware distributed
middleware in [29], just because they are different systems in nature.

4. A Bookstore WSO in the BuyingBooks Example

In this section, we give a so-called BuyingBooks example for the scenario of cross-organizational business
process integration and use a so-called BookStore WSO to illustrate some related concepts, such as WSO,
activity, etc. And we use the BookStore WSO to explain the formal model we established in the following.

4.1. A BuyingBooks Example

A further example is BuyingBooks as Fig.1 shows. We use this BuyingBooks example throughout this paper
to illustrate concepts and mechanisms in WS Composition.

In Fig.1, there are four organizations: BuyerAgent, BookStore, RailwayCorp, and AirlineCorp. And each
organization has one business process. Exactly, there are two business processes, the business processes
in RailwayCorp and AirlineCorp are simplified as just WSes for simpleness without loss of generality. We
introduce the business process of BookStore as follows, and the process of BuyerAgent can be understood
as contrasts.

1. The BookStore receives request of list of books from the buyer through BuyerAgent.

4 Yong Wang

BookStoreBuyerAgent

Request
 List of Books

Send
 List of Books

Send
Selected Books

Pay for
the Books

Receive
 List of Books

Receive
Request of Books

Receive
Selected Books

Send
 Price of Books

Receive
Price of Books

Get Pays

Ship by Train Ship by Air

Pays>100$Pays<=100$

RailwayCorp.

Shipment Service

AirlineCorp.

Shipment Service

Calculate the Price

Fig. 1. The BuyingBooks Example.

2. It sends the list of books to the buyer via BuyerAgent.

3. It receives the selected book list by the buyer via BuyerAgent.

4. It calculates the price of the selected books.

5. It sends the price of the selected books to the buyer via BuyerAgent.

6. It gets pays for the books from the buyer via BuyerAgent.

7. If the pays are greater than 100$, then the BookStore calls the shipment service of AirlineCorp for the
shipment of books.

8. Otherwise, the BookStore calls the shipment service of RailwayCorp for the shipment of book. Then the
process is ended.

Each business process is implemented by a WSO, for example, the BookStore WSO and BuyerAgent
WSO implement BookStore process and BuyerAgent process respectively. Each WSO invokes external WSes
through its activities directly. And each WSO is published as a WS to receive the incoming messages.

4.2. The Bookstore WSO

The BookStore WSO described by WS-BPEL is given as follows.
————————————————————–
〈process name=”BookStore”

A Formal Model of QoS-Aware Web Service Orchestration Engine 5

targetNamespace=”http://example.wscs.com
/2011/ws-bp/bookstore”...〉
〈partnerLinks〉
〈partnerLink name=”BSAndBA”... /〉
〈partnerLink name=”BSAndRC”... /〉
〈partnerLink name=”BSAndAC”... /〉
〈/partnerLinks〉
〈variables〉
〈variable name=”RequestListofBooks”

messageType=”lns:requestListofBooks”/〉
〈variable name=”RequestListofBooksResponse”

messageType=”lns:requestListofBooksResponse”/〉
〈variable name=”ListofBooks”

messageType=”lns:listofBooks”/〉
〈variable name=”ListofBooksResponse”

messageType=”lns:listofBooksResponse”/〉
〈variable name=”SelectListofBooks”

messageType=”lns:selectListofBooks”/〉
〈variable name=”SelectListofBooksResponse”

messageType=”lns:selectListofBooksResponse”/〉
〈variable name=”Price”

messageType=”lns:price”/〉
〈variable name=”PriceResponse”

messageType=”lns:priceResponse”/〉
〈variable name=”Pays”

messageType=”lns:pays”/〉
〈variable name=”PaysResponse”

messageType=”lns:paysResponse”/〉
〈variable name=”ShipmentByTrain”

messageType=”lns:shipmentByTrain”/〉
〈variable name=”ShipmentByTrainResponse”

messageType=”lns:shipmentByTrainResponse”/〉
〈variable name=”ShipmentByAir”

messageType=”lns:shipmentByAir”/〉
〈variable name=”ShipmentByAirResponse”

messageType=”lns:shipmentByAirResponse”/〉
〈/variables〉
〈sequence〉
〈receive

partnerLink=”BSAndBA”
portType=”lns:bookStore4BuyerAgent-

Interface”
operation=”opRequestListofBooks”
variable=”RequestListofBooks”
createInstance=”yes”〉

〈/receive〉
〈invoke

partnerLink=”BSAndBA”
portType=”bns:buyAgent4BookStore-

Interface”
operation=”opReceiveListofBooks”
inputVariable=”ListofBooks”
outputVariable=”ListofBooksResponse”〉

〈/invoke〉
〈receive

partnerLink=”BSAndBA”

6 Yong Wang

portType=”lns:bookStore4BuyerAgent-
Interface”

operation=”opSelectListofBooks”
variable=”SelectListofBooks”〉

〈/receive〉
〈reply

partnerLink=”BSAndBA”
portType=”lns:bookStore4BuyerAgent-

Interface”
operation=”opSelectListofBooks”
variable=”SelectListofBooksResponse”〉

〈/reply〉
〈!–inner activity: calculate the price

of selected books–〉
〈invoke

partnerLink=”BSAndBA”
portType=”bns:buyAgent4BookStore-

Interface”
operation=”opReceivePrice”
inputVariable=”Price”
outputVariable=”PriceResponse”〉

〈receive
partnerLink=”BSAndBA”
portType=”lns:bookStore4BuyerAgent-

Interface”
operation=”opPays” variable=”Pays”〉

〈/receive〉
〈reply

partnerLink=”BSAndBA”
portType=”lns:bookStore4BuyerAgent-

Interface”
operation=”opPays”
variable=”PaysResponse”〉

〈if〉〈condition〉 getVariable(’Price’)
〈 100 〈/condition〉

〈invoke
partnerLink=”BSAndAC”
portType=”ans:airlineCorp4BookStore-

Interface”
operation=”opShipmentByAir”
inputVariable=”ShipmentByAir”
outputVariable=”ShipmentByAirResponse”〉

〈else〉
〈invoke

partnerLink=”BSAndRC”
portType=”rns:railwayCorp4BookStore-

Interface”
operation=”opShipmentByTrain”
inputVariable=”ShipmentByTrain”
outputVariable=”ShipmentByTrain-

Response”〉
〈/else〉〈/if〉

〈/sequence〉
〈/process〉
————————————————————–
There are several receive-reply activity pairs and several invoke activities in the BookStore WSO. The

A Formal Model of QoS-Aware Web Service Orchestration Engine 7

QoS requirements are not included in the WS-BPEL description, because these need an extension of WS-
BPEL and are out of the scope of this paper. In the request message from the BuyerAgent WSO, the QoS
requirements, such as the whole execution time threshold and the additional charges, can also be attached,
not only the functional parameters.

Another related specification is the WSDL description of the interface WS for BuyingBooks WSO. Be-
cause we focus on WS composition, this WSDL specification is omitted.

5. Architecture of A Typical QoS-Aware WSO Engine, QoS-WSOE

In this section, we firstly analyze the requirements of a WSO Engine. And then we discuss problems about
QoS management of WS and define the QoS aspects used in this paper. Finally, we give the architecture of
QoS-WSOE and discuss the state transition of a WSO instance.

5.1. Requirements for A WSO Engine and QoS Management of WS

As the introduction above says, a WSO description language, such as WS-BPEL, has:

• basic constructs called atomic activities to model invocation to an external WS, receiving invocation from
an external WS and reply to that WS, and other inner basic functions;

• information and variables exchanged between WSes;

• control flows called structural activities to orchestrate activities;

• other inner transaction processing mechanisms, such as exception definitions and throwing mechanisms,
event definitions and response mechanisms.

Therefore, a WSO described by WS-BPEL is a program with WSes as its basic function units and must
be enabled by a WSO engine. An execution of a WSO is called an instance of that WSO. The WSO engine
can create a new WSO instance according to information included in a request of a customer via the interface
WS (Note that a WSO is encapsulated as a WS also.) of the WSO. Once a WSO is created, it has a thread
of control to execute independently according to its definition described by a kind of description language,
such as WS-BPEL. During its execution, it may create activities to interact with WSes outside and also may
do inner processings, such as local variable assignments. When it ends execution, it replies to the customer
with its execution outcomes.

In order to provide the adaptability of a WSO, the bindings between its activities and WSes outside are
not direct and static. That is, WSes are classified according to ontologies of specific domains and the WSes
belonging to the same ontology have same functions and interfaces, and different access points and different
QoS. To make this possible, from a system viewpoint, a name and directory service – UDDI[11] is necessary.
All WSes with access information and QoS information are registered into a UDDI which classifies WSes
by their ontologies to be discovered and invoked in future. UDDI should provide multi interfaces to search
WSes registered in for its users, for example, a user can get information of specific set of WSes by providing
a service ontology and specific QoS requirements via an interface of the UDDI.

The above mechanisms make QoS-aware service selection possible. In a QoS-aware WSO engine, after a
new WSO instance is created, the new WSO instance firstly selects its component WSes according to the
QoS requirements provided by the customer and ontologies of component WSes defined in the description
file of the WSO by WS-BPEL.

About QoS of a WS[21][19], there are various QoS aspects, such as performance QoS, security QoS,
reliability QoS, availability QoS, and so on. In this paper, we use a cost-effective QoS approach. That is,
cost QoS is used to measure the costs of one invocation of a WS while response time QoS is used to capture
effectiveness of one invocation of a WS. In the following, we assume all WSes are aware of cost-effective QoS.

5.2. Architecture of QoS-WSOE

According to the requirements of a WSO engine discussed above, the architecture of QoS-WSOE is given as
Fig.2 shows.

8 Yong Wang

Client WS

QoS-WSOE

WSO Instance Maneger

WSO Instance n WSO Instance 1

Activity 1 Activity n

UDDI

WS 1 WS n

Internet

Internet

Service
Selector

Permanent
Component

Transient
Component

Fig. 2. Architecture of QoS-WSOE.

In the architecture of QoS-WSOE, there are external components, such as Client, WS of a WSO, UDDI
and component WSes, and inner components, including WSO Instance Manager, WSO Instances, Activities,
and Service Selector. Among them, WS of a WSO, UDDI, WSO Instance Manager and Service Selector are
permanent components and Client, component WSes, WSO Instances, Activities are transient components.
Component WSes are transient components since they are determined after a service selection process is
executed by Service Selector.

Through a typical requirement process, we illustrate the functions and relationships of these components.

1. A Client submits its requests including the WSO ontology, input parameters and QoS requirements to
the WS of a WSO through SOAP protocol.

2. The WS transmits the requirements from a SOAP message sent by the Client to the WSO Instance
Manager using private communication mechanisms.

3. The WSO Instance Manager creates a new WSO Instance including its Activities and transmits the input
parameters and the QoS requirements to the new instance.

4. The instance transmits ontologies of its component WSes and the QoS requirements to the Service
Selector to perform a service selection process via interactions with a UDDI. If the QoS requirements can
not be satisfied, the instance replies to the Client to deny this time service.

5. If the QoS requirements can be satisfied, each activity in the WSO Instance is bound to an external WS.

6. The WSO Instance transmits input parameters to each activity for an invocation to its binding WS.

7. After the WSO Instance ends its execution, that is, every invocation to its component WSes by activities
in the WSO Instance is returned, the WSO Instance returns the execution outcomes to the Client.

5.3. WSO Instance – An Execution of A WSO

An execution of a WSO is called a WSO instance (WSOI). A WSOI is created when the WSO Instance
Manager receive a new request (including the functional parameters and the QoS requirements).

A Formal Model of QoS-Aware Web Service Orchestration Engine 9

Fig. 3. State Transitions of A WSO Instance.

Fig. 4. State Transitions of An Activity.

As Fig.3 shows, once a WSOI is created, the WSOI is in the Waiting state. Then the WSO Instance
Manager requires the Service Selector to perform a service selection process to select suitable component
services. If the QoS requirements can not be satisfied, the WSOI transmits to Denied state, otherwise,
the WSOI transmits to the Granted state. When the WSOI starts to execute, that is, the first activity is
executed, the WSOI is in the state of Servicing and executes according to the definition of the WSO. Finally,
the WSOI ends to execute, that is, every activity of the WSOI is completed, the WSOI is with the state of
Completed.

Every instance of an activity (we do not distinguish the uses of an activity and an activity instance)
is included in a WSOI. When a WSOI is granted, all activities are in the state of Preparing. In addition,
an activity is with the state of Invoking when it is the executing turn of this activity. Once this activity is
completed, that is, it gets the outcomes of the invocation to the external WS, it is in the Returned state.
The state transitions is illustrated in Fig.4.

Based on the state transitions of a WSOI and an activity as shown in Fig.3 and Fig.4, we can get the
state transitions of a BookStore WSOI as Fig.5 illustrates when the QoS requirements of the request are
satisfied.

5.4. The Glossary and the Symbols Used in This Paper

Components in Fig.2 are all implemented as actors. Some of these actors used in the following are Client
Actor (CA), WSO Instance Manager Actor (WSOIM), WSO Instance Actor (WSOI), Activity Actor (AA),
Service Selector Actor (SS), component WS Actor (WS).

We follow the symbol convention in [28] and [29]. Some are following, and others are introduced when
we need.

C denotes a system configuration.
Cast(C) denotes the set of names of actors existing in C.
getState(C, a) denotes the state of actor a in C.
getA(C, a, t) gets the value of tag t of actor a in C.
setA(C, a, t, v) sets the value of tag t of actor a in C with a value v.
〈a : s〉 denotes an actor with a name a and a state s.
b �MessageType(paras)@a denotes a message with a type MessageType sent from actor a to actor b

with optional parameters paras.

〈a : s〉[, a �M]
trigger−−−−→
effect

〈a : s′〉,MC if condition denotes a transition rule, where 〈a : s〉 is an actor

with name a and state s, a �M is a message to actor a with content M , s′ is the new state of actor a,
trigger is the event triggering this rule, effect is the effect of this rule such as setA(C, a, t, v), MC is the
set of (possible empty) messages sent in this rule, condition is the condition of occurrence of this rule.

10 Yong Wang

BuyingBooks
Waiting

BuyingBooks
Granted

Send List of Books
Preparing

Calculate the Price
Preparing

Receive Selected Books
Preparing

Send Price of Books
Preparing

Get Pays
Preparing

Ship by Train
Preparing

BuyingBooks
Servicing

Send List of Books
Invoking

Calculate the Price
Preparing

Receive Selected Books
Preparing

Send Price of Books
Preparing

Get Pays
Preparing

Ship by Train
Preparing

BuyingBooks
Servicing

Send List of Books
Returned

Calculate the Price
Returned

Receive Selected Books
Returned

Send Price of Books
Returned

Get Pays
Returned

Ship by Train
Invoking

BuyingBooks
Completed

Send List of Books
Returned

Calculate the Price
Returned

Receive Selected Books
Returned

Send Price of Books
Returned

Get Pays
Returned

Ship by Train
Returned

Fig. 5. State Transitions of A BookStore WSOI and Its Activities.

τ : C
l−→ C ′ denotes a transition, C = source(τ) is the source configuration, C ′ = target(τ) is the target

configuration, and l is the label of the transition rule applied.

π = [Ci
li−→ Ci+1|i ∈ Nat] denotes a computation path, which is a possibly infinite sequence of transitions.

τi = Ci
li−→ Ci+1 is called ith transition of π or ith stage of π.

A Formal Model of QoS-Aware Web Service Orchestration Engine 11

6. Formal Model of QoS-WSOE

In this section, we will introduce the formal model of QoS-WSOE. Firstly, we introduce actors and the
symbols used in this section. Then we establish a pyramidal formal structure of QoS-WSOE, including
QoS-Aware WSO Service to model the requirements of the customers, QoS-Aware WSO System
to capture the properties of QoS-aware WSO engine, and QoS-Aware WSO Behavior to capture the
behaviors of QoS-aware WSO engine.

6.1. QoS-Aware WSO Service

Let us use a WSO ontology WSO range over the set of WSO ontologies WSOOntologies, and let a request
from the customer WSOReq range over the set of requests WSOReqs.

Definition 4.1. (WSO Request) A WSO Request actor WSOReq is defined as a 4-tuples WSOReq =
〈ClientId = αcl, WSOOntology = WSO, InputParameters = ips, QoS = qos〉, where αcl is the client ID,
WSO is the WSO ontology requested, ips is the input parameters of the WSO ontology, and qos is the QoS
requirements.

Definition 4.2. (WSO Request Functions)To manipulate a WSO Request WSOReq, we define the
following functions:

(1)getClientId(WSOReq) = αcl denotes the function to get the Client ID;
(2)getWSOOntology(WSOReq) = WSO denotes the function to get the WSO ontology;
(3)getInputParameters(WSOReq) = ips denotes the function to get the input parameters;
(4)getQoS(WSOReq) = qos denotes the function to get the QoS requirements;
(5)getWSOReq(C,αcl) = WSOReq denotes the function to get a WSO Request with a Client ID αcl

from a configuration C.
Definition 4.3. (QoS-Aware WSO Service)A system S provides a QoS-Aware WSO Service over

WSOOntologies andWSOReqs iff for every configuration C of S, if there is an undelivered requestWSOReq
in C, then along any path π of C, exactly one of the following properties holds:

(1)there is a unique transition τ in π where WSOReq is accepted for service and the QoS requirements
qos of WSOReq can be satisfied;

(2)or there is a unique transition τ in π where WSOReq is rejected, only because the QoS requirements
qos of WSOReq can not be satisfied when WSOReq arrives.

6.2. QoS-Aware WSO System

When a WSOReq message is sent to the WSOIM, the WSOIM creates a new WSOI. Now we give the
definition of WSOI.

Definition 4.4. (WSOI)A WSOI is defined as a 4-tuples WSOI = 〈WSORequest = WSOReq,
WSOIState = state,
AAs = AAs,
OutputParameters = ops〉, where WSOReq is the WSO Request, state is the state of the WSOI, ops denotes
the output parameters of the WSOI, and AAs is activity actors included in the WSOI. state ranges over
the set {Waiting,Granted,Denied, Servicing, Completed}, where Waiting denotes that a WSOI is created
and is waiting for further processing, Granted denotes that a WSOI is accepted and the QoS requirements
can be satisfied, Denied denotes that a WSO is rejected because the QoS requirements can not be satisfied,
Servicing denotes that a WSOI is under running, and Completed denotes that a WSOI is completed in
running and the QoS requirements are satisfied.

Definition 4.5. (WSOI Functions)To manipulate a WSOI, the following functions are defined:
(1)getWSOReq(WSOI) = WSOReq denotes the function to get the WSO Request contained in the

WSO instance WSOI;
(2)getState(WSOI) = state denotes the function to get the state of the WSO instance WSOI;
(3)getAAs(WSOI) = AAs denotes the function to get the set of activity actors contained in the WSO

instance WSOI;
(4)getOutputParameters(WSOI) = ops denotes the function to get the output parameters of the WSO

instance WSOI;

12 Yong Wang

(5)createNewAAName(WSOI) creates a new AA name;
(6)getWSOI(C,αcl) = WSOI denotes the function to get a WSO instance WSOI with a Client ID αcl

from the configuration C, since a WSO instance and a WSO Request are with 1:1 relation.
We define AA as follows.
Definition 4.6. (AA)An AA is defined as a 7-tuples AA = 〈AAName = aaName,

WSOIId = αcl,
QoS = qosAA,
InputParameters = ipsAA,
OutParameters = opsAA,
AAState = stateAA,
WS = ws〉, where aaName is the name of the AA, αcl denotes the ID of a WSO instance, qosAA is the QoS
requirements of the AA, ipsAA is the input parameters of the AA, opsAA is the output parameters of the
AA, stateAA is the state of the AA, and ws is the WS bound after a service selection process. stateAA ranges
over {Preparing, Invoking,Returned}, where Preparing denotes that an AA is created by a WSOI and is
waiting for invoking a WS, Invoking denotes that an AA is now invoking a WS, and Returned denotes that
the invocation from an AA to a WS is completed.

Definition 4.7. (AA Functions)To manipulate an AA, we define the following functions:
(1)getAA(WSOI, aaName) = AA denotes the function to get an activity actor AA with a name aaName

contained in the WSO instance WSOI;
(2)getAA(C,αcl, aaName) = AA denotes the function to get an activity actor AA with a name aaName

contained in the WSO instance αcl from a configuration C;
(3)getAAQoS(AA) = qosAA denotes the function to get the QoS requirements of an AA AA;
(4)getInputParameters(AA) = ipsAA denotes the function to get the input parameters of an AA AA;
(5)getOutputParameters(AA) = opsAA denotes the function to get the output parameters of an AA

AA;
(6)getAAState(AA) = stateAA denotes the function to get the state of an AA AA;
(7)getAAName(AA) = aaName denotes the function to get the name of an AA AA;
(8)getWSOIId(AA) = αcl denotes the function to get the WSOI ID of an AA AA;
(9)getWS(AA) = ws denotes a function to get the WS bound to an AA AA.
WS is defined as follows.
Definition 4.8. (WS)A WS is determined by a pair 〈WSOId = αcl,WSId = aaName〉, where αcl

denotes the ID the a WSOI, and aaName denotes the name aaName of AA that the WS bound. Since a
WS is out of the management domain of the WSOI, we assume that a WS is always able to process the
invocation of its customers, such as an AA.

Definition 4.9. (WS Functions)To manipulate A WS, we define the following functions:
(1)getWS(AA) = ws denotes the function to get the WS bound of an AA AA;
(2)getWSes(WSOI) = wses denotes the function to get WSes included in a WSOI WSOI;
(3)getWS(WSOI, aaName) = ws denotes the function to get the WS bound to the AA with a name

aaName contained in the WSO instance WSOI.
(4)getWS(C,αcl, aaName) = ws denotes the function to get a WS ws bound to an AA with a name

aaName contained in the WSO instance αcl from a configuration C;
Definition 4.10. (QoS Requirements of WS and WSOI)We use a cost-effectiveness coupleResponseT ime×

Cost to capture the QoS requirements of WS and WSOI. If a WSOI has n WSes: ws1, ..., wsn, then there is
the following relation between the WSOI and its WSes:

CostWSOI =
n∑

i=1

(Costwsi),

ResponseT imeWSOI =
n

max
i=1

(ResponseT imewsi).

Since all AAs included in a WSOI are executed in parallel by default, we can get the above equations if
we ignore the causalities of messages sending among the AAs.

Definition 4.11. (QoS-Allocate Function)The QoS-allocate function translates the QoS requirements
of a WSOI into the QoS requirements of its WSes implemented by some kind of QSSA, such as in [21] and
[19], with an effect of binding AAs in the WSOI to WSes selected. The QoS-allocate function is defined as
follows:

ResponseT imeWSOI × CostWSOI →

A Formal Model of QoS-Aware Web Service Orchestration Engine 13

n⊔
i=1

(ResponseT imeWSi
× CostWSi

) where WSOI has n WSes and 1 ≤ i ≤ n.

Definition 4.12. (AA-InputParametersGenerate Function)The AA-InputParametersGenerate func-
tion maps the input parameters of a WSOI to those of AAs. The AA-InputParametersGenerate is defined
as follows:

ipsWSOI →
n⊎

i=1

(ipsWSi) where WSOI has n WSes and 1 ≤ i ≤ n.

Definition 4.13. (WSOI-OutputParametersGenerate Function)The WSOI-OutputParametersGenerate
function maps the output parameters of AAs to those of WSOI. The WSOI-OutputParametersGenerate is
defined as follows:

n⊎
i=1

(opsWSi
)→ opsWSOI where WSOI has n WSes and 1 ≤ i ≤ n.

Definition 4.14. (WSOI Constraints φWSOI)The WSOI Constraints φWSOI includes:
(1)A system S satisfies φWSOI ,φWSOI(S), just if for every computation π of S, φWSOI(π) holds.
(2)φWSOI(π)holds, just if for every transition τ of π, φWSOI(τ) holds, and
(2-a)A WSOI in some configuration C with the state Waiting will eventually be granted or be denied.
(∀i ∈ Nat)(C = source(π(i))

∧ getState(getWSOI(C,αcl)) = Waiting)
⇒ (∃j ∈ Nat)(C ′ = source(π(i+ j + 1))
∧ getState(getWSOI(C ′, αcl)) ∈ {Granted,Denied})

(2-b)A WSOI in some configuration C with the state Granted will eventually be in servicing and be
completed.

(∀i ∈ Nat)(C = source(π(i)) ∧ getState(getWSOI(C,αcl)) = Granted)
⇒ (∃j, j′ ∈ Nat)(C ′ = source(π(i+ j + 1)),
C ′′ = source(π(i+ j′ + 1))
∧ getState(getWSOI(C ′, αcl)) = Servicing
∧ getState(getWSOI(C ′′, αcl)) = Completed)

(3)φWSOI(τ) holds for τ : C → C ′, just if
(3-a)For a WSOReq in some configuration C, once the corresponding WSOI is created, then the WSOReq

and all AAs in the WSOI are constant.
(∀WSOReq ∈WSOReqs ∩ Cast(C))

(getWSOReq(getWSOI(C,WSOReq))
= getWSOReq(getWSOI(C ′,WSOReq))
∧ (∀AA ∈ getAAs(getWSOI(C,WSOReq))
(∀AA′ ∈ getAAs(getWSOI(C ′,WSOReq))
getWSOIId(AA) = getWSOIId(AA′))
∧ (∃AA′′ ∈ getAAs(getWSOI(C ′,WSOReq))
getAAName(AA) = getAAName(AA′′))))

(3-b)For any WSOreq in some configuration C, if the state of the corresponding WSOI is Waiting, then
the WSOI may be in a state Waiting, or Granted, or Denied; if the state of the corresponding WSOI is
Denied, then the WSOI will keep in the state Denied; if the corresponding WSOI is in a state Granted,
the it will still be in a state Granted or in a new state Servicing; if the corresponding WSOI is still in the
state Servicing, the it will still be in a state Servicing or in a new state Completed; if the state of the
corresponding WSOI is Completed, then the WSOI will keep in the state Completed.

(∀WSOReq ∈WSOReqs ∩ Cast(C))
getState(getWSOI(C,WSOReq)) = Waiting

⇒ getState(getWSOI(C ′,WSOReq))
∈ {Waiting,Granted,Denied},

and
getState(getWSOI(C,WSOReq)) = Denied

⇒ getState(getWSOI(C ′,WSOReq)) = Denied,
and
getState(getWSOI(C,WSOReq)) = Granted

⇒ getState(getWSOI(C ′,WSOReq))
∈ {Granted, Servicing},

and

14 Yong Wang

getState(getWSOI(C,WSOReq)) = Servicing
⇒ getState(getWSOI(C ′,WSOReq))
∈ {Servicing, Completed},

and
getState(getWSOI(C,WSOReq)) = Completed

⇒ getState(getWSOI(C ′,WSOReq)) = Completed.
(3-c)If the corresponding WSOI of any WSOReq in some configuration C is denied, then the WSes

included in the WSOI will always be nil, that is, after a service selection process executed for this WSOI,
the QoS requirements of the WSOReq can not be satisfied.

getState(getWSOI(C,WSOReq)) = Denied
⇒ (∀ws ∈ getWSes(getWSOI(C,WSOReq))
∧ getWSes(getWSOI(C ′,WSOReq)))
ws = nil

Definition 4.15. (WSOI-WS Constraints φWW)A system S satisfies φWW ,φWW (S), just if for every
computation π of S, φWW (π) holds, iff for any WS included in the corresponding WSO of any WSOReq in
some configuration C is not nil, then the WSOI will in a state Granted, or Servicing, or Completed, that
is,

(∀ws ∈ getWSes(getWSOI(C,WSOReq)))ws 6= nil
⇒ getState(getWSOI(C,WSOReq))
∈ {Granted, Servicing, Completed}

Definition 4.16. (QoS-Aware WSO System)A system S is a QoS-Aware WSO System, with respect
to requestWSOReq inWSOReqs, the above functions including QoS-Allocate function, AA-InputParametersGenerate
function, WSOI-OutputParametersGenerate function, WSO Request functions, WSOI functions, AA func-
tions and WS functions, iff (1)S satisfies φWSOI(S) and φWW (S); (2)for C ∈ S, if there is an undelivered
request WSOReq with parameters 〈αcl,WSO, ips, qos〉, then along any path π of C there is a unique
stage i transition: π(i) = C → C ′ to process WSOReq, and there is a newly created WSO instance
WSOI = getWSOI(C,αcl), with parameters:

• getWSOReq(WSOI) = WSOReq;

• getState(WSOI) = Waiting;

• getOutputParameters(WSOI) = nil;

• for ∀AA ∈ getAAs(WSOI),

– getAAQoS(AA) = nil;

– getInputParameters(AA) = nil;

– getOutputParameters(AA) = nil;

– getAAState(AA) = Preparing;

– getWSOIId(AA) = αcl;

– getWS(AA) = nil;

– getAAName(AA)
= createNewAAName(WSOI).

Theorem 4.1. (Service2System)If a system S is a QoS-Aware WSO System as Definition 4.16 shows,
then this system S provides QoS-Aware WSO Service as defined in Definition 4.3.

Proof. We firstly see that if there is an undelivered request WSOReq for any C in S, according to definition

4.16, a new WSO instance WSOI is created and C
+−→ CWaiting. Then CWaiting

+−→ CGranted or CWaiting
+−→

CDenied according to Definition 4.14, if in CDenied, a reply is sent to the customer to reject the request; if in

CGranted, then CGranted
+−→ CServicing and CServicing

+−→ CCompleted. Thus, WSOReq is assured to be just
accepted or just rejected.

QoS-Allocate function, φWSOI , φWW and Definition 4.8 guarantee that the QoS requirements are satisfied
in case that WSOReq is accepted.

A Formal Model of QoS-Aware Web Service Orchestration Engine 15

Table 1. Request-Reply and Notification Messages Definition

Request Messages Reply Messages

AA� invoke()@WSOI WSOI � invokeAck()@AA

WS � invoke(ips)@AA AA� invokeReply(ops)@WS

SS � select(qos,WSO)@WSOI WSOI � selectReply(WSOI = [State = Denied])@SS
WSOI � selectReply(WSOI = [State = Granted])@SS

WSOIM � wsoReq(αcl,WSO, qos, ips)@CA CA� granted(WSO, qos)@WSOI
CA� completed(WSO, qos, ops)@WSOI
CA� denied(WSO, qos)@WSOI

Notifications

WSOI � notify(AA = [State = Returned])@AA

6.3. QoS-Aware WSO Behavior

In this section, we will specify the behavior of actors in Fig.2, including their states, messages exchanged
among them and their transition rules. Then we define the concept of QoS-Aware WSO Behavior and draw
two conclusions.

WSOI, AA and WS are defined in the above section including their states. Now we will explain WSOIM
and SS. The functions of WSOIM are creating WSOIs when incoming requests from CA arrive. We assume
that WSOIM are always ready for servicing. And the functions of SS are providing QoS-aware service selection
processing for WSOIs and SS is also always ready for servicing.

We define the messages exchanged among these actors as Table.1 illustrates.

The followings are the transition rules for WSOIM and WSOI.
(1)Rule for WSOIM creating new WSOI: when the WSOIM receives a incoming request message, then a

new WSOI is created and a service selection processing message will be sent from the new WSOI to the SS.
〈WSOIM : WSOIMState〉,

WSOIM � wsoReq(αcl,WSO, qos, ips)@CA
−−−−−−−−−−→
effectnewWSOI

〈WSOIM : WSOIMState′〉,

SS � select(qos,WSO)@WSOI.
Where effectnewWSOI

= new(WSOI); setA(wsoiU), and
wsoiU = WSOI{

getWSOReq(WSOI) = WSOReq,
getState(WSOI) = Waiting,
getOutputParameters(WSOI) = nil,
∀AA ∈ getAAs(WSOI){
getAAQoS(AA) = nil,
getInputParameters(AA) = nil,
getOutputParameters(AA) = nil,
getAAState(AA) = Preparing,
getWSOIId(AA) = αcl, getWS(AA) = nil,
getAAName(AA) = createNewAAName(WSOI)}}

(2)Rules for WSOI processing reply from SS: after a service selection process is executed by the SS, a
reply message from the SS to the WSOI is sent. If the QoS requirements can not be satisfied, then the WSOI
is in a new state Denied and a denied reply message is sent from the WSOI to the customer. If the QoS
requirements can be satisfied, then the WSOI is in a new state Granted and a granted reply message is sent
from the WSOI to the customer and a invoke message will be sent to any AA included in the WSOI from
the WSOI.
〈WSOI : Waiting〉,

16 Yong Wang

WSOI � selectReply(WSOI = [State = Denied])@SS
→ 〈WSOI : Denied〉,
CA� denied(WSO, qos)@WSOI.

〈WSOI : Waiting〉,WSOI
� selectReply(WSOI = [State = Granted])@SS
−−−−−−−−−−−−→
effectgrantedWSOI

〈WSOI : Granted〉,

CA� granted(WSO, qos)@WSOI,
(∀AA ∈ getAAs(WSOI))AA� invoke()@WSOI.

Where effectgrantedWSOI = setA(grantedWSOIU), and

grantedWSOIU = WSOI{
getWSOReq(WSOI) = WSOReq,
getState(WSOI) = Granted,
getOutputParameters(WSOI) = nil,
∀AA ∈ getAAs(WSOI){
getAAQoS(AA) = QoSAllocate(AA),
getInputParameters(AA)
= AA− InputParametersGenerate(AA),
getOutputParameters(AA) = nil,
getAAState(AA) = Preparing,
getWSOIId(AA) = αcl,
getWS(AA) = ServiceSelection(AA),
getAAName(AA) = aaName}},

where QoSAllocate(AA) denotes the requirements after a service selection processing by SS, AA −
InputParametersGenerate(AA) denotes input parameters generation of AA from the WSOI, and ServiceSelection(AA)
denotes the WS bound to the AA after a service selection processing by SS.

(3)Rule for WSOI processing reply from AA: when a WSOI in a state Granted or Servicing receives a
reply message invokeAck from an AA, then it will be in a new state Servicing.

〈WSOI : {Granted, Servicing}〉,
WSOI � invokeAck()@AA
→ 〈WSOI : Servicing〉.

(4)Rules for WSOI processing notification from AA: when a WSOI in a state Servicing receives a
notification message from an AA, if all AAs included in the WSOI are in state Returned, then the WSOI
will be in a new state Completed and a completed reply message will be sent from the WSOI to the customer.

〈WSOI : Servicing〉,
WSOI � notify(AA = [State = Returned])@AA
−−−−−−−−−−−−−−→
effectcompletedWSOI

〈WSOI : Completed〉,

CA� completed(WSO, qos, ops)@WSOI.

Where (∀AA ∈ getAAs(WSOI))
getAAState(AA) = Returned and effectcompletedWSOI = setA(completedWSOIU), and

completedWSOIU = WSOI{
getWSOReq(WSOI) = WSOReq,
getState(WSOI) = Completed,
getOutputParameters(WSOI)
= WSOI −OutputParametersGenerate(WSOI),
∀AA ∈ getAAs(WSOI){
getAAQoS(AA) = qosAA,
getInputParameters(AA) = ipsAA,
getOutputParameters(AA)
= ResultsFromWS(AA),
getAAState(AA) = Returned,
getWSOIId(AA) = αcl,
getWS(AA) = ws,
getAAName(AA) = aaName}},

A Formal Model of QoS-Aware Web Service Orchestration Engine 17

whereResultsFromWS(AA) denotes the results after a WS invocation,WSOI−OutputParametersGenerate(WSOI)
denotes output parameters generation of WSOI from the AAs.

When a WSOI in a state Servicing receives a notification message from an AA, if there is an AA included
in the WSOI is not in state Returned, then the WSOI will keep the state Servicing.
〈WSOI : Servicing〉,

WSOI � notify(AA = [State = Returned])@AA
→ 〈WSOI : Servicing〉.

Where (∃AA ∈ getAAs(WSOI))getAAState(AA) 6= Returned.
The following is the transition rule for SS to process request from WSOI: when the SS receives a select

request message from a WSOI, then a reply message selectReply will be sent to the WSOI for denying the
request or granting the request.
〈SS : SSState〉,

SS � select(qos,WSO)@WSOI
→ 〈SS : SSState′〉,
(WSOI � selectReply
(WSOI = [State = Denied])@SS
orWSOI � selectReply
(WSOI = [State = Granted])@SS).

The followings are the transition rules for AA.
(1)Rule for AA to process request from WSOI: an AA in a state Preparing receives a request message

invoke from its WSOI, then it will be in a new state Invoking, send an invokeAck reply message to the
WSOI, and send an invoke request message to its binding WS.
〈AA : Preparing〉,

AA� invoke()@WSOI
→ 〈AA : Invoking〉,
WSOI � invokeAck()@AA,WS � invoke(ips)@AA.

(2)Rule for AA to process reply from WS: when an AA in a state Invoking receives an invokeReply reply
message from its binding WS, it will be in a new state Returned and send a notify notification message to
its WSOI.
〈AA : Invoking〉, AA� invokeReply(ops)@WS

−−−−−−−−−−−→
effectreturnedAA

〈AA : Returned〉,

WSOI � notify(AA = [State = Returned])@AA.
Where effectreturnedAA = setA(returnedAAU), and
returnedAAU = AA{

getAAQoS(AA) = qosAA,
getInputParameters(AA) = ipsAA,
getOutputParameters(AA)
= ResultsFromWS(AA),
getAAState(AA) = Returned,
getWSOIId(AA) = αcl,
getWS(AA) = ws,
getAAName(AA) = aaName},

where ResultsFromWS(AA) denotes the results after a WS invocation.
The following is the transition rule for WS to accept an invocation from an AA: when a WS receives an

invoke request message from its binding AA, it will do some inner computations and send an invokeReply
reply message to its binding AA.
〈WS : WSState〉,WS � invoke(ips)@AA

→ 〈WS : WSState′〉, AA� invokeReply(ops)@WS.
Definition 4.17. (QoS-Aware WSO Behavior)A system S has QoS-Aware WSO Behavior, with

respect to architecture as Fig.2 shows and actors WSOIM, WSOI, AAs, WSes, SS, if (1)for C in S, states of
actors in C are just in accordance with definitions of states of actors; (2)for C in S, messages in C are just
as Table.1 define; (3)for every computation π in S, π obeys the transition rules defined above.

Theorem 4.2. (System2Behavior)If a system S has QoS-Aware WSO Behavior as Definition 4.17
defines, Then S is a QoS-Aware WSO System as Definition 4.16 defines.

18 Yong Wang

Proof. By the states definition of actors WSOIM, WSOI, AAs, WSes, SS, message definitions as Table.1
defined and the transition rule definitions above, we can see that(1)φWSOI(S) and φWW (S) hold; (2)for
C ∈ S, if there is an undelivered request WSOReq, a new WSO instance WSOI is assured to be created.

Theorem 4.3. (Service2Behavior)If a system S has QoS-Aware WSO Behavior as Definition 4.17
defines, then S provides QoS-Aware WSO Service as defined in Definition 4.3.

Proof. By Theorem 4.1 and Theorem 4.2.

6.4. Behavior of QoS-Aware BookStore WSO

The behavior of QoS-Aware BookStore WSO is embodied by the following transition rules.
(1)
〈WSOIM : WSOIMState〉,

WSOIM � wsoReq(αcl,WSO, qos, ips)@CA
−−−−−−−−−−→
effectnewWSOI

〈WSOIM : WSOIMState′〉,

SS � select(qos,WSO)@WSOI. WSOI is a BookStore WSOI, and
(2)
〈SS : SSState〉,

SS � select(qos,WSO)@WSOI
→ 〈SS : SSState′〉,
(WSOI � selectReply
(WSOI = [State = Denied])@SS). WSOI is the BookStore WSOI, and

(3)
〈WSOI : Waiting〉,

WSOI � selectReply(WSOI = [State = Denied])@SS
→ 〈WSOI : Denied〉,
CA� denied(WSO, qos)@WSOI. WSOI is the BookStore WSOI.

or,
(1)
〈WSOIM : WSOIMState〉,

WSOIM � wsoReq(αcl,WSO, qos, ips)@CA
−−−−−−−−−−→
effectnewWSOI

〈WSOIM : WSOIMState′〉,

SS � select(qos,WSO)@WSOI. WSOI is the BookStore WSOI, and
(2)
〈SS : SSState〉,

SS � select(qos,WSO)@WSOI
→ 〈SS : SSState′〉,
WSOI � selectReply
(WSOI = [State = Granted])@SS). WSOI is the BookStore WSOI, and

(3)
〈WSOI : Waiting〉,WSOI

� selectReply(WSOI = [State = Granted])@SS
−−−−−−−−−−−−→
effectgrantedWSOI

〈WSOI : Granted〉,

CA� granted(WSO, qos)@WSOI,
(∀AA ∈ getAAs(WSOI))AA�invoke()@WSOI.WSOI is the BookStore WSOI,AA ∈ {SendListofBooks,ReceiveSelectedBooks,
CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}, and

(4)
〈AA : Preparing〉,

AA� invoke()@WSOI
→ 〈AA : Invoking〉,
WSOI�invokeAck()@AA,WS�invoke(ips)@AA.WSOI is the BookStore WSOI,AA ∈ {SendListofBooks,ReceiveSelectedBooks,

A Formal Model of QoS-Aware Web Service Orchestration Engine 19

CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}, WS = getWS(AA), and

(5)
〈WS : WSState〉,WS � invoke(ips)@AA

→ 〈WS : WSState′〉, AA� invokeReply(ops)@WS. AA ∈ {SendListofBooks,ReceiveSelectedBooks,
CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}, WS = getWS(AA), and

(6)
〈AA : Invoking〉, AA� invokeReply(ops)@WS

−−−−−−−−−−−→
effectreturnedAA

〈AA : Returned〉,

WSOI � notify(AA = [State = Returned])@AA. WSOI is the BookStore WSOI,
AA ∈ {SendListofBooks,ReceiveSelectedBooks,

CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}, WS = getWS(AA), and

(7)
〈WSOI : {Granted, Servicing}〉,

WSOI � invokeAck()@AA
→ 〈WSOI : Servicing〉. WSOI is the BookStore WSOI, AA ∈ {SendListofBooks,ReceiveSelectedBooks,
CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}, and

(8)
〈WSOI : Servicing〉,

WSOI � notify(AA = [State = Returned])@AA
−−−−−−−−−−−−−−→
effectcompletedWSOI

〈WSOI : Completed〉,

CA�completed(WSO, qos, ops)@WSOI.WSOI is the BookStore WSOI,AA ∈ {SendListofBooks,ReceiveSelectedBooks,
CalculatethePrice, SendPriceofBooks,
GetPays, ShipbyTrainorShipbyAir}.

Naturally, QoS-Aware BookStore WSO has QoS-Aware WSO behavior, and further provides QoS-Aware
WSO Service according to Theorem 4.3.

7. Conclusions and Future Works

In this paper, we have discussed issues on QoS-aware WSO and design a typical QoS-aware WSO engine
called QoS-WSOE. Mainly, a formal model of QoS-WSOE based on actor systems theory is established.
In the formal model, a three-layered pyramidal structure is adopted to capture the requirements of the
customers with a concept named QoS-Aware WSO Service, characteristics of QoS-WSOE with a concept
named QoS-Aware WSO System, and behaviors of QoS-WSOE with a concept named QoS-Aware WSO
Behavior and a fine relationship among these three layers is established. I hope this paper can be a guidance
for implementing a real QoS-aware WSO Engine with correctness assurance.

In future, a more practical WSO engine including more properties, such as security, will be pursued.

References

[1] Active Endpoints, Active BPEL, http://www.activevos.com/, 2011.
[2] M. Coabano, E. Denti, A. Ricci, M. Viroli, Designing a BPEL Orchestration Engine Based on ReSpecT Tuple Cen-

tres, Proceedings of the 4th International Workshop on the Foundations of Coordination Languages and Software
Architectures (FOCLASA 2005), 139–158.

[3] M. Viroli, E. Denti, A. Ricci, Engineering a BPEL orchestration engine as a multi-agent system, Special Issue on
the 4th International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA
2005), 226–245.

[4] W. Chen, J. Wei, G. Wu, and X. Qiao, Developing a Concurrent Service Orchestration Engine Based on Event-
Driven Architecture, Lecture Notes in Computer Science, 5331/2008, 675-690, (2008).

[5] C. Mahmoudi, F. Mourlin, Web service orchestration driven by formal specification, Proceedings of the Seventh
International Conference on Systems (ICONS 2012), 116-122.

http://www.activevos.com/

20 Yong Wang

[6] D. Kovač, D. Trček, A Survey of Web services Orchestration and Choreography with Formal Models,
http://www.softec.si/pdf/kovac-damjan.survey.pdf.

[7] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, Ph.D. dissertation, MIT Lab. for
Computer Science, 1986.

[8] G. Agha, T. Prasanna and Z. Reza, Actors: A Model for Reasoning about Open Distributed Systems, Formal
methods for distributed processing: a survey of object-oriented approaches, Cambridge University Press, 2001.

[9] M. C. Astley, Customization and Composition of Distributed Objects: Policy Management in Distributed Software
Architectures, Ph.D. dissertation, University of Illinois, Urbana-Champaign. for Computer Science, 1999.

[10] J. Cámara, C. Canal, J. Cubo, et al, Formalizing WSBPEL Business Processes Using Process Algebra, Electronic
Notes in Theoretical Computer Science, 154(1), 159–173, (2006).

[11] L. Clement, A. Hately, C. Riegen, UDDI Version 3.0.2, OASIS Draft. 2004.
[12] R. Chinnici, J. J. Moreau, A. Ryman, et al, Web Services Description Language (WSDL) Version 2.0 Part 1:

Core Language, W3C Recommendation. 2007.
[13] S. Frølund, Coordinating Distributed Objects: An Actor-Based Approach to Synchronization, MIT Press, Cam-

bridge, USA, 1996.
[14] C. Hewitt, View Control Structures as Patterns of Passing Messages, J. Artificial Intelligence, 8(3), 323–346,

(1977).
[15] M. W. Jang, Efficient Communication and Coordination for Large-Scale Multi-Agent Systems, Ph.D. Dissertation,

University of Illinois, Urbana-Champaign. for Computer Science, 2006.
[16] D. Jordan, J. Evdemon, Web Services Business Process Execution Language Version 2.0, OASIS Standard. 2007.
[17] N. Kavantzas, D. Burdett, G. Ritzinger, et al, Web Services Choreography Description Language Version 1.0, W3C

Candidate Recommendation. 2005.
[18] F. Leymann, Web Service Flow Language (WSFL) 1.0, IBM Tech Report. 2001.
[19] K. Lee, J. Jeon, W. Lee, et al, QoS for Web Services: Requirements and Possible Approaches, W3C Notes, 2003.
[20] A. Lapadula, R. Pugliese and F. Tiezzi, A Calculus for Orchestration of Web Services, Lecture Notes in Computer

Science, 4421/2007, 33–47, (2007).
[21] A. Mani and A. Nagarajan, Understanding quality of service for Web services, IBM developerWorks, 2002.
[22] N. Mitra and Y. Lafon, SOAP Version 1.2 Part 0: Primer (Second Edition), W3C Recommendation. 2007.
[23] C. Pelz, Web Services Orchestration and Choreography, IEEE Computer, 36(8), 46–52, (2003).
[24] G. G. Pu, X. P. Zhao, S. L. Wang, et al, Towards the Semantics and Verification of BPEL4WS, Electronic Notes

in Theoretical Computer Science, 151(2), 33–52, (2006).
[25] D. C. Sturman, Modular Specification of Interaction Policies in Distributed Computing, Ph.D. Dissertation, Uni-

versity of Illinois, Urbana-Champaign. for Computer Science, 1996.
[26] S. Thatte, XLANG: Web Services for Business Process Design, Microsoft Tech Report. 2001.
[27] C. A. Varela, Worldwide Computing with Universal Actors: Linguistic Abstractions for Naming, Migration, and

Coordination, Ph.D. Dissertation, University of Illinois, Urbana-Champaign. for Computer Science, 2001.
[28] N. Venkatasubramanian, An Adaptive Resource Management Architecture for Global Distributed Computing, Ph.D.

dissertation, University of Illinois, Urbana-Champaign. for Computer Science, 1998.
[29] N. Venkatasubramanian, C. Talcottn and G. Agha, A Formal Model for Reasoning About Adaptive QoS-Enabled

Middleware, ACM Tran. on Software Engineering and Methodology, 13(1), 86–147, (2004).
[30] P. Wohed, M. P. Aalst, M. Dumas, et al, Analysis of Web Service Composition Languages: The Case of BPEL4WS,

Lecture Notes in Computer Science, 4421/2007, 33–47, (2007).
[31] T. Yu, Y. Zhang and K. Lin, Efficient Algorithms for Web Services Selection with End-to-End QoS, ACM Tran.

on the Web, 1(1), 1–26, (2007).
[32] L. Zeng, B. Benatallah, QoS-Aware Middleware for Web Services Composition, IEEE Tran. on Software Engineer-

ing, 30(5), 311–327, (2004).

http://www.softec.si/pdf/kovac-damjan.survey.pdf

	1 Introduction
	2 Related Works
	3 Actors and the Three Layered Pyramidal Architecture
	4 A Bookstore WSO in the BuyingBooks Example
	4.1 A BuyingBooks Example
	4.2 The Bookstore WSO

	5 Architecture of A Typical QoS-Aware WSO Engine, QoS-WSOE
	5.1 Requirements for A WSO Engine and QoS Management of WS
	5.2 Architecture of QoS-WSOE
	5.3 WSO Instance – An Execution of A WSO
	5.4 The Glossary and the Symbols Used in This Paper

	6 Formal Model of QoS-WSOE
	6.1 QoS-Aware WSO Service
	6.2 QoS-Aware WSO System
	6.3 QoS-Aware WSO Behavior
	6.4 Behavior of QoS-Aware BookStore WSO

	7 Conclusions and Future Works
	References

