Downloaded from orbit.dtu.dk on: Apr 25, 2024

DTU Library

=
=
—

i

Towards Effective Trust-Based Packet Filtering in Collaborative Network Environments

Meng, Weizhi; Li, Wenjuan ; Kwok, Lam-For

Published in:
IEEE Transactions on Network and Service Management

Link to article, DOI:
10.1109/TNSM.2017.2664893

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Meng, W., Li, W., & Kwok, L-F. (2017). Towards Effective Trust-Based Packet Filtering in Collaborative Network
Environments. IEEE Transactions on Network and Service Management, 14(1), 233 - 245.
https://doi.org/10.1109/TNSM.2017.2664893

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1109/TNSM.2017.2664893
https://orbit.dtu.dk/en/publications/44d84125-cb10-43c5-bcd7-b69bbec33841
https://doi.org/10.1109/TNSM.2017.2664893

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 1

Towards Effective Trust-based Packet Filtering in
Collaborative Network Environments

Weizhi Meng, Wenjuan Li, and Lam For Kwok

Abstract—Overhead network packets are a big challenge for
intrusion detection systems (IDSs), which may increase system
burden, degrade system performance and even cause the whole
system collapse, when the number of incoming packets exceeds
the maximum handling capability. To address this issue, packet
filtration is considered as a promising solution, and our previous
research efforts have proven that designing a trust-based packet
filter was able to refine unwanted network packets and reduce
the workload of a local IDS. With the development of Internet
cooperation, collaborative intrusion detection environments (e.g.,
CIDNSs) have been developed, which allow IDS nodes to collect
information and learn experience from others. However, it would
not be effective for the previously built trust-based packet filter
to work in such a collaborative environment, since the process
of trust computation can be easily compromised by insider
attacks. In this work, we adopt the existing CIDN framework
and aim to apply a collaborative trust-based approach to reduce
unwanted packets. More specifically, we develop a collaborative
trust-based packet filter, which can be deployed in collaborative
networks and be robust against typical insider attacks (e.g.,
betrayal attacks). Experimental results in various simulated and
practical environments demonstrate that our filter can perform
effectively in reducing unwanted traffic and can defend against
insider attacks through identifying malicious nodes in a quick
manner, as compared to similar approaches.

Index Terms—Intrusion Detection, Packet Filter, Trust Com-
putation, Blacklist Generation, Collaborative Network.

I. INTRODUCTION

ETWORK intrusions such as worms, Trojans and DDoS
N attacks are a big threat for computer networks and have
already become more sophisticated to detect and defend [35].
For instance, McAfee’s threat prediction report indicates that
intrusions over the Internet would still be prevalent in future
years [19]. The potential damage of these intrusions could be
significant if they are not detected timely.

To address this problem, intrusion detection systems (IDSs)
have been implemented at large with the purpose of defending
against various attacks and they have become an indispensable
component with respect to current defense mechanisms [29].
These detection systems usually identify an intrusion through
comparing observable behavior against suspicious patterns.
In particular, based on different detection methodologies, an

W. Meng is with the Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Denmark.
E-mail: weme@dtu.dk

W. Li is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong SAR, China.
E-mail: wenjuan.li@my.cityu.edu.hk

L.E. Kwok is with the Department of Computer Science, City University
of Hong Kong, Kowloon, Hong Kong SAR, China.
E-mail: cslfkwok@cityu.edu.hk

IDS can be typically classified as signature-based IDS and
anomaly-based IDS. A signature-based IDS (or rule-based
IDS) (e.g., [25], [28]) detects a potential attack by comparing
incoming events with its stored signatures, where a signature
is a kind of description that defines an attack or an exploit by
means of expert knowledge. On the other hand, an anomaly-
based IDS (e.g., [13], [38]) tries to identify great deviations
between current events and its pre-established normal profile.
A normal profile often represents a normal action or a normal
network connection through monitoring the normal behavior
for a long period. In addition, based on the deployed locations
and target events, an IDS can be classified as host-based IDS
(HIDS) and network-based IDS (NIDS). The former like [15]
often resides on a local system and tracks changes made to
important files and directories, while the latter like [37] usually
places on the network with the purpose of analyzing network
traffic for malicious patterns.

Motivations. Traditionally, an IDS often works in isolation
so that it might be easily compromised by novel threats and
complicated attacks (e.g., DDoS) [10]. Thus, collaborative
intrusion detection networks (CIDNs) [41] have been devel-
oped, which allow a single IDS node within this network to
collect useful information and learn experience from other IDS
nodes, aiming to enhance the overall detection performance.
Nowadays, IDS collaboration has become an effective way to
facilitate the communications between detection nodes, and
identify novel and complex attacks. However, IDS may also
encounter various issues in such collaborative environment.
In this work, we focus on two challenges: namely, overhead
network packets and effective trust computation.

1) Overhead network packets. For a network-based IDS (e-
specially a signature-based NIDS), overhead network packets
are a very challenging issue. The term ‘overhead’ here means
that incoming packets exceed the maximum handling capabil-
ity of an IDS. In a large-scale network, massive amounts of
incoming network packets can quickly exhaust computer re-
sources, greatly decrease the performance of an IDS, and even
cause the paralysis of the whole system [6]. Taking Snort [32]
as an example, it usually spends around about 30 percent of
its total computational power in conducting signature matching
between the signatures and incoming packet payloads, while
its computational consumption can be significantly increased
in a large-scale network environment [9]. Typically, its compu-
tational burden is at least linear to the size of an input packet
payload [27]. Previous research reports (e.g., [18], [30]) have
indicated that an IDS cannot ensure the detection performance
under the high-traffic environments. In the era of big data, this
challenge will become more thorny and attractive.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 2

To tackle this issue, several approaches have been proposed
such as the improvement of signature matching algorithms and
pre-filtration of network packets. For the former, Schaelicke
et al. [30] reported that it is still not sufficient to handle the
overhead packet issue by only implementing a high quality
algorithm in an IDS. Therefore, in our previous research, we
advocated the filtration of network packets and had developed
several packet filters that can complement those solutions in
relation to signature matching improvement. More specifically,
we first developed an adaptive blacklist-based packet filter to
reduce packets via a statistic-based method [20], [23]. As the
statistic-based method lacks of theoretical basis for generating
blacklists, we then developed a trust-based blacklist packet
filter using Bayesian inference [21], which was shown to be
better than the statistic-based method in the aspects of blacklist
false rates and traffic sensitivity.

2) Effective trust computation. In a CIDN, malicious nodes
can greatly affect trust computation and decrease the effective-
ness of packet filtration. As a result, the previously developed
trust-based packet filter can perform well in a local system,
but would not be effective to work in a collaborative network,
since the process of trust computation can be easily compro-
mised. In order to construct an effective trust-based packet
filter, there is a need to evaluate a node’s trustworthiness in a
robust way, and defend against insider attacks (e.g., betrayal
attacks) under a collaborative environment.

Contributions. In this work, motivated by the above chal-
lenges, we attempt to design a collaborative trust-based packet
filter, which can provide an additional filtration mechanism
in effectively reducing traffic under a collaborative network
environment. To the best of our knowledge, our work is the
first effort to develop a trust-based packet filter using Bayesian
inference in a collaborative environment. Our contributions of
this work can be summarized as below:

¢ We adopt the basic CIDN framework from the literature
(e.g., [10], [11]), and modify it based on our scenarios.
We then design a collaborative trust-based packet filter,
which can conduct robust trust computation and effective-
ly reduce target packets and workload for an IDS node!. It
is worth noting that reducing the burden for an IDS node
is very crucial for implementing a defense mechanism in
real environments, like Ad Hoc networks.

o To improve the robustness and performance of our filter,
we develop a collaborative process of trust computation
for a node and an IP source, through collecting knowledge
and learning experience from other trusted IDS nodes
within the same network. IP confidence is used to repre-
sent the trustworthiness of an IP source.

« In the evaluation, we investigate the performance of our
packet filter under an honest environment, a dishonest
environment and a practical Ad Hoc network, respec-
tively. Experimental results demonstrate that the packet
filter can work well with low false rates of blacklist
generation and promising packet reduction rates. Our

IAs CIDN is a network that consists of many IDS nodes, a node in this
work mainly refers to an IDS node. Thus, this work will use terms ‘node’
and ‘IDS node’ interchangeably throughout the whole paper.

proposed trust computation is found to be more robust
against betrayal attacks (where a trusted node suddenly
becomes malicious) than similar approaches.

Furthermore, we also discuss the scalability and CPU load
of our collaborative packet filter through performing additional
experiments. To clarify the scope of this paper, we limit our
discussions on constructing an effective collaborative trust-
based packet filter, whereas the improvement of collaborative
intrusion detection (i.e., detecting zero-day attacks) is out of
the scope. It is worth noting that our work aims to complement
the existing studies in reducing the burden for IDSs.

The rest of this paper is organized as follows. In Section II,
we introduce the previously built trust-based packet filter and
review related studies on matching improvement, packet pre-
filtration, collaborative IDS and trust management. Section III
presents the modified CIDN framework and major components
in detail. Section IV describes the construction of our filter and
presents how to calculate the trustworthiness of a node and an
IP source. Section V describes our evaluation including en-
vironmental settings, experimental methodology and collected
results. We further discuss some relevant issues in Section VI
and conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the previously developed trust-
based packet filter and review related work on signature match-
ing improvement, packet pre-filtration, and trust management
in distributed network environments.

A. Background of Single Trust-based Packet Filter

Previous studies (e.g., [4], [16]) have shown that construct-
ing an appropriate filtration mechanism is a promising way to
handle overhead packets. Motivated by this line of research, we
developed a trust-based packet filter using Bayesian inference
to help reduce a large number of network packets for a single
NIDS [21], where the trust-based approach was proven to be
better than a statistic-based method [20], [23]. The high-level
architecture and deployment can be depicted in Fig. 1.

The trust-based packet filter has two major components: a
blacklist packet filter and a trust calculation engine. The black-
list packet filter is mainly responsible for refining network
packets based on their trust values (or called IP confidence).
It consists of two special parts: a blacklist and a look-up
table. The former contains all blacklisted IP addresses, while
the latter contains NIDS signatures indexed by the blacklisted
IP addresses. The trust calculation engine is used to collect
data from both the blacklist packet filter and the deployed
NIDS. With the data, this engine is responsible for evaluating
IP trustworthiness and updating the blacklist periodically. The
filtration steps can be described as below:

o If an incoming packet’s IP address falls in the blacklist,
then its payload has to be compared with the signatures
stored in the look-up table. Note that the signatures here
are the same as those in the deployed NIDS.

— If a match is identified, then the blacklist packet filter
will produce an alarm and send a copy of this alarm
to the trust calculation engine.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 3

Trust-based Packet Filter

Trust Calculation Engine
Update u ﬂ Data Data
%
¥ Blacklist Packet Filter " NIDS
§ T
Normal Traffic
Traffi
Target Network i« o
Fig. 1. The high-level architecture and deployment of a single trust-based

packet filter.

— If no match is found, then the packet will be treated
as normal and be sent to the destination address.

o If an incoming packet’s IP address is not found in the
blacklist, then it will be forwarded to the deployed NIDS
for examination.

In the component of trust calculation engine, IP confidence
is designed to evaluate the trustworthiness of an IP source. To
derive its calculation, we assume that N packets are sent from
an IP source, of which % packets are proven to be normal, and
that the distribution of observing n(N) = k is governed by a
Binomial distribution as below.

P(n(N) =klp) = (3)p* (1 —p)N " (1)

where n(N) indicates the number of normal packets and p
indicates the probability of a packet to be normal. Binomial
distribution is the discrete probability distribution that repre-
sents the number of successes in a sequence of n independent,
in which each n has the same probability of p. Hence the final
goal of Bayesian inference model is to estimate the probability:
P(Vyi1 = 1|n(N) = k) (determining whether the (N + 1)
packet is normal or not). Based on the Bayesian theorem, we
can have the following probability distribution.

P(Vyi1=1,n(N) =k)
P(n(N) = k)

where P(Vy41 = 1|n(N) = k) indicates the possibility
that the (N + 1)** packet is normal if there are k normal
packets out of N packets (see more details in [21]). For the
above equation, we apply marginal probability distribution and
can arrive at two following equations:

P(VNi1 =1n(N) =k) = @)

P(n(N) = k) = / P(n(N) = Kip)f(@) dp (3)

1
P(n(N) = klp)f(p)p - dp
0 @
There is no prior information about p € [0, 1], so that we
assume that p is determined by a uniform prior distribution
f(p) = 1. Therefore, based on Equation (2), (3) and (4), we
can have the following equation:

P(Vni1=1,n(N)=k) =

Joy P(n(N) = K|p) f(p)p - dp

Joy P(n(N) = klp)f(p) - dp
_k+1
TON+2

P(Vs1 = 1n(N) = k) =

(&)

The experimental results in [20], [21] demonstrated that
calculating trust values using Bayesian inference was generally
better than using the statistic-based approaches in terms of
both false rates of generating blacklists and traffic sensitivity.
It is worth emphasizing that the packet filter would not affect
the levels of network security provided by the deployed NIDS,
due to the following circumstances [20]: 1) all targeted packets
have to be compared with the stored signatures in the look-up
table, which are the same as those utilized by the deployed
NIDS; and 2) all non-targeted packets will be forwarded to
the deployed NIDS for examination.

B. Related Work

1) Overhead Packet Mitigation: In the literature, signature
(or string) matching improvement and packet pre-filtration
are two major ways to manage overhead packets for typical
intrusion detection systems.

Signature Matching Improvement. In order to deal with
overhead traffic, one direct way is to improve the signature
matching process. For single pattern matching, Boyer and
Moore algorithm [2] is the most widely used scheme that
utilizes two heuristics to reduce the number of searches in the
matching process, where Horspool [14] provided an improved
algorithm by using only the bad character heuristic. For multi-
pattern string matching, Aho and Corasick [1] designed an
algorithm that could search all strings at the same time through
constructing a deterministic finite automaton (DFA) without
the need for an additional search structure.

In the field of intrusion detection, Fisk and Varghese [9] first
proposed an IDS-specific string matching algorithm called set-
wise Boyer-Moore-Horspool. In the evaluation, their algorithm
was demonstrated to be faster than both Boyer-Moor and Aho-
Corasick algorithms, when handling medium size pattern sets.
Some other related studies in relation to signature matching
improvement can be referred to [3], [5], [17], [24], [31].

Pre-filtration. As Schaelicke et al. [30] revealed that de-
signing an efficient matching scheme alone was not enough for
overcoming overhead packets, many efforts have been made to
reduce the burden of IDSs through either implementing match-
ing schemes on hardware or pre-filtering network packets.

Song et al. [33] developed an FPGA-based pre-filter on
hardware to reduce the amount of traffic for Snort, which
consisted of a Xilinx VirtexE FPGA and a low-end PC running
Linux. The hardware ensures that benign traffic passes through
the system without the need for software processing. This
allowed the system to operate on a 10 Gbps network. Ioannis
et al. [16] then designed a packet pre-filtering approach on
hardware to reduce the processing requirements for an IDS.
They claimed that deploying the header matching portion of
an IDS together with a small prefix match (in the range of 4-8

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 4

characters) could eliminate most of the rules and determine
a handful of applicable rules, which may be checked more
efficiently by a matching module.

Later, Chang et al. [4] provided two techniques to improve
the FNP-like TCAM searching engine (FTSE) in high-speed
networks, which was a two-stage architecture in detecting
whether an incoming string contains patterns. The first ap-
proach performs pattern matching with a w-byte suffix instead
of a w-byte prefix; and the second approach leverages the
matching results from all groups excluding the first group.
El-Atawy et al. [8] then presented an early filtering and
decision technique, called Relaxed Policy Expression, which
can reduce the packet matching cost by a dynamically changed
pre-filtering phase (i.e., deploying before the original matching
module). This technique mainly utilizes Internet traffic charac-
teristics coupled with a special carefully tuned representation
of the policy to generate early defense policies.

In this work, our developed collaborative trust-based packet
filter is different from the former approaches and has its own
features as below:

o The packet filter would not improve the signature match-
ing process of an IDS, whereas our filtration mechanism
can work with the existing pattern matching schemes and
complement each other.

e Most previous filtration mechanisms attempt to analyze
all incoming packets; however, our packet filter targets
on the filtration of particular packets from the blacklisted
IP addresses.

o Our packet filter is developed for a collaborative network
environment, whereas most existing studies (e.g., [21])
are mainly discussed in a single IDS scenario.

It is worth emphasizing that our packet filter can be imple-
mented on either software or hardware, aiming to complement
existing filtration mechanisms. This is an early effort in con-
structing an effective trust-based packet filter using Bayesian
inference in a collaborative network.

2) Collaborative intrusion detection and Trust Manage-
ment: As mentioned earlier, IDSs have already become an
essential defense mechanism in protecting a network against
various threats. However, an isolated IDS has no information
about the whole environment, so that it is more likely to be
compromised by novel and complicated intrusions. As a result,
collaborative intrusion detection networks (CIDNs) [41] have
been developed aiming to enhance the detection accuracy of
an IDS through collecting and learning required information
from other IDS nodes. Relevant surveys in relation to CIDNs
and coordinated attacks can be referred to [39], [42].

Trust management is very critical for CIDNs, as malicious
nodes can significantly degrade network security and threaten
benign nodes. To identify an insider attack in a collaborative
network, Duma et al. [7] proposed a P2P-based overlay for
intrusion detection (Overlay IDS) that could mitigate insider
threats by using a trust-aware engine for correlating alerts
and an adaptive scheme for managing trust. The trust-aware
correlation engine was capable of filtering warnings that sent
by untrusted or low quality peers, while the adaptive trust
management scheme could use past experiences of peers to

predict their trustworthiness. However, their approach has a
major issue; that is, the past experience of a peer has the same
impact regardless of the age of its experience.

To overcome this weakness, Fung ef al. [10] first proposed
a Host-based IDS collaboration framework that enables each
IDS node to evaluate the trustworthiness of others based on its
own experience via a forgetting factor. This factor can give
more emphasis on the recent experience of the peer. Then,
Fung et al. [11] improved their trust model by means of a
Dirichlet-based approach, which could measure the level of
trustworthiness among IDS nodes according to their mutual
experience. This model has strong scalability properties and
is robust against common insider threats. The experimental
results demonstrated that the Dirichlet-based approach could
enhance both robustness and efficiency. As feedback aggrega-
tion is a key component in a trust model, they further applied
a Bayesian approach for feedback aggregation to minimize
the combined costs of missed detection and false alarms [12].
Their experiments indicated that the Bayesian approach could
make an improvement on the true positive detection rate and
a reduction in the average cost.

In addition, Quercia et al. [26] further proposed a distributed
trust framework with a risk-aware decision module, which sat-
isfied a broader range of properties, i.e., evolving an expressive
& tractable trust calculation based on Bayesian formalization,
protecting user anonymity and enhancing detection of insider
attacks. Other theories like information theory [34] and game
theory [36] have also been used to evaluate the trustworthiness
of communication entities in different domains.

With the advent of collaborative environments like CIDNs,
the previously developed trust-based packet filter would not
be effective, since its trust computation can be compromised
by malicious nodes (e.g., betrayal attacks). In this work, our
motivation is thus to design a collaborative trust-based packet
filter, which can work effectively in a collaborative network
and provide robust trust computation through calculating the IP
trustworthiness in a collaborative way. Moreover, we adopt the
theoretical CIDN model from the existing literature (e.g., [10],
[11], [12]) and modify it according to our requirements. In the
evaluation, we mainly compare our approach to similar trust
models in defending against betrayal attacks.

III. CIDN FRAMEWORK

To enhance the detection performance, a collaborative intru-
sion detection network enables an isolated or single IDS node
to connect, communicate and cooperate with other IDS nodes.
Traditionally centralized collaboration of IDSs often depends
on a central server to gather information, but this server may
become a single point of failure and the target of attacks.
In this work, we thus adopt the well-established collaborative
framework without a centralized server from [10], [11], [12].
Then, we modify it to fit our requirements through adding new
developed components like collaborative trust-based packet
filter and collaboration component.

A. Network join

As shown in Fig. 2, each IDS node can connect to other
nodes and select its collaborators based on its own experience.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 5

Certificate

Collaborative Trust-based
Packet Filter

Feedback H Request tojoint Information

Request &é/) H i
Challenge 7 Dedsonand o>

Query

Collaboration

Communication

Fig. 2. The framework of our improved decentralized collaborative intrusion
detection network.

Each node maintains a list of their collaborated nodes (called
partner list). In the CIDN framework, if a new node E wants
to joint the network, it needs to register to a trusted Certificate
Authority (CA) and gets its unique proof of identity (including
a public key and a private key). Different IDS nodes should
have their unique certificates within the network.

After obtaining a valid certificate, node E' can send a joining
request to node A, so that node A is able to check and decide
whether node E is acceptable based on the received certificate.
If node A approves the request, it will send back a pair of
(decision, info) to node E. Decision is a boolean value while
info mainly contains an initial list of partner IDS nodes.

B. Request and challenge

In such framework, each IDS node can send out either re-
quests for consulting IP confidence from others, or challenges
to require other IDS nodes to give a response (or answer).

Specifically, requests are sent for collecting IP confidence
from other IDS nodes. Such collected data can be used to
calculate the value of overall IP confidence, which evaluates
the trustworthiness of an IP source. By contrast, challenges
are sent for evaluating the trustworthiness of IDS nodes in the
partner list. For example, node A sends out a challenge to
node B asking for the priority of an alarm, then node B has
to send back a response. Based on the design methodology
in [10], [11], [12], node A maintains its own alarm database
and knows the expected answer to the response. Therefore, the
trustworthiness of another IDS node can be measured between
the received feedback and the expected answer.

To reduce traffic congestion, active responses are encour-
aged where a node will only reply to a number of requests
in a certain period of time. Only highly trusted nodes have
higher priority of sending and receiving feedback & requests.
In addition, a reply of unsure is allowed in the communication
for some inexperienced nodes.

C. Components

As shown in Fig. 2 (right half), an IDS node mainly consists
of four components: namely, a detection engine, a collabora-
tive trust-based packet filter, a collaboration component and
a communication component.

e Detection engine. Within a CIDN, each node implements

a signature-based IDS plugin like Snort [32] to identify

attacks. This detection engine can be deployed behind the
packet filter for traffic inspection.

o Collaborative trust-based packet filter. This packet filter
attempts to narrow down the scope of traffic and reduce
the workload for detection engine. In particular, it can cal-
culate the value of overall IP confidence by considering
the information collected from other trusted IDS nodes.
When requesting an IP confidence from other nodes, it
can forward a query to the collaboration component.

o Collaboration component. This component is responsible
for assisting an IDS node in evaluating the trustworthiness
of other nodes through sending out requests or challenges
periodically, and collecting the corresponding feedback.
When receiving a query from the packet filter, it can help
send out a request to other nodes.

o Communication component. The goal of this component
is to connect with other IDS nodes, provide network orga-
nization and management, and maintain communications
between different nodes.

IV. DESIGN OF COLLABORATIVE TRUST-BASED PACKET
FILTER

In this section, we present the packet filter construction and
describe how to compute the trustworthiness of a node (e.g.,
trusted or not) and an IP source (e.g., blacklisted or not).

A. Construction and deployment

Fig. 3 illustrates how to construct and deploy the col-
laborative trust-based packet filter. There are three major
components: a blacklist packet filter, a trust calculation engine
and a collaboration component.

Collaborative Trust-based Packet Filter
Da‘ta
Collaboration Component - ; Other IDSs
Query ﬂ u Data
Trust Calculation Engine
o] Tow
© Blacklist L ook-up Table
% 1 affic La“DS
= . . i Loc H
=R Blacklist Packet Filter S O
2 H
g ‘ |N0rma| Traffic Normal | Traffic

Fig. 3. The construction and the deployment of our collaborative trust-based
packet filter, which consists of a blacklist packet filter, a trust calculation
engine and a collaboration component.

Blacklist Packet Filter. This component is mainly responsi-
ble for refining network packets based on the IP confidence. As
described in Section II, it consists of a blacklist and a look-up
table. The blacklist contains all blacklisted IP addresses while

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 6

the look-up table contains all IDS signatures indexed by the
blacklisted IP addresses.

Trust Calculation Engine. This component is responsible
for collecting data from the blacklist packet filter, the deployed
IDS and the collaboration component, computing the overall
IP confidence and updating the blacklist periodically. The
interactions among this engine, the local IDS and the blacklist
packet filter are similar to the previous work [21]. Differently,
in a collaborative network, this engine can send out a query to
other nodes for collecting the IP confidence. The collaboration
component will help collect the corresponding feedback and
forward data to this engine.

Collaboration Component. This component is responsible
for collecting the data (e.g., IP confidence) from other nodes
and forwarding the required information to the trust calcula-
tion engine. When this component receives a guery from the
trust calculation engine, it will help send out a request to the
target node and collect the relevant feedback.

B. Trust Computation

In this work, we develop two types of trust values: node
trust and overall IP confidence. Node trust is used to evaluate
the trustworthiness of a node, while overall IP confidence is
used to evaluate the trustworthiness of an IP address, which
can help generate a blacklist accordingly.

Node trust. In a collaborative environment, this kind of trust
value aims to evaluate the trustworthiness of a node. According
to the basic CIDN framework [10], [11], [12], the trustwor-
thiness of a node can be calculated based on its responses to
challenges. The challenges are sent out periodically by means
of a random process. After receiving an answer to a challenge,
a satisfaction level can be computed through identifying the
gab between the received feedback and the expected answer.
It is worth noting that the feedback from a node is ordered
from the most recent to the oldest according to ¢;. As a result,
the trust value of node 7 according to node j can be computed
as below:

n J \tk
133, = w, 0 T ©
k=0

where F; ,g € [0,1] is the score in relation to the received
feedback k, n is the total number of feedback, A € [0,1] is
a forgetting factor that assigns less weight to older feedback
response, w, is a significant weight depending on the total
number of received feedback, m is the number limit of
received feedback. If the number of feedback is smaller than
m, then w, = i =2=—; otherwise w,; = 1. Note that m aims
to encourage those nodes with high request frequency to send
back answers, and its value can be adjusted based on the high
request frequency of challenges.

Additionally, based on the CIDN design from [10], [11],
‘unsure’ answers are acceptable from an IDS node, when this
node has no information about the challenges. This mechanism
is especially beneficial for a newly joined IDS node that has
no experience for the environment. However, a malicious node
may use this mechanism to maintain its trustworthiness, there
is a need to punish a node if it sends too many ‘unsure’

answers. Thus, the trustworthiness of node ¢ according to node
7 can be further calculated as below [10]:

T’igde = (Tig(ie’ - Ti"iml)(l - 1') + Tinital (7

where z € [0, 1] is the percentage of ‘unsure’ answers from
time ¢y to ty, y is a positive parameter to control the severity
of punishment on such answer, which can be computed based
on the received feedback. Tj;,,;tq; 1S the default trust value of
a new node. According to the above equation, a node’s trust
value would decrease, if it sends a large number of ‘unsure’
answers (namely a large).

Overall IP confidence. As mentioned above, IP confidence
is used to evaluate the trustworthiness of an IP source. In a
collaborative network, trust computation can consider the data
from other trusted IDS nodes in addition to the information
from the node itself. To achieve this, we define a metric of
overall IP confidence (T,;.) to represent the overall trustwor-
thiness of an IP source. In terms of this metric and a threshold,
the packet filter can reduce unwanted packets accordingly. If

a node j wants to evaluate a target IP, then 7, (IP) can be
calculated as below:
E I >y T’:Lg e‘D]TZL(,(IP)
T3, (1P) = s 2r 1000 2O ®)
ZT’ Jo>r Tnl)deD

node

where 7 is a trust threshold, so that node j has to request
the information (e.g., IP confidence) from those nodes whose
trust values are higher than r. Tn’gde([0,1]) indicates the
trust value of node i according to node j. D! (€ [0,1]) is a
measure of geographical distance between node ¢ and node
j. T%.(IP)(€ [0,1]) describes the IP confidence of a target
source, which is computed by node 1.

It is worth noting that Tri’gde here can also be considered as

a weight value added to T, (IP). Intuitively, a highly trusted

node should have a larger impact on the calculation of overall

IP confidence, as compared to other nodes. Thus, %, .(IP)
can be extended based on Equation (5) as below:
1 Atk
13,1p) = S F &L ©)

2+ 2111)\tthk

where n indicates the number of trusted IDS nodes in the
partner list of node ¢ and ¢; denotes the time elapsed. Based
on Equation (8) and (9), we can calculate the value of overall
IP confidence for given IP addresses. If a threshold is set to
T € [a,b], then we can decide a blacklisted IP address to be
maintained or deleted via the following rules:

o If Tgl .(IP) > T, then the blacklisted IP address will be
deleted from the blacklist.
o If T7. (IP) < T, then the blacklisted IP address will be

olc
maintained in the blacklist.

C. Satisfaction Mapping

According to the CIDN design in [10], [11], [12], a chal-
lenge can contain an IDS alarm and the answer is the priority
of that alarm. As each node maintains an alarm database, the
testing node can know the expected answer in advance. Thus,

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 7

the satisfaction levels can be measured by identifying the gap
between the expected answer and the received answer. The
satisfaction mapping will be described next.

Selection of Challenges and Answers. Based on the CIDN
design in [10], [11], [12], an IDS node can download an alarm
database from a server when joining the network. Then, the
node has to maintain and update the database by itself (i.e.,
adding or updating items in the database based on its own
experience). To evaluate other nodes, a challenge could be
selected from this database via a random process.

When receiving a challenge, the tested node should search
its own database and provide an answer. Based on the adopted
assumptions from [10], [11], an honest node will always give
the true alarm priority. That is, it will give the corresponding
answer if a matched item is detected in the database; other-
wise, it will give an ‘unsure’ answer. In contrast, a malicious
node will always give a wrong answer.

Example. Taking Snort as an example, it has three alarm
priorities: low, medium and high. Let R denote a mapping
function, which maps an alarm priority to an interval of [0,1],
where 0 denotes the lowest priority and 1 denotes the highest
priority. If a testing node ¢ sends a challenge containing an
alarm A, then the tested node j should give an answer R;(A).
Then, node 7 can compute its satisfaction based on the received
answer R;(A) and its expected answer R;(A). For a more
specific case, assuming node % sends a challenge including a
Snort alarm as below:

[1:1201:8] ATTACK-RESPONSES 403 Forbidden [**]
[Classification: Attempted Information Leak] [Priority: 2] TCP
137.245.85.134:80 — > 172.16.114.169:1049

After receiving the challenge, the tested node has to search
its own alarm database. For an honest node, an answer of
‘Priority: 2’ will be sent back if a matched item is detected;
otherwise, an ‘unsure’ answer will be sent. For a malicious
node, a wrong answer like ‘Priority: 1’ or ‘Priority: 3’ will be
provided. Intuitively, it is a worse situation if a higher priority
alarm was given a lower priority. In this example, a punishment
can be given to the wrong answer of either ‘1’ (high) or ‘3’
(low). More severe penalty should be given to the answer of
‘3’ (low), as it degrades the alarm priority.

Satisfaction Mapping. To facilitate the comparison with
similar approaches, our work adopts the same approach from
the previous work (e.g., [11], [12]) for computing the satisfac-
tion level. Suppose there are two factors: the expected answer
(e € [0,1]) and the received answer (r € [0,1]). A function
F (€ [0,1]) can be used to reflect the satisfaction level of the
received answer, in terms of its deviation level to the expected
answer as below:

e—r o
F=1—(alr—e)2 e<r (11)

max(cie,1 —e)

where c; controls the degree of penalty for wrong estimates
and co controls satisfaction sensitivity. A larger co means a
more sensitive level. In this work, we set ¢; = 1.5 and c5 = 1
based on the simulation results in [11], [12].

V. EVALUATION

This section introduces the CIDN environment with simu-
lation settings, describes our experimental methodology and
evaluates our collaborative trust-based packet filter under an
honest environment, a dishonest environment and a practical
collaborative network environment, respectively.

A. Simulation Settings

To construct a CIDN environment, we deployed a total of 30
nodes that were randomly distributed in a 5 x5 grid region. We
used Snort [32] as IDS plugin and deployed Wireshark [40]
to collect packets’ information during the experiments. Each
IDS node can connect to other nodes and establish an initial
partner list based on the distance. The initial trust values of
all nodes (in the partner list) are set to Tj,itq; = 0.5.

To evaluate the trustworthiness of all nodes in the partner
list, each node sends out challenges randomly to other nodes
with an average rate of ¢. In particular, there are two levels
of request frequency: €; and ;. The request frequency of a
highly trusted or highly untrusted node is low, since it could
be very confident about the decision for their feedback. By
contrast, the request frequency of other nodes is high, as their
trust values may be close to the threshold and thus need to be
checked more often. The simulation parameters in relation to
the CIDN environment are summarized in Table I.

TABLE I
SIMULATION PARAMETERS IN THE EVALUATION.

[Parameter | Value | Description]

A 0.9 Forgetting factor
€1 5/day Low request frequency
En 12/day High request frequency
r 0.75 Trust threshold

Tinitial 0.5 Trust value for new comers
m 10 Lower limit of received feedback
Y 0.3 Severity of punishment

This work employs three expertise levels for a node as: low
(0.1), medium (0.5) and high (0.95). The expertise of an IDS
can be simulated using a beta function as below:

7'l 8) = 1)

1

B(a,ﬁ)p
1

B(a,,B):/O o711 —)P tdt

where p’(€ [0,1]) indicates the probability of an intrusion
examined by the deployed IDS, f(p’|a, 8) indicates the proba-
bility that a node with expertise level [responses with p’ to an
intrusion examination of difficulty level d(€ [0,1]). A bigger
value of [means a higher probability of correctly identifying
an intrusion, while a bigger value of d means that an intrusion
is more difficult to detect. Based on [10], [11], o and 3 can
be defined as below:

12)

N
1+d(1—l)r
L) (13

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 8

0.85

0.80

0.75 4

0.70 4

0.65

Trust Value

0.50 T T T T T T
0 10 20 30 40 50 60

Days

Fig. 4. Trust values vary with different expertise levels.

where r € {0, 1} indicates the expected result of detection.
For a fixed level of difficulty, the node with a higher expertise
is able to achieve a higher probability of correctly identifying
an intrusion. Specifically, a node with expertise level of 1 can
accurately identify an intrusion with guarantee if the difficulty
level is 0. This is reflected in the above Beta distribution with
parameters « = 1 and S = 1 (Uniform distribution). More
details about Equation (12) and (13) can be referred to [10]
and [11].

B. Experimental Methodology

In the evaluation, we conduct three experiments to investi-
gate the performance of our designed collaborative trust-based
packet filter in various scenarios. To facilitate the comparison
with related studies, we accept the assumptions in relation to
honest and malicious nodes from [10], [11].

« In the first experiment, we deploy the packet filter into an
honest environment, in which an honest IDS node always
generates feedback based on its truthful judgment. This
experiment also attempts to find an appropriate threshold
based on the false rates of blacklist generation.

« In the second experiment, we deploy the filter into a dis-
honest environment, where a dishonest IDS node always
sends its feedback opposite to its truthful judgement. This
experiment aims to evaluate the filter performance and the
robustness of trust computation in a hazard scenario.

« In the third experiment, we investigate the practical per-
formance of our filter in a real wireless Ad Hoc network
(maintained by a company). The motivation is to explore
its false rates of blacklist generation and packet filtration
rate in a practical scenario.

C. Evaluation in an Honest Environment

This experiment attempts to investigate the performance of
our designed packet filter in calculating overall IP confidence,
and identify an appropriate threshold according to the false
rates of generating a blacklist. To construct the environment,
we randomly divided 30 nodes into three groups with different
expertise levels: namely, low (0.1), medium (0.5) and high
(0.95) respectively. In addition, we constructed an external

0.78

0.76

—a— Average|
—eo— |P1
—A— P2

Average Overall IP Confidence
o o o o o o
@ o o ~ ~ ~
B (<2} fe-] o N N
1 1 1 1 1 1

0624/

T T T T T T T 1
2 4 6 8 10 12 14 16

Days

Fig. 5. The trend of average overall IP confidence for the external network.

network that was composed of 20 nodes. These external nodes
with unique IPs can communicate with the CIDN nodes. In
an honest environment, the trust values for different expertise
nodes and the trend of (average) overall IP confidence for
the external IP addresses are depicted in Fig. 4 and Fig. 5,
respectively.

In Fig. 4, we simulate the first 60 days to investigate the trust
values of different expertise nodes (I indicates the expertise
level). It is visible that the nodes with higher expertise level
can achieve higher trust values, in which the results conform
to the findings in [10]. It is also noted that the trust values of
all nodes could become stable after 17-18 days.

Fig. 5 describes the trend of average overall IP confidence,
which is an average value for all 20 nodes from the external
network. It is found that the value of average overall IP
confidence gradually increased and ranged from 0.65 to 0.8.
More specifically, we provide two examples of overall IP
confidence for two external nodes, named /P/ and IP2. It is
visible that their IP confidence value ranged from 0.61 to 0.78
and from 0.67 to 0.783, respectively.

It is worth noting that generating a valid and robust blacklist
is crucial for reducing unwanted traffic. Hence an appropriate
threshold can be decided based on the performance of blacklist
generation. In this work, we employ two metrics to evaluate
the process of blacklist generation: blacklist false positive rate
(BFPR) and blacklist false negative rate (BFNR).

« BFPR: indicates the situation that a benign IP source is
blacklisted.

o BFNR: indicates the situation that a malicious IP source
is not blacklisted

Ideally, it is desirable to achieve a low value for both BFNR
and BFPR; however, a balance should often be made in real
deployment. Based on the results in [20], [21], it is found
that the reduction of BFNR (i.e., examining more incoming
packets) is more important than the reduction of BFPR (i.e.,
leaving packets to an IDS for examination), since the packet
filter has the responsibility of reducing the burden for an IDS.
As a result, an appropriate blacklist should have the following
characteristics:

e Accuracy. The generation of a blacklist should achieve a
low BFNR and BFPR (e.g., below 5%), after collecting

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO.

0.65

Trust Values
False Rate (%)

http://dx.doi.org/10.1109/TNSM.2017.2664893

?, JANUARY ??

10+
[~=—work [10] - DSOM
—e— Average BFNR] |—e— Work [11] - Dirichlet
I—a— Work [12] - Bayesian|
[—¥— Our approach

0.8+

o
>
!

Trust Value

°
=
!

0.2+

Days

Fig. 6. Trust values for malicious nodes.

traffic data for a period of time.

Effectiveness. BFPR should not be smaller than BFNR,
since the major goal of our filter is to help reduce the
burden for an IDS node.

In order to identify an appropriate trust threshold, we mainly
select and evaluate the influence of three values based on [10],
[11]: namely 0.7, 0.75 and 0.8. The results of blacklist false
negative rate (BFNR) and blacklist false positive rate (BFPR)
are described in Table II (after 60 days).

TABLE II
RESULTS OF BFNR AND BFPR AFTER 60 DAYS.

[Threshold | Average BENR (%) | Average BFPR (%)]

0.7 3.7 4.6
0.75 1.5 24
0.8 3.8 2.6

Table II shows that the average values of BFNR and BFPR
vary with different thresholds. For the threshold value of 0.75,
it is found that the lowest BFNR and BFPR can be achieved,
and that BFNR is smaller than BFPR (which means that our
filter can handle more incoming packets). In terms of both
accuracy and effectiveness, we thus select the threshold value
of 0.75 in the evaluation.

D. Evaluation in a Dishonest Environment

This experiment attempts to study the filter performance in a
hazard situation, where some CIDN nodes become dishonest.
In particular, we randomly selected a total of 10 expert nodes
to be dishonest, since such nodes have the largest impact on the
performance. The network settings were the same as the first
experiment. The trust values of three malicious nodes (named
MNI1, MN2 and MN3) are depicted in Fig. 6.

It is seen that the trust values of malicious nodes can be
rapidly decreased, i.e., after Day 28, the trust value of MNI,
MN2 and MN3 decreases from 0.68 to 0.47, from 0.7 to 0.5
and from 0.64 to 0.49, respectively. These results indicate that
our method of trust computation can identify malicious nodes
and decrease their trust values in a fast manner.

To validate blacklist generation, we randomly selected a to-
tal of 10 nodes from the external network to deliver malicious
packets. The average values of blacklist false negative rate
(BFNR) and blacklist false positive rate (BFPR) are depicted in
Fig. 7. It shows that the false rates (including both BFNR and

Days

Fig. 7. Average false rates (BFPR and BFNR) Fig. 8.
in the dishonest environment.

0.0 T T T T T T T T 1

Days

Trust value of malicious node under
betrayal attack.

BFPR) were higher than 20% in the beginning, as the highly
trusted expertise nodes send dishonest feedback to the packet
filter. After collecting data and identifying malicious nodes,
the false rates can decrease quickly (i.e., BFNR decreases
from 27% to 7.8% and BFPR decreases from 28% to 13.6%).
It is worth emphasizing that as long as the trust values of
malicious nodes fall below the trust threshold, they cannot
join and affect the calculation of overall IP confidence (since
only highly trusted IDS nodes can participate).

1) Betrayal attack: This kind of attack is a potential threat
for a collaborative network, in which a highly trusted node
becomes a malicious one suddenly (i.e., infected by virus). To
examine the performance of trust computation, we simulate
a scenario: node A has seven nodes in its partner list, where
only six are honest: two with high expertise, two with medium
expertise and two with low expertise. The remaining one node
also has high expertise, which first behaved honestly during
the first 20 days, but conducted a betrayal attack afterwards.
The trust value of such malicious node is shown in Fig. 8
(before and after the betrayal attack).

For the comparison of trust computation, we adopt three
trust models from [10], [11], [12], since they are the most
similar approaches. All these approaches employ a forgetting
factor aiming to emphasize the more recent behavior of nodes,
so that the trust value can drop smoothly. Under the betrayal
attack, Fig. 8 shows that our approach can reduce the trust
value of malicious node faster than other models. This because
our approach is able to compute an overall trust value through
considering both the local trust information, see Equation (5),
and the information from other nodes, see Equation (9).

To summarize, a major difference can be identified between
our approach and other trust management models in [10], [11],
[12]. That is, our approach considers the state of packets (e.g.,
benign or not), see Equation (9), which is a continuous moni-
toring process and allows instant adjustment of trust values. In
contrast, trust computation in [10], [11], [12] mainly depends
on challenge-feedback mechanism, in which a challenge has
to be delivered via a rate. Consequently, our approach is more
sensitive to malicious behavior and can detect malicious nodes
faster, as compared to other similar models.

In the evaluation, Fig. 6 and Fig. 8 validate that our method
of trust computation works well in dishonest scenarios and
is robust against malicious nodes (i.e., identifying malicious
nodes in a fast manner).

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 10

25 4

—=— Average BFPR
—e— Average BFNR

20 1¥

[
&
1

False Rate (%)
)
1

Days

Fig. 9. The average false rates of generating a blacklist in the real network
environment.

2) Node behaviour discussion: In practice, some malicious
nodes can become normal again. For example, a node may
turn malicious due to virus infection, whereas it can become
normal again after cleaning up the virus. In this scenario, their
trust values can increase as well. This situation is feasible
and should be considered in a CIDN (see [10], [11], [12]).
Under our adopted CIDN, it would be very time-consuming
to increase a node’s trust value than decrease it. In other words,
even if a node become normal, its trust value can be decreased
quickly if any malicious behavior is found again.

E. Evaluation in a Practical Network

In this experiment, we further deployed the packet filter
in a real wireless Ad Hoc network (WANET) to investigate
its practical performance. This network was established and
managed by a company, where the incoming network traffic is
about 1502 packets/s on average weekly, while the maximum
speed of incoming traffic can reach 6823 packets/s. It was
composed of 50 nodes and the basic settings can be adjusted
according to Table L.

55 | —A— Average Packet Filtration Rate |

A Ay
Ay Ay, A AKTA, JYLYIVN
A A y A, A
G W A

Rate (%)
8
»
—.
.
(S
5

10+ T T T T T

0 10 20 30 40 50
Days

Fig. 10. The average packet filtration rate in the network environment.

In Fig. 9, we present the false rates (including both BFPR
and BFNR) of generating a blacklist. In the beginning, both
rates ranged from 20% to 22%, because the packet filter has to
collect required traffic information in generating an effective
blacklist that works on the deployed network. After a period
of time, either BFPR or BFNR shows a downward trend,
where they both decreased to 7% or below after 10 days.
After another 10 days, both rates further decreased to below
5%, and gradually became stable (i.e., maintaining a value
below 2%). As confirmed by the security administrators from

the participating company, such false rates are acceptable and
promising in the practical environment.

For the filter performance, Fig. 10 depicts average packet
filtration rate under the practical environment. During the first
four days, where the packet filter has to collect information
in establishing a blacklist, the packet reduction rate ranged
from 14% to 24%. Afterwards, the rate increased to 34.9%
on the 5th day and then became relatively stable (i.e., above
33% in most cases). The rate fluctuation is mainly due to the
blacklist update (i.e., deleting or adding IP addresses) and the
communication delays. The filtering performance shows that
our filter can perform well in effectively reducing target traffic
for an IDS node under a practical network environment. This
situation is also confirmed by the security administrators.

VI. FURTHER DISCUSSION
A. False Rate of Blacklist Generation

Due to the nature of network traffic and the communication
delays, false rates are unavoidable for generating a dynamic
blacklist. There are two types of false rates: namely, blacklist
false positive rate (BFPR) and blacklist false negative rate
(BFNR). It is worth emphasizing that false rates here can
only affect the blacklist generation and filter performance, but
cannot affect IDS performance and the whole network security.
In other words, if we consider the filter as a black box, then
the blacklist false rates are internal parameters, which can only
make an impact on the filter itself. Furthermore, we explain
the effect of both false rates as below:

o Blacklist false positive rate. A higher BFPR means that
more benign IP addresses are blacklisted. Since the nature
of a packet filter is to help reduce the unwanted traffic,
a higher BFPR can indeed increase the filtration rate and
reduce more workload for an IDS.

e Blacklist false negative rate. A higher BFNR means that
more malicious IP addresses are not blacklisted. This can
decrease the filtration rate, degrade the effectiveness of a
packet filter and leave more packets to reach the deployed
IDSs (i.e., causing a detection system ineffective).

Ideally, an appropriate filter should achieve a low value for
both BFPR and BFNR (due to the requirement of accuracy),
in which BFPR is expected to be higher than BFNR (due to
the requirement of effectiveness). However, a balance should
often be made in real scenarios. In the pratical environment
(WANET), it is found that both false rates might be a bit high
around 20% in the very beginning. This because there are no
historical data provided in advance, so that the filter has to
collect enough data in building an effective blacklist and a
filtration profile for the deployed network. After a period of
time, both false rates can significantly decrease (i.e., below
5% after 15 days as shown in Fig. 9).

B. Scalability

To validate the filter performance and scalability in different
scenarios (e.g., with more nodes), we further deployed the fil-
ter in two distinct wireless Ad Hoc networks hosted by another
company, which consisted of 60 and 70 nodes respectively.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 11

20 —a— Average BFPR (60 nodes)
—e— Average BFNR (60 nodes)
---4--- Average BFPR (70 nodes)

v~ Average BFNR (70 nodes) | (a)

False Rate (%)
5
I

—a— Packet Reduction (60 nodes)

S 50' —e— Packet Reduction (70 nodes)
2
©
hd
[
j=}
o
9
>
<
T T
0 10 20 30 40 50 60
Days

Fig. 11. (a) False rates of blacklist generation; and (b) packet reduction rates
in different practical network environments.

The false rates (BFPR and BFNR) and packet reduction rates
are depicted in Fig. 11.

Fig. 11 (a) indicates that both BFPR and BFNR ranged
from 10% to 15% for the first three days, since the packet
filter requires some time to collect traffic data and establish
an effective blacklist. Afterwards, the false rates quickly
decreased to 6% or below on the 10th day and then maintained
a downward trend. After 20 days, the false rates became stable,
where BFPR decreased to below 3% and BFNR decreased to
below 1.5%. These results conform to the observations in our
major experiments; that is, false rates of generating a blacklist
can be reduced quickly after a period of time in collecting
traffic data for the deployed environment.

Fig. 11 (b) shows that the average packet reduction rates
ranged from 20% to 25% during the first two days. This
because the packet filter had not established an effective
blacklist in the very beginning. From the 3rd day, the reduction
rate gradually increased to 35% or above, and maintained
this trend in both network environments. As confirmed by the
network managers from both participating organizations, the
packet filtration rate here is considered to be promising.

The above experimental results demonstrate that our filter
can achieve good scalability under various environments. More
specifically, after collecting traffic data for a period of time, the
filter is able to provide stable and low false rates of blacklist
generation as well as a promising filtration rate.

C. CPU Load

Intuitively, implementing our filter, as an additional mecha-
nism, may cause some CPU load during the packet reduction,
due to various operations (e.g., packet forwarding and string
matching). The workload is very crucial when deploying the
filter in a resource-limited environment (e.g., wireless Ad Hoc
network). Therefore, we aim to explore the CPU load caused
by our filter and examine the relationship between the packet
reduction and the CPU load reduction. For better illustration,
we define several types of CPU load as below:

e CPU_Load typel (with the packet filter): measuring the
CPU load caused by an IDS with the deployment of our
packet filter.

e CPU_Load type2 (without the packet filter): measuring
the CPU load caused by an IDS without the deployment
of our packet filter.

e CPU_Load type3: measuring the CPU load caused by the
packet filter itself.

For simplicity, let C'PU.,s denote the CPU load caused
by our packet filter (equal to CPU_Load type3), and CPU,.¢q
denote the overall reduced CPU load, which can be computed
by identifying the difference of |(typel +type3) —type2|. The
results of CPU,,y and C'PU,..q in relation to the above three
practical environments are depicted in Fig. 12.

154

—=— Average CPU_cfp (50 nodes)
124 —e— Average CPU_cfp (60 nodes)
—4— Average CPU_cfp (70 nodes)

N

T T T T T T T
0 10 20 30 40 50 60

(@

Utilization (%)

707 —v— Average CPU_red (50 nodes)

60 —&— Average CPU_red (60 nodes)
50 —e— Average CPU_red (70 nodes) (b)
40 . .

Utilization (%)

304

204

T T
0 10 20 30 40 50 60

Fig. 12. (a) The average CPU load of our packet filter; and (b) the overall
reduced CPU load with the deployment of our packet filter.

Fig. 12 (a) shows that our filter may add some overhead
around from 2% to 6.2%, while Fig. 12 (b) indicates that our
filter can greatly reduce the IDS workload ranged from 20% to
45%. This indicates that our packet filter can indeed reduce the
overall CPU load for the whole system at large. Moreover, a
relationship is identified between the packet reduction and the
CPU load reduction, where a higher packet filtration rate can
generally result in a higher CPU load reduction. As confirmed
by the security officers from the corresponding organizations,
our packet filter is proved to be effective in reducing the IDS
workload in a practical environment.

D. Limitations and Challenges

This section discusses some limitations and open challenges
in this area, such as IP spoofing attacks, the effect of filtering
mechanism and database-size issue.

IP spoofing attacks. This kind of attack is a challenge for
all list-based techniques, in which an attacker can manipulate
a packet with a forged IP address. Since our filter employs the
same signatures from the deployed IDS, all packets have to be
compared to those signatures (a validation can be seen in [23]).
As a result, IP spoofing attacks would not lower the detection
rate of an IDS and the whole network security level. To defend
against such attacks, an IP verification mechanism [22] can be
used to validate the IP source and identify malicious ones.

The effect of filtering mechanism. It is worth emphasizing
that the primary goal of our packet filter is to help reduce
unwanted traffic and lighten the workload for an IDS in real
scenarios. As a result, improving the detection accuracy of
various network attacks like Byzantine attacks is out of the
scope. These attacks can be identified through improving net-
work protocols and deploying additional security mechanisms.
As discussed above, no match found in the look-up table does
not guarantee the examined packet is normal, but our filter

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 12

has no impact on the whole network security level. Moreover,
our packet filter can complement and be compatible with the
existing security solutions.

Database-size issue of look-up table and signatures. With
the continuous running of our filter and the deployed IDSs, the
number of signatures and the size of look-up table are likely
to keep increasing, which may cause a database-size issue. To
solve this problem, it is important to construct a database in
a more effective way. This is an open problem and interesting
topic, which can be considered in our future work.

VII. CONCLUSION

Overhead network packets are a big challenge for an IDS,
where constructing a packet filter is a promising solution. With
the advent of collaborative intrusion detection environments
like CIDN:, it is found that the previously designed trust-based
packet filter is not effective, as the process of trust computation
could be easily compromised by insider threats, e.g., betrayal
attacks, where trusted nodes suddenly become malicious.

In this work, our motivation is thus to design a collaborative
trust-based packet filter, which can operate in a collaborative
network (i.e., reducing the workload for an IDS node) and
is robust against typical insider attacks (i.e., identifying mali-
cious nodes). In the evaluation, we investigate the filter perfor-
mance under an honest environment, a dishonest environment
and a real network, respectively. Experimental results indicate
that our filter can perform well in effectively reducing unwant-
ed traffic and be robust against betrayal attacks through quickly
detecting malicious nodes. Moreover, we conduct additional
experiments to examine the false rates of blacklist generation,
the filter scalability and the reduced CPU load. Overall, our
filter can provide low false rates of blacklist generation (e.g.,
below 3%) and greatly reduce the IDS workload ranged from
20% to 45% in various scenarios.

ACKNOWLEDGMENT

The work was partially funded by the Innovation to Real-
ization Funding Scheme of the City University of Hong Kong
(under the project number 6351018).

REFERENCES

[11 A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333-340, 1975.

[2] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,” Com-
munications of the ACM, vol. 20, no. 10, pp. 762-772, 1977.

[3] A. Bremler-Barr and Y. Koral, “Accelerating multipattern matching on
compressed HTTP traffic,” IEEE/ACM Transactions on Networking, vol.
20, no. 3, pp. 970-983, 2012.

[4] Y.-K. Chang, M.-L. Tsai, and C.-C. Su, “Improved TCAM-based Pre-
Filtering for Network Intrusion Detection Systems,” In: Proceedings of
the 22nd International Conference on Advanced Information Networking
and Applications (AINA), pp. 985-990, 2008.

[5] Y.-H. Choi, M.-Y. Jung, S.-W. Seo, “A fast pattern matching algorithm
with multi-byte search unit for high-speed network security,” Computer
Communications, vol. 34, no. 14, pp. 1750-1763, 2011.

[6] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational Ex-
periences with High-volume Network Intrusion Detection,” In: Proceed-
ings of the 2004 ACM Conference on Computer and Communications
Security (CCS), pp. 2-11. ACM, USA, 2004.

[7] C.Duma, M. Karresand, N. Shahmehri, and G. Caronni, “A Trust-Aware,
P2P-Based Overlay for Intrusion Detection,” In: Proceedings of the 17th
International Workshop on Database and Expert Systems Applications
(DEXA), pp. 692-697, 2006.

[8] A. El-Atawy, E. Al-Shaer, T. Tran, and R. Boutaba, “Adaptive Early
Packet Filtering for Defending Firewalls against DoS Attacks,” In:
Proceedings of IEEE Infocom, pp. 2437-2445, 2009.

[9]1 M. Fisk and G. Varghese, “An Analysis of Fast String Matching Applied

to Contentbased Forwarding and Intrusion Detection,” Technical Report

CS2001-0670, University of California, San Diego, 2002.

C.J. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, “Trust Manage-

ment for Host-Based Collaborative Intrusion Detection,” In: Proceedings

of the 19th IFIP/IEEE International Workshop on Distributed Systems:

Operations and Management (DSOM), pp. 109-122, 2008.

CJ. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, “Robust

and scalable trust management for collaborative intrusion detection,”

In: Proceedings of the 2009 IFIP/IEEE International Symposium on

Integrated Network Management (IM), pp. 33-40, 2009.

C.J. Fung, Q. Zhu, R. Boutaba, and T. Basar, “Bayesian Decision Aggre-

gation in Collaborative Intrusion Detection Networks,” In: Proceedings

of the 2010 IEEE Network Operations and Management Symposium

(NOMS), pp. 349-356, 2010.

A.K. Ghosh, J. Wanken, and F. Charron, “Detecting Anomalous and

Unknown Intrusions Against Programs,” In: Proceedings of the 14th

Annual Computer Security Applications Conference (ACSAC), pp. 259-

267, 1998.

R. Horspool, “Practical fast searching in strings,” Software Practice and

Experience, vol. 10, no. 6, pp. 501-506, 1980.

A. Hrivnak, “Host Based Intrusion Detection: An Overview of Tripwire

and Intruder Alert,” Technical Report, SANS Institute, January 2002.

Available at:

http://www.sans.org/reading_room/whitepapers/detection/

host-based-intrusion-detection-overview-tripwire-intruder-alert_353

S. Toannis, D. Vasilis, P. Dionisios, and V. Stamatis, ‘“Packet Pre-filtering

for Network Intrusion Detection,” In: Proceedings of ACM/IEEE Sym-

posium on Architecture for Networking and Communications Systems

(ANCS), pp. 183-192, 2006.

H. Kim, H.-S. Kim, and S. Kang, “A memory-efficient bit-split parallel

string matching using pattern dividing for intrusion detection systems,”

IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 11,

pp. 1904-1911, 2011.

W. Lee, J.B. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang,

“Performance adaptation in real-time intrusion detection systems,” In:

Proceedings of the 5th International Symposium on Recent Advances in

Intrusion Detection (RAID), pp. 252-273, 2002.

McAfee Labs, Threats Predictions in 2013. Available at:

http://www.mcafee.com/us/resources/reports/rp-threat-predictions-2013.

pdf

Y. Meng and L.-E. Kwok, “Adaptive Context-aware Packet Filter

Scheme using Statistic-based Blacklist Generation in Network Intrusion

Detection,” In: Proceedings of the 7th International Conference on

Information Assurance and Security (IAS), pp. 74-79, 2011.

Y. Meng, L.-F. Kwok, and W. Li, “Towards Designing Packet Filter with

A Trust-based Approach using Bayesian Inference in Network Intrusion

Detection,” In: Proceedings of the 8th International Conference on

Security and Privacy in Communication Networks (SECURECOMM),

pp. 203-221, 2012.

Y. Meng and L.-F. Kwok, “Enhancing List-based Packet Filter Using IP

Verification Mechanism against IP Spoofing Attack in Network Intrusion

Detection,” In: Proceedings of the 6th International Conference on

Network and System Security (NSS), pp. 1-14 (2012)

Y. Meng and L.-F. Kwok, “Adaptive Blacklist-based Packet Filter with

A Statistic-based Approach in Network Intrusion Detection,” Journal of

Network and Computer Applications, vol. 39, pp. 83-92, 2014.

D. Pao and X. Wang, “Multi-stride string searching for high-speed

content inspection,” The Computer Journal, vol. 55, no. 10, pp. 1216-

1231, 2012.

P.A. Porras and R.A. Kemmerer, “Penetration state transition analysis:

A rule-based intrusion detection approach,” In: Proceedings of the Sth

Annual Computer Security Applications Conference (ACSAC), pp. 220-

229, 1992.

D. Quercia, S. Hailes, and L. Capra, “B-Trust: Bayesian Trust Frame-

work for Pervasive Computing,” In: Proceedings of the 4th International

Conference on Trust Management (iTrust), pp. 298-312, 2006.

R.L. Rivest, “On the Worst-case Behavior of String-Searching Algo-

rithms,” SIAM Journal on Computing, vol. 6, pp. 669-674, 1977.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TNSM.2017.2664893

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. ?, NO. ?, JANUARY ?? 13

[28] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,”
In: Proceedings of the 13th Large Installation System Administration
Conference (LISA), pp. 229-238, 1999.

[29] K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention
Systems (IDPS),” NIST Special Publication, pp. 800-894, 2007. http:
/[csre.nist.gov/publications/nistpubs/800-94/SP800-94.pdf

[30] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, “Characterizing
the Performance of Network Intrusion Detection Sensors,” In: Proceed-
ings of the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID), pp. 155-172, 2003.

[31] R. Smith, C. Estan, and S. Jha, “XFA: faster signature matching with

extended automata,” In: Proceedings of IEEE Symposium on Security

and Privacy, pp. 187-201, 2008.

Snort: An an open source network intrusion prevention and detection

system (IDS/IPS). Homepage: http://www.snort.org/

[33] H. Song, T. Sproull, M. Attig, and J. Lockwood, “Snort offloader: a
reconfigurable hardware NIDS filter,” In: Proceedings of the 2005 In-
ternational Conference on Field Programmable Logic and Applications,
pp- 493-498, 2005.

[34] Y.L. Sun, W. Yu, Z. Han, and K. Liu, “Information Theoretic Framework

of Trust Modelling and Evaluation for Ad Hoc Networks,” IEEE Journal

of Selected Areas in Communications, vol. 24, no. 2, pp. 305-317, 2006.

Symantec Corp., Internet Security Threat Report, 17 Main Report. http:

/Iwww.symantec.com/business/threatreport/index.jsp

[36] T.A. Tuan, “A Game-Theoretic Analysis of Trust Management in P2P
Systems,” In: Proceedings of the Ist International Conference on
Communications and Electronics (ICCE), pp. 130-134, 2006.

[37] G. Vigna and R.A. Kemmerer, “NetSTAT: A Network-based Intrusion
Detection Approach,” In: Proceedings of the 1998 Annual Computer
Security Applications Conference (ACSAC), pp. 25-34, 1998.

[38] A. Valdes and D. Anderson, “Statistical Methods for Computer Usage
Anomaly Detection Using NIDES,” Technical Report, SRI International,
January 1995.

[39] E. Vasilomanolakis, S. Karuppayah, M. Miihlhduser, and M. Fischer,
“Taxonomy and Survey of Collaborative Intrusion Detection,” ACM
Computing Surveys, vol. 47, no. 4, 2015.

[40] Wireshark: Network Protocol Analyzer.

Homepage: http://www.wireshark.org/

[41] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative Intrusion De-
tection System (CIDS): A Framework for Accurate and Efficient IDS,”
In: Proceedings of the 2003 Annual Computer Security Applications
Conference (ACSAC), pp. 234-244, 2003.

[42] C.V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated
attacks and collaborative intrusion detection,” Computers & Securirty,
vol. 29, no. 1, pp. 124-140, 2010.

[32]

[35]

' Weizhi Meng is currently an assistant professor
in the Department of Applied Mathematics and
Computer Science, Technical University of Denmark
(DTU), Kongens Lyngby, Denmark. He received his
B.Eng. degree in Computer Science from the Nan-
jing University of Posts and Telecommunications,
China and obtained his Ph.D. degree in Computer
Science from the City University of Hong Kong
(CityU), Hong Kong in 2013. He was known as
Yuxin Meng and prior to joining DTU, he worked
as a research scientist in Infocomm Security (ICS)
Department, Institute for Infocomm Research, Singapore, and as a senior
research associate in CityU after graduation. He won the Outstanding Aca-
demic Performance Award during his doctoral study, and is a recipient of The
HKIE Outstanding Paper Award for Young Engineers/Researchers in 2014
and the Best Student Paper Award from the 10th International Conference on
Network and System Security (NSS) in 2016. His primary research interests
are cyber security and intelligent technology in security including intrusion
detection, mobile security and authentication, HCI security, cloud security,
trust computation, web security, malware and vulnerability analysis. He also
shows a strong interest in applied cryptography. He is a member of IEEE.

Wenjuan Li is currently a Ph.D. student in the
Department of Computer Science, City University
of Hong Kong (CityU). Prior to this, she worked as
a Research Assistant in CityU from 2013 to 2014,
and was previously a Lecturer in the Department
of Computer Science, Zhaoging Foreign Language
College, China. She was a Winner of Cyber Quiz
and Computer Security Competition, Final Round of
Kaspersky Lab “Cyber Security for the Next Gen-
eration” Conference in 2014. Her research interests
include network management and security, collabo-
rative intrusion detection, spam detection, trust computing, web technology
and E-commerce technology. She is a student member of IEEE.

Lam For Kwok received his Ph.D. degree in
Information Security from Queensland University
of Technology, Australia. He is currently an As-
sociate Professor of the Department of Computer
Science, City University of Hong Kong and the
Executive Director of CUBIC (CityU Business and
Industrial Club) at City University of Hong Kong.
His research interests include information security
and management, intrusion detection systems, and
computers in education. He has served as program
committee chair and program committee member of
many international conferences. He is a Fellow of Hong Kong Institution of
Engineers and British Computer Society.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

