Hybrid IP/SDN networking: open implementation and &periment management tools

Stefano Salsaff)) Pier Luigi Ventr&, Francesco Lombartly Giuseppe Siracusafip
Matteo Gerol&, Elio Salvadof?, Michele Santuaf, Mauro Campanelf8, Luca Pret@
(1) CNIT / Univ. of Rome Tor Vergata - (2) Consarti GARR - (3) CREATE-NET — (4) ON.Lab

Accepted for publication in IEEE Transaction of Wetk and Service Management — December 2015
http://dx.doi.org/10.1109/TNSM.2015.2507622

Abstract — The introduction of SDN in large-scale P provider
networks is still an open issue and different solidns have been
suggested so far. In this paper we propose a hybrapproach that
allows the coexistence of traditional IP routing wth SDN based
forwarding within the same provider domain. The solition is
called OSHI — Open Source Hybrid IP/SDN networkingas we
have fully implemented it combining and extending @en Source
software. We discuss the OSHI system architecturend the design
and implementation of advanced services like Pseudtires and
Virtual Switches. In addition, we describe a set 0Open Source
management tools for the emulation of the proposedolution
using either the Mininet emulator or distributed physical testbeds.
We refer to this suite of tools as Mantoo (Managenm tools).
Mantoo includes an extensible web-based graphicalopology
designer, which provides different layered networK'views” (e.g.
from physical links to service relationships amongiodes). The
suite can validate an input topology, automaticallydeploy it over
a Mininet emulator or a distributed SDN testbed andallows access
to emulated nodes by opening consoles in the web GWMantoo
provides also tools to evaluate the performance dhe deployed
nodes.

Keywords - Software Defined Networking, Open Source,
Network management tools, Emulation.

I. INTRODUCTION

Software Defined Networking (SDN) [1] [2] is a nparadigm
proposed in data networking that may drasticallgnge the
way IP networks run today. Significant use casehide Data
Centers and corporate/campus scenarios. SDN apitiigén
wide area IP networks of large providers is beiogsidered.
At present, these networks are operated with a gwatibn of
IP and MPLS technologies. IP/MPLS control and fawirsg
planes are capable to operate on large-scale retvweith
carrier-grade quality, while SDN technology has rexched
the same maturity level. The advantage of intraoiysDN
technology in a carrier grade IP is not relategp@dformance
improvements for current services on IP/MPLS baadkiso
Data Plane forwarding performances, restoratiorediin case
of failures, several Control Plane aspects (e.gitimg
convergence time) have all been optimized for tPMPLS
backbones by the major equipment vendors in thesy&sle
rather believe that the openness of the SDN apprsiawlifies
the need of complex distributed Control Plane aechires and
avoids proprietary implementations and interopéitgtissues.
The new approach will facilitate the development nafw
services and foster innovation. The importance péi©Source
in SDN is highlighted in [3] and the rising interes white box
networking [4] confirms its relevance in currentdarear future
networking arena.

Taking the openness as the main driver for movarg2N,
the scientific and technological question “whatthis best way
to introduce SDN in large-scale IP Service Prosd@6P)
networks?” is definitely still open and differemlstions have

been proposed. The OSHI (Open Source Hybrid IP/SDN)
networking architecture, first introduced in [5Hdaesses the
above question, providing an Open Source reference
implementation complemented with a rich set of mew and
management tools.

The introduction of SDN in wide area ISP networkgplies
finding solutions to critical requirements and issusuch as: i)
how to provide the scalability and fault tolerameguired in
operators’ environments; ii) how to cope with thghhlatency
in the control plane (due to the geographicallytriisted
environment); iii) how to provide the connectivity the
Control Plane between SDN controllers and the $w@#dn the
WAN (i.e. in-bandvs. out-of-bandsolution)

In order to support both the development/testingeeats
and the evaluation of different solutions it is damental to
have a realistic emulator platform. The platfornodd allow
scaling up to hundreds of nodes and links, to erawddarge
scale IP carrier network. Performing experiments ta be
affordable for research and academic teams, nof ol
corporate developers. Therefore, we advocate ted né an
Open Source reference node implementation and @enO
Source emulation platforms. The management of these
emulation platforms and the tools for setting ug eontrolling
experiments are also non-trivial problems, whictwtsy we
propose an Open Source set of tools called Mantoo
(Management tools). The Mininet emulator is widesed by
the SDN community, but its fidelity cannot be takengranted
especially for large scale topologies. The emubataver
distributed SDN testbeds is in general more scalabd can
allow to gather more realistic details on speqggfeaformance
aspects. Mantoo is able to support both cases avithified
design and modelling approach.

The main contributions of this paper are:

1. The design of a hybrid IP/SDN architecture callquk®
Source Hybrid IP/SDN (OSHI).

2. The design and implementation of a hybrid IP/SDNeno
made of Open Source components.

3. Mantoo, a set of management tools to deploy aridhes
OSHI framework and services on Mininet emulator and
on distributed SDN testbeds

4. Evaluation of some performance aspects of the OSHI
prototype implementation over distributed SDN testh

On top of the proposed OSHI framework and Mantatstthe
researcher/developer is able to design and degayservices
and to experiment on SDN Control Plane solutionth vai
minimal effort. The paper is structured as followsction I
describes the scenarios related to the introdudfi@DN in IP
Service Provider networks; section Il defines thain
concepts of the proposed hybrid IP/SDN networking
architecture; section IV provides a detailed dexdicmn of the

OSHI nodes implementation and of the services sbah a
solution can offer; section V identifies some liatibns of
current SDN ecosystem along with the needed exipssit
also reports how our framework is being used t@erpent on
new services; section VI describes the Mantoo suhat
allows to design, deploy and control experimendgbotogies
in a local emulator (Mininet) or on distributed tteexds,

supporting the collection of performance measurasyen

section VII provides an evaluation of some perfaroe
aspects; section VIl reports on related work axplans the
main differences with respect to our previous wanmksection
IX we draw some conclusions and highlight how wegorting
OSHI over white box switches, potentially steppifigm

experiments to production networks.

The source code of all the components of the OSiden
prototypes and of the Mantoo suite is freely avddaat [6]. To
facilitate the initial environment setup, the whasHI and
Mantoo environments have been packaged in a readg-t
virtual machine, with pre-designed example topaegip to
60 nodes. To the best of our knowledge, there such hybrid
IP/SDN node available as Open Source software, amor
emulation platform with a set of management toslsieh as
the Mantoo suite.

II. SDNAPPLICABILITY IN IP PROVIDERSNETWORKS

based on proprietary (and expensive) managemens, too
which, again, constitute a barrier to the innovatio

Let us consider the migration of an IP/MPLS basex/iSe
Provider network to SDN. CR and PE routers couldeipéaced
by SDN capable switches, on top of which the preridan
realize advanced and innovative services. The riggrgpaths
should foresee the coexistence of IP and SDN bseedces,
resembling the current coexistence of IP and MRU8 define

ashybrid IP/SDNa node that can operate both at IP level by

keeping a traditional distributed routing intellige and at
SDN level, under the instructions of a SDN con#&ollThis is
opposed to aure SDNnode in which all routing logic is ran
outside the node in the SDN controller. A hybridSBN
network is composed of hybrid IP/SDN nodes, as waslby
traditional IP routers and legacy layer 2 switclfeording to
the taxonomy defined in [7], this approach canlbssified as
“Service-Based” or “Class-Based” Hybrid SDN (depiegdn
how the IP and SDN based services are combinedbhisn
scenario the hybrid IP/SDN nodes are capable af@as plain
IP routers (running the legacy IP routing protoxcds well as
SDN capable nodes, under the control of SDN cdensl
Peering with

CE
i PE ‘ other providers ‘
CE) R CR
= CR (=%
PR U /‘
ey &
L

CE =<

SDN is based on the separation of the network GbRiiane — & & o«
from the Data Plane. An external SDN controller can P <FES i
(dynamically) inject rules in SDN capable nodescdxcling to - - p"’v'de“
these rules the SDN nodes perform packet inspection ¢ G / -
manipulation and forwarding, operating on packeidess at pes / Dot e %
different layers of the protocol stack. — /

We focus on SDN applicability in IP Service Provide Chs 7 PE-Provider el /CES

networks. Figure 1 shows a reference scenario,avihgle IP
provider interconnected with other providers usthg BGP
routing protocol. Within the provider network, amra-domain
routing protocol like OSPF is used. The providdexs Internet
access to its customers, as well as other transporices (e.g.
layer 2 connectivity services or in general VPN¥irual

Private Networks). Using the terminology borroweg b

IP/MPLS networks, the provider network includegtaf Core
Routers (CR) and Provider Edge (PE) routers, iotarected
either by point-to-point links (Packet Over Son&ligabit
Ethernet,
VLANS). The Customer Edge (CE) router is the nouehie
customer network connected to the provider netwdtkst
often, an ISP integrates the IP and MPLS techneogi its
backbone. MPLS creatéisnnels(LSP — Label Switched Path)
among routers. On one hand, this can be used twimghe
forwarding of regular IP traffic providing: i) trid
engineering, ii) fault protection iii) no need tistibute the full
BGP routing table to intra-domain transit routés. the other

hand, MPLS tunnels are used to offer VPNs and |&er

connectivity services to customers. In any cagecttimmercial
MPLS implementations are based on traditional (eend
locked) control plane architectures that do notdespace for
introducing innovation in an open manner. As a eraif fact,
in case of complex services involving the MPLS coinplane,
IP Service Providers rely on single-vendor solwioithe
management of large-scale IP/MPLS network is typica

= CE — Customer
Edge Router

Figure 1. Reference scenario: an IP provider né¢wor

I1l. PROPOSECHYBRID IP/SDNARCHITECTURE

In the IP/MPLS architecture there is a clear notibthe MPLS
tunnels, called Label Switched Paths (LSPs). IDH 8etwork
several types of tunnels or, more genericalbiwork pathgan
be created, leveraging on the ability of SDN capatudes to
classify traffic based on various fields such as @Glar IP
addresses, VLAN tags and MPLS labels. Since themgoi

10GBE...) or by legacy switched LANs (andstandard established terminology for such conocept,will

refer to these paths &DN Based Path&SBP). A SBP is a
virtual circuit which is setup using SDN technology to forward
a specificpacket flowbetween two end-points across a set of
SDN capable nodes. The notion of packet flow i/ \@oad
and it can range from anicro-flow i.e. a specific TCP
connection between two hosts, tomacro-flow e.g. all the
traffic directed towards a given IP subnet. As hdgitied
before, a flow can be classified looking at the deza at
different protocol levels.

We address the definition of the hybrid IP/SDN ratnby
considering: i) mechanisms for the coexistenceegutar IP
traffic and SBPs; ii) the set of services that bamffered using
the SBPs; iii) ingress traffic classification mentsans.

Let us consider the coexistence of regular IP itradhd
SDN based paths on the links among hybrid IP/SDiesoA
SDN approach offers a great flexibility, enablinget
classification of the packets through a “cross+{agpproach,

by considering packet headers at different protdeskls
(MPLS, VLANS, Q-in-Q, Mac-in-Mac and so on). Thered,
it is possible to specify a set of conditions tffedentiate the
packets to be delivered to the IP forwarding endioen the
ones that belong to SBPs. In general, these conditian refer
to different protocol headers and can be in thenfaf
whitelists or blacklists, changing dynamically, érface by
interface. This flexibility may turn into high conegxity and the
risk of misconfigurations and routing errors shooédproperly
taken into account (see [8]). Without preventing plossibility
to operate additional mechanisms for the coexigt@fdtP and
SDN services in a hybrid IP/SDN network, we propbBe_S
tagging as the preferred choice and have used ibun
prototype implementation. In fact, using MPLS asmarding
plane technology is known to be scalable up toieagrade
WANSs. We have also considered simple VLAN taggisgaa
sub-optimal choice and have used it in a simpletgbype (see
[5][9]). Simple VLAN tagging limits the number ofB®s on a
link to 4096. Moreover, if legacy VLAN services mseto be
supported on the links among the OSHI nodes, th&N/label
space needs to be partitioned, reducing the maximumber
of SBPs and complicating the service managemeiteps

In a SDN solution for wide area networks therelig t
problem to setup the connectivity between SDN aleirs and
OF capable switches. This is usually solved witkraftband
communication channels, as it is complicated tdalgy
“bootstrap” and maintain the connectivity using tza plane
links with a centralized control. A key advantage tbe
coexistence approach in the proposed OSHI architeds the
possibility to use traditional IP routing and fomding for the
Control Plane connectivity between SDN controllansl OF
Capable switches. This approach avoids the needsitedf-
band communication channels for the Control Plane.

Let us now consider the services and the featinagscan

architecture of an OSHI node (IV.A) and the basiviEes we
provide (IP Virtual Leased Line and Pseudo-wirgsB). Then

we describe the use of MPLS labels to realize SBsE8 Paths
(SBPs) and to support the coexistence between Hedba
forwarding and SBP forwarding. We show the design
challenges of the MPLS based implementation, paitily to
the inherent limitations of the current OpenFlownstards,
partly to the shortcomings of the Open Source ttindd we
have integrated.

A. OSHI High Level Node Architecture

The proposed OSHI node combines an OpenFlow Capable
Switch (OFCS), an IP forwarding engine and an IBting
daemon. The OFCS component is implemented usingr Ope
vSwitch (OVS) [31], the IP forwarding engine is th&ux
kernel IP networking and Quagga [16] acts as theimg
daemon. The OpenFlow Capable Switch is connecttdtbteet

of physical network interfaces belonging to theegrated
IP/SDN network, while the IP forwarding engine aaoected

to a set of virtual ports of the OFCS, as showhRigure 2.

IP Routing Daemon
(Quagga)

IP Forwarding Engine — IP FE
(Linux networking)

Local
Management
Entity (LME)

OF Capable Switch - OFCS
(Open vSwitch)

Physical
interfaces
Figure 2. OSHI Hybrid IP/SDN node architecture

The virtual ports that interconnect the OFCS wiik tP
forwarding engine are realized using theernal Portfeature
offered by Open vSwitch. Each internal port is aeetad to a

be offered by a hybrid IP/SDN network. As primary physical port of the IP/SDN network, so that ther¢iting

requirements we assume three main services/furadiiies: (i)
virtual private networks (Layer 2 and Layer 3)) (iraffic
engineering, (iii) fast restoration mechanisms. &twer, the
architecture should facilitate the realization eiwservices and
the development of new forwarding paradigms (foaregle
Segment Routing [22]) without the need of introdggci
complex and proprietary control planes.

As for the traffic classification, the ingress Pised to
classify incoming packets and decide if they needbé
forwarded using regular IP routing or if they bejoto the
SBPs. The egress edge router extracts the tradfic the SBPs
and forwards it to the appropriate destination. &¥asidered
(and implemented in our platform) two approaches tfe
ingress classification: i) classification basedobgsical access
ports; ii) classification based on VLAN tags. Otheaffic
classifications, e.g. based on MAC or IP sourcdidaon
addresses can be easily implemented without chgnihie
other components.

IV. DETAILED DESIGN OF THEHYBRID IP/SDNSOLUTION

In this section we present the detailed design &mel
implementation of the proposed architecture. Weeriles the
Open Source tools that we have integrated and Hmiv t
practical limitations have been taken into accdordeliver a
working prototype. We first introduce the high leve

engine can reason in term of the virtual portspigrg the

physical ones. The OFCS differentiates among regiia
packets and packets belonging to SDN Based Pagtdefault,

it forwards the regular IP packets from the phylgicats to the
internal ports, so that they can be processed ey IEh
forwarding engine, controlled by the IP routing ae&. This

approach avoids the need of translating the IRrgtiable into
SDN rules to be pushed in the OFCS table, at thee f a

small performance degradation for the packetsrtbatls to be
forwarded at IP level. In fact, these packets ctbesOFCS
switch twice. It is possible to extend our impletagion to

consider the mirroring of the IP routing table inte OFCS
table. Mapping a static snapshot of the IP routaige into a
set of SDN rules in the OFCS is relatively easy (tbwriting

of source and destination MAC addresses needsitecheled

in the rules and the MAC addresses of the next hegsls to
be discovered beforehand). The difficult challemgé¢o take

into account the dynamic aspects, as the rules|dhoe

updated in a timely way following route additiongdates,
deletions. Therefore in the OSHI prototype preseritethis

work this feature is left out for future work Inf{lwe described
a prototype solution that mirrors the routes isthby OLSR
in real time (for a specific set of IP destinatigmsapping them
in OpenFlow rules.

An initial configuration of the OFCS tables is neddo
connect the physical interfaces and the internalrfaces, in
order to support the OFCS-to-SDN-controller commation
and some specific SDN procedures (for example tfope
layer 2 topology discovery in the SDN controllef).Local
Management Entity (LME) in the OSHI node takes cafre
these tasks. In our setup, it is possible to uséiraband”
approach for the OFCS-to-SDN-controller communarati.e.
using the regular IP routing/forwarding and avoidthe need
of a separate out-of-band network. Further desaitsthe block
diagram of the control plane architecture of OSHtes are
reported in [9].

B. OSHI basic services: IP VLL and L2 PW

We designed and implemented two basic services tidfbred
by OSHI networks: the “IP Virtual Leased Line” {R.L) and

the Layer 2 “Pseudo-wire” (L2 PW or PW in shortg $égure
3. They belong to the class of Virtual Leased lsagvices [28],
which are a fundamental part of the offering ofjascale IP

VLL service can only work if all edge and core nedee OSHI
capable and are directly connected to each othéhowut
legacy intermediate switches in between. As a mwiuto
interwork with legacy switches, one could implem&AC
address rewriting replacing the customer addresstisthe
addresses of the ingress and egress PEs or on-hyHuogp
case. This is rather complex to realize and to m@nlaecause
the egress node should restore the original MACresdes
(using the tag as key). There is the need to exgghand then
maintain additional state information per each SBPthe
egress nodes, so we did not implement this solutiorour
prototype and experiments, if legacy switches aesgnt in the
network, the L2 PW service rather than the IP Vidivice
should be used.

The L2 PW service is also known as “Pseudowire
Emulation Edge to Edge” (PWES3), described in RF@539
[24]. It provides a fully transparent cable replaeat service:
the endpoints can send packets with an arbitrdrgrBtpe (e.g.
including VLAN, Q-in-Q). As shown in Figure 3, tlcestomer

Service Providers. VLL services can be used toycarrginernet packet is tunneled into a new Etherneteta@vhose

bandwidth guaranteed applications (e.g. real
communications) or to support VPN solution (e.¢eioonnect
different sites of a company through the ISP WARMth
services are offered between end-points in Provigdge
routers, the end-points can be a physical or logio# (i.e. a
VLAN on a physical port) of the PE router connecteda
Customer Edge (CE). The interconnection is realizethe
core hybrid IP/SDN network with an SBP using MPESédls.

IP Virtual Leased Line

10.0.0.0/24
only IP & ARP

10.0.0.0/24

-~
<
’
v
’

w - w

— N
PE Core MPLS label switching E sioocna
CE

10.0.0.1/24
CE
L2 Pseudo Wire
arbitrary layer 2 packets

L4 w

P~
£ i PE
10.0.0.1/24 Core MPLS label switching
CE

Figure 3.IP VLL and L2 PW services

The proposed IP VLL service guarantees to the I en
points to be directly interconnected as if theyenvierthe same
Ethernet LAN and sending each other IP and ARP gtackt
is not meant to allow the served SBP end-poinsetal packets
with arbitrary Ethertype (e.g. including VLAN pad&®e The
original source and destination MAC addresses, shasv'C-
ETH” (C stands for Customer) in the headers ofpthekets in
Figure 3, are preserved in the transit along thevork core.
This may cause problems if legacy L2 switches aeduo
interconnect OSHI nodes, therefore our implemeomatif 1P

10.0.0.2/24
CE

tim@eader is indicated as P-ETH) and then a MPLS heiade

added. This approach solves the interworking isswitk
legacy L2 networks related to customer MAC addresse
exposure in the core.

C.OSHI - MPLS based approach

In this subsection we illustrate the detailed atpexd the
proposed solution based on MPLS. The use of MPbS8I4a
enables the establishment of up #(#ore than 1% SBPs on
each link, providing the required scalability. TRLS label
space can be partitioned in order to have an cdd=rexistence
with other MPLS based services in the provider WAMe
describe the implementation of IP VLL and PW segsicin
both cases the MPLS solution does not interferl WitANs
that can potentially be used in the links betwe&HOnodes.

1) Coexistence mechanisms

The coexistence of regular IP service (best effaffic) and
SDN services (using SDN Based Paths) is assured) tise
Ethertype field of the L2 protocol. This correspsid one of
the mechanisms that can be used in the IP/MPLS Inode
regular IP traffic is carried with IP Ethertype (B00), while
SBPs are carried with MPLS Ethertypes (0x8847 at®308).
Using OpenFlow multi-table functionality, our sabrt
supports the coexistence of IP and MPLS trafficepypas
shown in Figure 4. Table 0 is used for regularARP, LLDP,
BLDP, etc., table 1 for the SBPs. In particular,blEa0
contains: i) a rule that forwards the traffic wilthertype
0x8847 (MPLS) to Table 1; ii) only for IP VLL a mlthat
forwards the traffic with Ethertype 0x8848 (MultstaMPLS)
to Table 1; iii) the set of rules that “bridge” thphysical
interfaces with the internal ports and vice vergpiwo rules
that forward the LLDP and BLDP traffic to the caniter.
Table 1 contains the set of rules that forwardpidekets of the
SBPs according to the associated IP VLL or PW servihe
coexistence in Table O is assured through diffelevels of
priority. The IP VLL service needs both the rulesaciated to
unicast and multicast MPLS Ethertype (more detadiow),
while the PW service only needs a rule matchinguhieast
MPLS Ethertype.

We consider two MPLS based tunneling mechanisrampl encapsulates the customer packet including its inaiig
IP over MPLS ([23], here referred to as IPOMPLSY an Ethernet header in an MPLS packet to be carriea mewly
Ethernet over MPLS (EOMPLS [24] [25]). The IPOMPLS generated Ethernet header. Unfortunately, we regusolution
tunneling is used for the IP VLL service. The EoMPL that can be implemented using an Open Source saitdiwe

tunneling can support the relaying of arbitraryelag packets,
providing the L2 PW service [24].

Packet IN start at
table 0

ME
Match in
table0?

Send to controller

MATCH1, actionl
MATCH2, action2
MATCH3, action3
MATCH4, action4

Match in
table1?

Execution
action set

GOTO table 1

MPLS, goto:1
MPLSM, goto:1
INPORT=1, output:2
INPORT=3, output:4

Ryu

Execution action
set

Figure 4. Packet processing in the OFCS flow tables

2) Ingress classification and encapsulation mechanisms

As for the ingress classification functionalitydarPE router, it
can be either based on the physical input port rorthe
incoming VLAN tag. We use the input port to clagsihtagged

would like to have a solution that can be fully tofied by

OpenFlow. The OpenFlow protocol and most OpenFlow

capable switches (including Open vSwitch that veeusing for
our prototype) do not natively support EOMPLS erstegtion

and de-capsulation. A similar issue has been fifiedtin [36],

in which the authors propose to push an Etherredreusing
a so called “input Packet Processing” (iPProc) fimmcbefore
handing the packet to a logical OpenFlow capablehwhat -
in turn - will push the MPLS label. Obviously thisquires a
switch with an “input Packet Processing” functicapable of
pushing an Ethernet header into an existing Ethegraeket.
Note that this process is not fully controlled wille OpenFlow
protocol, as OpenFlow does not support the pusbingn

Ethernet header. We cannot directly follow this rapgh, as
Open vSwitch is not capable of pushing Ethernetiéesa The
right half of Figure 5 shows the approach that vaweh
followed, relying on GRE encapsulation. P stand<Pimvider
and it indicates the headers added/removed byEhé Packet
in the PE is processed in four steps (shown ae i tn the

traffic asregular IP traffic or as belonging to a SBP end-point ingress direction from the CE towards the core amdl to e4

(of an IP VLL or PW). For the VLAN tagged traffimtering
in a physical port of a PE router, each VLAN tag dze
individually mapped to a SBP end point or assigiweckgular
IP traffic. For the untagged traffic, the implemaidn of the
ingress classification is realized within the OF@¥$he OSHI
Provider Edge nodes. In fact, by configuring rutethe OFCS,
it is possible to map the untagged traffic on ayréss physical
port to an internal port (for regular IP) or to BFS For the
tagged traffic, the incoming classification rel@sthe VLAN
handling of the Linux networking: each VLAN tag arcbe
mapped to a virtual interface eth0.x that will siyngppear as
an additional physical port of the OFCS.

Let us analyze the encapsulation mechanisms. Thiedk
of Figure 5 shows the encapsulation realized byQBéil-PE
node for the IP VLL service. C stands for Custorttes,ingress
direction is from customer to core, egress refethé¢ opposite
direction. This solution follows the IPOMPLS appeba in
which a MPLS label is pushed within an existingrfea In this
case an input Ethernet frame carrying either aarlBn ARP
packet, keeps its original Ethernet header, shav@-&TH in
Figure 5. As we have already discussed, this swoiutas the
problem of exposing the customer source and deistimsIAC
addresses in the core. Moreover, note that the MEh8rtype
(0x8847) overwrites the existing Ethertype of thestomer
packets. This does not allow the distinction betwée and
ARP packets at the egress node. A solution woultb lsetup
two different bidirectional SBPs: one for the IRlame for the
ARP packets. In order to save label space and gimple
operation we preferred to carry IP packets with BMLS
Ethertype and to (ab)use multicast MPLS Ethertype&3848)
to carry the ARP packets. With this approach, trees MPLS
label can be reused for the two SBPs transporingnd ARP
packets between the same end-points.

in the egress direction from the core toward aamust. The
GRE encapsulation introduces an additional overh@id
bytes for P-IP and 4 bytes for GRE headers) tosthadard
EoMPLS, but it allowed us to rely on Open Sourdeloé-shelf
components.

PW encapsulation
Ingress

Egress
y |

G{E GRE || C-ETH @

IP VLL encapsulation

Egress
Ingress A

C-ETH

q
s [e
1
i4 I :
v v P-ETH | MPLS!I| P-IP | GRE |I C-ETH @
1

EoMPLS encapsulation

‘ P-ETH |MPLS| C-ETH ‘

Figure 5. IP VLL and L2 PW tunneling operationshat Provider Edges. The
EoMPLS encapsulation format is shown as a reference

The implementation of the proposed approach reduire
careful design, whose result is shown in Figur& fiew entity
called ACcess Encapsulator (ACE) is introduced riceeo to
deal with the GRE tunnel at the edges of the psewide
tunnel. The detailed design is further analyzedubsection
IvV.D.

With this approach it is possible to rewrite théssisource
and destination MAC addresses in the core OSHI ordétvso
that they can match the actual addresses of theces@and
destination interfaces on the OSHI IP/SDN rout&hss allows
the support of legacy Ethernet switched networksragnthe

The “Ethernet over MPLS” (EoMPLS) encapsulation][25 OSHI IP/SDN routers, which can be an important neguent

represents the most efficient approach to implenteatPW
service. As shown in the right side of Figure 5MELS

for a smooth migration from existing networks.

Both the IP VLL and PW services are realized wiBPS
that switch MPLS labels between two end-points l{oth
directions). We used the Ryu [38] controller, thBPS are
setup using a python script called VLLPusher. Ttrgps uses
the Ryu Topology REST API of to retrieve the shsttpath
that interconnects the SBP end-points. It allocdtesMPLS
labels and then uses the Ofctl REST API to setaegules for
packet forwarding and MPLS label switching. In setup of a
PW service the MAC rewriting actions are addedngshe
addresses of the OSHI nodes as the outer MAC askelres

Customer Edge Router ETHERNET
Transparent GRE tunnel
MPLS pseudo wire

Label swapping and Mac RW

OSHI OSHI

"ETHERNE [ETHERNET |

Provider edge OSHI Core|O$HI Provider
CE ACE ko "
T a - CORE OSHI
] - L network
¢__

Figure 6. PW implementation in the OSHI node prgiet

dge OSHI

3) Requirements on protocol and tools versions

The MPLS solution needs at least OpenFlow v1.1,clwvhi
makes possible to handle MPLS. Both the SDN cdetraind
the SDN Capable Switch need to support at leastlOF(most

controller and switches jumped from OF v1.0 to y1.3

Considering our tools, an Open vSwitch version déaampwith
OF v1.3 has been released in summer 2014, makpugéible
to start the implementation of the MPLS based aggiro

4) The Virtual Switch Service (VSS)

The PW service can be used as a building bloclcifeating
more complex services, like for example the VirtGavitch
Service (VSS). While a PW service instance bridgaslayer
2 end-points, the VSS service bridges a set ofpariiots into a
virtual layer2 switch. The ports of a VSS instacoerespond
to an arbitrary set of ports of the Provider Edgeles. This
service is called Virtual Private LAN Service (VPL8& RFC
4761 [37]. A VSS provides the same VPLS servicecillesd
in the RFC but its implementation is based on SDN does
not exploit other control plane functionalitiesetefore we
renamed it.

The VSS is based on the L2 PW service, becauséPthe

VLL service does not provide a transparent forwagdif layer
2 packets. To implement the VSS service, a se¥¥s Bonnect
the end-points tdranching pointsin the OSHI network. A
virtual layer 2 switch instance, called Virtual 8ging Point
(VBP), is allocated in the branching points to gadhe packets
coming from the PWs.

A VSS instance is deployed in three steps: i) dhamg
point selection; ii) VBP deployment; iii) VBP intnnection.
In the first step, a python script called VSSelecttrieves the
topology from the controller and then chooses tl@thing
points, i.e. the OSHI nodes that will host the VBRsthe
second step according to the output of VSSelebhwVBP are
deployed as additional instances of Open vSwitchthi@
selected OSHI nodes (see subsection 1V.D for implaation
details). The final step is the deployment of thésPthat will
interconnect the CEs to the VBPs and the VBPs ansaaty
other. We provide two versions of the branchingipselection

(first step above): i) un-optimized; ii) optimizeth the un-
optimized version a single node is randomly setédtethe
topology and used to deploy the virtual bridge. Fbe
optimized version, finding the optimal topologyitoplement
a VSS corresponds to the minimal Steiner tree prodi39].
We implement the heuristic defined in [40] to firah
approximate solution. Then, using the tree topolobtained
from the heuristic, a VBP is deployed in each bhémg point
of the tree. In both the un-optimized and optimizetsion, the
VBPs are connected each other and with end-poiitibsdivect
Pseudo Wires. In this way the packets enters thiesvaéhly in
the branching points.

D. OSHI detailed node architecture

In order to support the PW and VSS services, thkitacture
of an OSHI node needs to be more complex with gpehe
high level architecture shown in Figure 2. Figuner@vides a
representation of the proposed solution for thenBées. As
discussed above, the difficult part is the suppoft
encapsulation and de-capsulation in the OSHI PEes\ofbr
which we resorted to use GRE tunnels (see the sigla of
Figure 5). The different encapsulation steps initigeess (il-
i4) and egress direction (el-e4) are representied tise same
numbering of Figure 5. The OF Capable Switch ordpdies
the push/pop of MPLS labels, while the ACE hantiesGRE
encapsulation. The ACE is implemented with a sdpara
instance of Open vSwitch, in particular we have AQDE
instance running in a separate Linux network namesp34]
for each customer. For each PW, the ACE has twtspar
“local” port facing toward the CE locally connectedthe PE
node and a “remote” one facing towards the remide af the
PW. The remote port is a GRE port provided by O¥i8tefore
the ACE receives the customer layer 2 packets endbal
ports and sends GRE tunneled packets on the rggoatéand
vice-versa). The interconnection of OFCS ports AGE& ports
(the endpoints of the yellow pipes in Figure 7) ezalized
using the concept of Virtual Ethernet Pair [34]eséfd by the
Linux Kernel.

Differently from the internal ports (shown on thght side
of Figure 7), the Virtual Ethernets are always aiged in
pairs. In our case, for each PW two Virtual Ethérpers are
needed, one pair is used to connect the CE p@FaIS with
the local port of ACE, another pair to connect tiote port
of the ACE with the physical ports towards the réargide of
the PW. Three virtual Ethernet endpoints are useglain
switch ports (two belong to the OFCS, one to th&RjEhe last
one, on the ACE, is configured with an IP addreskitis used
as the endpoint of the GRE tunnel (Virtual Tunnedpoint,
i.e. VTEP). These IP addresses are not globallgleisbut they
have a local scope within the network namespacsscided
to the customer within all the OSHI nodes. This rapph
greatly simplifies the management of the serviesgthe same
addresses for the GRE VTEP can be reused for differ
customers. As a further simplification, static ABRtries are
added on the Virtual Ethernet for each remote tlramel
(remote VTEP). For each customer, a simple cengdli
database of IP and MAC addresses (used for GREekinis
needed.

ACE namespace Root Name Space

ACcess Encapsulator —~ACE

(Onen vSwitch)
e4 IP Routing Daemon
“Local” “Remote”
(Quagga)
Virtual 2 GRE port

Ethernet| e3

Virtual Ethernet
i3 with IP address

Internal Ports

OF Capable Switch - OFCS
(Open vSwitch)

Virtual
Ethernet

Virtual
Ethernet

i4
i1 Pseudo Wis

Figure 7. OSHI-PE architectural details

Physical ports ASt

Proper OpenFlow rules needs to be setup in the &palde
Switch to ensure the transit of packets. On thesxport (i1)
these rules are provided by the LME at the timé¢hef ACE
creation, while in the i4 and e2 cases they ardgaidby the
OpenFlow Controller during the PW establishment.

As discussed above, an instance of ACE in the RIe i®
used to handle all the PWs of a single customerransl in a
private network namespace. In addition we had tdigore a
private folders tree for each ACE instance, as iméeded to
guarantee proper interworking of difference inseanof OVS
in the same PE node.

Coming to the implementation of the VSS, the indérn
design of an OSHI node that hosts a VSS BridgingtRuBP)
is shown in Figure 8. The design is quite similarthe one

endpoints of different customers. In addition, theparate
namespaces allow to turn the ACE in a “Virtual Routby
including an instance of a routing daemon (Quaggaits
network namespace. Such a virtual router is theicbas
component of Layer 3 VPN services that could comglet the
Layer 2 PW and VSS services realized so far. Witghdhoice

of the more complex design we tradeoff scalabilitith
simplification of the service management and easier

development of new services.
IP Routing Daemon
(Quagga)

IP Forwarding Engine — IP FE
(Linux networking)

Root Name Space

Separate customer switch
within Open vSwitch

GRE port

OF Capable Switch - OFCS

(Open vSwitch)

Qi)I Pseudo Wire

Figure 9. PW implementation design without ACE

A second consideration is that the handling of GRE
tunneling has been recently introduced in Linuxnlets. This
can lead to a simpler design for tunneling thatsdoa require
the ACE nor the use of the GRE module provided Iper©
vSwitch, as shown in Figure 9. Anyway, this solatlwas the
same drawbacks discussed above in terms of managerie
IP addresses for the tunnel endpoints, because Hrer not
separate network namespaces for the customersaandt be

analyzed before for the PW encapsulation. A VBP iSeasilyextended to support Layer 3 services.

implemented with an OVS instance that does not heeal
ports, but only remote ones. A VPB instance repissa
bridging point for a single VSS instance and itreatrbe shared
among VSS instances.

VBP Name Space

VSS Bridging Point — VBP
(Open vSwitch)

“ Pseudo Wis

Figure 8. An OSHI node that hosts a bridging pton VSS

Root Name Space

IP Routing Daemon
(Quagga)

IP Forwarding Engine — IP FE
(Linux networking)

OF Capable Switch - OFCS
(Open vSwitch)

Physical ports

1) Considerations on alternative design choices

Considering that a single instance of Open vSwitrhsupport
several independent switches, a simpler designdvoarsists
in implementing the ACEs shown in Figure 7 as sajgar
switches within the same Open vSwitch instance riivag the
OFCS. For N customers, this solution would use OMS
instance instead of N and only the root network espace
instead of N additional namespaces, reducing thenone
requirements versus the number of customers. Taehdick
of this solution is that handling the GRE tunnels adl

V. OSHI: GAP ANALYSIS, ONGOING AND FUTURE WORK

The solution for PW encapsulation described inised¥.D is
based on GRE tunneling performed by the ACE. It leesn
designed as a replacement of the more efficiengéragt over
MPLS (EoMPLS) encapsulation specified in [24], whic
cannot be realized by the current version of Ofnitch. The
GRE tunneling introduces a transport and a proegssi
overhead. The former is 20 (IP header) + 16 (GRad&e
bytes for each packet, while the latter depends tlom
implementation architecture. Our solution (showifrigure 7)
is not meant to be highly efficient but only to demstrate the
feasibility of the approach with a working compohaie do
not plan to improve the efficiency of the solutioather we
believe that native Ethernet over MPLS (EOMPLS)
encapsulation should be provided by open sourceises and
we are considering to extend the Open vSwitch fopsrtt
EoOMPLS.

Assuming that a switch supports EOMPLS, a second
important gap to be filled is the lack of suppoot such
tunneling operations in the OpenFlow protocol. Nibtat the
lack of encapsulation support in OpenFlow does oy
concern EOMPLS, but also other tunneling solutikesGRE,
VXLAN. The only tunneling solution currently supped by
OpenFlow is the PBB (Provider Backbone Bridgesy kisown
as “mac-in-mac”), but this solution is not suppdrtgy Open
vSwitch. For GRE and VXLAN, using OpenFlow it isgsible

customers in the same network namespace requires tHP control packets already tunneled (and specifitcives have

management of disjoint IP numbering spaces forttimmel

been introduced in OF 1.4 for VXLAN), but it is npbssible

to control the encapsulation (i.e. pushing the GRE|.AN
headers) and de-capsulation (i.e.
operations. Currently, external tools are neededdoage the
GRE or VXLAN tunnel end-points (e.g. using the shiCLIs

- Command Line Interfaces or switch specific proteclike
ovsdb-conf for Open vSwitch), with added complexitythe
development, debug and operations. Extending OpenFl
protocol with the capability to configure the tufing end-
points would be a great simplification in the magragnt of
SDN based services.

The OSHI solution is an open starting point to gesand
implement additional “core” functionality and useriented
services. As for the core functionality we are ¢desng traffic
engineering mechanisms and implemented a flow assgt
heuristic for optimal mapping of PWs with requiregpacity
on the core OSHI links. As for additional servicess are
considering Layer 3 VPNs based on the PW serviakowing
the same approach used for the VSS service, tre igléo
deploy virtual router instances within the OSHI esdhat can
exchange routing information with routers in the G&des.
Finally, we are working on an Open Source impleraton of
Segment Routing [22] on top of OSHI [26]. This lastnario
is a good example of how the proposed frameworkitiztes
the implementation of new services and forwardiagdigms.
All these ongoing efforts are reported on the O%idb page
[6], with links to documentation and source code.

VI. MANTOO: MANAGEMENT TOOLS FORSDN/NFV
EXPERIMENTS ONMININET AND DISTRIBUTED SDN TESTBEDS

Mantoo is a set of Open Source tools meant to stfgioN
experiments both over Mininet and over distributestbeds.
Mantoo is able to drive and help the experimentershe

popping the Inpade Da =

Figure 10. The Topology3D (Topology and Servicesige Deploy &
Direct) web Graphical User Interface

As shown in Figure 11 the input to Topology3D textual
description of the model. The model descriptiorused to
configure the topology designer page, to enforeetinstraints
when the user is building the topology and/or dyrihe
validation of the topology. So far, we have proddevo
models: 1) the OSHI topology domain, including O%HR and
PE, , Customer Edge routers which are also usettati
source/sinks and SDN controllers; 2) a genericrl@ymetwork

with OpenFlow capable switches, end-nodes and SDN

controllers. Each model is decomposed in a setiefist A
view is a perspective of a model, which focusessome
aspects hiding unnecessary details. For exampée OBHI
model is decomposed in 5 views: data plane, coptesle and
3 views for the 3 services (IP VLLs, Pseudo Wined ¥irtual
Switches). In the data plane view, the user destgnphysical

different phases that compose an experiment: desigiopology in terms of nodes (OSHI CR and PE, Colers) and

deployment, control and measurement, as descnibibkinext

CEs) and links; in the control plane view the usssociates

subsections. Mantoo includes: a web based GUI calleOSHI nodes with controllers; in the service views tuser
Topology3D (Topology and Services Design, Deploy an selects the end points of the services.

Direct, Figure 10), a set of scripts to configured aontrol

emulators or distributed testbeds; a set of scrifus

performance measurements. The overall Mantoo waskfs

represented in Figure 11. Using the Topology3D,user can
design its experiment in terms of physical topologyd

services, start the deployment of the topology amd the
experiments exploiting the provided measuremenistothe

design of Mantoo and of its components is modutal incan
be easily extended to support scenarios that gortaethe use
cases of our interest.

A. Design Phase

The Topology3D offers a web GUI to design a network

topology and to configure the services for an expent (see
Figure 10). It consists of a JavaScript client ariRithon back-
end. A link to a public instance of the Topology 8Bn be

T Topoiogy |

: to testbed 1

)
ot

i mepeing

.
Testbed
Deployer
\ libra

R
OFELIA - OSHI A
e !{

Topology
representation
file (JSON)

Deployer Scripts
Mininet
Extension
library

Models of
technology

domains

networkx]
I (automatic

\ topology generater) ;
S

Management
Scripts

Setup scripts

Config scripts

Remote
Control
Scripts

v sew§ Measurement
g = tools
=2 T
=

Distributed testbeds
Figure 11. Mantoo enabled emulation workflow

Topology 3D GUI
Topology and Services
Design, Deploy and Direct

| totestbed 1

i
S

=
Mininet emulation

accessed from [6]. The Topology3D is meant to be an The Topology3D exports the representation of theavsi

extensible framework that can support different eledof
topology and services. A model corresponds tolan@aogical
domain to be emulated and is characterized by #teok
allowed node types (e.g. routers, switches, entshoBnk
types, service relationships and related consgaint

(topology and services) in a JSON format, whichobees the
input for the deployment phase. We have integretes
Networkx [27] tool which allows generating randoatalplane
topologies with given characteristics.

B. Deployment phase

The deployment phase translates the designed @pbito the
set of commands that instantiate and configurentides and
the services for a given experiment. This phase teaget
different execution environments for the experirsenby
means of a specific “Deployer”. So far, we targetatk
emulator (Mininet) and four distributed SDN testbe(the
OFELIA testbed [10], the GEANT OpenFlow FacilityzOFF
[41], the GEANT Testbeds Service — GTS [42] andigape
testbed called Netgroup SDN Testbed — NeST [9]).

Technically, the deployment phase is performed bgtaf
python scripts (Topology Deployer) that parse tBON file
with the representation of the views and productéu scripts
(mostly shell scripts). The proper execution ofsenescripts
deploys the experiment either over Mininet or ower
distributed SDN testbed. The Testbed Deployer amel
Mininet Extensions are Python libraries that areduby the
actual Deployers. The Mininet Extensions libraraitored for
the Mininet emulator, while the Testbed Deployerrently
supports the four above mentioned testbeds archibe easily
extended to support additional ones.

1) Mininet Extensions

By default, Mininet only provides the emulation tadsts and
switches. We enriched Mininet introducing an extshtiost,
capable of running as a router and managed tcheiQtiagga
and OSPFD daemons on it. The extended host inclOges

testbed the PW and VSS services cannot be depliyedo
old Linux kernels which do not support network napeces.
The GTS testbed is distributed on a number of lonat
interconnected by the GEANT core network [43]sliianaged
by OpensStack, each site includes a KVM VirtualiaatServer
and a physical OpenFlow capable switch. FinallySNeés a
small private testbed located at University of Roiher
Vergata, composed by three servers, each one gitioth a
KVM Virtualization Server and a switch based on OVS

The Management Scripts automate and facilitateséep,
configuration and the deployment of an experimériey
relieve the experimenter from tedious and errornpro
activities. As shown in Figure 11, the Testbeds |B@y
Scripts automatically produce the configuratioedilthat are
given in input to the Management Scripts for eniotaa given
topology, composed of access and core OSHI nodskl(®BE
and OSHI-CR) and end points (CEs and SDN contsjligihis
includes the automatic configuration of IP addresaed of
dynamic routing daemons (OSPF) on all nodes, sading
significant time for the node configuration. Eadda (CR, PE
or CE) is mapped into a different VM running in a
Virtualization Server of a given testbed. Two methins can
be used to map an emulated node on a VM: 1) a resdile
(called “topology-to-testbed”) with a list of IP dwsses of
available VMs can be given to the Deployer, which
automatically choses the VMs for the emulated npdett is
possible to manually assign the target VM (ideatifby its IP

vSwitch, as needed to realize the OSHI node. Amotheaddress) for an emulated node, either editing gpinggile or

enhancement to the default Mininet setup depend®won
requirement to reach the emulated nodes via SShkh fro
external, “non-emulated” process. For this purpose
introduce a fictitious node in the root namespdda®hosting
machine that is connected to the emulated netwodkveorks
as relay between the emulated world of Mininet dred“real”
world of the hosting machine. The details on thecdft
Mininet deployment architecture can be found in. [Bhe
Mininet Extensions library is able to automateth# aspects
of an experiment. This includes the automatic aurtion of
IP addresses and of dynamic routing (OSPF daemiorel)
nodes, therefore relieving the experimenter frogigaificant
configuration effort. As for the software desighetlibrary
extends Mininet providing new objects and AP| sedmlessly
integrate with existing Mininet objects.

2) Deployment over distributed SDN testbeds

We implemented and tested a Deployer for each effolr
distributed SDN testbeds listed above. The OFELIA &@OFF
testbeds share a similar architecture as they asedoon the
OCF (OFELIA Control Framework) [10]. These two tesis
manage differently the out-of-band connectivitye&fically,
in the OFELIA testbed there is a management netwotk
private IP addresses, while in the GOFF testbethallirtual
machines use a public IP address. The OFELIA tdsstiee
we used is hosted in the CREATE-NET island, comgdmse8
OpenFlow capable switches and 3 Xen [44] Virtudiira
Servers for the experimental Virtual Machines (VM$he
GOFF testbed offers five sites, each one hostirggervers,
which respectively run the OF equipment (based ¥S)Xand
Xen, for hosting the VMs. The GOFF testbed suppalitthe

graphically using the Topology3D GUI.

A management host coordinates the overall procsss|ly
also executing the Deployer scripts. The managehsttand
the VMs communicate over a management network. The
configuration files generated by the Deployers pisriare
uploaded on a repository reachable by the VMs (a.g.
webserver running on the management host). Durheg t
deployment process these files are downloaded by ¥M
belonging to the experiment.

The Management Scripts are logically decomposed in
Remote Control Scripts, Setup Scripts and ConfigpBc
* The Remote Control Scripts, based on DistributeaISH

(DSH), are used by the management host for digingu

and executing remote scripts and commands. Thayena

root login without password, avoid initial ssh payiand
configure the DSH in the management VM. Once DS$1 ha
been properly configured with the IP of the VMsdrgjing

to the experiment, it can run commands on a single

machine, on a subset, or on all the deployed VMs.dlso
possible to execute parallel commands speedinghap t
deployment.
¢« The Setup Scripts turn a generic VM provided by the
testbed into an emulated node (CR, PE, CE or cleryo
installing and configuring the needed software nteslu

e The Config Scripts configure a specific experimand its
topology, setting up the link (tunnels) among thds/

In order to replicate an experimental topology eating the
network links among CRs, PEs and CEs an overl&tludérnet
over UDP tunnels is created among the VMs, as shiown
Figure 12 for the OFELIA and GOFF testbeds. A thoyerlay

OSHI services (IP VLLs, PW and VSS). In the OFELIA topology is shown in the higher part of the figunile the

physical testbed is shown in the bottom part, is gxample it
is constituted by two Virtualization Servers coreechy a set
of OpenFlow switches. Each element of the overtgptogy
(node, host or SDN controller) is mapped on a diffié VM
that can be run in one of the Virtualization Sesyers shown
in the middle part of the figure. The red thickdirepresent
the UDP tunnels among the VMs that are setup irra@map
the links of the overlay topology. The underlyirapoectivity

among the VMs has to be managed by the Testbed SDN

Controller. In case of GTS and NeST the deploymient
simplified because the underlying connectivity agndre VMs

IP forwarding & routing component

Virtual ports

OF Capable Switch - OFCS
= (Open vSwitch)

VXLAN tunnel “ports”

Ethernet
over UDP
—

i Physical interface with “testbed”
IP address (e.g. 192.168.1.x)

Figure 13. Implementing VXLAN tunnels using Openwitsh (OVS)

eth1.199 port

D. Measurement Phase

is automatically provided by the testbed managemenf, order to automate as much as possible the psatesnning

infrastructure.

: Overlay
SDN Overlay
Controller topology

(example)

L —

Virtualization Server 2
Overla)LSDN Controll.

_t ,,,,, = fgj et

SDN H

= controller
Virtualization Server 2
i Testbed

U m (%:’JCO:::IH U U u Lj

(@" @’ (’d¢ @f (7)

Virtualization Server 1

Overlay
level

Testbed
level

Virtualization Server 1

Testbed
level

Figure 12. Deploying an overlay topology over tHéEDIA/GOFF testbeds

A first option to build the tunnels is to use theeuspace
OpenVPN tool (with no encryption). The performargpoor,
as performing encapsulation in user space is veRU C
intensive. A possible approach to enhance perfocmas to
rely on specific hardware and/or on software maosiube
optimized I/O library like Intel DPDK [30]. We pref a
solutlon that is applicable on generic Linux desiceo we

the experiments and collecting the performance dater
distributed testbeds we have developed an objdented
multithreaded Python library called MeasurementI3odhe
library offers an intuitive API that allows the eqimenter to
“program” his/her tests. Using the library we cambptely
(through SSH) run the traffic generators (iperf)l gather load
information (CPU utilization) on all nodes (VMs)sAor the
load monitoring, taking CPU measurements from witthie
VMs (e.g. using thetop tool) does not provide reliable
measurements. The correct information about theures
usage of each single VM can be gathered from the
virtualization environment, for example on Xen lmhsgstems
we relied on thexentoptool, which must be run as root in the
Xen based Virtualization Server. Therefore, for @EELIA
environment we have developed a python modulecblgcts
CPU load information for each VM of our interesttive Xen
server usingentopand it formats it in a JSON text file. The
Measurement Tools retrieve the JSON file from tgthgn
module with a simple message exchange on a TCResdok
the GOFF environment the measurement data are dawvi
through a Zabbix interface [46A python module gathers the
data from the Zabbix API. In the KVM based NeSThed, we
relied on thevirt-top tool.

The Measurement Tools provide a general framewuak t
can be easily adapted to different needs Curramdyhave

provided by Open vSwitch. OVS implements VXLAN tets
in kernel space [32], dramatically improving perfi@ance with
respect to OpenVPN. The design of the VXLAN tunmgli
solution for OSHI over a distributed testbed isarted in
Figure 13. We only use VXLAN as a point-to-poinameling
mechanism (the VXLAN VNI identifies a single linletween
two nodes) and we do not need underlying IP mudtisapport,
as in the full VXLAN model. The OF Capable OVSliscaused
to perform encapsulation and de-capsulation of VKLA
tunnels. Each tunnel corresponds to a port inlitels

C. Control phase (running the experiments)

In the Mininet based experiments it is possiblegen consoles
on the emulated nodes using the web GUI of the Tbogy8D.
The consoles show the output generated by the reslegses
connected to the nodes (deployed in the Mininetlatar). The
generated output is conveyed to the terminal shething in
the experimenter browser, leveraging the WebSodéiei,
where each terminal has a separate WebSocket dhdinee
same functionality for the experiments over thetritiated
testbeds is currently under development.

load information from the virtualization environmerAn
experimenter can easily extend this framework to lris/her
tests and collect the measures of interest.

VIl. PERFORMANCEEVALUATION ASPECTS

In this section we analyze some performance aspdctise
OSHI prototype implementation over distributed SDN
testbeds. The openness of the OSHI solution maleEssible
to design and implement new services based on B S
paradigm and run experiments to validate them antbo
compare different implementation options. Thanks tle
Mantoo suite, an experimenter can deploy a largkesetwork
over a distributed testbed. In our view the addddesprovided
by OSHI/Mantoo will be the opportunity to get feadk on
Control Plane design issue from the implementatind the
experiments.

On the other hand in this section we focus on sbaia
Plane aspects of our prototype implementation. rEtienale
for this evaluation is to provide an indicationtbe scalability
of the emulation approach in distributed testbedslenup of
Linux Virtual Machines running on typical Virtualition

Servers. It is not our purpose to assess Data Rtawarding
performance for a production ready solution workatgine
speed in the core of ISPs’ WANSs. This type of eatibn will

be needed if OSHI will be ported over the so calldite box
switches high performance forwarding equipment with an
open Operating System that can be customized by-pairty
developers, but this is for future work.

The first two experiments (sections VIILA, VII.Blabe
been performed over an OFELIA testbed. We usedpibed
tool as traffic source/sink in the CE routers apdayate UDP
packet flows from 500 to 2500 packet/s. In theggeerments

OSHI IP

B ROUTER IP

%CPU load

OSHI IP
ROUTER IP

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Packet Rate (p/s)
Figure 14. Best Effort IP forwarding performance.

the UDP packet size was 1000 bytes (using UDP packerigyre 15 compares the CPU load for OSHI IP fonivaydn

ranging from 100 bytes to 1400 bytes, the perforraanas
been only influenced by the packet rate). We evatlidhe
CPU load in the PE routers with otentopbased Measurement
Tools. We executed periodic polling and gatheresl @PU
load of the monitored VMs. In each run we collec2€dCPU
load samples with polling interval in the ordertwb seconds:
the first 10 samples are discarded and the lasrd@veraged
to get a single CPU load value. Then we evaludtedrean
and the 95% confidence intervals (reported in idparés) over
20 such runs. The experiment in section VII.C hagnb
executed on the NeST testbed, shown in Figure hé.above
described methodology has been used, but the gederacket
rate ranged from 12.5 kp/s to 62.5 kp/s, with Ueket size
of 100 bytes, we evaluated CPU load both in PEGRMDSHI
nodes, using theirt-top tool. Finally, the experiments in
sections VII.D and VII.E have been performed on G@FF
testbed.

A. Best Effort IP performance in OSHI

With reference to the architecture in Figure 2 campared the
forwarding performance of IP Best Effort packetsQsHI
(where each packet crosses the Open vSwitch twestim
marked as “OSHI IP” in Figure 14) with plain IP ¥aarding
(the Open vSwitch is removed and the OSHI nodefaxtes
are directly connected to IP forwarding engine, kadras
“ROUTER IP”). In the next section, we refer to tOSHI-IP
case as “No-Tunnel”, as no tunneling mechanisnsésluThis
experiment is not automatically deployed using
Topology3D and Deployer, and we setup a limitecbtogy
with two CE nodes and two OSHI nodes. In the expenit
results (see [9] for details) we can appreciate P Goad
penalty for OSHI IP forwarding with respect to ROER IP
forwarding ranging from 11% to 19% at differentest The
theoretical CPU saturation rate for plain ROUTER
forwarding is in the order of 14000 p/s. OSHI Irviarding
reduces the theoretical CPU saturation rate to gongein the
order of 12500 p/s (corresponding to 11% perforreanc
penalty).

B. Performance comparison of tunneling mechanisms
In this experiment we evaluated the processing hmsgat

the OpenVPN, VXLAN and no tunneling scenarios.dh de
appreciated that VXLAN tunneling adds a reasondbly
processing overhead, while OpenVPN tunneling would
dramatically reduce the forwarding capability of@8HI node
in the testbeds. The theoretical CPU saturatior rair
OpenVPN tunneling is in the order of 3500 p/s, WwhgA times
lower than in the no tunneling case. The theorkticBU
saturation rate for VXLAN tunneling is oniB% lower than
the no tunneling case, showing that VXLAN is aniogfht

mechanism to deploy overlay topologies.
90

Py

T/
M
e
pd
r

— No-Tunnel

500

80

70

60
50

—&— OpenVPN

%CPU

40

== VXLAN
30

20

10

0

1000 1500
Packet Rate (p/s)

Figure 15. CPU Load for different tunneling meclsans.

2000 2500

C. Performance comparison of different forwarding
approaches over the distributed SDN testbed

In this experiment we evaluated the processing ¢tdalifferent
forwarding approaches over the distributed SDN bt

theconsidering the topology shown in Figure 17. Far @SHI

solution, we considered IP forwarding (OSHI IP) aBBP
forwarding (OSHI VLL). Then we assumed plain
forwarding as a reference (ROUTER IP).

We executed the performance tests of OSHI IP, O8HI
and ROUTER IP using the VXLAN tunneling solutiondan

P

IPcollected the CPU load both for the access PE andehe first

CR node (see results in Figure 18). In case ofnpl&

forwarding (ROUTER IP) the packets have to crogs@pen
vSwitch which handles the VXLAN tunneling (see Figd3),
therefore as expected there is no advantage wibeot to
OSHI IP. The OSHI VLL solution is the least CPUsinsive as
it exploits MPLS label switching in the Open vSwitcThe
CPU performance penalty of OSHI IP forwarding w@&HI

introduced by the tunneling mechanisms (OpenVPN ang/LL is less than 10%. The CPU loads for PE and GR a

VXLAN) used to deploy the overlay experimental thmpes
over distributed SDN testbeds. We considered thmesa
topology of the previous subsection.

different in absolute values because the respettMs are
mapped in two different Virtualization Servers witiferent
processors. In the experiment, a physical core ke t

Virtualization Servers was exclusively allocatedetich VM.

For the PE node the theoretical CPU saturationisate the
order of 320 kp/s for OSHI VLL, while for the CRa® hosted

on the more performant server the theoretical CRration
rate is in the order of 1 Mp/s.
Sparrow

Sparrow

—“e: PE-OSHI1

CR-OSHI1 CR-OSHI2
2 e

WU &
@

7 C

/ca»osm

7.“ PE-OSHI2

3

CR-OSHI3

Canary
Figure 16. Physical network Figure 17. Overlay network for the
in the NeST testbed experiment on NeST

* CR-OSHIIP

* CR-OSHIVLL
CR-ROUTER 1P
PE-OSHI IP
PE-OSHI VLL
PE-ROUTER IP
CR-OSHI IP
CR-OSHI VLL

%CPU LOAD

CR-ROUTER IP
P-OSHI IP

PE-OSHI VLL

PE-ROUTER-IP

00 12500 25000 37500 50000 62500 75000 87500 10000 112500 125000
RATE (P/s)
Figure 18. CPU load with VXLAN tunneling.
D. Performance evaluation of encapsulation for PW iserv

In this experiment we evaluated the performancealpgen
introduced by the encapsulation mechanism impleeaefar

the PW service (section IV.D). We have performeds th

experiment over the GOFF testbed (physical topoligy
represented in Figure 19) using the overlay toppkitgpwn in
Figure 20. As usual, the iperf tool has been usedratfic
source/ sink in the CE routers and generates URKRepéows.
We evaluated the CPU load in the OSHI-PE5, witkerkoglic
polling approach. A sample is provided by Zabbiemrv
minute, representing the average calculated inpibd with
1-second-interval samples. For each load levek@gtaate) we
executed a single run of 7 minutes and collect&PU load
values, the first 2 are discarded and the laseSaseraged to
get a single CPU mean load value. Then we evalutted
relative standard deviation (RSD) to ascertainrétiability of
the results. The RSD is always smaller that 5%liruas.

In the PE nodes, the implementation of the IP VEtvice
is based on the design shown in Figure 2, whild”eservice
considers the architecture described in Figure & wnted to
estimate the overhead introduced by the ACE andhiay
operations of the GRE tunnel. We generated UDPqidithvs
with a rate ranging from 2000 to 18000 packet/saglam size
is 1000 byte as usual). The core topology is repres in
Figure 20. In the experiment, 3 CEs, acting asfitraf
sources/sinks, were connected to each PE. Thisneeded
because the generation rate of a single CE in ghéesific
testbed setup was at most 6000 packet/s, to keepRi load
of the CE VMs under a safety threshold.

OSHI-CR4

'~
AR
&5, osHi-cra

OSHI-CR1 S
OSHI-PES‘g "% OSHI-PE2

/1IN 1\

CE6 CE7 CE8 CE9 CE10 CE11
Figure 20. Overlay network for the
experiment on GOFF

Figure 19. GOFF Physical
network

In the experiment results (see Figure 21) we canemjate
a CPU load penalty for OSHI PW forwarding with respto
OSHI VLL forwarding in the order of 15%-21%. Appatly,
the CPU load penalty is decreasing in relative seathigher
CPU load. These results shows the potential impneves that
could be achieved by natively supporting EoMPLSh&limg
in the switches instead of using the developed AGH the

GRE encapsulation.
90

80 S
-
-~
70 = —
- ~
60 rs >
&g . VP
L5 sl + VL
2 [= = W
% a0 u Pl
H "I = — VLL
30 » ,(~ - = PW
)/
20 /",
P
10 @
0 : : : : : : : :
0 4000 8000 12000 16000 20000 24000 28000 32000

packet rate (p/s)

Figure 21. CPU load for different OSHI services.

E. Performance analysis of OVS internal mechanisms.

In this section, we shortly report about two expennts that
concern the evaluation of OVS internal mechanisitsese
experiments do not directly concern OSHI, but thayport the
choice of OVS as the software based OpenFlow cefsatitch
integrated in OSHI node and show the effectiver@sthe
proposed Mantoo platform for the setup, deploymantl
control of the experiments and the collection offgenance
results. For space reasons, the detailed resules tat been
included and can be found in [47].

The first experiment investigates the impact of kkenel
flow cache implemented in OVS. In the OVS architeet the
first packet of a flow arriving at a node is fondad to a Linux
user space process, while the following packetsisirey a flow
cache in the kernel. OVS performance is optimébag as the
packets are forwarded using the kernel flow caétwe. the
same traffic pattern we measured 40% CPU utilizafior
kernel cache processing and 94% utilization forr usgEace
processing. For the OSHI solution, we gathered design
insight that the number of active SBPs should remwthin
the limit of the kernel flow table. We evaluateefalls in [47])
how many flow table entries are needed for an IR 6L L2
PW service, so that we relate the dimension offithe table
with the maximum number of service instances.

The second experiment evaluated how the numbeatiota
flows in the flow tables influences the forwardipgrformance
of OVS. The comforting result is that increasing ttumber of
active flows in the tables does not influence tbevarding

performance. This is obviously valid as long asaétiive flows
are less than the size of the tables. The resulirove of the
efficient implementation of flow lookup mechanisnas,least
for the traffic patterns that we have used in ogregiments.

VIII.

Pure SDN solutions based on SDN capable switchies-in
connected with a centralized controller have besnahstrated
both in data-centers and in geographically distabduesearch
networks, such as OFELIA [10] in EU, GENI [11] and
Internet2 [12][13] in US. To the best of our knodde, these
solutions do not integrate L3 routing within the ($DBapable
L2 switches. We argue that an ISP network requiresore
sophisticated approach that can natively interwatk legacy
IP routers and IP routing protocols. As stated7 & hybrid
SDN model that combines SDN and traditional arciites
may “sum their benefits while mitigating their restive
challenges”. Some recent works address the hyls8DN
networking from different perspectives.

RELATED WORK

facilitate experimentation on hybrid IP/SDN netweaet large
scale.

The Google B4 WAN [21] is an integrated hybrid IDN6
solution, and it has likely been the first applicatof the SDN
approach to a large-scale WAN scenario. In thedddti®on the
traditional distributed routing protocols coexistitiw a
SDN/OpenFlow approach. In particular, the B4 WANSiare
interconnected with traditional routing and the SDOiised
centralized Traffic Engineering solution is depldyas an
overlay on top of basic routing. Differently frorhet OSHI
solution, the routing protocols are processed byese external
to the switches. Google B4 solution is proprietand it is
highly tailored to the needs of their specific samém composed
of few large sites that needs to be interconnededsuch, it
does not represent a typical ISP WAN network, magéy a
large number of geographically distributed nodesti@ other
hand, OSHI is designed as a generic and open colfir
hybrid IP/SDN networks.

This work significantly extends the preliminary ués

In [14] the authors presented an Open Source Labelescribed in [5]: 1) the implementation of SDN whpaths is

Switching Router that generates OSPF and LDP pacising
Quagga. The node computes the MPLS labels thathare
installed in the switches using the OpenFlow (Ofétgrcol.
This architecture does not exploit a logically calited
controller. Instead, it considers a traditionatmisited control
plane, while it uses OF only locally in a node yochronize
the FIBs and to program the data plane.

RouteFlow [15] creates a simulated network madértfal
routers at the top of a SDN controller. The simedatetwork
is a copy of the physical one. The controller uses BGP
protocol to interact with routers of neighbor donsaiand it
simulates intra domain protocols (OSPF, IS-IS) leetwthe
virtual routers. A traditional IP routing engine&yga [16])
computes the routing tables that are eventualliailes into
the physical nodes via the OF protocol. The Cardigeject
[18] is based on a fork of RouteFlow. Cardigan ired a
distributed router based on RouteFlow conceptsdapdoyed
it in a public Internet exchange, showing the aggtlility of
SDN/OpenFlow in a production context. The “SDN-IP”
solution proposed in [19] follows similar princigldt is based
on the ONOS SDN controller [20] and it also intésawith
external domains using BGP. Differently from Route¥ the
controller does not instantiate virtual routerssimulate the
exchange of intra domain routing protocols, butentralizes
the routing logic for better efficiency.

Compared with these works, our solution assumesttiea
physical nodes still deal with basic IP routingjshachieving
resilience for basic IP connectivity based on séaddP routing
and easier interoperability with non-OF devicesthie core
network. On top of the basic routing, the SDN/Ogdenf
controller can instruct the hybrid IP/SDN nodesptrform
SDN based forwarding for specific traffic flows. i$hdea of
supporting such hybrid nodes is already includedthia
OpenFlow specifications since the first versiothaf protocol.
Two types of devices are considered: OF-only anehgiifid
which can support both OF processing and stand@rd3L
functionalities. Currently, only proprietary hardwaswitches
implement the hybrid approach offering also L3 dtad
routing capabilities. OSHI represents a fully Of@aurce OF-
hybrid solution designed to be flexible and scaalb as to

based on MPLS labels rather than VLAN tags, soluimg
scalability issues; 2) in addition to the IP VLLrgee the
proposed solution offers the L2 PW service and\threual
Switch Service on top of it; 3) the detailed designd
implementation aspects of an OSHI node are destriehe
Mantoo platform has been extended, for exampleoiv n
supports remote consoles on the emulated Mining¢siasing
the web GUI; 5) the experiments have been validatgain
with the new MPLS based implementation. A demo & t
Mantoo platform has been presented in [48].

IX. CONCLUSIONS

In this paper we have presented a novel architectund
implementation of a hybrid IP/SDN (OSHI) node. T@8HI
data plane supports the coexistence of best éfdarwarding
and SDN based forwarding using MPLS labels. Thditicanal
distributed MPLS control plane is not needed anynas all
MPLS circuits (Label Switched Paths, now ternstaN Based
Pathg are established by means of the SDN controllee. W
have shown the implementation of IP VLL and Lay@&sudo
Wire (PW) services. On top of the L2 PW serviceals® have
built a layer 2 Virtual Switch Service (VSS), clbse
resembling the layer 2 VPLS solution over MPLS. rigsihe
SDN approach, all complex control plane functiomat ttake
decisions (e.g. optimal tree evaluation) and emfothbat
decisions (e.g. creation of PWSs) are executeddeitsie OSHI
network nodes. Results of performance tests exédudth in
single-host emulators (Mininet) and in distribut&DN
testbeds have shown that OSHI is suitable for lsugde
experimentation settings.

We have described Mantoo, a suite of supportings tiow
experiments with OSHI based services. It includes
extensible web GUI framework for designing and dating a
topology, called Topology3D. The topology is autoicelly
deployed either on Mininet or on distributed tesdthe
Execution and Measurement tools simplify running th
experiments and collecting performance measurements

Developed according to an Open Source model, thélOS
prototype and the Mantoo suite are valuable tdus ¢nable

further research and experimentation on novel sesviand
architecture in the emerging hybrid IP/SDN networks

So far, we presented our implementation of the OSH

architecture mostly as an experimenter tool. tivad to easily
configure VMs as hybrid
experiments at relatively large scales using Mingmulator
or resources over distributed testbeds. On ther dthed, we
recently started working on an implementation af DSHI
architecture on white box switches [4], in partaulising the
P-3922 10Gbe switch from Pica8. This work goes ithi®
direction of implementing OSHI in devices that gagrform
switching and routing at line speed over productietworks,

closing the gap between SDN research and real world

networks. Details on these white box switches drpant
scenarios and results are available at [6].

X. ACKNOWLEDGMENTS
This work was partly funded by the EU in the contekthe

projects:GEANT GN4 Phase 1, SUPERFLUIDITY (5G PPP),
DREAMER [35] (a beneficiary of the GEANT Open Call

research initiative of the GN3plus project).

Xl. REFERENCES

[1] Open Networking Foundation, “Software-Defined Netiiog: The
New Norm for Networks”, ONF White Paper, April 1312

[2] D. Kreutz, et al., “Software-defined networkingcAmprehensive
survey”, Proceedings of the IEEE, 103(1), 2015

[3] C.E. Rothenberg et al, “When Open Source Meetadi&tControl
Planes”, IEEE Computer, vol.47, no.11, Nov. 2014

[4] R. Sherwood “Tutorial: White Box/Bare Metal Swiédi, Open
Networking User Group meeting, New York, May 2014
http://www.bigswitch.com/sites/default/files/pretaions/onug-
baremetal-2014-final.pdf

[5] S. Salsano, et al. “Open Source Hybrid IP/SDN ngtimg (and its
emulation on Mininet and on distributed SDN tes#)&dEWSDN
2014, 1-3 September 2014, Budapest, Hungary

[6] OSHI - Open Source Hybrid IP/SDN [Online]
http://netgroup.uniroma2.it/OSHI. Accessed De@15

[7]1 S. Vissicchio et al., "Opportunities and reseatthllenges of hybrid
software defined networksACM SIGCOMM Computer
Communication Revied4(2) pp.70-75 (2014).

[8] S. Vissicchio, et al., Safe updates of hybrid SR#vorks”,Université
catholique de Louvain, Tech. Répechnical report, 2013,
http://hdl.handle.net/2078.1/134360

[9] P.L. Ventre etal. “OSHI technical report” avaiilt [6]

[10] Marc Sufié et al., “Design and implementation of @ELIA FP7
facility: The European OpenFlow testbe@dmputer Networks,ol 61,
pp.132-150 (2014).

[11] M. Berman et al., “GENI: A federated testbed faramative network
experiments”Computer Networksjol 61, pp. 5-23, Mar 2014.

[12] Internet2 home page - http://www.internet2.edu/

[13] Internet2 Software Defined Networking Group homgepa
http://www.internet2.edu/communities-groups/advahoetworking-
groups/software-defined-networking-group/

[14] J. Kempf, et al., "OpenFlow MPLS and the open selabel switched
router."Proceedings of the 23rd International Teletraffior@ress pp.
8-14, 2011.

[15] C. Rothenberg et al., "Revisiting routing contrlatforms with the eyes
and muscles of software-defined networkirrtceedings of the first
workshop on Hot topics in software defined netwofiGM, pp. 13-18,
2012.

[16] Quagga home page - http://www.nongnu.org/quagga/

[17] A. Detti, et al., “Wireless mesh software definedworks (wmSDN)”,
CNBuB 2013 workshopyireless and Mobile Computing, Networking

and Communications (WiMob), 2013 IEEE 9th Inte roadil
Conference onpp. 89-95, Lyon, France 2013., October 2013,

518] J. Stringer et al., “Cardigan: SDN distributed nogtfabric going live at
an Internet exchangelEEE Symposium oBomputers and
Communication (ISCCpp. 1-7, 2014.

IP/SDN nodes and perform[19] P. Lin et al., "Seamless Interworking of SDN and WKCM SIGCOMM

Computer Communication Revievol. 43. No. 4. ACM, pp. 475-476,
2013.

[20] ONOS - Open Network Operating System home page,
http://onosproject.org/

[21] S. Jain, et al, “B4: Experience with a Globally-lsed Software
Defined WAN” in Proc. ACM SIGCOMM, pp. 3-14, 2013

[22] C. Filsfils, S. Previdi, (Eds.) et al. “Segment Ring Architecture”,
draft-ietf-spring-segment-routing-01, Feb 2015

[23] E. Rosen et al., “MPLS Label Stack Encoding”, IERFFC 3032,

January 2001

[24] S. Bryant, P. Pate, “Pseudo Wire Emulation Edgedge (PWE3)
Architecture”, IETF RFC 3985, March 2005

[25] L. Martini, et al. “Encapsulation Methods for Traost of Ethernet over
MPLS Networks”, IETF RFC 4448, April 2006

[26] L. Davoli, et al., “Traffic Engineering with SegmeRouting: SDN-
based Architectural Design and Open Source Impléatien”, poster
paper at EWSDN 2015, Bilbao, Spain.

[27] Networkx home page - http://networkx.github.io/

[28] CISCO Technology white paper “Service Definitio@tual Leased
Lines”

[29] Floodlight's home page - http://www.projectfloodiigorg

[30] DPDK: Data Plane Development Kit home page - Hitpdk.org/

[31] Open vSwitch home page - http://openvswitch.org/

[32] J Pettit, E. Lopez, “OpenStack: OVS Deep Dive”, N@2013,
http://openvswitch.org/slides/OpenStack-131107.pdf

[33] M. Mahalingam et al. “VXLAN: A Framework for Overling
Virtualized Layer 2 Networks over Layer 3 Networkdfaft-
mahalingam-dutt-dcops-vxlan-09.txt, April 10, 2014

[34] S. Lowe, blog post, “Introducing Linux Network Naspaces”. 2013,
Available: http://blog.scottlowe.org/2013/09/04fmducing-linux-
network-namespaces/

[35] DREAMER - Distributed REsilient sdn Architecture ithg carrier
grade Requirements [Online]. Available:
http://netgroup.uniroma2.it/DREAMER/

[36] J. Medved, A. McLachlan, D. Meyer, “MPLS-TP Pseuitew
Configuration using OpenFlow 1.3” draft-medved-pw#gonfig-01,
July 10, 2012

[37] K. Kompella and Y. Rekhter,“Virtual private LAN séce (VPLS)
using BGP for auto-discovery and signaling”, IETFAR4761, January
2007

[38] RYU home page — http://osrg.github.io/ryu/

[39] Steiner tree — http://mathworld.wolfram.com/Steirree.html

[40] L. Kou, G. Markowsky, L. Berman, “A Fast Algorithfar Steiner
Trees”, Acta Informatica, 1981, Volume 15, Issu@2141-145

[41] GOFF home page — https://openflow.geant.net/#

[42] GTS home page - http://gts.geant.net/

[43] “Architecture Description: GEANT Testbeds Servidersion 27,
Deliverable D6.2 of GN3plus project, April 2015. #lable:
http://services.geant.net/GTS/Resources/DocumedH2/2-3-
2_TaaS_v2%200.pdf

[44] The Xen Project home page http://www.xenproject.org
[45] The KVM Project home page http://www.linux-kvm.org/

[46] Zabbix home page - http://www.zabbix.com/

[47] S. Salsano (ed.) et al. “DREAMER final report”, @peall Deliverable
OCG-DS1.1 of GN3Plus project, March 2015. Available
http://netgroup.uniromaz2.it/Stefano_Salsano/pap&EAMER-final-
report.pdf

[48] S. Salsano, et al., "Mantoo-a set of managemetfs toocontrolling
SDN experiments.Fourth European Workshop on Software Defined
Networks (EWSDN), 201pp. 123-124, 2015.

