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Abstract—Network Function Virtualization (NFV) and Soft-
ware Defined Networking (SDN) have been proposed to increase
the cost-efficiency, flexibility and innovation in network service
provisioning. This is achieved by leveraging IT virtualization
techniques and combining them with programmable networks.
By doing so, NFV and SDN are able to decouple the network func-
tionality from the physical devices on which they are deployed.
Service Function Chains (SFCs) composed out of Virtual Network
Functions (VNFs) can now be deployed on top of the virtualized
infrastructure to create new value-added services. Current NFV
approaches are limited to mapping the different VNFs to the
physical substrate subject to resource capacity constraints. They
do not provide the possibility to define location requirements
with a certain granularity and constraints on the colocation of
VNFs and virtual edges. Nevertheless, many scenarios can be
envisioned in which a Service Provider (SP) would like to attach
placement constraints for efficiency, resilience, legislative, privacy
and economic reasons. Therefore, we propose a set of affinity and
anti-affinity constraints, which can be used by SPs to define such
placement restrictions. Furthermore, a semantic SFC validation
framework is proposed that allows the Virtual Network Function
Infrastructure Provider (VNFInP) to check the validity of a set
of constraints and provide feedback to the SPs. This allows
the VNFInP to filter out any non-valid SFC requests before
sending them to the mapping algorithm, significantly reducing
the mapping time.

I. INTRODUCTION

In traditional telecommunications networks, network func-
tionality is strongly tied to the physical network device it runs
on. To adapt or create network services, dedicated network
appliances need to be deployed and interconnected in a
strict order. Together with the ever increasing requirements
for high quality and stability, this has led to long product
cycles, limited service agility and substantial dependence on
specialized hardware. The Network Function Virtualization
(NFV) paradigm [1], [2] has been introduced to alleviate
the aforementioned issues by leveraging IT virtualization
technology to decouple the network functionality from the
physical infrastructure. Furthermore, by taking advantage of
Software Defined Networking (SDN), the network control and
forwarding functions can be decoupled to allow an automated

network configuration to interconnect the various Virtual Net-
work Functions (VNFs) in a flexible way. To fully exploit
the benefits of both paradigms, the mapping of VNFs and the
allocation of network resources interconnecting them, should
be considered together. For example, when virtualizing the
Customer Premises Equipment (CPE), not only the placement
of the various functions (e.g., decoding function) needs to be
optimized, also the allocation of network resources intercon-
necting these functions should be considered (e.g., minimum
throughput, maximum latency) to be able to deliver an end-
to-end service.

The concepts of NFV and SDN have introduced new
business opportunities for Virtual Network Function Infras-
tructure Providers (VNFInPs), which act as brokers between
Infrastructure Providers (InPs) and Service Providers (SPs) [3].
The VNFInPs lease the infrastructure provided by different
InPs and deploy, orchestrate and interconnect VNFs to create
end-to-end Service Function Chains (SFCs) [5]. Together
with these new opportunities and stakeholders, a set of new
interactions arises as well. For example, the SPs need a way to
express their SFC requests and requirements to the VNFInP. In
traditional network embedding approaches [6], only node and
link restrictions can be specified. However, many scenarios can
be envisioned where a SP might want to attach more detailed
constraints concerning the placement and routing between
Network Functions (NFs) as well as constraints on their
colocation. For example, to increase efficiency, the SP may
require the embedding of VNFs at a certain granularity (e.g.,
within the same datacenter or even on the same host). Other
reasons for more detailed affinity and anti-affinity constraints
could be resilience, economic, legislative and privacy issues.
In this paper, a set of affinity and anti-affinity constraints is
proposed that increases the control of SPs on the embedding
of their SFC requests.

With this newfound ability to add custom constraints, the
possibility arises that conflicting constraints are introduced by
SPs in their requested SFCs. Therefore, the VNFInP requires a
method to check the consistency of SFC requests and inform
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the SP on potential conflicts. For example, if the SP states
that two VNFs of certain types need to be embedded on the
same host, but also requires that any instances of functions
with those VNF types are required to be embedded in distinct
datacenters, a conflict arises. Since SFC requests can contain
many VNFs, virtual edges and constraints, detecting conflicts
within these requests is not a straightforward task, neither for
human operators, nor for computer systems. Since conflicts
can arise between sets of constraints, pairwise detection will
not suffice. Therefore, this chapter proposes to take advantage
of semantic modelling to define an ontology and rule set,
which can be enriched with individuals based on the specific
SFC request. Using a semantic reasoner, the consistency can be
determined and subsequently the validity of the SFC request
can be assessed. Furthermore, the proposed framework can
also be used by SPs to validate the SFC embeddings made by
the VNFInP with respect to the imposed affinity requirements.

Existing VNF and Virtual Network (VN) embedding ap-
proaches focus on the resource constraints posed by the
SFC requests or take into account other types of constraints,
such as forwarding latency, processor and resource sharing,
VNF precedence constraints, etc. These approaches do not
provide the opportunity to add placement constraints to both
VNF placement and virtual edge allocation. Therefore, this
paper focuses on the the affinity-constrained SFC placement
problem. First, the resource and flow conservation constraints
are modeled for the concurrent mapping of SFCs sets. Second,
the affinity and anti-affinity constraints are added to the
model. Finally, to allow scalable SFC mapping, a heuristic
procedure is proposed. This heuristic approach takes advantage
of additional knowledge of the SFC set to sort the individual
SFCs in a way that optimizes the objective. Both the optimal
and heuristic approaches are evaluated considering different
metrics and use cases, such as the number of VNFs in an
SFC, the size of the physical infrastructure, the number of
SFCs in a set and the impact of applying semantic filtering to
the SFC request set prior to embedding.

The contributions of this paper are fourfold. First, a set of
affinity and anti-affinity constraints that can be attached to
an SFC request by the SP are defined. Second, we propose
and evaluate a semantic conflict detection mechanism that can
be employed by the VNFInP to check the validity of SFC
requests. In this way, SFCs containing inconsistent constraints
can be filtered out by the VNFInP before the embedding step.
Third, we propose a mathematical formulation of the affinity-
constrained SFC embedding problem and a set of algorithms
to solve them. Finally, a heuristic approach to tackle the
computationally expensive task of embedding SFC sets is
proposed and evaluated.

II. RELATED WORK

NFV has been proposed as a paradigm that allows more
flexible service deployment by leveraging IT virtualization
technology in combination with programmable networks [7],
[8]. A recent survey on NFV by co-authors of this paper,
identifies the decoupling of NFs from hardware, flexible NF

deployment and dynamic scaling as the main differences
between network service provisioning in NFV compared to
current practice [9].

Affinity and anti-affinity restrictions have previously been
studied in the context of grid and cloud computing. Many ar-
gued that the lack of influence on the placement of workflow or
service components is a hindrance for the adoption of the tech-
nology [10], [11]. Even though performance and economical
benefits of cloud computing are clear, potential users hesitate
to deploy the technology because legal, privacy, efficiency and
resilience aspects are completely out of their control. Also,
recent media coverage shows an increased concern by end-
users, companies and governments about their data privacy,
raising the need for SPs to take into account these issues when
deploying and offering their services1,2. These concerns also
arise for NFV when deploying VNFs at certain locations and
transferring data between them over virtual paths. Therefore,
we argue that also in NFV, mechanisms should be designed to
allow SPs to add constraints concerning locality and affinity,
both to VNFs as well as the interconnecting paths.

The solutions proposed in the affinity and anti-affinity
context for cloud computing mostly relate to two aspects:
developing models to describe affinity rules and developing
service placement algorithms that can work under the con-
straints of these rules. Konstanteli et al. present a set of affinity
rules for cloud computing applications which are added to a
Mixed-Integer Non-Linear Programming (MINLP) [12]. The
authors define constraints that require allocating components
and services in the same subnet or physical node, or prevent
services from being federated. Larsson et al. and Espling
et al. propose a model for defining Virtual Machine (VM)
placement in cloud computing supporting a set of affinity and
anti-affinity constraints [13], [14]. We extend this approach
by defining affinity and anti-affinity restrictions for SFCs. To
this end we add support for specification of constraints on
the path between network functions and furthermore, a more
expressive syntax that allows constraints to apply to specific
VNFs, VNF types, locations and location types. A semantic
framework is proposed which allows to check the validity of
these constraints.

One of the benefits of NFV is that it supports automated
deployment and orchestration of services. To achieve this,
a number of descriptions are needed for everything that
was configured manually in the past, including VNFs and
network requirements [3]. Also, Service Level Agreement
(SLA)-related parameters such as affinity and anti-affinity
rules should be transformed into machine-readable description
formats [15]. Huawei mentions the generation of affinity and
anti-affinity policies as a mechanism for fault prevention [16].
In the definition of Service Quality Metrics by ETSI, special

1No Safe Harbor: How NSA Spying Undermined U.S. Tech and Eu-
ropeans’ Privacy – https://www.eff.org/nl/deeplinks/2015/10/europes-court-
justice-nsa-surveilance

2Facebook case may force European firms to change data storage
practices – http://www.theguardian.com/us-news/2015/sep/23/us-intelligence-
services-surveillance-privacy
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attention is brought to the enforcement of NFV customer
anti-affinity rules which can improve the availability mech-
anisms [17]. The automatically generated affinity rules for
VNFs in combination with user-specific affinity requirements
could lead to conflicting constraints. In this paper, a machine-
readable format for affinity and anti-affinity constraints is
proposed. Furthermore, we establish an automated way to
detect conflicting constraints based on ontologies. The pro-
posed conflict detection is applicable to both user-generated
as well as automatically generated affinity constraint sets.
Furthermore, the proposed framework can also be used to
validate SFC embeddings with respect to the imposed affinity
requirements.

To attain the gains promised by NFV, the VNFs and
interconnecting virtual links should be efficiently mapped
onto the physical substrate. To achieve this, several placement
algorithms have been proposed in the related fields of Virtual
Network Embedding (VNE) [6] and Virtual Data Center Net-
work Embedding (VDCNE) [18], [19], as well as for NFV [9].

In the field of NFV, Mehraghdam et al. apply Mixed
Integer Quadratically Constrained Programming (MIQCP) to
solve the placement problem and conclude that to obtain
efficient use of resources, the placement of functions should
be different according to the desired objective [20]. Beck et
al. propose a coordinated allocation heuristic based on the
backtracking concept in which they take into account that
the structure of SFCs can be flexible [21]. This allows to
reorder some of the VNFs in coordination with the allocation
of the SFC. Also Mehraghdam et al. take into account such
flexible structures [22]. However, they propose a two-step
approach without coordination between the SFC composition
and embedding. Moens et al. propose an Integer Linear
Programming (ILP) based solution in which hybrid scenarios
are considered where part of the functions are provided by
dedicated physical hardware and part of them by virtualized
instances [23]. Luizellie et al. formalize the NF placement
and chaining problem and propose an ILP model to solve
it [24]. Xia et al. propose a Binary Integer Programming
(BIP) model for optimal VNF placement subject to minimizing
the expensive optical/electronic/optical conversions for NFV
chaining in packet/optical data centers [25]. Sahhaf et al.
propose an algorithm for mapping SFCs to the network infras-
tructure while taking into account decompositions of NFs [26].
Yoshida et al. propose a multi-objective resource scheduling al-
gorithm simultaneously optimizing possibly conflicting objec-
tives with multifaceted constraints [27]. Vaishnavi et al. tackle
the problem of inter-domain virtual network provisioning by
abstracting the resources of a domain to appear as a single
node [28]. In previous work, we formulated the online virtual
function mapping and scheduling problem and proposed a set
of algorithms for solving it [29]. Other research focuses on
specific NFV uses cases such as virtualizing the CPE, Evolved
Packet Core (EPC) or Deep Packet Inspection (DPI) [30], [31],
[32], [33]. For an extended overview of resource allocation in
NFV, we refer to a survey by Herrera et al. [34]. None of the
aforementioned approaches offers support for attaching affinity

or anti-affinity constraints to the SFCs nor do they take into
account such constraints when evaluating the embeddings.

This paper is an extension of previous work [35] in which
the affinity and anti-affinity constraints were first proposed.
The previous paper proposed a first version of the semantic
framework for affinity-constrained SFCs validation. In the
current paper, the aforementioned framework was further fine-
tuned and extended with embedding algorithms for affinity-
constrained SFCs. Furthermore, using the mathematical model
proposed in this paper, the semantic filtering is validated.
Also the impact of applying semantic filtering prior to the
embedding is evaluated in this paper.

III. AFFINITY AND ANTI-AFFINITY CONSTRAINTS

Currently, in an NFV context, SPs have limited control over
the mapping of VNFs to physical hosts or SFC edges to phys-
ical paths. Nevertheless, many situations can be envisioned
where an SP might want to attach constraints to the placement
of certain functions or on the routing of traffic, such as:
• Efficiency: VNFs that exchange a lot of data may want

to be positioned close to one another (e.g., within the
same datacenter, or even on the same physical host).

• Resilience: The SP might want to spread instances of
the same VNF across multiple datacenters in order to
improve resilience in case a failure occurs in one of the
datacenters.

• Legislation: The SP might want to avoid hosting VNFs
in certain countries due to legislative restrictions on the
location of the data that is processed or transferred.

• Privacy: SPs or their customers might not want the traffic
to pass through certain domains due to privacy concerns.

• Economic: SPs might have economic reasons (e.g., peer-
ing agreements) to place their functions in or route their
traffic through certain domains.

However, currently there is no way to specify or model
such requirements in an SFC template. In this section, the
set of affinity and anti-affinity constraints for VNFs and their
interconnecting paths are discussed. The affinity constraints
apply to a set of physical locations P , a set of VNF instances
V and a set of edges E interconnecting them. There are
different location granularities g ∈ G that can be considered
(e.g., countries, network domains, datacenters), leading to a
hierarchical structure of locations. Two hosts in a single data-
center represent different locations at the granularity of hosts,
but have the same location at the granularity of datacenters.
P g ⊆ P is the set of locations at a certain granularity g.
Furthermore, each VNF instance has an associated VNF type
(e.g., firewall, DPI), forming subsets V t ⊆ V of VNFs with
type t ∈ T . Finally, each virtual edge e = (a, b) ∈ E connects
two VNFs a ∈ V and b ∈ V and maps to a single (or path of)
physical network links. We propose and define four groups of
constraints which model location and colocation constraints,
both for VNFs and virtual edges, each consisting of pairs of
affinity and anti-affinity constraints. Figure 1 shows a graphical
illustration of a subset of the constraints defined below:
• VNF Location Constraints:
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Fig. 1: Graphical illustration of the various affinity and anti-affinity constraints

∗ Affinity(p ∈ P g, v ∈ V or t ∈ T ): a specific
instance v or all instances v ∈ V t of type t ∈ T must
be located at a specific location p with granularity
g.

∗ Anti-Affinity(p ∈ P g, v ∈ V or t ∈ T ): a specific
instance v or all instances v ∈ V t of type t ∈ T
must not be located at a specific location p with
granularity g.

• VNF Colocation Constraints:
∗ Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈ T,w ∈

V or t ∈ T ): a specific instance v or all instances
v ∈ V s of type s ∈ T must be placed together with
a specific instance w or all instances w ∈ V t of type
t ∈ T at a specific location p ∈ P g or at the same
location at a specific granularity g ∈ G.

∗ Anti-Affinity(p ∈ P g or g ∈ G, v ∈ V or s ∈
T,w ∈ V or t ∈ T ): a specific instance v or any
instances v ∈ V s of type s ∈ T must not be placed
together with a specific instance w or any instances
w ∈ V t of type t ∈ T at a specific location p ∈ P g

or at the same location at a specific granularity
g ∈ G.

• Virtual Edge Location Constraints:
∗ Affinity(p ∈ P g, e ∈ E): a virtual edge e ∈ E must

be fully embedded at a specific location p ∈ P g with
a granularity g ∈ G. It does not suffice to model
this as location constraints on the endpoints, since
physical nodes along the virtual path can still be
located in other locations q ∈ P g \ {p}.

∗ Anti-Affinity(p ∈ P g, e ∈ E): the physical links
comprising the virtual edge e ∈ E must not pass
through a specific location p ∈ P g with a granularity
g ∈ G.

• Virtual Edge Colocation Constraints:
∗ Affinity(e ∈ E, f ∈ E): two virtual edges e ∈ E

f1:Firewall c1:Cache

c2:Cache

d:DPI

f2:Firewall

s:StreamingServer

t:Transcoding

e1

e2e4

e5

e7

e6

e8
c:Cache

e3

Fig. 2: An example SFC.

and f ∈ E must overlap (i.e. all physical links
comprising the edge e must be the same as those
comprising edge f ).

∗ Anti-Affinity(e ∈ E, f ∈ E): two virtual edges e ∈
E and f ∈ E must not overlap (i.e. none of the
physical links comprising the virtual edges shall be
part of both e and f ). Modelling this as an anti-
affinity constraint for the VNFs of the endpoints of
e and f does not achieve this, since the physical
paths can still have overlapping links even though
the endpoints are mapped to distinct physical nodes.

To further clarify the presented constraint formulations,
an example of an SFC request with both affinity and anti-
affinity constraints is given here. Given a set of location types
{Autonomous System (AS), Datacenter (DC), Host} and a set
of network function types {Firewall, DPI, Cache, Transcoding,
Streaming Server}. An example SFC is depicted in Figure 2,
where a Streaming Server is connected via a DPI function
(e.g., for tagging data packets) to a content cache. The DPI
functions may either directly forward requests to the streaming
server or may send them via the Transcoder for transcoding
and packaging (e.g., for delivery to mobile devices). The
transcoding is preceded by a Cache in the chain to store the
transcoded content. The end-users are connected via a firewall
to the service. Suppose a SP wants to offer a Video on Demand
(VoD) service in Belgium where two infrastructure providers
are active: Telenet (AS6848) and Proximus (AS6774). Further-
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more, the SP wants to deploy part of the service in an Amazon
DC identified by DC AWS. Let us consider the following set
of affinity and anti-affinity constraints:
• Affinity(AS6848, c1)
• Affinity(AS6774, c2)
• Affinity(DC, Transcoder, Streaming Server)
• Affinity(DC AWS, e2)
• Affinity(Host, t, c)
• Anti-Affinity(e1, e3)
Specifically, the first two constraints state that the Caches

c1 and c2 need to be located in the Telenet and Proximus
AS respectively (e.g., because they should be close to the
end user and limit uplink traffic through other networks).
The third constraint states that, for efficiency reasons and for
reducing the network traffic, all Transcoder functions should
be colocated with the Streaming Server functions. The next
constraint states that the virtual edge e2 should be fully
embedded within the scope of the DC identified by DC AWS.
The fifth constraint assures that the Transcoder t and the
Cache c should be located at the same Host. Finally, the last
constraints dictates that none of the physical links that are used
for the embedding of the virtual edges e1 and e3 are allowed
to overlap.

IV. SEMANTIC SFC REQUEST CHECKER

Since SPs are now free to specify their custom constraints
during the SFC request, it is possible that conflicting con-
straints are introduced. Extending the example from the pre-
vious section and adding the constraints Affinity(Host, c1, f1)
(i.e. specifying that c1 and f1 should be colocated in the same
Host) and AntiAffinity(DC, Cache, Firewall) (i.e. specifying
that a VNF of type Cache cannot be colocated with a VNF
of type Firewall in the scope of a DC) leads to a conflicting
constraint set. Also more complex conflicts can appear when
multiple constraints are involved in the conflicting set that
can only be detected as a conflict when considering the
full set. For example, returning to the base example from
the previous section and adding the constraints Affinity(DC,
DPI, Cache) and Anti-Affinity(DC AWS, d) would lead to a
conflict set {Affinity(Host, t, c), Anti-Affinity(DC AWS, d),
Affinity(DC AWS, e2), Affinity(DC, DPI, Cache)}. Since d and
c should be colocated in the same DC due to the VNF type
affinity constraint and t and c are colocated at the Host level, d
and t should be colocated at the DC level as well. Furthermore,
since e2 should be fully embedded in DC AWS, t should also
be located in DC AWS. This means that d should be located in
DC AWS as well. However, this inferred knowledge conflicts
with the defined constraint Anti-Affinity(DC AWS, d).

When the VNFInP tries to deploy the requested SFC,
none of the resulting embedding configurations will lead to
a feasible realisation of the SFC request. The VNFInP should
however be able to differentiate between a non-acceptance of
the SFC request caused by a shortage of appropriate resources
and conflicting request constraints, in order to inform the SP
on the reason why the SFC deployment failed. The previous
example shows the need for the VNFInP to check the validity

of an SFC request upon reception in order to exclude any
conflicting constraints when trying to provision the requested
SFC.

In the proposed architecture, the SFC Embedding Algorithm
(which will be discussed in the next section) is responsible
for assigning resources to the SFC requests. Concretely, it
decides on which VNFs should be deployed on which hosts
and how many resources should be assigned to them. The
Cloud Manager performs the management of deployed VNFs
and server resources. Moreover, the algorithm selects the for-
warding paths interconnecting the VNFs and assigns network
resources to them through the SDN Controller. Before the SFC
request is forwarded to the SFC Embedding Algorithm it needs
to be checked by the SFC Request Checker to confirm the
validity.

In previous work we proposed to exploit ontology repre-
sentations for the purpose of modeling the physical substrate,
the SFC requests and defining a set of rules that can be
used to infer additional information [35]. Figure 3 represents
the proposed semantic model. The SFC requests are modeled
as a set of VNFs with a certain VNFType and VirtualEdges
containing an ingress and egress VNF. The physical resources
are modeled at the granularity level of Hosts, DCs and ASs.
Each of these Locations has a certain LocationType (i.e., AS,
DC or Host). The hierarchical relations between these Loca-
tions and LocationTypes are modeled by isSubLocationOf
and isSubLocationTypeOf respectively. To model affinity
(respectively anti-affinity) constraints for single VNFs and
edges, positive (respectively negative) object property asser-
tions of the type isVNFEmbeddedOn, isEdgeEmbeddedOn
and isEdgeFullyEmbeddedOn are attached to VNFs and
VirtualEdges.

To be able to model more complex affinity and anti-
affinity relationships between two VNFs, two VNFTypes
or between a VNF and VNFType, the additional
concepts VNFVNFRestriction, VNFVNFTypeRestriction
and VNFTypeVNFTypeRestriction were added to the
ontology. By adding the respective positive (respectively
negative) property isVNFVNFEmbeddedOn or
isVNFVNFEmbeddedOnType, one is able to model
affinity (respectively anti-affinity) restrictions for more
complex constraints on the Location or LocationType. By
using the isEdgeEmbeddedWithEdge relationship, affinity
and anti-affinity constraints between edges can be modeled.

To infer new information out of existing knowledge, a set
of rules is defined. For example, Rule (1) stipulates that if
a certain VNF x is embedded on a Location y and if y is a
sublocation of z, this VNF is also embedded on Location z.
When a VNFType y is embedded on a Location z, each VNF
x of that VNFType y needs to be embedded at the Location
z (Rule (2)). If a VirtualEdge z contains a VNF x embedded
at Location a, this VNF z is embedded at Location a as well
(Rule (3)). For a full description of the rules, we refer to
previous work [35] which focuses on the semantic validation
of SFC requests.
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Fig. 3: Graphical representation of ontology.

isV NFEmbeddedOn(x, y) ∧ isSubLocOf(y, z)

→ isV NFEmbeddedOn(x, z) (1)

hasV NFType(x, y) ∧ isV NFTypeEmbeddedOn(y, z)

→ isV NFEmbeddedOn(x, z) (2)

hasEdgeV NF (z, x) ∧ isV NFEmbeddedOn(x, a)

→ isEdgeEmbeddedOn(z, a) (3)

When a new SFC request arrives at the VNFInP, this
request is parsed and the set of VNFs and edges are
added as individuals to the Web Ontology Language (OWL)
ontology. Next, the set of affinity and anti-affinity con-
straints are also added by either creating new individ-
uals (i.e. VNFVNFRestriction), adding property asser-
tions (i.e. isVNFEmbeddedOn) or both. For example, the
affinity restriction Affinity(AS6848, c1) concerning VNF c1
and AS AS6848, is modeled as a positive property asser-
tion isVNFEmbeddedOn(c1,AS6848). On the other hand,
the negative restriction Anti-Affinity(e1, e3) concerning Vir-
tualEdge e1 and VirtualEdge e3, is modeled as a negative
property assertion isEdgeEmbeddedWithEdge(e1, e3).

V. MODEL

In this section the affinity-constrained SFC placement prob-
lem is described. First, the notations for the inputs and vari-
ables used throughout the chapter are presented. Second, the
general constraints involved in SFC placement are introduced.
Third, the constraints related to affinity and anti-affinity based
placement restrictions are explained. Finally, the placement
objectives are introduced. Figure 4 shows a graphical repre-
sentation of the variables and their relationships.

A. NFV Infrastructure model

The topology of an NFV infrastructure can be described as
a weighted directed graph INF = {N,L}, where N is the set
of substrate nodes in the infrastructure and L the set of links
interconnecting them. Each substrate node n ∈ N represents
a location where a network function could be deployed. Each
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Fig. 4: Graphical representation of the SFC placement model.

substrate node n is characterized by its available processing
capacity Cn, available memory capacity Mn and its location
p ∈ P . This geographic location represents a hierarchical
structure where each level of this structure represents a certain
geographic granularity (e.g., host, rack, datacenter, network
domain, etc.). The subset of geographic locations P g ⊆ P
represents the set of locations at a particular granularity g ∈ G
(e.g., PDC represents the set of all datacenter locations).
Similarly, Ng

p represents the set of all substrate nodes at a
geographic location p ∈ P g at a certain granularity g (e.g.,
NDC

p represents the set of all substrate nodes located at a
datacenter p). It is possible that a certain network node n is
not involved directly in mapping VNFs for an SFC but is along
the path between VNFs and thus participates in forwarding the
traffic for the SFC. Therefore we need to take into account the
packet processing capacity of such a node: Qn when deploying
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SFCs on the substrate network.
Each link (m,n) ∈ L represents a unidirectional link

between two network nodes m,n ∈ N . Bidirectional
links are represented as a pair of unidirectional links (i.e.
(m,n), (n,m)). This allows us to model a variety of network
links with different up/download characteristics. Each link is
characterized by an available bandwidth capacity B(m,n) and
latency D(m,n). Similar to network nodes, also the links are
characterized by a geographic location which is the set of
locations of their endpoints {Pm, Pn}.

B. SFC model

Similarly to the VNF infrastructure model, an SFC request
r ∈ R can be described as a weighted directed graph SFCr =
{Vr, Er}, where Vr is the set of VNFs and Er the set of edges
interconnecting them. An SFC typically has two or multiple
endpoint VNFs which terminate the service chain. These are
modeled as endpoint-VNFs V e

r ⊆ Vr. Tr represents the set
of VNF types (e.g., firewall, gateway, router). Each VNF v ∈
Vr has an associated VNF type t ∈ Tr. V t

r forms the set of
VNFs in the SFC that have a type t associated with them.
Each VNF v requires a certain processing capacity Cv and a
specific memory capacity Mv . Furthermore, each VNF v has
an associated processing delay Dv .

Each edge (u, v) ∈ Er represents a unidirectional virtual
edge between two VNFs u, v ∈ Vr. These are modeled
as unidirectional connections since SFCs can have different
capacity requirements for up-and downstream respectively
(e.g., a video streaming SFC will have higher downstream
requirements). An SFC edge can be composed of one or more
substrate links or could be an internal link when both u and v
are mapped onto the same substrate node n. Link aggregation,
where a virtual edge is composed out of multiple distinct
underlying paths, is not considered here. Each edge has a
required capacity B(u,v) between the VNFs, this capacity is
also used to account for the packet processing requirements
of the forwarding nodes (i.e. Qn). A section or path s ∈ Sr

is a tuple composed of a set of ordered VNFs V s
r and the

ordered set of consecutive virtual edges interconnecting these
VNFs Es

r . An SFC request r can associate a maximum allowed
latency Ds for the end-to-end flow processing of such sections.
Ar denotes the affinity and anti-affinity constraints that are
defined in the SFC request r. Aa

r and Aaa
r denote the set of

affinity constraint and anti-affinity constraints respectively.

C. Assignment variables

For every SFC request r ∈ R, a set of node and link
mapping variables is defined. The binary variable zr defines
whether the SFC r ∈ R is mapped or not as defined in
Expression (4). The binary variable x is used in the mapping
of the VNFs to network nodes and is defined in Expression (5),
where xv

n → N · Vr. Similarly, the binary variable y is used
as defined in Expression (6), where y

(u,v)
(m,n) → L · Er.

zr =

{
1, if r ∈ R is mapped.
0, otherwise.

(4)

∀r ∈ R : xv
n =

{
1, if v ∈ Vr is mapped to n ∈ N.

0, otherwise.
(5)

∀r ∈ R : y
(u,v)

(m,n)
=

1, if (u, v) ∈ Er is
mapped to (m,n) ∈ L.

0, otherwise.
(6)

D. General constraints

In order to assure a correct mapping of the requested SFC, a
set of constraints can be defined. Equations (7) and (8) prevent
that VNFs and virtual edges respectively are mapped when
the corresponding SFC to which they belong is not mapped.
Equation (9) ensures that if an SFC request r is mapped (zr =
1), each VNF is assigned and that it is assigned to exactly one
node. On the other hand, if the SFC request r is not mapped
(zr = 0), none of the VNFs should be mapped. Equations
(10) and (11) respectively assure that the available CPU and
memory capacity of each individual node is not exceeded by
the capacity requirements of all VNFs v ∈ V in the request
set R (V =

⋃
r∈R Vr).

∀r ∈ R : ∀v ∈ Vr : ∀n ∈ N : xv
n ≤ zr (7)

∀r ∈ R : ∀(u, v) ∈ Er : ∀(m,n) ∈ L : y
(u,v)

(m,n) ≤ zr (8)

∀r ∈ R : ∀v ∈ Vr :
∑
n∈N

xv
n = zr (9)

∀n ∈ N :
∑
v∈V

(xv
n · Cv) ≤ Cn (10)

∀n ∈ N :
∑
v∈V

(xv
n ·Mv) ≤Mn (11)

∀(u, v) ∈ E,m ∈ N :∑
n∈N

y
(u,v)

(m,n) −
∑
n∈N

y
(u,v)

(n,m) = xu
m − xv

m
(12)

∀(m,n) ∈ L :
∑

(u,v)∈E

(
y
(u,v)

(m,n) ·B(u,v)

)
≤ B(m,n) (13)

∀n ∈ N :∑
u∈V

(xu
n ·Qu) +

∑
(u,v)∈E

(
2 · xu

n · xv
n ·B(u,v)

)
+

∑
(u,v)∈E

∑
(m,n)∈L
(n,o)∈L

((
y
(u,v)

(m,n) + y
(u,v)

(n,o)

)
·B(u,v)

)
≤ Qn

(14)

∀r ∈ R : ∀s ∈ Sr :
∑
u∈V s

r

∑
n∈N

(xu
n ·Du)+∑

(u,v)∈Es
r

∑
(m,n)∈L

(
y
(u,v)

(m,n) ·D(m,n)

)
≤ Ds

(15)

The multi-commodity flow conservation is assured by Equa-
tion (12). This ensures that there exist virtual paths between
the requested VNFs. Modeling that no capacity is required
for a certain virtual edge (u, v), while a virtual edge (v, u)
exists with non-zero capacity requirements can be achieved
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by setting B(u,v) = 0 and B(v,u) > 0 respectively. Using
the constraint defined in Equation (13), we ensure that each
substrate link has enough capacity to serve all virtual paths
(u, v) ∈ R mapped on it for a request set R (E =

⋃
r∈R Er).

Equation (14) guarantees that the required processing capacity
is available for each of the substrate nodes. The first term sums
up the required capacity Bu by each VNF u ∈ V . The second
term assures that if a virtual edge is mapped internally within a
single substrate node, the required processing capacity for this
edge is added. The last term sums up the processing capacity
of each ingress and egress links of a substrate node. Finally,
Equation (15) ensures that the end-to-end latency incurred by
the substrate links comprising the virtual paths s ∈ Sr and
the processing delays at the VNFs adhere to the maximum
allowed latency Ds specified by the SFC request r ∈ R.

E. Affinity and Anti-Affinity constraints

To take into account the required geographic and colocation
requirements for a specific VNF request r, these are modeled
as constraints for the optimization problem. Equation (16)
stipulates that all VNFs of a certain type t need to be located at
a location p with granularity g, while Equation (17) prevents
the embedding of any VNF of type t at this location p. To
model the affinity of certain VNF types s and t at a any
location with granularity g, Equation (18) guarantees that
every VNF v of type s is embedded with all VNFs of type t
(=|V t|) at a single location p with granularity g. Equation (19)
prevents a VNF of type s to be embedded with a VNF of type
t at the same location p with granularity g. Similar constraints
were added for the other affinity and anti-affinity constraints
involving VNFs and VNF types defined in Section III.

Next to VNF affinity constraints, link affinity constraints are
also modeled. Equation (20) assures that every substrate link
(m,n) on which a virtual edge (v, w) is mapped, is located at
a location p ∈ P g . Furthermore, since edges can be mapped
internally (i.e. both VNFs v and w are mapped onto the same
substrate node), Equation (21) ensures that also the VNFs v
and w are mapped onto a host at that location n ∈ Ng

p . To
prevent the mapping virtual edges (u, v) at a certain location
p ∈ P g , Equation (22) ensures that none of the substrate
links (m,n) for which one of the endpoints is located at
that location (m ∨ n ∈ Ng

p ) is used. Similarly, Equation (23
prevents the internal embedding of the virtual edge (v, w) at
that location.

Equation (25) stipulates that two virtual edges need to be
mapped onto the same virtual path. Equation (24) ensures that
the corresponding endpoints of the virtual edge are mapped
onto the same host. This constraint takes care of the cases
where the virtual edges are mapped internally. Equation (26)
prevents two virtual edge mappings of sharing a link. Further-
more, none of the endpoints of these respective virtual edges
should be colocated at the same host (Equation (27))

Affinity(p ∈ P g, t ∈ Tr) :

∀v ∈ V t
r :

∑
n∈N

g
p

xv
n = zr (16)

Anti-Affinity(p ∈ P g, t ∈ Tr) :

∀v ∈ V t
r :

∑
n∈N

g
p

xv
n = 0 (17)

Affinity(g ∈ G, s ∈ Tr, t ∈ Tr) :

∀v ∈ V s
r : ∀p ∈ P g :

∑
n∈N

g
p

(
xv
n ·
∣∣V t

r

∣∣) = ∑
w∈V t

r

∑
n∈N

g
p

xw
n (18)

Anti-Affinity(g ∈ G, s ∈ Tr, t ∈ Tr) :∑
p∈Pg

∑
n∈N

g
p

∑
v∈V s

r

xv
n ·

∑
n∈N

g
p

∑
w∈V s

r

xw
n

 = 0 (19)

Affinity(p ∈ P g, e = (v, w) ∈ Er) :∑
(m,n)∈L

m∧n∈N
g
p

y
(v,w)

(m,n)
≥

∑
(m,n)∈L

y
(v,w)

(m,n)
(20)

∑
n∈N

g
p

xv
n = zr

 ∧
∑

n∈N
g
p

xw
n = zr

 (21)

Anti-Affinity(p ∈ P g, e = (v, w) ∈ Er) :∑
(m,n)∈L

m∨n∈N
g
p

y
(v,w)

(m,n) = 0 (22)

∑
n∈N

g
p

xv
n = 0

 ∧
∑

n∈N
g
p

xw
n = 0

 (23)

Affinity(e = (v, w) ∈ Er, f = (u, z) ∈ Er) :(∑
n∈N

(xv
n · xu

n) = zr

)
∧

(∑
n∈N

(xw
n · xz

n) = zr

)
(24)∑

(m,n)∈L

(
y
(v,w)

(m,n) · y
(u,z)

(m,n)

)
≥

∑
(m,n)∈L

y
(v,w)

(m,n)∑
(m,n)∈L

(
y
(v,w)

(m,n) · y
(u,z)

(m,n)

)
≥

∑
(m,n)∈L

y
(u,z)

(m,n)

(25)

Anti-Affinity(e = (v, w) ∈ Er, f = (u, z) ∈ Er) :∑
(m,n)∈L

(
y
(v,w)

(m,n) · y
(u,z)

(m,n)

)
= 0 (26)(∑

n∈N

(xv
n · xu

n) = 0

)
∧

(∑
n∈N

(xw
n · xz

n) = 0

)
(∑

n∈N

(xv
n · xz

n) = 0

)
∧

(∑
n∈N

(xw
n · xu

n) = 0

) (27)

F. Objective functions

When embedding SFC request set R, there are multiple
objectives that could be considered. To maximize the revenue
of the VNFInP, the number of accepted SFC requests should
be maximized as shown in Equation (28). On the other hand,
to efficiently manage the infrastructure resources, the InP
could have other objectives, such as minimizing the number
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of substrate nodes and links that are used, minimizing the
overall traffic or load balancing the traffic over the full
infrastructure. To achieve this, the problem is first solved by
using the acceptance maximization as an objective function.
Afterwards, the solution Zsol, which characterizes the number
of embedded SFC requests is added as an additional constraint
by Equation (29).

max
∑
r∈R

zr (28)∑
r∈R

zr ≥ Zsol (29)

Afterwards the adapted optimization problem is solved
again, this time with the objective specified by the InP.
Equation (30) minimizes the number of substrate nodes n ∈ N
that are used for embedding the requests. The total bandwidth
consumption is minimized by the objective defined in Equa-
tion (31). Similar objectives can be defined for other resource
types as well.

min
∑
r∈R

∑
v∈Vr

∑
n∈N

xv
n (30)

min
∑
r∈R

∑
(u,v)∈Er

∑
(m,n)∈L

(
y
(u,v)

(m,n) ·B(u,v)

)
(31)

To balance the bandwidth consumption over the full infras-
tructure, the difference between the maximum and minimum
load over all links is minimized as shown in Equation (32).
To model this, two additional continuous decision variables
Loadmin ∈ [0.0, 1.0] and Loadmax ∈ [0.0, 1.0] are added,
as well as constraints stating that the load of each link
should be smaller, respectively larger, than the maximum
and minimum load. The objective is then to minimize the
difference Loadmax−Loadmin. The same could be achieved
with other resources than bandwidth as well.

(32)

min

 max
(m,n)∈L

∑
r∈R

∑
(u,v)∈Er

(
y
(u,v)

(m,n) ·B(u,v)

B(m,n)

)

− min
(m,n)∈L

∑
r∈R

∑
(u,v)∈Er

(
y
(u,v)

(m,n) ·B(u,v)

B(m,n)

)
VI. HEURISTIC APPROACH

Solving the SFC embedding problem can be computa-
tionally expensive, as will be shown later on during the
evaluations. Therefore, a heuristic approach is proposed in
which the SFCs are ordered according to certain criteria and
the embedding algorithm proceeds to map them individually
to the infrastructure taking into account different objective
functions. The mathematical model that was presented before
was adapted to be able to support such individual mapping
of ordered SFC sets. To this end, the decision variable zr,
indicating if SFC request r ∈ R should be mapped is left out
of the model. This ensures that the optimization process tries to
embed the request r if there exists a feasible solution. Similar
objectives can be defined as before, however also the resource

usage incurred by previous individual embeddings should now
be taken into account when evaluating the objective functions.

The ordering of the SFCs in the set can be achieved in many
ways. A first ordering criterion could be to order the SFCs
based on the number of affinity constraints that they contain,
resulting in the set Rnc (Equation (33)). Another option is
to order the SFC requests based on the requested bandwidth
resources as shown in Equation (34).

Rnc :
{
r ∈ R, i ≤ j : |Ari | ≤

∣∣Arj

∣∣} (33)

Rbw :

r ∈ R, i ≤ j :
∑

(u,v)∈Ei

B(u,v) ≤
∑

(u,v)∈Ej

B(u,v)

 (34)

VII. EVALUATION

In this section, the simulation framework that was devel-
oped to evaluate the affinity-constrained SFC embedding is
discussed. The implementation details of the semantic vali-
dation module are discussed, as well as the implementation
of the mathematical model. Furthermore, the generation of
substrate topologies and SFCs is discussed. The first set of
experiments evaluates the impact of the infrastructure size, the
requested SFC size and the number of affinity and anti-affinity
constraints on the scalability of the semantic validation. Af-
terwards, the performance gain of the semantic validation on
the SFC embedding is discussed.

A. Simulation Framework

The simulation framework is implemented in Java 83 and
allows to generate topologies, generate random SFCs, validate
these SFCs and map them onto the substrate. The models pre-
sented in the previous sections are implemented using CPLEX
12.64. The topologies are generated using the BRITE topology
generator5. The ASs and their interconnections are generated
using BRITE after which a number of DCs are added to each
of the ASs. The DC topologies that are generated for the
evaluations are two-level fat-tree topologies [36].

The SFCs and their respective constraints are generated ran-
domly. First a set of VNFs and interconnecting virtual edges is
generated. The respective VNF types and capacity constraints
for both VNFs and edges are uniformly distributed between
the configured ranges. Furthermore, end-to-end segments are
assigned with a maximum delay, uniformly distributed within
the configured ranges. Second, random affinity/anti-affinity
constraints are added and the required VNFs, virtual edges
and VNF types are randomly selected from the ones that are
present in the SFC. When generating these constraints, it is
checked whether the same restriction or its counterpart (affinity
or anti-affinity restriction with the same parameters) is not
already present in the set. Finally, the locations are randomly
selected from the respective location sets and added to the

3Java 8 – https://java.com/en/download/faq/java8.xml
4IBM CPLEX – http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/
5BRITE – www.cs.bu.edu/brite/



1932-4537 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2681025, IEEE
Transactions on Network and Service Management

0 500 1000 1500 2000
Number of physical hosts

0

50

100

150

200

250

300

350

400
E
x
e
cu

ti
o
n
 t

im
e
(s

)

Semantic Checker (Relevant)

Semantic Checker (All)

MINLP Checker

Fig. 5: Impact of the infrastructure
size on MINLP based and semantic
validation.

0 10 20 30 40
Number of VNFs in SFC request

0

2

4

6

8

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Relevant Individuals

All Individuals

Fig. 6: Impact of the number of re-
quested VNFs on the semantic valida-
tion.

0 20 40 60 80
Number of constraints in SFC request

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

Consistent SFCs

Inconsistent SFCs

All SFCs

Fig. 7: Impact of the number of con-
straints per SFC on the semantic val-
idation.

constraints. To select these locations, a discrete probability
distribution with the following probability mass function is
used for affinity restrictions (AS: 0.6, DC: 0.3, host: 0.1) and
anti-affinity restrictions (AS: 0.1, DC: 0.3, host: 0.6). The
rationale behind this is that affinity constraints apply to more
general location restrictions while for anti-affinity constraints,
more granular specification of locations apply. The type of
the constraints is uniformly distributed among the constraints
defined in Section III. Table I lists the set ([x, y]) or ranges
([x − y]) for the various parameters that are set during the
evaluations.

The Protégé editor6 was used to develop the SFC request
modelling ontology using the OWL API7. Semantic Web Rule
Language (SWRL)8 was used to express the aforementioned
rules using concepts from the ontology defined in Section IV.
The Protégé editor was also used to define the rules using
the Manchester syntax9. The HermiT OWL Reasoner10 was
used to check the consistency and the classification of the
ontology. HermiT is a semantic reasoner for ontologies written
in OWL. It is able to determine whether or not the ontology is
consistent, identify subsumption relationships between classes,
etc. The reasoner is based on a hypertableau calculus which
provides efficient reasoning. The output of the reasoning
process allows us to determine whether the SFC request at
hand is valid or not. In the case of an invalid request, this is
communicated to the requesting SP, otherwise the request is
passed on to the embedding engine.

The evaluations were carried out using the STEVIN Su-
percomputer Infrastructure at Ghent University11. The nodes
are equipped with 2 Intel Xeon CPU E5-2680 v3 12-core
processors and 32GB of physical memory. For the experi-
ments, a single 2.5GHz core and 16GB of memory were
requested. All evaluations were repeated 20 times with varying
seed values, the graphs show the average values and 95%
confidence intervals.

6Protégé – http://protege.stanford.edu/
7OWL2 – http://www.w3.org/TR/owl-features/
8SWRL – http://www.w3.org/Submission/SWRL/
9Manchester – http://www.w3.org/2007/OWL/wiki/ManchesterSyntax

10HermiT OWL Reasoner – http://hermit-reasoner.com
11HPC UGent – http://www.ugent.be/hpc

Type Parameter Range

B
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E

To
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gy

#AS [2,3,4,5,8,16,32,64,128,256]
#Neighbour-AS [2]
#AS-Routers [8,16,32]
#Neighbour-Routers [3]
#DC [1,2,4]
Intra-AS BW [5Gbps ... 50Gbps]
Inter-AS BW [1Gbps ... 10Gbps]
Intra-AS delay [5ms ... 10ms]
Inter-AS delay [1ms ... 5ms]

Fa
t-

tr
ee

To
po

lo
gy

#Core switches [2,3]
#Pods [1 ... 4]
#Servers per pod [5 ... 10]
Link BW [5Mbps ... 10Mbps]
Link delay [1ms]

SF
C

#VNF [2,5,10,20,30,40]
#Affinity constraints [5,10,20,40,60,80]
Link BW [50Mbps ... 500Mbps]
Segment delay [5ms ... 100ms]
Processing delay [0ms ... 5ms]

TABLE I: Scenario parameters.

B. Scalability of Semantic SFC Validation

The mathematical formulation proposed in Section V can
be adapted to validate affinity-constrained SFC requests by
removing all resource constraints from the model. However, as
indicated by the results in Figure 8, this approach scales poorly
with increasing infrastructure sizes. The main reason for this
is the increasing number of decision variables and constraints
when modeling the validation using MINLP based solution.
These experiments use a fixed number of 10 VNFs per SFC
and 5 randomly generated affinity and anti-affinity restrictions.
Furthermore, the exhaustive search that is performed when
solving such a problem leads to execution times that increase
exponentially with increasing infrastructure sizes. Modeling
the problem using ontologies avoids having to check every
possible placement, but instead allows to reason on the various
constraints and their mutual impact. Nonetheless, also seman-
tic reasoning times are known to increase exponentially with
the number of individuals in the ontology. In Section IV, a se-
mantic SFC request validation framework was discussed which
loads both the substrate topology and requested SFC into an
ontology. As shown in Figure 8, also the semantic validations
suffers from exponentially increasing execution times when
the infrastructure size grows. The semantic reasoning times
can be significantly reduced when only including the relevant
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parts of the infrastructure in the ontology. To determine these
relevant parts, all physical locations of the substrate topology
that are included in the SFC constraints are modeled. Further-
more, also the parent locations are subsequently modeled. This
set is typically much smaller than the complete infrastructure
and can be considered constant for SFCs of the same size.
When only loading relevant individuals, execution times show
a constant trend at about 62ms, even when the infrastructure
size increases.

Leaving out irrelevant parts of the infrastructure could
have an impact on the accuracy and recall of identifying
the inconsistent SFCs. Therefore, additional experiments are
conducted taking the MINLP based solution as the ground
truth and comparing the filtering results with those of the
semantic request checker that only models relevant individuals.
In the context of SFC validation, a false positive (FP) is an
SFC that is considered to be invalid by the framework while in
fact it is consistent, while a false negative (FN) is an SFC that
is considered to be valid by the framework while in fact it
is not. Filtering out valid SFCs, causing a high number of
FPs, would be an unacceptable side-effect of the semantic
filtering step. The proposed semantic solution based on OWL
uses an Open World Assumption (OWA), meaning that in
general no single agent or observer has complete knowledge,
and therefore limits the kinds of inference and deductions it
makes to those that follow from statements that are known
to be true. Statements about knowledge that is not included
in or inferred from the knowledge explicitly recorded in the
system may be considered unknown, rather than wrong or
false. Therefore, the semantic SFC checker will not consider
an SFC to be invalid based on the absence of information
about the topology. And thus, noFPs will be caused by filtering
out irrelevant parts of the infrastructure. Validating 1000 SFC
requests using the output of the MINLP based solution yields
371 true positives (TPs), 620 true negatives (TNs), 0 FPs and
9 FNs. As expected none of the SFCs are falsely marked as
inconsistent by the semantic validation, leading to a precision
of 100%. An example of constraints leading to a FN is a
request requiring two VNFs to be located in a certain AS,
while at the same time requesting them to be embedded in
different DCs, when only a single DC is available in that
AS. Due to the OWA, the semantic validation framework will
not assume that the absence of such a DC in the ontology
means that it does not exist, and therefore not mark the SFC
as inconsistent.

Figure 6 shows the impact of increasing the requested SFC
size on the semantic validation time. As can be expected,
the execution time increases exponentially with an increasing
number of VNFs per SFC. Validating SFC requests with
20 VNFs takes about 500 ms. Considering that we use a
standard Hermit reasoner without optimizations on standard
off-the-shelve hardware, this could be considered a reasonable
processing overhead. As can be seen from the graph, only
including the relevant substrate nodes has only a limited
impact in this configuration, since we are considering substrate
topologies with 512 nodes and 5 affinity restrictions per SFC.

To evaluate the impact of the number of affinity constraints
on the semantic validation time, substrate topologies with
512 nodes were created and SFC requests with 10 VNFs
instances were used. The number of randomly generated
affinity constraints was varied from 5 to 80. With an increasing
number of constraints, the probability of inconsistencies in
the SFC requests increases. Therefore, the average validation
times for both groups of inconsistent and consistent SFC
requests are shown separately. Figure 7 shows that the average
validation times increase up to a certain point, after which they
drop again. This behavior can be accounted to the fact that
the probability of easy-to-detect conflicts (e.g., two contra-
dictory constraints) increases when the number of constraints
increases, quickly terminating the reasoning process. When
the number of constraints is lower, the variety of constraint
types and subjects on which they are posing these constraints
is larger, leading to more complex conflicts that only appear
when more information is inferred from the ontology, causing
the validation to take more time. None of the SFCs with over
40 constraints is consistent, leading to an execution time of
0s for this subgroup.

C. Impact of Semantic Validation on Mapping Time

In this set of experiments we evaluate the impact on the
mapping time when performing semantic validation on SFC
sets prior to running the embedding algorithm. Furthermore,
the share of the semantic validation step on the total execution
time is evaluated. To this end, SFC request sets are generated
where a certain percentage of SFCs has conflicting affinity
constraints. The substrate topologies under consideration con-
tain 512 nodes, while the request sets contain 20 SFCs, of
which each SFC contains 10 VNFs and 5 affinity restrictions.
During this set of evaluations, the bandwidth minimization
objective defined in Equation (31) is used.

Figure 8 shows the positive impact on the total mapping
time per SFC request when semantically filtering the incon-
sistent SFC requests out of the request set prior to performing
the mapping step. The SFC requests are mapped as a set
and contain 20 SFC requests per set. By validating the SFC
request set prior to mapping it, the total execution time can
be reduced by 59% on average. Even when only 10% of
the SFC requests are inconsistent, the execution times can
be reduced with more than 25%. The relative execution time
reduction approximately shows a logarithmic trend between
0% and 100% with an increasing number of inconsistent
requests. These results show that it is beneficial to perform
the semantic matching although it yields a small additional
execution overhead when no inconsistent SFCs are present.

Figure 9 shows the same graph, but for the individual map-
ping of 100 SFC requests. On average, semantically filtering
the request set reduces the mapping time with 50%. When
no inconsistent SFC requests are present, there is an overhead
incurred by the semantic matching step of 0.4%, which can
be considered negligible compared to the total mapping time.
For a 10% fraction of inconsistent SFCs per request set, the
performance gain is about 11%.
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Fig. 8: Share of semantic matching
and mapping on total execution time
for SFC set mapping.
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Fig. 9: Share of semantic matching
and mapping on total execution time
for individual SFC mapping.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of inconsistent SFCs

0

5

10

15

20

25

30

35

40

M
a
tc

h
in

g
 T

im
e
 (

m
s)

Semantic Matching

Fig. 10: Semantic matching execution
time.

The previous graphs shows both the mapping and matching
times. Figure 10 shows the matching time per SFC separately,
note that the y-axis of this graph shows the time in ms instead
of s. As can be seen from the graph, the semantic filtering
takes about 40ms but yields a benefit which is 28000 times
greater in the case of set mapping and 355 times greater for
individual request mapping.
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Fig. 11: Percentage of SFC requests that are mapped.

To assess the validity of the proposed semantic SFC vali-
dation framework, also the number of mapped SFC requests
was tracked when filtering out inconsistent SFCs, as well
as when the complete SFC request set is considered for
mapping. Figure 11 shows that every inconsistent SFC that
was filtered out during the semantic matching process, was
indeed impossible to map during the embedding phase due to
inconsistencies in the request.

D. Performance of Heuristic Approach

Mapping the SFC request sets in a single step yields an
increase in total execution time of the mapping process due
to an increasing number of decision variables and constraints
in the mathematical model. To alleviate these problems, a
heuristic mapping procedure is proposed in which the different
SFCs in the set are first ordered using a certain criterion, after
which they are individually mapped onto the infrastructure.
Figure 12 shows the impact of performing the heuristic proce-
dure on the total execution time. During the experiments, both
approaches are using the bandwidth minimization objective
defined in Equation (31), the heuristic approach orders the
SFCs according to the requested bandwidth criterion defined
in Equation (34). The total execution time can be reduced

with a factor 3378 on average when performing the heuristic
approach. The evaluations were performed using SFC request
sets containing 20 SFCs and each SFC containing on average
5 VNFs and 3 affinity constraints. Mapping the SFC requests
individually takes on average 0.85s, including the semantic
matching.

The heuristic approach comes at a cost in optimality, since
each request is considered individually, the global optimum
is not achieved. Figure 13 shows the allocated bandwidth as
a percentage of the total bandwidth available in the infras-
tructure when minimizing the bandwidth usage. On average,
the heuristic approach allocates 2.6% more bandwidth than
the optimal solution. Also in terms of number of mapped
SFC requests, the heuristic approach is outperformed by the
optimal set mapping approach. Figure 14 shows that in some
cases only 97.5% of the feasible SFC requests are mapped
when applying the heuristic approach. This also implies that
the resource consumption for the heuristic approach would be
higher if the same amount of requests could be mapped.

E. Impact of Optimization Objective

Multiple optimization objectives were proposed in Sec-
tion V. We compare the bandwidth minimization objective
(MBW) proposed in Equation (31) with the load balancing
objective (LBBW) of Equation (32). To compare the objec-
tives, the maximum requested bandwidth for the virtual edges
is varied. A set of 40 consistent SFC requests is generated
and mapped onto the infrastructure resources. Figure 15 shows
the impact of the objectives on the total resource usage.
It is obvious that the LBBW optimization is outperformed
in terms of total resource usage by MBW. Looking at the
difference between the maximum and minimum load, shown
in Figure 16, it is clear that the proposed balancing objective
allows a better spread of the load compared to pure bandwidth
optimization. Figure 17 shows the percentage of nodes that
is used for the mapping, showing a higher node usage for
LBBW. This graph also confirms that the load is spread across
the infrastructure. The decrease in node usage with increasing
bandwidth can be attributed to a reduced number of SFCs
that can be mapped on the infrastructure due to capacity
constraints.
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Fig. 12: Total mapping time of Set
mapping compared to Individual map-
ping for increasing infrastructure size.
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Fig. 13: Objective of Set mapping
compared to Individual mapping for
increasing infrastructure sizes.
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Fig. 14: Percentage of mapped SFCs
when applying Set mapping compared
to Individual mapping for increasing
infrastructure sizes.
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F. Impact of Ordering Criterion

To assess the impact of the ordering criteria proposed in
Section VI, the experiments of the previous section were
repeated for different criteria. The objective used is the band-
width minimization objective. Each of the SFC requests has
the same amount of affinity constraints attached to them. Fig-
ure 18 shows the difference in acceptance rate when ordering
based on the requested bandwidth, compared to ordering on
the number of constraints. In this experiment, the number
of constraints is constant, so ordering based on number of
constraints falls back to an online processing behavior, where
demands are taken one after another. Mapping the SFCs with
the lowest bandwidth requirements first, increases the accep-
tance rate significantly, since the load on the infrastructure is
minimized.
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Fig. 18: Impact of SFC ordering on acceptance rate.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a way for Service Providers (SPs) to
attach location and colocation constraints to the mapping of
Service Function Chains (SFCs) onto the substrate. These
affinity constraints can be used to increase efficiency and

resilience, to adhere to legislative and privacy restrictions or
for economic reasons. First, the different sets of affinity and
anti-affinity constraints are formalized. Second, a semantic
validation framework is proposed, which allows the Virtual
Network Function Infrastructure Provider (VNFInP) to check
the consistency of the constraints posed by the SFC requests.
To this end, the substrate and the SFC request are modeled
using an ontology of which the consistency is checked using
a semantic reasoner. Finally, the SFC embedding problem
subject to affinity constraints is formalized and an Integer
Linear Programming (ILP) formulation for both set-based
SFC and individual SFC mapping is proposed. The semantic
validation and different mapping algorithms were evaluated
thoroughly. By only loading the parts of the infrastructure that
are relevant for the SFC request into the ontology, the number
of individuals and thus the semantic reasoning time can be
significantly reduced. Furthermore, by filtering out inconsis-
tent SFC requests before mapping, the total execution time
of the embedding algorithm can be reduced with more than
50% for the considered scenarios. Next to the set embedding
formulation, also a heuristic approach is proposed in which
the SFCs requests are embedded individually. To this end, the
SFC requests are ordered based on certain criteria, after which
the embedding is performed by solving the ILP.

In future work, alternative techniques for modeling the
SFC mapping will be studied. For example, modeling it as
a combined capacitated facility location-flow routing prob-
lem allows greatly reducing the complexity compared to
the modeling approach taken in this paper. By combining
the proposed semantic filtering approach with more efficient
mapping algorithms could potentially allow VNFInPs to find
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optimal SFC mappings in reasonable time.
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