
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AWESoME: Big Data for Automatic Web Service Management in SDN / Trevisan, Martino; Drago, Idilio; Mellia, Marco;
Song, Han Hee; Baldi, Mario. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN
1932-4537. - ELETTRONICO. - 15:1(2018), pp. 13-26. [10.1109/TNSM.2017.2785878]

Original

AWESoME: Big Data for Automatic Web Service Management in SDN

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2017.2785878

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2703216 since: 2018-03-16T10:34:01Z

IEEE

1

AWESoME: Big Data for Automatic Web Service
Management in SDN

Martino Trevisan† Idilio Drago† Marco Mellia† Han Hee Song? Mario Baldi†?
†Politecnico di Torino, e-mail: {first.last}@polito.it

?Cisco, Inc., e-mail: {mariobal,hanhsong}@cisco.com

Abstract—Software Defined Network (SDN) has enabled con-
sistent and programmable management in computer networks.
However, the explosion of cloud services and Content Delivery
Networks (CDN) – coupled with the momentum of encryption –
challenges the simple per-flow management and calls for a more
comprehensive approach for managing web traffic. We propose
a new approach based on a “per service” management concept,
which allows to identify and prioritize all traffic of important
web services, while segregating others, even if they are running
on the same cloud platform, or served by the same CDN.

We design and evaluate AWESoME, Automatic WEb Service
Manager, a novel SDN application to address the above problem.
On the one hand, it leverages big data algorithms to automatically
build models describing the traffic of thousands of web services.
On the other hand, it uses the models to install rules in SDN
switches to steer all flows related to the originating services.

Using traffic traces from volunteers and operational net-
works, we provide extensive experimental results to show that
AWESoME associates flows to the corresponding web service in
real-time and with high accuracy. AWESoME introduces a neg-
ligible load on the SDN controller and installs a limited number
of rules on switches, hence scaling well in realistic deployments.
Finally, for easy reproducibility, we release ground truth traces
and scripts implementing AWESoME core components.

I. INTRODUCTION

The Software Defined Network (SDN) paradigm has
changed the way networks are managed [1]. Thanks to a
logical centralized controller and well-defined interfaces to
program forwarding devices, SDN controls the traffic in a con-
sistent manner and dramatically eases interoperability across
different vendors. Yet, network managers face complex traffic
engineering and policing requirements when operating the
network to meet quality levels, prioritize traffic and enforce
polices. Traditionally, such requirements might translate into
complex matching on packets or flows, e.g., to drop P2P
packets or regulate flows related to specific services.

The complexity of the web has introduced more challenges
in the overall picture. On the one hand, the widespread
adoption of cloud services and CDNs puts into question the
identification of the services behind the traffic flows because
a single server supports multiple services, e.g., providing
content for several sites. On the other hand, the convergence
towards encrypted protocols – i.e., HTTP(S) [2] – has rendered
Deep Packet Inspection (DPI) based matching ineffective.
Nowadays, the access to a single service might result in the
generation of several traffic flows to multiple servers, e.g.,
CDN nodes, advertising platforms, video servers, etc., that are

t0 Time (20s)

www.nytim
es.com

doubleclick.net

krxd.net
googleapis.c

om

youtube.com

googlevideo.com

crite
o.com

aliso
n.com

doubleclick.net

googleapis.c
om

youtube.com

googlevideo.com

Fig. 1: Flows opened when visiting two websites. We search
flexible mechanisms to independently manage all traffic trig-
gered by each site – e.g., for traffic engineering and policing.

shared by different services and, as such, cannot be easily
associated to the specific web service originating the traffic.

Figure 1 illustrates this problem by showing the diverse
servers contacted by a user after visiting two simple web
sites, i.e., an e-learning platform and a news website. Arrows
mark flows to the contacted domains of first- and third-party
platforms involved in the services. Both sites rely on the
same third parties for video services (i.e., YouTube), analytics
and web tracking. This poses unique challenges to a network
manager wanting to give higher priority to the e-learning
platform (on the right), while segregating the news site traffic
(on the left). Prioritizing only the first-party servers would
fail to give the intended treatment for the video content of
the e-learning platform that is hosted on YouTube, whereas
prioritizing all YouTube traffic would give high-priority also
to leisure videos triggered by the news site.

Our goal is to allow administrators to manage all traffic of
a service comprehensively, i.e., steering all traffic generated
by the user accessing a given service, and not just the traffic
related to first-party servers. A novel approach to traffic man-
agement is required where policies are based on the services
that users are contacting, which in turn must be translated into
rules that can be imposed on packets and flows.

We solve this problem by proposing AWESoME. It defines
a novel paradigm in which the network administrator imposes
policies based on the service being accessed, e.g., giving prior-
ity to alison.com in Figure 1, while segregating nytimes.com,
and treating third-party traffic according to the accessed first-
party service. Using big data approaches, AWESoME auto-
matically learns groups of flows related to the services and
steers them despite being served by the same CDNs, servers,
clouds, and with the same (encrypted) protocols.

alison.com
nytimes.com

2

AWESoME is a SDN application that leverages standard
SDN functionalities to steer traffic in the network. At the core
of the SDN application is a novel annotation-module operating
at edge elements, which is able to associate each flow to
the originating service in real-time and with high accuracy.
It leverages DNS information and big data to automatically
learn from the traffic. It achieves an overall accuracy higher
than 90%, that, despite not suitable for security purposes, is
well-suited for traffic engineering and management goals.

In contrast to previous works that also aimed at bringing
service-awareness to SDN, but focused on per-flow manage-
ment [3], [4], [5], [6], AWESoME addresses the challenge
in the more comprehensive and seamless way based on the
following three premises:

• Comprehensive policing of services: AWESoME creates
forwarding rules that cover complex relations among flows
(e.g., as in Figure 1). It achieves that by learning which
domains are typically contacted when accessing each ser-
vice. Models to translate high-level descriptions of services
into low-level rules are learned automatically from traffic
with unsupervised algorithms, minimizing human intervention.
Flow dependencies have already been studied and exploited
for data-center management [7], [8], but we extend those
methodologies to operate at the edge of the network.

• Early classification with low overhead: AWESoME takes
final forwarding decisions since the very first packet of each
flow. This limits the load on the controller and application,
making it compatible with actual technology. This is achieved
by extending methodologies that rely on the DNS for traffic
annotation [9], [10], [11], [12].

• Compliance with SDN specifications: AWESoME has been
designed to be fully compliant with the basic SDN architecture
and the latest version of OpenFlow [13], although it could
also be deployed with other communication protocols between
controller and forwarding elements. It requires no changes to
existing APIs and SDN controllers, hence allowing adoption
of AWESoME to existing SDN platforms to be simple.

We thoroughly evaluate accuracy and scalability of
AWESoME in the classification and steering of web service
traffic using traces collected from both volunteers (which offer
us ground truth) and operational networks (which challenge
AWESoME in both ISP and corporate environments). Results
show that AWESoME (i) identifies traffic per service with
accuracy greater than 90%, more than adequate for traffic
management; (ii) limits decision time to less than a hundred
microseconds, with negligible load overhead to SDN con-
trollers; (iii) adds a compatible number of rules to forwarding
devices and, therefore, it is feasible for real deployments.

To allow other researchers to reproduce and validate our
results, we release to the public ground truth traces and Python
scripts implementing the core components of AWESoME.1

Next we introduce terminology, deployment scenarios, and
AWESoME architecture (Section II). We then detail the core
annotation algorithms (Section III), before introducing the
dataset (Section IV) that we use to validate performance (Sec-

1Available at: https://bigdata.polito.it/content/open-datasets

DNS
Server

Controller

Spill DNS traffic
1

2 3

AWESoME

Examinate new
connections

SDN Enabled
Devices
Egress router

Terminal

Install rules to manage the
traffic due to selected

services

CDPI

NBI
Application

Fig. 2: Typical corporate SDN deployment.

tion V). We conclude by discussing related work (Section VI)
and summarizing our findings (Section VII).

II. DEFINITIONS AND ARCHITECTURE

A. Per service management approach

We aim at enabling management operations that target the
control of all traffic involved in the access to web services,
i.e, all objects a browser or a terminal downloads when users
access the given web service. We call this per service man-
agement. We envision several scenarios where the per service
approach will help administrators to manage the network. To
name some examples, AWESoME allows network managers
(i) to block non-authorized services in the network, (ii) to route
traffic of given services on specific paths with performance
guarantees, (iii) to route suspicious traffic of unknown services
to specific devices (e.g., through a security firewall), (iv) to
regulate the traffic of pre-selected services.

We will use corporate networks as a running example in the
paper (see Figure 2) although AWESoME is applicable to other
scenarios too. In the scenario depicted in Figure 2 the corpo-
rate network has two links to external networks that deliver
different performance, potentially at different costs. In this ex-
ample, the network administrator may want to forward priority
services (e.g., the e-learning platform illustrated in Figure 1)
to the best performing link, whereas traffic from non-priority
services is forwarded to the best-effort link. AWESoME must
guarantee that all traffic of the selected services flow to the
desired path. Therefore, all network elements in the corporate
network must be programmed to forward traffic according to
the per service management approach.

B. Core and support domains

Servers being contacted by clients are identified by their
IP addresses, but they are typically reached using their Fully
Qualified Domain Names, or domains for short. Services that
people (or applications) intentionally access are identified by
their Core Domain: www.nytimes.com, alison.com are core
domains (tall arrows in Figure 1). Unfortunately, only a minor
fraction of traffic related to a service is served by the core

https://bigdata.polito.it/content/open-datasets

3

TABLE I: Traffic generated by visiting 10 popular services.

Service Percentage of flows to
Total

domains
Core
domain

Related
support
domains

Generic
support
domains

www.bbc.com 19.4 35.3 45.3 90
www.nytimes.com 17.4 43.7 38.9 63
washingtonpost.com 34.8 21.2 44.0 90
www.ieee.org 37.8 24.3 37.9 17
www.acm.org 43.5 0.0 56.5 8
researchgate.net 5.2 75.5 19.3 29
www.facebook.com 21.9 63.0 15.1 12
www.google.com 8.9 77.8 13.4 141
twitter.com 6.8 86.8 6.4 6
www.youtube.com 5.8 76.9 17.2 30

Research

E-CommerceNews
nytimes.com bbc.com
washingtonpost.com

amazon.com ebay.com
groupon.com

ieee.org acm.org
researchgate.com

6
6

30

1

21

153 58

doubleclick.net
www.google.com

googlesyndication.com

youtube.com
googlevideo.com

Fig. 3: Support domains shared across different categories of
sites. Analytics and advertisement domains are always present.

domain, with Support Domains (short arrows in Figure 1)
being contacted for analytics, ads, video and image download.

Table I quantifies the traffic related to core and support
domains for popular sites. It details the breakdown of flows
served by the core domain, by support domains whose name
is trivially linked to the core domain (e.g., www.nytimes.com
and css.nytimes.com), and by generic support domains (e.g.,
ads.com). Notice how a large fraction of flows is exchanged
with support domains, and that a simple approach taking
into account only traffic to the core domain would fail in
identifying most of the flows.

More than that, generic support domains are often shared
across different websites, and some core domains also appear
as support domains for other services (e.g., online social
networks). Figure 3 quantifies these cases again for a set of
popular sites. It shows 9 websites, grouped into 3 categories.
By visiting each site we have collected all contacted support
domains. Over 275 total domains, 43 are shared by websites of
different categories and 6 domains are present in all categories.

Per service management, therefore, is required to identify
core and support domains. We call Bag of Domains (BoD) the
set of all support domains contacted when accessing the given
core domain. For each core domain, its Bag of Domains must
be automatically built from traffic using big data approaches.

C. SDN as enabling technology

We consider an SDN, where users access the Internet via
their devices connected to SDN enabled switches or wireless

access points, as sketched by Figure 2. The SDN controller
manages the network, translating the requirements from the
SDN applications to SDN datapath commands. AWESoME
interacts with the SDN controller via the NorthBound Interface
(NBI), as a standard SDN application. AWESoME operates
by installing three types of rules in the network elements:
(i) default rules, (ii) per flow rules, and (iii) policing rules.

Default rules are installed on edge switches to forward
selected packets to the AWESoME application running on the
controller. These rules are summarized in Table IIa: (1) all
DNS response packets are normally forwarded, and mirrored
to the controller, (2, 3) the first packet of all TCP and UDP
flows are forwarded to the controller.2 The first rule is used to
maintain a database that allows AWESoME to associate a flow
with a domain name via previously issued DNS requests [9],
[10], [11], [12]. The latter rules let AWESoME handle each
new flow to subsequently impose the most appropriate actions.

Like any SDN solutions based on such reactive paradigm,
the default rules may force the controller to examine a large
number of packets. In Section V-E we will show that the
load is still limited for a network with moderate number of
users. For very large deployments, controller load-balancing
solutions should be considered [14], [15]. Reactive SDNs are
also exposed to Denial-of-Service attacks – e.g., malicious
nodes that exploit rules to overwhelm controllers with lots of
packets. Different solutions have been proposed to tackle the
issue [16], [17], and they could be employed in our scenario.

Once AWESoME has taken the decision about a new flow,
it installs a per flow rule on the edge switch to handle the
packets of the new flow. Per flow rules aim at guaranteeing that
different flows associated to a single service are treated equally
in the network. They are transient and thus maintained only
while the given flow is active. Table IIb lists rules installed
to handle the example presented in Figure 2. Flows that are
identified as belonging to selected applications are tagged as
priority (i.e., Gold class, implemented as VLAN tag 0x001),
whereas the remaining flows are tagged as best-effort class
(i.e., Silver, implemented as VLAN tag 0x002).

Notice that only the first packet of each flow needs to
be inspected by AWESoME. Per flow rules guarantee that
subsequent packets of the flow do not transit through the
controller, but are directly forwarded by edge switches. Since
the system adopts a reactive SDN paradigm, packets transiting
through the controller are retained by the switch until the
controller takes a decision. More in detail, when such a packet
arrives to the switch, a copy is sent to the controller using
a PacketIn message, and holds it in a local buffer. When
(eventually) the controller answers with a PacketOut message,
it is actually forwarded in the network. As a result, clients can
only establish connections after AWESoME has programmed
the edge switch.

Finally, AWESoME programs core switches with pre-
defined policing rules. These rules are stable and in-
stalled when the manager deploys an application based on
AWESoME. In Figure 2, traffic of each category needs to be

2The flow must match the TCP flags using the
OFPXMT_OFB_TCP_FLAGS field available since OpenFlow 1.5.0. These
rules are given low priority to avoid overriding more specific rules.

www.nytimes.com
css.nytimes.com
ads.com

4

forwarded to the particular reserved path. As such, rules to
handle and forward the classes are installed in core switches
(see Table IIc). For this example on traffic engineering, polic-
ing rules are built based on the VLAN tags determined at
edge switches. Other mechanisms can be exploited too, such
as MPLS labels or Provider Backbone Bridges (PBB) tags.

D. AWESoME architecture

Figure 4 provides a schematic diagram of the AWESoME
SDN application. Four elements are identified, each in charge
of a logically independent operation, which together enable
per service management:

1) BoD-Training automatically learns and updates the
BoDs in background;

2) Flow-to-Domain tags flows with domains;
3) Domain-to-Service links named-flows to services;
4) Service-to-Rule translates the service into the appropriate

actions (i.e., the rules described in previous section).
Below, we describe each of them, while performance and
parameter tuning are discussed in Section V.

1) BoD-Training — automatically building BoDs: The
BoD-Training block is responsible to automatically build the
BoD associated to each core domain. This is the key module in
the AWESoME approach, and, thus, we detail it in Section III.

2) Flow-to-Domain — flow labeling using DNS: This step
associates a server domain to each flow, i.e., to create named-
flows. This helps the association of a flow to a given service,
since the information offered by IP addresses is much coarser
than the one carried by the domain of the server being con-
tacted [18]. This is because single a cloud (and CDN) server
may host many services. Intuitively, the same server IP address
hosts a multitude of web services which are better identified
by their domains. It has been shown that this operation can
be solved by leveraging DNS traffic [9], [10], [11], [12]. The
Flow-to-Domain block builds a local cache of domains that
terminals have resolved in the past, maintained as a key-value
store. Below, we describe the two actions of building and using
the key-value pairs as Insert and update and Lookup.

Insert and update: For each DNS response forwarded by
the controller, AWESoME extracts the ClientIP address, the
domain being queried (QueriedDomain), and, from each
Answer record, the list of resolved {ServerIPi} addresses.
For each key {ClientIP, ServerIPi}, it inserts (or rewrites)

Flow-To-Domain

Domain-To-Service
Service-to-Rule

New
Flows

NorthBound Interface

DNS

Self Learned
BoDs

Stat ic
BoDs

Active
Services

Service
Account ing

New Rules Expired Rules

User P olicies

Network
Administrator

Service
St at ist ics DB

BoD
Training

2
3 4

1

Fig. 4: AWESoME architecture. Databases with arrows are
maintained in real-time.

an entry with value QueriedDomain. The time such entries
must be preserved in the store (and expired when old) is
discussed in Section V.

Lookup: Whenever a TCP or UDP packet is for-
warded to the SDN controller, AWESoME parses the
IP and layer 4 headers and accesses the name store
with the key {ClientIP, ServerIP} to fetch the original
QueriedDomain the client previously resolved. In case there
is not such key, the store returns the ServerIP . The packet
is then forwarded to the Domain-to-Service block, along with
the QueriedDomain or, if not available, the ServerIP .

Using DNS information has several advantages with respect
to more intrusive flow classification methods. First, it does not
require to use costly DPI technology to extract hostname or
SNI (Server Name Indication) from HTTP or HTTPS requests.
Second, DNS information is not protected by encryption,
and even DNSSEC does not provide confidentiality. Most
importantly, the lookup is done on the very first packet of each
flow, eliminating the need of keeping per flow state and waiting
for more packets to take a final decision at the controller.
As such, when clients finally open a connection, the network
is already programmed to handle the traffic accordingly. On
the downside, erroneous domain associations can happen due
to collisions (i.e., a rewrite operation) – the same serverIP
being contacted by the same clientIP for two different
QueriedDomain. As we will see later, AWESoME is robust
to such events.

3) Domain-to-Service — associating services to flows:
Once the flows are labeled with DNS names, AWESoME
associates the named-flows to services. This is the core of
AWESoME engine and its details are provided in Section III.
Leveraging a well-known text mining technique, Bag-of-
Words, we model semantics of the domain names, namely,
Bag-of-Domains (BoD). A BoD is created for each core
domain and includes all support domains that are contacted
when the service identified by the core domain is accessed.

We further group the domains into two types: Self Learned
BoDs, and Static BoDs based on the characteristics of the
domains. Automatically built by AWESoME while analyzing
the traffic, Self Learned BoDs are BoDs comprised of inter-
active web services, which users explicitly access from their
browsers, e.g., interactive web applications. On the other hand,
manually built by network operators, static BoDs are com-
prised of background services that are periodically accessed
by terminals without user intervention (e.g., software updates,
file sync with cloud storage services, calendar or mail services,
etc).3 The traffic generated by such services is quite different
from the interactive ones where core domains and support
domains are expected to appear close in time (see Figure 1).
Background services challenge the assumption of temporal
correlation between flows, and extending AWESoME to learn
Static BoDs automatically is left for future work.

The list of recently accessed core domains by each
ClientIP is stored in the Active Service database. Keeping
a cache of active services is important since the same domain

3In the current implementation, regexp and wildcards are supported in the
specification of static BoDs to simplify the administrator’s task.

5

TABLE II: Rules to be installed on the SDN switches across the network.

(a) Default rules installed at edge switches control the traffic that needs to pass the controller for taking decisions.

N Match Action Description
1 IP PROTO=UDP and UDP SRC=53 Forward, Forward to Controller Spill DNS responses
2 IP PROTO=TCP and TCP FLAGS=PURE SYN Forward to Controller Intercept new TCP connections
3 IP PROTO=UDP and UDP DST!=53 Forward to Controller Intercept all UDP non-DNS traffic

(b) Transient per-flow rules are installed at edge switches to tag each flow (e.g., f1 and f2) with the respective service label.

N Match Action Description
1 IP PROTO=TCP and IPV4 SRC=IP f1

SRC and TCP SRC=TCP f1
SRC . . . Push VLAN tag, VID=0x001 Tag as Gold

2 IP PROTO=TCP and IPV4 SRC=IP f2
SRC and TCP SRC=TCP f2

SRC . . . Push VLAN tag, VID=0x002 Tag as Silver

(c) Stable policing rules are installed in core switches to steer packets according to the application scenario faced by AWESoME. In this example, traffic of
each class is forwarded to particular network path (see also Figure 2).

N Match Action Description
1 VLAN VID=0x001 Output on P1 Forward Gold traffic towards the reliable link
2 VLAN VID=0x002 Output on P2 Forward Silver traffic towards the best-effort link

normally appears in multiple BoDs – cf. Figure 1 – and thus
it must be associated to a core domain that has been actually
visited. Given a flow, the Domain-to-Service block checks if
its domain appears in the BoDs of ClientIP Active Services,
so to associate to the most likely service the user has recently
accessed. In case a domain is not in the active services, it falls
back to match against Static BoDs.

The packet is then forwarded to the Service-to-Rule block,
along with the service corresponding to the BoD the packet
was associated with.

4) Service-to-Rule — policy enforcement: Once a flow has
been associated to a service, the Service-to-Rule block is a
classic policing module which enforces actions by requesting
the SDN controller to install rules on the switches. Policies
are stored in a User Policies database, which is accessed with
the service name as key, and returns the corresponding rules.

Policing rules are installed (e.g., in core switches) when the
AWESoME application is started, whereas the per flow rules
are pushed whenever a flow must be steered. Table II has
already exemplified the rules created for the particular traffic
engineering case used as illustration, but other rules can be
defined too – e.g., to block services, route traffic to security
devices or to regulate the traffic per service. Rules expire using
the Idle Timeout standard OpenFlow feature.

In case of “default” action, no extra rule has to be added for
TCP flows since only the SYN-TCP packet will be forwarded
to the controller. The lack of explicit connection indication in
UDP forces AWESoME to insert a rule for each UDP flow.
However, only the first packet of UDP flows transits through
the controller, while the others are directly forwarded by the
switch, as a transient per-flow rule is inserted.

Scalability is evaluated in Section V-E. Again, per flow
rules have to be installed on the edge switches only – i.e.,
those switches that are directly connected to clients or work
as ingress point to the SDN. Upstream devices instead operate
on a per service basis, e.g., using IP Type of Service, MPLS
labels or PBB tags, which are all supported by SDN.

The Service-to-Rule block additionally maintains the Ser-
vice Statistics DB, with flow identifier (e.g., the classic 5-tuple)
as key, and service information as value. When a rule expires
at switches, its flow identifier is passed along with statistics
(byte and packet amount) to the SDN controller (standard in
FlowRemoved messages) that, in turn, exposes them to the
AWESoME application. Such statistics are collected in the
Service Statistics DB, later used for BoD training, and exposed
to the network administrator. This enables for instance per
service accounting, anomaly detection, billing, etc.

III. HOW SERVICE ASSOCIATION WORKS

The core of the service management is the ability to asso-
ciate each flow to the originating core domain, i.e., the service
the user originally intended to access. AWESoME solves this
by leveraging the bag-of-words model which is commonly
used to succinctly representing complex textual data in natural
language processing [19]. In the context of AWESoME, we
extract bag-of-words features from each domain and “classify”
it into a service. Hence we call the process Bag-of-Domain
(BoD) training. Due to the complex composition of web pages
and the intertwined nature of the Internet, it is not trivial to
design the BoD training with minimal human intervention.

A. Automatic BoD training

Let C be the set of core domains of interest provided by
the network administrator. AWESoME training consists of
building a BoDc, for each core domain c ∈ C. One possi-
ble solution could be using active crawling, e.g., artificially
visiting the service/website of c and collecting domains being
contacted. Unfortunately, this does not work in practice (cf.
Section V) since (i) the same service/website changes when
accessed from different identities, locations, time, browsers,
devices, configuration, etc., (ii) c may require authentication,
or the usage of a specific application which complicates
the cluster, and (iii) the approach poses scalability issues.

6

T OW

T idle

T OW

T idle

Ignored Core
Domain

Time

(a) BoD-Training: a flow to a core domain triggers a new observation
window if client was idle for more than ∆Tidle.

t d

Time

Unknown
 domain

1

d1

d2

t d 2

(b) Domain-to-Service: Blue and red services are active at the same time;
the EWs are extended as new flows are associated to the core domain.

Fig. 5: Training and annotation examples.

AWESoME leverages instead data collected from the network
itself to build and update the BoDs.

The intuition is simple: when a client is observed opening
a flow to domain c, the domains of flows that follow shall
be inserted in BoDc. Unfortunately, this step is challenging
because the user may access multiple services at the same time
(e.g., using multiple browsers), while the terminal may con-
tact other services (e.g., for software updates, or background
services). In addition, the same support domain may belong
to multiple BoDs, or, worse, a domain may be both a core
domain, and a support domain.

The Flow-to-Domain block outputs each named-flow f gen-
erated by each ClientIP. Figure 5a depicts a possible timeline
of flows generated by a given client. Tall arrows are visits to
core domains. AWESoME conservatively considers a flow f
as a possible core domain if f ∈ C and ClientIP has been
idle for more than Tidle. In Figure 5a, red and blue tall flows
are identified as core domains, while the green flow is not.

When a new core domain is observed, AWESoME opens an
Observation Window (OW) of duration TOW . All domains of
flows observed in TOW are inserted in the BoDc. In Figure 5a,
this is represented by coloring flows with the same color of
the core domain. The longer TOW , the more information is
collected, with the chance to pollute the BoDc with false
support domains. Algorithm 1 shows a pseudocode for the
BoD update function.

To distinguish false support domains, AWESoME computes
the frequency with which each domain appears in BoDc across
multiple observations: domains below a MinFreq threshold
are filtered. The intuition is that actual support domains
emerge, whereas the false support domains that seldom appear
can be filtered out by frequency. This step lets the system
filter out background traffic and those flows due to (possible)
concurrency in the monitored clients. MinFreq is a parameter
of AWESoME and its tuning is discussed in Section V-B,

Algorithm 1 BoD update(f, C,BoDs)

Input:
f . The current flow
C = {c1, ..., ck} . Core Domains
BoDs = {BoDc1 , ..., BoDck

} . BoDs of core domains in C

1: t = GetTime() . Get current time
2: df ← parse(f) . Get the domain of f
3: (tc, c)← OW . Retrieve current OW if any
4: if OW 6= ∅ ∧ t− tc ≥ TOW then
5: OW ← ∅ . Remove the OW if expired
6: // Put domains in the Bag if OW exists
7: if OW 6= ∅ then
8: BoDc(df) + = 1
9: else

10: if df ∈ C ∧ t− tlast > Tidle then
11: OW ← (t, df) . Open a new OW
12: freqdf + = 1 . Update CD frequency

13: tlast ← t . Update last flow time

along with evaluation of the effect of concurrency in the
clients. Traffic from all clients contributes to learn BoDc,
so that information is accumulated over time and in different
conditions (i.e., different identities, time, browsers, devices,
configuration, etc.).

Domains are stored in a LRU cache of limited size (e.g.,
5 000 entries). This is more than adequate – cf. Table I – and
limits memory usage.

At last, AWESoME needs to compute the average flow
duration per each domain in BoDc. This is done using the
flow duration information as exposed by the Service-to-Rule
block. For each domain d, AWESoME maintains the average
flow duration td. To cope with possible changes in service
behaviors, a standard exponential moving average estimator
is used (parameter α = 0.1). AWESoME is however almost
insensitive to the parameter as site changes occur in much
longer time periods than the re-training of BoDs.

Flow duration is fundamental to AWESoME as we will
see next, and OpenFlow Idle Timeout mechanism lets the
controller to derive it. After no packet has matched a rule
for a configurable period, a FlowRemoved message is sent
by the switch to the controller. Flow duration is obtained by
computing the time between the rule install action and the
FlowRemoved message, subtracting the Idle Timeout
set in switches.

AWESoME takes advantage of the last days of traffic to
build the BoDs used by the Domain-to-Service module. A
discussion about the time needed to build BoDs is provided
in Section V. The training dataset potentially becomes large
in real scenarios, and thus the BoD-Training module is im-
plemented in a state-of-art big data platform, namely Apache
Spark. The statistics to build BoDs are continuously collected
in the BoD-Training module. Periodically, e.g., once per hour,
BoDs are computed and given to the Domain-to-Service for
on-line annotation of traffic.

B. Domain-To-Service classification module

Armed with core domains and their respective BoDs,
AWESoME has to associate named-flows with the service
identified by the core domain. It first tries to associate the flow
to any BoD in the Self Learned BoDs. In case of no match,

7

it then tries with Static BoDs. For the sake of simplicity, we
describe only the first stage as the second is identical.

Figure 5b gives an example of a possible timeline where a
ClientIP accesses first to the red service, and then to the blue
services.

AWESoME uses Algorithm 2 to annotate each flow f .
It receives: (i) the current named-flow f , (ii) the set of
core domains C, (iii) the BoDs, (iv) average duration t for
each domain. It processes each ClientIP separately and keeps
separate data structures. It outputs a flow annotated with the
core domain, or unknown in case no association is found.

Algorithm 2 annotate(f, C,BoDs, T)
Input:

f . The current flow to annotate
C = {c1, ..., ck} . Core Domains
BoDs = {BoDc1

, ..., BoDck
} . BoDs of core domains in C

T = {td1 , ..., td1} . Domain average flow duration
Output:

O = (f, CoreDomain) . Annotated flow

1: // Retrieve start time and domain of f
2: t = GetTime() . Get current time
3: df ← parse(f) . Get the domain of f
4: // Remove expired Services
5: AS ← {(ts, te, ci, BoDci

) ∈ AS|t ≤ te}
6: // Obtain the best BoD among the AS
7: asbest ← {(ts, tebest, cbest, BoD)} ← BestBoD(df , AS)
8: if df ∈ C ∧ asbest == ∅ then
9: // df is a core domain – Start a new AS for df

10: c = df

11: AS ← AS + {(t, t + tc, c, BoDc)}
12: O ← (f, c)
13: else
14: if asbest 6= ∅ then
15: O ← (f, cbest) . The flow is assigned to cbest
16: // Update the AS validity time
17: tebest ← max(t + tdf , tebest)

18: else
19: O ← (f, “unknown′′) . Flow not classified

The algorithm is based on the concept of Evaluation Win-
dow (EW), i.e., a time during which a support flow can
still appear after the observation of the core domain c. The
algorithm maintains a list of Active Services, AS, i.e., those
core domains previously seen, and for which it is still possible
to associate some flows. The list grows as new core domains
are observed (lines 8–12), and entries are aged out, i.e.,
window ending time te is passed (line 5).

First, AWESoME checks if there exists a Active Service
asbest whose BoD contains the domain of f . In case more than
one AS matches, we consider the asbest = BestBoD(df , AS)
as the one whose evaluation window start time is the closest in
time (line 7). Intuitively, we consider the most recent visited
core domain as the most likely one to associate the current
support domain. We tried other choices, e.g., considering ran-
dom choice, weighted choice by the frequency of occurrence
in BoDs, etc., with worse results.

Next, AWESoME has to resolve the ambiguity for domains
that can appear as both support and core. If df is a possible
core domain, and there exists no AS in which it appears as
support domain (line 8), then it is considered a new core
domain, and a new evaluation window is opened (lines 9-12).
The rationale is that the domain has been contacted because
of an intentional visit from the user.

On the contrary, df is considered a support domain if there
exist an active service asbest (line 14). The flow is associated
to the core domain cbest (line 15), and the evaluation window
ending time tebest is extended (line 17) to consider the average
duration of the current flow tdf

. The rationale is that flows to
support domains may be observed long time after the core
domain, since the terminal keeps downloading objects due
to a user action, e.g., scrolling a web page that triggers the
download of new elements, or the download of a new video
chunk in a streaming service. This is sketched in Figure 5b
where the evaluation windows are represented by horizontal
arrows, which extend the AS ending time.

Finally, in case of no match with any AS, the flow is
associated to the “unknown” class (line 19), and AWESoME
looks for a matching in the Static BoDs.

It is important to notice that the Domain-To-Service module
operates on a per-flow and per-ClientIP basis and, thus, the
processing is amenable for per-client parallelization.

IV. DATASETS

We validate AWESoME and evaluate its performance using
trace-driven analysis. First, we thoroughly assess classification
performance using traces where ground-truth is available – i.e.,
where we have information about the core domain responsible
for the visit to support domains. Then, we use passive traces
collected at operational networks to study realistic AWESoME
deployments.

A. Ground-truth traces

We rely on ground-truth data from volunteers. We collect
browsing histories of 30 users, directly extracting the URLs
they intentionally visited in the past months, which are stored
in a local database by their browsers. We automatically revisit
each URL by instrumenting a Chrome browser. We let Chrome
visit the URL and wait until the page is fully loaded (i.e., the
On Load event is fired).

In parallel, we record all network activity in our environ-
ment to have a complete picture of the traffic that would be
managed by AWESoME. The outcome of these steps is a
dataset of named-flows, where each entry is annotated as a core
domain, if it was a URL given as input to the instrumented
browser; or as a support domain, if it was triggered by a core
domain visit.

In total, we collected 973 000 flows, referring to 3 760
and 97 640 unique core and support domains, respectively.
Crawling was done in December 2016 and lasted 5 days. We
build three traces from this raw dataset:
• Simple-browsing: It mimics the original behavior of vol-
unteers. Each volunteer is given a unique ClientIP address,
and we simulate page visits in the same sequence and with the
same visit time of the original browsing history. The arrival
time of support flows after a core domain visit respects what
is seen during crawling.
• Tab-browsing: We create this scenario by repeating the
previous steps, but starting 5 independent navigation threads
per ClientIP in parallel. To avoid any kind of synchronization

8

TABLE III: Traces collected from operational networks.

Dataset Duration Flows Unique
Domains

Client IP
addresses

ISP 1 12 months 13 billion 18 million ≈ 10 000
ISP 2 12 months 4 billion 6 million ≈ 1 000
Corp 1 1 day 6 million ≈ 38 000 ≈ 1 600
Corp 2 3 days 32 million ≈ 64 000 ≈ 6 000

among threads, each navigation starts following the browsing
histories at a random position. This scenario emulates (i) an
extreme case of multi-tabbed browsing where the same user
has 5 tabs concurrently and continuously browsing the web;
or (ii) 5 users concurrently and continuously browsing the
web behind a NAT (i.e., identified by the same client IP
address). The latter is a typical setup in ISP environments
where a single home gateway acts as a NAT, and a handful
of household devices access the Internet contemporarily with
the same identifier. Core and support domains of many visits
may appear simultaneously in the trace. This challenges the
disambiguation of core and support domains.

• Simple-browsing + video streaming: Our crawling based
on volunteers’ histories notably miss video streaming sessions,
since videos may continue playing after the On Load event
is fired. Traffic generated by video servers might be quite
different from interactive browsing because flows to retrieve
video chunks have low temporal correlation with the core
domain request [20]. Using the instrumented browser, we
record all traffic generated when accessing 250 arbitrary URLs
from 15 sites with embedded videos. We let the video play for
5 min before moving to another page. We finally mixed the
Simple-browsing trace by simulating a second parallel thread
for each volunteer. This thread continuously watches videos,
with the user changing page every 5 min, without any pause
in between. This is again an extreme case to test.

B. Operational network traces

We capture flow-level datasets from operational networks
using passive meters. Our captures include four measurement
locations: two ISP networks and two corporate networks.
The datasets are summarized in Table III. To preserve users’
privacy, IP addresses have been anonymized, and we kept only
the information required for our study. Trace collections has
been approved by ISP and corporate security board.

1) ISP traces: ISP 1 and ISP 2 traces include data
exported by flow exporters deployed at different Points of
Presence (PoP) of a large ISP. These PoPs connect mostly
residential customers to the Internet, via DSL or FTTH. The
ISP assigns to each home gateway a fixed IP address, thus
allowing us to isolate the traffic per home gateway. Traces
include traffic generated by all users’ devices connected to the
Internet via Ethernet and/or WiFi.

The traces include basic features found in typical
NetFlow exporters, summarizing TCP and UDP flows – e.g.,
byte/packet counters, client and server IP addresses, etc. The
flow exporters provide the Flow-to-Domain mapping per-
formed by AWESoME by processing the DNS traffic on-the-
fly. We captured data from January to December 2016, mon-

itoring around 11 000 households. In total, we have observed
more than 17 billion flows, 18 million domains.

We additionally dumped DNS traffic in the PoPs for 6 hours
in December 2016, simultaneously to the flow exporting, for
some specific analysis that will follow.

2) Corporate traces: We rely on proxy logs from enterprise
networks to assess AWESoME performance in corporate sce-
narios. They come from two different enterprises in different
states of the USA. The proxies provide web connectivity to
thousands of employees of two companies. They save logs
for (i) each HTTP request and (ii) each CONNECT command
for HTTPS tunnels. Clients are consistently identified by IP
addresses. No UDP traffic is allowed.

We directly construct a named-flow log from each of the
raw proxy logs, creating the Corp 1 and Corp 2 datasets.
We proceeded as follows: for each CONNECT and for each
HTTP request entry we create a flow record for the involved
client and server. The domain is extracted directly from the
hostname in HTTP request and from the CONNECT command.
Naturally, this approach will over-estimate the number of flows
in the network, since TCP flows are reused by clients when
communicating with a HTTP server.

V. AWESOME PERFORMANCE

A. Flow-to-Domain evaluation

We evaluate the Flow-to-Domain block aiming to answer
two questions: (i) What is the percentage of flows that can be
annotated with DNS information? (ii) How long should the
DNS information be cached to perform flow annotation?

Let us start focusing on the first question to check how many
flows would remain unnamed due to lack of DNS data. To
answer this question we use the 6-hour-long dataset in which
we have both named-flows and raw DNS traffic from the ISP
probe. We look for web flows, i.e., to port 80 and 443, which
have a domain associated. In particular we simulate the Flow-
to-Domain module with infinite memory. To avoid boundary
effects, we warm up the domain key-value store loading the
initial 5 hours of the DNS trace and then we use the last hour
of the flow trace to perform a lookup while still processing
the DNS trace at the same time.

We found that 93% of the web flows are annotated. Manual
inspection reveals two main causes for the missing domains:
(i) ≈ 1% of services contact support servers using directly IP
addresses; (ii) possible loss of DNS packets during the passive
captures. AWESoME handles the first case by adding IP
addresses to BoDs, whereas the second case is a measurement
artifact that should not happen in real SDN deployments.4

Figure 6 presents the Cumulative Distribution Function
(CDF) of the delay between the flow and the previously issued
DNS query. For both traces, more than 90% of the flows starts
within 10 minutes since the corresponding DNS query. The
percentage grows to 97% considering a 1-hour interval.5 These
large time gaps between DNS queries and the flows are mostly

4In SDN, packets sent to the controller are always received thanks to the
usage of reliable transport protocols between switches and the controller.

5Differences for small x-values occur due to variations in the RTT between
clients and the flow exporters.

9

0.0

0.2

0.4

0.6

0.8

1.0

1
 m

s

1
0
 m

s

1
0
0
 m

s

1
 s

1
0
 s

1
 m

in

1
0
 m

in

1
 h

6
h

C
D

F

Time

ISP 1

ISP 2

Fig. 6: Time between TCP flows and their associated DNS
query. AWESoME needs to cache information about 1-hour
of DNS traffic to annotate flows.

due to large TTLs of DNS responses and client-side caches
– i.e., clients can open flows to servers long after resolving
their names thanks to the local DNS cache. Nevertheless, the
figure shows that the Flow-to-Domain block must be sized
to hold in its key-value store the information extracted from
about 1-hour of DNS traffic in order to output high-quality
named-flows. In the largest of our traces this corresponds to
manage about 1 000 000 entries.

B. Domain-to-Service accuracy

We next evaluate the core part of AWESoME – i.e., the
association of services to named-flows. We use the ground-
truth traces for this validation. We only check the accuracy for
self learned BoDs, since static BoDs are manually provided
by network administrators.

We estimate the accuracy of AWESoME by checking
whether the service determined for each flow matches with
the ground-truth. In this experiment, learning of BoDs is
performed using the ground-truth trace. All 3 760 core domains
are considered with 3 760 BoDs built from the trace itself.
We here test such a case in which every service would be
managed independently to evaluate AWESoME performance
in extreme cases. In more practical scenarios (e.g., Figure 2),
one would expect only a limited number of key services
to be classified and managed. We also repeat experiments
with different settings to study the effects of AWESoME
parameters.

Figure 7 depicts the performance of AWESoME when
varying the MinFreq threshold used for learning. Recall that
a support domain is discarded from the BoD if it appears
less frequently than MinFreq. Curves for three scenarios are
depicted.

Focusing in MinFreq = 6.25%, notice how the accuracy
of AWESoME is high, reaching close to 93% in the Simple-
Browsing trace. Errors are related to flows annotated with
ambiguous domains (i.e., belonging to more than one BoD)
or left as “unknown” (e.g., no active window during classi-
fication). Even for the extreme traces, AWESoME delivers
accuracy close to 85%. That is, AWESoME can identify flows

 50

 60

 70

 80

 90

 100

50 25 12.50
6.25

3.12

1.56

0.78

0.39

0.19

0.10

0.05

A
cc

u
ra

cy
 [

%
]

MinFreq [%]

Simple-Browsing
5-Tab-Browsing

Simple-Browsing + Video Streaming

Fig. 7: Accuracy when varying the MinFreq threshold.
AWESoME accuracy surpasses 93% in the Simple-Browsing
trace, and 85% in extreme scenarios.

per service with high accuracy, even in challenging situations
that should be uncommon in real deployments. In particular,
for the 5-Tab-Browsing trace the performance penalty is very
small. This means that AWESoME can successfully operate
when users perform tab-browsing, or in typical ISP scenarios
where devices of a household access the network with the
same client identifier.

We however remark that the tested 5-Tab-Browsing scenario
does not guarantee that AWESoME would work with any
level of parallelism. Carrier Grade NAT, in which hundreds
or thousands of users are aggregated, is an example where the
deployment of AWESoME requires planning. Switches inside
the NAT-ed network need to be part of the SDN as well, thus
aggregating a moderate number of users, which will ensure
AWESoME delivers performance as in Figure 7.

Notice also the importance of MinFreq to filter out noise
from BoDs. When MinFreq is large (e.g., 50%), domains that
are popular in BoDs are ignored, resulting in a sharp decrease
on accuracy. On the other extreme, when MinFreq is low,
false support domains pollute the BoDs. Focusing on results
for MinFreq = 0.1%, notice how accuracy drops to 90% in
the Simple-Browsing trace, and to less than 80% in extreme
scenarios. This happens because BoDs get very large with lots
of false support domains that hinder the annotation process.

We omit for brevity analyses with other parameters. Overall,
the best parameter choices are TOW = 10 s, Tidle = 5 s and
MinFreq = 6%, resulting the best figures shown in Figure 7.

C. Training set size and location

AWESoME learns BoDs by observing traffic. We now
answer two practical questions regarding training in real de-
ployments: (i) What is the amount of traffic that needs to be
observed for learning representative BoDs? (ii) Should training
be performed with traffic of the managed network or generic
BoDs can be distributed to different deployments?

Figure 8 shows the effects of the training dataset size. For
this experiment, AWESoME learns BoDs using ISP 1 trace,
and performance is assessed with the Simple-Browsing trace.
We extend the training dataset duration in each experiment

10

 50

 60

 70

 80

 90

 100

1 h

2 h

4 h

12 h

1 d

2 d

5 d

10 d

1 m

2 m

A
cc

u
ra

cy
 [

%
]

BoDs Learning Period

Same location training

Fig. 8: Accuracy vs. training dataset size. BoDs learned with
ISP 1, accuracy calculated with Simple-Browsing trace – 1-
month training window is sufficient.

round. The “same location training” line marks the best result
obtained with training performed with Simple-Browsing trace.
Again, AWESoME has to learn 3 760 BoDs. Here, we want
to study the effect of different learning periods, and, thus, the
study is limited to the ISP 1 trace. Corp 1 and Corp 2
are captured very far in space, and this would lead to worse
results. This effect is evaluated later in this section.

Focusing on the left-most point in Figure 8, note that
AWESoME correctly identifies 80% of the flows when the
training set contains 1 hour of traffic only. That is, most of
the popular BoDs are learned by observing a single hour of
traffic. Increasing the training set improves results, with the
best accuracy at around 87%. Thus, AWESoME needs to be
trained for around 10 days to reach its best performance in
this scenario. Further results, omitted for brevity, show that
BoDs change slowly and are well-captured by the continuous
training.

Since AWESoME requires historical data for training, the
size of the training dataset may become large. For ISP 1 and
ISP 2, this corresponds to millions of flow records, which
result in several GBs of traces. This calls for the use of scalable
data processing approaches, and AWESoME training is thus
built on Apache Spark to scale with the size of training dataset.

Figure 8 points to a decrease in performance when training
is done with data from a different network. We explore this
effect in Table IV. It reports the fraction of flows identified by
AWESoME in a trace when training is done on another dataset.
Columns indicate the training dataset, and rows indicate the
testing dataset. We consider as core domains the top-100 Alexa
sites, since most of them are common across traces.

Cells report fractions taking as reference the flows which
are annotated when training and testing are done with the same
network. For instance, the first row shows that when training
is performed with Corp 1, AWESoME annotates only 45% of
the flows in ISP 1 that would be identified if both training and
testing are done in ISP 1. The remaining 55% of flows are
marked as “unknown”. This happens because the BoDs learned
from different vantage points differ because of variations in
the domains used by CDN servers or different content (ads)

TABLE IV: Fraction of flows classified by AWESoME when
varying training and testing locations. The Alexa top-100
websites are core domains in this analysis.

Training
ISP 1 Corp 1 Corp 2 Crawling

C
la

ss
if

.

ISP 1 1 0.45 0.48 0.32

Corp 1 0.72 1 0.81 0.40

Corp 2 0.42 0.47 1 0.34

per location. Additionally, some BoDs are completely empty
in a trace because of regional browsing preferences.

Interesting, last column of Table IV shows that active
crawling is not sufficient for generating comprehensive BoDs.
We learned BoDs by active crawling the homepage of top-
100 Alexa sites. Those classify as little as 32% of the flows
for the ISP 1 trace. Therefore, AWESoME deployments must
include mechanisms for in-place training.

D. Per service performance

We investigate further AWESoME performance by breaking
down results for popular services in our datasets. Figure 9
shows precision and recall obtained when learning BoDs using
10 days training on ISP 1 and applying them to the Simple-
Browsing trace.6

Figure 9 shows that precision is typically higher than 97%
excluding Facebook and Linkedin. That is, false positives
are generally very rare unless for those service that are (i)
extremely popular and (ii) both core and support domains.
AWESoME may consider a support domain as a new core
in these cases. Recall is typically higher than 80% – i.e.,
some support domains are not associated to the right service,
typically becoming unknown. For management purposes, this
translates into a marginal probability of wrongly treating few
flows of a service of interest. For instance, in some case,
some support domains are not identified and handled as all
other flows in default classes. Finally, we argue that this a
pessimistic scenario, as AWESoME has been instrumented
to discern all 3 760 Core Domains in the trace i.e., it must
classify the traffic into the same number of classes. In a real
deployment, we expect lower misclassification probability.

E. Is AWESoME scalable?

Finally, we evaluate three key aspects for a practical
AWESoME deployment: (i) its overall run-time to take a
decision when a new packet is received by the controller;
(ii) the number of packets that need to be handled by the
SDN controller; (iii) the number of rules that are installed in
forwarding devices.

AWESoME has been prototyped in Python. Figure 10 shows
the CDF of the execution time of our prototype for each
packet that arrives at the controller. We found that AWESoME
running on a commodity server takes less than 100 µs to take

6Precision is calculated as the percentage of flows correctly identified as
belonging to a service, whereas recall indicates the percentage of flows of the
service that is identified.

11

 0

 20

 40

 60

 80

 100

E
-C

om
m

erce1

E
-C

om
m

erce2

E
-C

om
m

erce3

E
-C

om
m

erce4

N
ew

s1
N

ew
s2

N
ew

s3
S
port1

W
eather1

github.com
new

s.google.com

stackoverflow
.com

w
w

w
.bbc.com

w
w

w
.booking.com

w
w

w
.facebook.com

w
w

w
.google.com

w
w

w
.linkedin.com

w
w

w
.w

ordreference.com

w
w

w
.youtube.com

[%
]

Precision Recall

Fig. 9: Precision and recall for popular services.

0.0

0.2

0.4

0.6

0.8

1.0

 0 20 40 60 80 100

C
D

F

Processing time [us]

Fig. 10: Processing speed of AWESoME for each packet
arriving at the controller in a single-core of a commodity
server.

a decision for more than 99% of the packets reaching the SDN
controller. That is, AWESoME internals add only negligible
delays per flow.

Let us focus on the number of packets the controller has
to handle. We use our operational network traces for this.
Figure 11 depicts the number of packets per second forwarded
to the controller. Different experiment rounds are executed,
including the top-n most active ClientIP addresses in each
round. Remind that client IP addresses are equivalent to home
gateways in ISP traces and to unique users in corporate traces.
Box plots depict the distributions of packets per 1-second time
bins, with boxes ranging from the 1st to 3rd quartiles, and
whiskers marking 5ft and 95ft percentiles. Only ISP 1, Corp 1
and Corp 2 are shown to improve visualization.

In summary, the packet arrival rate at the controller is very
low. Focusing on the right-most point in Figure 11, notice
that 4 096 terminals generate less than 1 000 packets/s for
more than 95% of the time bins. For the sake of comparison,
our AWESoME Python implementation can handle more than
40 000 packets per second. That is, even for large numbers of
clients, AWESoME deployment is scalable thanks to its ability
to take decisions using only DNS traffic and a single packet
per flow.

 1

 10

 100

 1000

4 8 16 32 64 128
256

512
1024

2048
4096

[p
k
t/

se
c]

Terminals

ISP 1
CORP 1

CORP 2

Fig. 11: Packet arrival rate at the controller. Even for large
numbers of clients, the number of packets handled by the
controller is limited.

Finally, we investigate the number of rules that are installed
on the SDN switches. This aspect must be necessarily taken
into account, since switches typically can host a limited num-
ber of rules (i.e., < 10 000). Notice that AWESoME imposes
the largest load in edge switches, where packet policing and
tagging are performed on a per flow basis (see transient per
flow rules in Table IIb). Other upstream elements (i.e., SDN
switches in the core of the network) instead operate on a
per service basis, and are programmed using stable rules as
illustrated in Table IIc. As such, the loading on switches that
are upstream in the network should be lower than on edge
switches. In the example of Figure 2, stable rules are based
on VLAN tags and impose only one rule per traffic class in
the core switches.

We estimate the number of rules that would need to be in-
stalled in edge switches creating a scenario where we assume:
(i) the top-n most active clients are connected to a single edge
switch; (ii) the network administrators policy all services in
the network, thus requiring rules to manage every TCP/UDP
flow individually; (iii) rules stay active for Idle Timeout
= 120 s after the last flow packet.

Figure 12 illustrates the distribution of the number of rules
installed in the edge switch. The distribution is calculated
monitoring the flow table while replaying ISP 1 trace. The
box plots follow the same characteristics as in Figure 11. This
study is limited to ISP 1 for the sake of brevity. Similar
results are obtained using the available traces. Focusing on the
right-most point of Figure 12, notice that the flow table occu-
pancy is low even when more than 500 terminals are connected
on a single switch. The switch would rarely observe more than
5 000 active rules. The figure also breaks down numbers per
TCP and UDP flows, showing that most rules would be related
to (long-lived) TCP flows. In real deployments, where only
few services of interest are managed, we expect AWESoME
to put a negligible number of rules per switch.

F. Limitations and future work

Previous sections have shown that AWESoME is able to
steer traffic per service with an overall accuracy of about 90%.

12

1

 10

 100

 1000

 10000

4 8 16 32 64 128
256

512

In
st

al
le

d
 r

u
le

s
p
er

 s
w

it
ch

Terminals

ISP 1-TCP
ISP 1-UDP

Fig. 12: Active rules assuming that the top-n clients are
connected to a bottleneck-switch and all services are managed.
The number of installed rules is limited.

Whether or not this accuracy is sufficient depends on the target
application. For traffic engineering in a corporate scenario (see
Figure 2) AWESoME accuracy is appropriate. AWESoME
would steer 90% of the flows on the paths selected by the
network administrator, with the wrongly routed flows imposing
minor loads to the remaining paths. Comparing this error rate
to today’s alternatives (e.g., routing based on IP addresses of
core domains – see Table I), we believe AWESoME is a step
forward for traffic engineering.

However, some scenarios may not tolerate any false pos-
itives, which is the case for some security applications. De-
vising per service tagging with zero false positive rates for
security purposes is left for future work.

AWESoME has some limitations originating from assump-
tions and design decisions. Those decisions are justified by
our goal of keeping AWESoME as simple as possible. For
instance, Algorithms I and II assume that services are inter-
active and, as such, core and support domains appear close
in time. BoDs for background services cannot be learned by
these Algorithms since the assumption does not hold for back-
ground services. Our experience with the traces suggests that
background services are, in general, easier to identify thanks
to the machine-to-machine nature of the traffic and the low
number of domains supporting the services. While AWESoME
allows administrators to specify Static BoDs, extending the
system to automatically learn BoDs of background services is
a promising direction for future work.

Finally, AWESoME assumes edge switches are part of the
SDN and aggregate a moderate number of users – e.g., users
in home NAT or in a corporate LAN. AWESoME cannot
be deployed if large numbers of users are aggregated behind
a single address, such as in Carrier-grade NAT, unless edge
switches inside the Carrier-grade NAT are part of the SDN.

VI. RELATED WORK

A. Web service traffic identification

Many approaches for traffic identification have been pro-
posed [21], [22], and different alternatives could be coupled
with SDN to implement per service traffic management.
DPI has been employed not only to classify traffic of web

services [23], [24], [25], but also to bring service visibility
into SDN [4]. The DPI-based approach however suffers from
weaknesses when applied to SDN: (i) the number of packets to
be forwarded to controllers or SDN applications can be high
for common protocols; (ii) as encryption gains momentum,
essential information cannot be observed, thus reducing its
applicability.

AWESoME adopts a behavioral identification approach –
i.e., traffic behavior is used to infer the services generating
packets [26]. The AWESoME approach is innovative in that it
builds models based on server hostnames as they are resolved
by clients. As such, AWESoME can differentiate services even
if they use exactly the same protocols (e.g., HTTPS) and are
hosted in the same infra-structure (e.g., in the case of CDNs
and cloud hosting).

The idea of annotate traffic on-the-fly using DNS informa-
tion has appeared in [9], [10], [11], [12]. However, AWESoME
not only annotates flows and classifies traffic on a per-flow
basis, but also automatically clusters third-party flows trig-
gered by services. Thus, AWESoME is able to manage traffic
even if flows are annotated with uninformative or ambiguous
hostnames.

AWESoME relies on the fact, exploited in other works [20],
[27], that flows triggered by a service present temporal cor-
relations. AWESoME extends the approach to named-flows,
tunes it to operate in real-time scenarios, and integrates the
algorithms into SDN, so to control the network based on
complex traffic relationships.7

Finally, authors of [7], [8] exploit relationships between
flows for traffic management. They leverage groups of flows,
or coflows, to boost performance of MapReduce applica-
tions. Their solutions are designed for data centers and re-
quire application-level modifications, while AWESoME uses a
completely in-network approach. Moreover, AWESoME aims
at managing services at the edge of the network. Thus,
AWESoME needs to manage a vast number of services that
may behave differently from each other. Automatic identifica-
tion of coflows is proposed in [29], but the solution is also
limited to data centers, facing limitations if deployed at edge
networks. AWESoME instead builds models for the services
automatically, identifying service traffic based on the DNS.

B. Service-awareness in SDNs

SDN has become very popular from academic environ-
ments [30] to large-scale data-centers [31], sparking a host
of applications, such as SDN-based routing [32] and Internet
exchanges [33]. Most of the SDN applications proposed to
date (see [1] for a comprehensive survey) however are a good
fit to forwarding rules expressed using information from L2-
L4 headers, as it is typical of popular SDN implementations.

Authors of [34] mention the lack of support for L7 appli-
cations in SDN. They make a first step towards it by solving
in SDN traffic steering functions traditionally performed by
middle-boxes – e.g., firewalls, proxies, intrusion detection
systems etc. Like us, they advocate a solution that requires

7An off-line version of the algorithm used by AWESoME to learn bags of
domains has appeared in [28].

13

no changes to SDN standards. AWESoME is a next step
into bringing L7 support to SDN. It builds upon the traffic
exchanged with the DNS to perform advanced traffic steering,
enabling flexible managing of complex web services.

Few works have proposed low-level (stateless) forwarding
rules to comprehensively manage complex services. Some
authors have focused on specific services [35] or scenarios
where communication patterns are well-known [36]. In con-
trast, AWESoME learns how generic services communicate
based on network traffic and then relies on traditional L2-L4-
based forwarding rules to handle the corresponding traffic.

Other works propose extensions to the SDN architecture
either to delegate to switches (i.e., the data plane) management
tasks that are based on L7 information, or to customize
controllers and the data plane for stateful management [37],
[38]. AWESoME instead is a SDN application that requires no
particular changes in the lower layers of the SDN architecture.

We are aware of only few works that propose SDN appli-
cations to manage general web services [3], [4], [5], [6]. They
use different methodologies to classify flows – e.g., forwarding
the first N packets of each flow to controllers or implement-
ing machine learning algorithms. These works however miss
dependencies among flows, as depicted in Figure 1. Moreover,
AWESoME requires to analyze only the first packet of each
flow, which reduces the load at controllers.

VII. CONCLUSIONS

We introduced the concept of “per service” management
with SDN. This allows the network administrators to define
policies to handle all traffic exchanged by terminals when
accessing complicated web services today served by multiple
domains and servers.

We presented and evaluated AWESoME to enable the per
service management with SDN. It leverages DNS and the
concept of Bag of Domains to associate the first packet of each
flow to the originating service. We showed that AWESoME
is accurate and poses a marginal load on the SDN controllers
and switches, thus enabling fine grained control in practice.

We believe the concept of per service management can
foster new studies, e.g., to improve the classification up to
make it compatible with security applications, where high
accuracy is mandatory, or to develop anomaly detection based
on BoDs and per service accounting.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The Cost of the ”S”
in HTTPS,” in Proc. of the CoNEXT, 2014, pp. 133–140.

[3] A. Bianco, P. Giaccone, S. Kelki, N. M. Campos, S. Traverso, and
T. Zhang, “On-the-fly traffic classification and control with a stateful
sdn approach,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–6.

[4] S. Jeong, D. Lee, J. Choi, J. Li, and J. W.-K. Hong, “Application-Aware
Traffic Management for OpenFlow Networks,” in Proc. of the APNOMS,
2016, pp. 1–5.

[5] B. Ng, M. Hayes, and W. K. Seah, “Developing a Traffic Classification
Platform for Enterprise Networks with SDN: Experiences & Lessons
Learned,” in Proc. of the Networking, 2015, pp. 1–9.

[6] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-Awareness in SDN,” in Proc. of the SIGCOMM, 2013, pp.
487–488.

[7] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, ser. HotNets-XI. New York, NY, USA:
ACM, 2012, pp. 31–36. [Online]. Available: http://doi.acm.org/10.1145/
2390231.2390237

[8] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 443–454.
[Online]. Available: http://doi.acm.org/10.1145/2619239.2626315

[9] I. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura, and A. Nucci,
“DNS to the Rescue: Discerning Content and Services in a Tangled
Web,” in Proc. of the IMC, 2012, pp. 413–426.

[10] P. Foremski, C. Callegari, and M. Pagano, “DNS-Class: Immediate
Classification of IP Flows using DNS,” Int. J. Netw. Manag., vol. 24,
no. 4, pp. 272–288, 2014.

[11] T. Mori, T. Inoue, A. Shimoda, K. Sato, K. Ishibashi, and S. Goto,
“SFMap: Inferring Services over Encrypted Web Flows Using Dynam-
ical Domain Name Graphs,” in Proc. of the TMA, 2015, pp. 126–139.

[12] D. Plonka and P. Barford, “Flexible Traffic and Host Profiling via DNS
Rendezvous,” in Proc. of the SATIN, 2011, pp. 1–8.

[13] Open Networking Foundation, “OpenFlow Switch Specification -
Version 1.5.0,” https://www.opennetworking.org/technical-communities/
areas/specification, 2014.

[14] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” SIGCOMM Comput.
Commun. Rev., vol. 43, no. 4, pp. 7–12, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2534169.2491193

[15] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow:
Controller load balancing for openflow networks,” in 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligence Systems,
vol. 02, Oct 2012, pp. 780–785.

[16] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow
sdn networks,” in 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), May 2015, pp. 1322–1326.

[17] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2015, pp. 239–250.

[18] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafò, “Towards Web
Service Classification using Addresses and DNS,” in Proc. of the TRAC,
2016, pp. 38–43.

[19] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[20] S. Kandula, R. Chandra, and D. Katabi, “What’s Going on?: Learning
Communication Rules in Edge Networks,” in Proc. of the SIGCOMM,
2008, pp. 87–98.

[21] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A Survey on Internet Traffic Identification,” Commun.
Surveys Tuts., vol. 11, no. 3, pp. 37–52, 2009.

[22] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet Traffic Classification Demystified: Myths, Caveats, and
the Best Practices,” in Proc. of the CoNEXT, 2008, pp. 1–12.

[23] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci,
“Towards Self Adaptive Network Traffic Classification,” Comput. Com-
mun., vol. 56, no. 1, pp. 35–46, 2015.

[24] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao, “SAMPLES:
Self Adaptive Mining of Persistent LExical Snippets for Classifying
Mobile Application Traffic,” in Proc. of the MobiCom, 2015, pp. 439–
451.

[25] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and Y. Jin, “Resurf:
Reconstructing web-surfing activity from network traffic,” in 2013 IFIP
Networking Conference, May 2013, pp. 1–9.

[26] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
Traffic Classification in the Dark,” in Proc. of the SIGCOMM, 2005, pp.
229–240.

[27] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft, “Macro-
scope: End-point Approach to Networked Application Dependency Dis-
covery,” in Proc. of the CoNEXT, 2009, pp. 229–240.

[28] M. Trevisan, I. Drago, M. Mellia, H. Song, and M. Baldi, “What: A
big data approach for accounting of modern web services,” in IEEE
Workshop on Big Data and Machine Learning in Telecom (BMLIT).
IEEE, 2016. [Online]. Available: http://porto.polito.it/2656557/

http://doi.acm.org/10.1145/2390231.2390237
http://doi.acm.org/10.1145/2390231.2390237
http://doi.acm.org/10.1145/2619239.2626315
https://www.opennetworking.org/technical-communities/areas/specification
https://www.opennetworking.org/technical-communities/areas/specification
http://doi.acm.org/10.1145/2534169.2491193
http://porto.polito.it/2656557/

14

[29] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“Coda: Toward automatically identifying and scheduling coflows in the
dark,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 160–173.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2934880

[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, and others, “B4: Experience
with a Globally-deployed Software Defined WAN,” in Proc. of the
SIGCOMM, 2013, pp. 3–14.

[32] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central Control
Over Distributed Routing,” in Proc. of the SIGCOMM, 2015, pp. 43–56.

[33] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A Software Defined Internet Exchange,” in Proc. of the SIG-
COMM, 2014, pp. 551–562.

[34] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in Proc.
of the SIGCOMM, 2013, pp. 27–38.

[35] Y. Wang, C. Orapinpatipat, H. H. Gharakheili, and V. Sivaraman,
“TeleScope: Flow-Level Video Telemetry using SDN,” in Proc. of the
EWSDN, 2016, pp. 1–6.

[36] S. Zhao, A. Sydney, and D. Medhi, “Building Application-Aware Net-
work Environments Using SDN for Optimizing Hadoop Applications,”
in Proc. of the SIGCOMM, 2016, pp. 583–584.

[37] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-Aware Data Plane Processing in SDN,” in Proc. of the
HotSDN, 2014, pp. 13–18.

[38] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level State Transition As a New Switch Primitive for SDN,” in Proc. of
the HotSDN, 2014, pp. 61–66.

BIOGRAPHIES

Martino Trevisan received his B.Sc. (2012) and his
M.Sc. (2015) in Computer Science, both from Po-
litecnico di Torino, Italy. He is currently a PhD stu-
dent in Electrical, Electronics and Communications
Engineering in the same university, where he joined
the Telecommunication Networks Group (TNG). He
has been collaborating in both Industry and Eu-
ropean projects and spent six months in Telecom
ParisTech, France working on High-Speed Traffic
Monitoring. His research interest areas include Net-
work Measurements and Traffic Monitoring while he

is also particularly interested in leveraging Big Data and Machine Learning
techniques in such fields.

Idilio Drago is an Assistant Professor (RTDa) at
the Politecnico di Torino, Italy, in the Department of
Electronics and Telecommunications. His research
interests include Internet measurements, Big Data
analysis, and network security. Drago has a PhD in
computer science from the University of Twente. He
was awarded an Applied Networking Research Prize
in 2013 by the IETF/IRTF for his work on cloud
storage traffic analysis.

Marco Mellia (S’08), Ph.D., research interests are
in the in the area of traffic monitoring and analysis,
in cyber monitoring, and Big Data analytics. Marco
Mellia has co-authored over 250 papers published in
international journals and presented in leading inter-
national conferences. He won the IRTF ANR Prize
at IETF-88, and best paper award at IEEE P2P’12,
ACM CoNEXT’13, IEEE ICDCS’15. He is part
of the editorial board of ACM/IEEE Transactions
on Networking, IEEE Transactions on Network and
Service Management, and ACM Computer Commu-

nication Review. He holds a position as Associate Professor at Politecnico di
Torino, Italy.

Mario Baldi is Director of Technology at Cisco
Systems and Associate Professor at Politecnico di
Torino. He was Data Scientist Director at Symantec
Corp., Inc., Principal Member of Technical Sta at
Narus, Inc., Principal Architect at Embrane, Inc.;
Vice Dean of the PoliTong Sino-Italian Campus at
Tongji University, Shanghai; Vice President for Pro-
tocol Architecture at Synchrodyne Networks, Inc.,
New York. Through his research, teaching and pro-
fessional activities, Mario Baldi has built consider-
able knowledge and expertise in big data analytics,

next generation network data analysis, internetworking, high performance
switching, optical networking, quality of service, multimedia networking, trust
in distributed software execution, and computer networks in general.

Han Hee Song was Lead Data Scientist at Cisco
Systems. He was Principal Data Scientist at Syman-
tec Corp. and Senior Member of Technical Sta at
CTO office of Narus, Inc. His research focuses on
privacy analysis of mobile users and protective mea-
sures for cyber terrorism. Dr. Song received a Ph.D.
and M.A. in Computer Science from the University
of Texas at Austin in 2011 and 2006, respectively.
He received a B.S. from Yonsei University, Seoul,
Korea in 2004.

http://doi.acm.org/10.1145/2934872.2934880

	Introduction
	Definitions and Architecture
	Per service management approach
	Core and support domains
	SDN as enabling technology
	AWESoME architecture
	BoD-Training — automatically building BoDs
	Flow-to-Domain — flow labeling using DNS
	Domain-to-Service — associating services to flows
	Service-to-Rule — policy enforcement

	How Service Association Works
	Automatic BoD training
	Domain-To-Service classification module

	Datasets
	Ground-truth traces
	Operational network traces
	ISP traces
	Corporate traces

	AWESoME Performance
	Flow-to-Domain evaluation
	Domain-to-Service accuracy
	Training set size and location
	Per service performance
	Is AWESoME scalable?
	Limitations and future work

	Related work
	Web service traffic identification
	Service-awareness in SDNs

	Conclusions
	References
	Biographies
	Martino Trevisan
	Idilio Drago
	Marco Mellia
	Mario Baldi
	Han Hee Song

