
IEE
E P

ro
of

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

BRAHMA+: A Framework for Resource Scaling of
Streaming and ASAP Time-Varying Workflows

Ankita Atrey , Gregory Van Seghbroeck, Bruno Volckaert, and Filip De Turck

Abstract—Automatic scaling of complex software-as-a-service1

application workflows is one of the most important problems con-2

cerning resource management in clouds. In this paper, we study3

the automatic workflow resource scaling problem for streaming4

and ASAP workflows, and its time-varying variant where the5

workflow resource requirements change over time. Service com-6

ponents of streaming workflows execute concurrently while those7

of ASAP workflows execute sequentially. We propose an intelli-8

gent framework, BRAHMA+, which possesses the capability to9

learn the workflow behavior and construct a knowledge base that10

serves as its decision making engine. The proposed resource pro-11

visioning algorithms leverage this learned information curated in12

the knowledge base to perform informed and intelligent scaling13

decisions. Additionally, BRAHMA+ employs the use of online-14

learning strategies to keep the knowledge base up-to-date, thereby15

accommodating the changes in the workflow resource require-16

ments over time. We evaluate the proposed algorithms using17

CloudSim simulations. Results on streaming and ASAP work-18

flows, with both static and time-varying resource requirements19

show that the proposed algorithms are effective and produce good20

cost-quality trade-offs. The proactive and hybrid algorithms meet21

the service level agreements and restrict deadline violations to a22

small fraction (3%–5% in the considered scenarios), while only23

suffering a marginal increase in average cost per component24

compared to the described baseline algorithms.25

Index Terms—Cloud resource provisioning, workflows,26

cloud scalability, adaptive clustering, knowledge base,27

deadline-constraints, SLA, cloud simulation.28

I. INTRODUCTION29

CLOUD enabled services have become an integral part30

of the day-to-day life of almost every Internet user.31

Cloud users enjoy flexible and cost-effective usage of vari-32

ous cloud services, however, providing quality of service –33

meeting SLAs, scalability, and deadline constraints – while34

maintaining cost-effectiveness with highly dynamic resource35

requirements exhibited by end-user requests, is the paramount36

concern of various service providers.37

Having said that, resource management continues to be one38

of the most fundamental and important areas of research in39

the field of cloud, distributed, and grid computing. While40

Manuscript received June 26, 2017; revised December 23, 2017 and April
9, 2018; accepted April 15, 2018. This research is partly funded by the IWT
SBO DeCoMAdS project. The associate editor coordinating the review of
this paper and approving it for publication was L. Y. Chen. (Corresponding
author: Ankita Atrey).

The authors are with the Internet Technology and Data Science Laboratory,
Ghent University–imec, 9052 Gent, Belgium (e-mail: ankita.atrey@ugent.be;
gregory.vanseghbroeck@ugent.be; bruno.volckaert@ugent.be; filip.deturck@
ugent.be).

Digital Object Identifier 10.1109/TNSM.2018.2830311

Fig. 1. Use case: An online collaborative meeting room service.

there exists a plethora of research in devising industry 41

scale resource management systems especially by Internet 42

giants like Google [42], Facebook [5], Microsoft [10], [21], 43

Alibaba [48] etc., the focus of these systems have been on exe- 44

cution environments like grids and clusters, and such efforts 45

have been relatively scarce for SaaS application workflows in 46

cloud-based systems [22]. In this article, we propose a unified 47

framework, BRAHMA+, for resource scaling in clouds. 48

A. Use Case: Online Collaborative Meeting 49

The use case under investigation (Fig. 1) is an elastic, 50

multi-tenant online meeting room offering an interactive col- 51

laboration service. This use case is inspired by the EMD 52

project [4], which investigates scalable A/V collaboration 53

applications (streams) and deadline-critical jobs (such as deci- 54

sion support, data analysis, etc.) triggered by the end-user 55

during these collaborations. The project leader is presenting 56

an interactive media (A/V streaming) session, where some 57

colleagues are present in the meeting room, while others are 58

connected remotely. Every stream consists of an encoder, a 59

transcoder and a decoder, all of which have different SLA 60

requirements in an attempt to provide a flawless service (no 61

A/V interruptions, stuttering, etc.). The A/V stream encapsu- 62

lates a streaming workflow (Definition 4), which is similar 63

to the long-running services presented in Fig. 2 that should 64

not experience any downtime. Each attendee can addition- 65

ally trigger low-latency/deadline-critical workflows during the 66

meeting to, e.g., run analytical simulations (file-open→run- 67

simulation→file-close workflow in Fig. 1) and show the results 68

to the meeting audience or render high quality graphics. We 69

use the term ASAP workflows (Definition 7) to denote these 70

low latency jobs. While streaming workflows usually consti- 71

tute one or more service components executing concurrently, 72

the components of ASAP workflows are executed sequentially, 73

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6269-1164
https://orcid.org/0000-0003-4824-1199

IEE
E P

ro
of

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Fig. 2. Types of jobs in cluster/grid/cloud computing environments [42].

thereby exhibiting runtime characteristics which differ from74

that of the former. Users can join or leave these online75

meetings at any point in time, leading to potentially large fluc-76

tuations in terms of number of tenants using the system, and77

each user can trigger multiple ASAP workflows during the78

session.79

In the context of the use-case discussed above, meeting the80

strict deadline constraints of ASAP workflows and SLAs of81

streaming workflows (for A/V quality), while keeping cloud82

resource cost as low as possible, is the focus of this work. This83

scenario presents a plethora of challenges stated as follows:84

(1) Scaling the resulting application up or down in order85

to keep the SLAs, no longer becomes an issue of scaling86

resources for a single service, but instead results in a com-87

plex problem of scaling all individual service endpoints in the88

workflow, depending on their runtime monitored behavior [9].89

(2) As described above, heterogeneity of application work-90

flows (Fig. 2) leads to a host of characteristics: ranging from91

execution flows being either sequential or concurrent [8] to the92

nature of the deadlines associated with the workflows being93

either strict or fuzzy. (3) The resource requirements of the jobs94

submitted to a cloud environment are usually not static. Rather,95

in real-world cloud environments the type of workflows sub-96

mitted by users and their resource requirements change over97

time [31], [47]. For instance, given the meeting room use-case,98

a user might trigger a high-quality graphic render as an ASAP99

workflow during a weekly-update meeting, while during a100

technical deep-dive session, she might trigger an analytical101

simulation. Thus, the resource management algorithms should102

be adaptive thereby enabling effective resource provisioning103

for such time-varying workflows.104

To effectively address the challenges besetting the resource105

management problem in real-world scenarios for clouds, there106

is a need for a framework, tailored to serving cloud service107

workflow requests, that (1) possesses the capability to han-108

dle different types of workflows, (2) intelligently performs109

resource provisioning tasks under specified deadlines or SLAs,110

and (3) possesses algorithms that adapt to the temporally111

changing resource requirements posed by these workflows.112

This article presents a framework, BRAHMA+, which113

incorporates the use of mathematical models (classifica-114

tion and clustering) to learn the workflow behavior and115

curates a knowledge base (KB) that aids in taking informed116

future resource provisioning decisions. These models anal-117

yse the resource request patterns of workflows to predict118

whether a new workflow will meet its deadline or not,119

and clusters the workflows into groups possessing similar120

resource requirements. Moreover, for time-varying workflows121

we design and implement online versions of the proposed122

learning algorithms, where the learned models are updated 123

with temporally changing data. To further enhance the effi- 124

cacy and efficiency of the time-aware learning process, we 125

use a sliding window, which controls the amount of historical 126

data to be used for learning at any given time instant, thereby 127

improving both the quality (helps ignoring irrelevant historical 128

data) and efficiency (learning from a relevant fraction of the 129

complete data). 130

In sum, in this article we address the automatic workflow 131

resource scaling problem (Section III) under the combined 132

presence of streaming and ASAP workflows, called AWS-SA, 133

and its time-varying variant, called AWS-tSA where the work- 134

flow resource requirements change over time. 135

Key contributions are as follows: 136

• A novel framework, BRAHMA+ (Section IV), which 137

learns workflow behaviour over time and stores this infor- 138

mation in a KB. BRAHMA+ possesses the capability to 139

predict workflow deadlines and cluster these workflows 140

into semantically meaningful groups. Additionally, the 141

online learning algorithms of BRAHMA+ are capable 142

of adapting to the changes in resource request patterns 143

exhibited by time-varying workflows. 144

• Resource provisioning algorithms (Section V) that lever- 145

age BRAHMA+ to maintain SLAs and deadlines for 146

streaming and ASAP workflows respectively, as well as 147

their time-varying variant, while keeping the cost in line. 148

• Empirical analysis (Section VII) portraying the effective- 149

ness of the proposed algorithms. Our algorithms keep 150

the SLAs and restrict deadline violations to 3–5%, while 151

only suffering a marginal increase in the average resource 152

utilization cost of 5–8% over the baselines. 153

II. RELATED WORK 154

Resource management and scheduling [22] is a fundamental 155

and one of the most extensively studied problems in the field of 156

cloud computing. Here, we provide an overview of the existing 157

works that overlap with the work presented in this article. 158

Workflows provide a natural and attractive choice for repre- 159

senting a host of SaaS applications, thus, automatic workflow 160

resource scaling and scheduling [13] with focus on main- 161

taining quality of service parameters, like SLAs [29] and 162

deadline-constraints [6], [38], has been a hot topic of research 163

in the broad area of cloud resource management. The readers 164

are referred to [43] for a detailed and recent survey. 165

SLA-aware resource provisioning: focusses on strategies for 166

resource scaling to keep the SLAs in line while minimiz- 167

ing cost. Wu et al. [44], [45], presented SLA-aware resource 168

provisioning algorithms for SaaS providers. The authors pro- 169

pose maximum and minimum available space based resource 170

reservation and request rescheduling strategies, while using 171

customer profiles to handle dynamic and changing customer 172

requests. Later, the authors developed a method for admis- 173

sion control of user requests [46], thus facilitating prevention 174

of additional user requests that would lead to SLA violations 175

from being accepted. 176

Serrano et al. presented a new model: SLA aware service 177

(SLAaaS) [37], proposed a language for describing SLAs and 178

an approach using control-theory for keeping the SLA of cloud 179

applications. Focussing on application workflows, Atrey et al. 180

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 3

proposed a pro-active algorithm [9] that uses a monitoring181

mechanism to track the run time behavior of each work-182

flow component and horizontally scales resources accordingly,183

thereby avoiding SLA violations. Singh et al. [39] studied the184

effect of various QoS parameters on the rate of SLA violations,185

and proposed an autonomic pipeline along with a knowledge186

store to devise effective resource provisioning strategies.187

In addition to research on devising strategies for SLA-aware188

resource provisioning, a few studies have performed bench-189

marking and validation [7], [17] of various SLA-aware models190

and resource provisioning algorithms.191

Deadline-aware resource provisioning: focusses on devising192

strategies to minimize the deadline violations of jobs submit-193

ted to clouds. Genez et al. [16] present an Integer Linear194

Programming (ILP) based algorithm for scheduling SaaS195

workflows in IaaS clouds, which finds the mapping between196

workflow tasks and VMs provided by the IaaS providers to197

minimize the overall cost and achieve deadline constraints.198

Poola et al. present robust and fault-tolerant resource199

scheduling algorithms with three multi-objective200

resource allocation policies in [31]. Moving ahead,201

Rodriguez and Buyya [34] applied a genetic algorithm202

(Particle Swarm Optimization) in order to obtain an opti-203

mized solution in terms of cost, deadline and elasticity,204

highlighting resource provisioning techniques for scientific205

workflows on IaaS. Luo et al. propose a resource provisioning206

algorithm [26] for hybrid settings comprising both grids and207

clouds. The idea is to estimate the probability of deadline208

violation of a sub-task in a workflow, and then later redirect209

certain sub-tasks from grids to intelligently selected virtual210

resources on clouds, in order to achieve strict workflow211

deadline-constraints. Recently, Atrey et al. [8] presented a212

framework called BRAHMA (which has been significantly213

extended to BRAHMA+ in this article) that used workflow214

clustering and a curated KB to perform resource provisioning215

for workflows with strict deadline-constraints.216

Resource provisioning using machine learning: is a rela-217

tively recent paradigm in clouds, where researchers have incor-218

porated the use of various classification and clustering methods219

for learning and characterizing workflow behaviour [23], [25].220

Mon et al. [28] proposed workflow clustering based on221

task dependencies with an aim to minimize the data trans-222

fer overhead of data-intensive scientific workflows. Moving223

ahead, Peng et al. [30] presented a machine learning frame-224

work that used a radial basis function based neural net-225

work to estimate application resource requirements, and a226

k-means based genetic clustering algorithm for performing227

multi-objective optimization to solve the resource provision-228

ing problem. Atrey et al. [8] proposed a machine learning229

framework that curates all the learned information in a KB.230

Very recently, Li et al. [24] present a resource scheduling231

algorithm that uses fuzzy clustering methods to identify dif-232

ferent resource clusters thereby simplifying their allocation233

to jobs.234

Resource provisioning for dynamic workflows: addresses235

workflows with dynamically changing resource requirements.236

To the best of our knowledge, research in this context has237

been scarce. Zhang et al. [47] presented ROSA, an online238

randomized algorithm that stacks the execution of multiple239

TABLE I
SUMMARY OF NOTATIONS USED

jobs submitted to the cloud environment, thereby achieving 240

spatial multiplexing. This helps minimize cost with the capa- 241

bility to leverage volume discounts offered by cloud service 242

providers, while also keeping the job-level constraints in 243

line. Poola et al. [32] presented an adaptive resource pro- 244

visioning algorithm that is capable of incorporating the use 245

of both spot and on-demand instances, thereby minimizing 246

the total cost: as it leverages the price benefit from spot 247

instances, and ensuring fault-tolerance by meeting workflow 248

level deadlines using on-demand instances whenever neces- 249

sary. Recently, adaptive resource scheduling [14] has also 250

been studied in the context of software defined networks [41]. 251

Rodriguez and Buyya [35] proposed a container-based algo- 252

rithm that can adapt to changes in the workload, while 253

mitigating inefficiencies in resource utilization and meeting 254

workflow level deadlines. 255

Despite wide-spread research in the broad area of workflow 256

resource scheduling [43], to the best of our knowledge, none 257

of the existing state-of-the-art methods are capable of solving 258

this problem in a holistic manner. Specifically, the existing 259

works have focused on the two problems, i.e., scaling stream- 260

ing and deadline-critical workflows independently, however, 261

a unified and generic framework possessing capabilities of 262

collectively scaling both types of workflows is non-existent. 263

Additionally, research on devising algorithms that adapt to 264

temporally changing resource requirements of workflows has 265

been scarce. To this end, this article presents an enabling, uni- 266

fied, and adaptive framework, BRAHMA+, with algorithms 267

for provisioning cloud resources to streaming (SLA-aware) 268

and ASAP workflows (with strict deadline-constraints), whose 269

resource requirements change over time. 270

III. PROBLEM STATEMENT 271

This section provides a concise model of streaming and 272

ASAP workflows, with an introduction of their basic con- 273

cepts followed by a formal description of the AWS-SA problem, 274

IEE
E P

ro
of

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

and its variant AWS-tSA, focussing on time-varying workflows.275

Table I summarizes the notations used in the rest of the article.276

Definition 1 (Resource): A resource corresponds to a pro-277

cessing unit with specifications defined in terms of processing278

power (in MIPS), memory (in GB), storage (in GB), and279

network bandwidth (in Mbps).280

Cloud computing environments offer virtual resources in the281

form of virtual machines (VMs), containers etc. In this study,282

we consider a pool of resources called a VM pool ∀i ,Vi ∈ V .283

Since cloud-based applications are usually built as work-284

flows integrating multiple existing services (albeit with custom285

glue code tying all of them together), an application workflow286

is defined as follows:287

Definition 2 (Application Workflow): An application work-288

flow Wj (C ,E) is defined as a directed acyclic graph (DAG)289

comprising a set of service components Cj and a set of290

edges Ej . Each component ∀k ,Ckj ∈ Cj represents an atomic291

task in the application workflow Wj , while each directed edge292

∀k , l , e = (Ckj ,Clj) ∈ Ej defines the dependency of the293

component Clj on component Ckj .294

Definition 3 (Workflow Resource Requirements): The295

resources required by a component Ckj of a workflow Wj296

are defined in terms of number of instructions to be executed297

(measured in millions of instructions (MICkj
)), the memory298

and storage space required ((MemCkj
) in GB), and the299

number of bits to be transferred over the network ((BWCkj
)300

measured in millions of bits (Mb)).301

Application workflows can possess a wide-variety of char-302

acteristics in terms of execution flow, resource requirements303

etc. Based on these characteristics we next define the two types304

of workflows considered in this article.305

Definition 4 (Streaming Workflow): A streaming workflow306

Wj ∈ Ws is an application workflow where service compo-307

nents Clj ∈ Cj continuously receive streaming data from other308

components Ckj ∈ Cj via directed edges e = (Ckj ,Clj) ∈309

Ej , while they themselves stream their output data to other310

workflow components following their execution.311

For instance, if the workflow in Fig. 3 is a streaming work-312

flow, C21 would continuously stream output data to C31 and313

C41, who in turn would process that input data and stream it314

to C51. All service components are hence processing informa-315

tion in parallel. Each streaming workflow service component316

possesses a separate SLA, which defines its minimal resource317

requirements (in terms of processing power, memory, storage318

etc.) to ensure proper working of the workflow according to its319

specifications. Using this component-level minimal resource320

requirement and the resource specification (processing power,321

memory, storage etc.) of the assigned VM Vi ∈ V , we define322

the maximum number of components N i
max that can simulta-323

neously run on Vi while ensuring SLAs are met. For example,324

given a VM with processing power as 1500 MIPS and the325

minimal resource requirement per component to be 50 MI,326

the maximum number of components that can be scheduled327

on this VM is 30. Note that for simplicity each VM is assigned328

to components of one specific type, i.e., those possessing the329

same minimal resource requirement. Using N i
max we further330

define the SLA status of a component and the average SLA331

violation duration.332

Definition 5 (SLA Status): The SLA status for each service333

component Ckj of a workflow Wj running on a VM Vi is334

Fig. 3. An application workflow W1 composed of multiple service
components and inter-component data flows.

defined as a binary variable which assumes the value of false 335

if the SLAs are violated, or true otherwise. Mathematically, 336

SLA
Ckj

status =

{
false, if N i

running > N i
max

true, otherwise
337

where, N i
running denotes the number of components currently 338

running on the VM Vi . 339

Definition 6 (Average SLA Violation Duration): The SLA 340

violation duration of a service component Ckj is defined as 341

the amount of time for which its SLA
Ckj

status is violated over 342

its runtime duration. Thus, for a simulation with w workflow 343

requests Wj ∈ W | 1 ≤ j ≤ w , cj service components 344

Ckj ∈ Wj | 1 ≤ k ≤ cj , and T
Ckj

slaviolate being the duration 345

for which the SLAs remain violated for a component Ckj , we 346

mathematically state the average SLA violation duration as: 347

1

w

⎛
⎝ w∑

j=1

(
1

cj

cj∑
k=1

(
T

Ckj

slaviolate

))⎞⎠. (1) 348

Definition 7 (ASAP Workflow): An ASAP workflow 349

Wj ∈ Wa is an application workflow where the execu- 350

tion flow between service components is sequential. More 351

specifically, the execution control moves from one component 352

Ckj ∈ Cj to the subsequent workflow component(s) Clj ∈ Cj , 353

once the former finishes processing thereby passing its full 354

output to the latter. 355

Again as an example, if the workflow in Fig. 3 would 356

be sequential, C21 would, once it has finished processing, 357

send all its output data in parallel along the edges e2 and 358

e3 to C31 and C41 respectively. At that point in time, C31 359

and C41 start processing. Additionally, each ASAP work- 360

flow possesses a deadline-constraint (DCWj
) which is used 361

to identify a VM Vi that possesses the desired resources 362

to ensure proper working of the workflow according to its 363

specifications. 364

Definition 8 (Deadline Status): The deadline status of a 365

workflow Wj , running on a VM Vi , is defined as a binary 366

variable which assumes the value of false if its deadline- 367

constraint DCWj
is not met, and true otherwise. The fraction 368

of the workflows whose deadlines are violated is denoted by 369

η. Mathematically, 370

η =
1

w

⎛
⎝ w∑

j=1

I

⎞
⎠ (2) 371

where I is the indicator function: I = 1 if 372

DEADLINE
Wj

status = false; and 0 otherwise. 373

Definition 9 (VM Cost): VM cost is defined as the sum of 374

all costs related to resource usage when running streaming 375

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 5

and ASAP workflow service components. Thus, for a sim-376

ulation with w workflow requests, each one with cj service377

components, and Mkj , Skj , CPUkj , representing, memory,378

storage and CPU costs respectively for a component Ckj ,379

we mathematically define VM cost and average VM cost as380

follows:381

w∑
j=1

(cj∑
k=1

(
Mkj + Skj + CPUkj

))
(3)382

1

w

⎛
⎝ w∑

j=1

(cj∑
k=1

(
Mkj + Skj + CPUkj

))
⎞
⎠. (4)383

Definition 10 (Penalty): The Penalty is the cost spent on384

components, while waiting for (1) a new VM reservation385

Preserve and (2) migration of components from one VM to386

another Pmigrate . We mathematically state the Penalty and387

the average Penalty as follows:388

w∑
j=1

(cj∑
k=1

(
Preservekj + Pmigratekj

))
(5)389

1

w

⎛
⎝ w∑

j=1

(
1

cj

cj∑
k=1

(
Preservekj + Pmigratekj

))⎞⎠ (6)390

The technical problem studied in this work is inspired by391

the use case of online collaborative A/V meetings where both392

streaming and ASAP workflows co-exist. Note that tenant393

requests for streaming and ASAP workflows follow time-394

varying distributions Ds(t) and Da(t) respectively. While395

streaming workflows do not benefit from assigning more396

resources to them than required, as one cannot ‘speed up’397

an online collaborative meeting, ASAP workflows definitely398

benefit from finishing early (meeting their deadlines), when399

allocated to more powerful resources. Owing to this significant400

difference in characteristics, scaling the service end-points of401

applications where streaming and ASAP workflows co-exist is402

a challenging problem. We name this problem AWS-SA, and403

formally define it as:404

Problem 1 (AWS-SA): Given a VM pool V , a set of work-405

flow requests (W) consisting of a combination of streaming406

(Ws) and ASAP (Wa) workflow requests, following time407

varying distributions Ds(t) and Da(t) respectively, the maxi-408

mum number of allowed requests (N i
max) and the processing409

power (MIPS i) for each VM (∀Vi ∈ V), perform automatic410

resource provisioning to keep the SLAs (SLA
Ckj

status = true)411

and the deadline-constraints (DEADLINE
Wj

status = true) for412

all the workflow components Ckj | ∀k ,Ckj ∈ Wj , ∀j ,Wj ∈413

W , while simultaneously minimizing the vm cost and penalty.414

In addition to the number of streaming and ASAP workflows415

changing over time (denoted by Ds(t) and Da(t)), the actual416

resource requirements of workflows change as well. To this417

end, we address the temporal variant of the AWS-SA problem418

called the AWS-tSA problem.419

Problem 2 (AWS-tSA): The AWS-SA problem where the420

resource requirements (MICkj
,MemCkj

,BWCkj
) of workflow421

components, Ckj | ∀k ,Ckj ∈ Wj , ∀j ,Wj ∈ W , change over422

time.423

IV. BRAHMA+ FRAMEWORK 424

In this section, we present the BRAHMA+ framework 425

and provide a description of its core components. In this 426

article, BRAHMA [8] has been significantly extended using 427

online learning strategies as BRAHMA+ to learn workflow 428

request behavior in an online manner, i.e., without the need for 429

training data to bootstrap the learning process. This enables 430

BRAHMA+ to handle workflows whose resource require- 431

ments change over time. We also provide insights about the 432

way in which BRAHMA+ facilitates development of effec- 433

tive resource provisioning strategies.The building blocks of 434

the BRAHMA+ framework are detailed next. 435

• Classification (Build Classifier): analyses the resource 436

requirements and request patterns exhibited by ASAP 437

workflows, and learns a decision boundary, using histori- 438

cal resource requirement data of workflows submitted to 439

a cloud environment, capable of predicting whether the 440

deadline of a previously unseen workflow would be met 441

or violated. The main benefit that the classifier module 442

provides is the ability to predict the DEADLINE status 443

of (previously unseen) incoming ASAP workflows, facil- 444

itating more informed resource provisioning decisions. 445

• Clustering (Identify Clusters): allows for fine-grained 446

analysis of the behaviour exhibited by ASAP work- 447

flows. Here, the resource request patterns are clus- 448

tered, thereby creating semantically meaningful groups 449

of ASAP workflows, with each group possessing sim- 450

ilar resource requirements. The advantage of clustering 451

is that once these clusters are identified, it is easier to 452

devise customized and informed resource provisioning 453

strategies pertaining to each cluster. Moving ahead, any 454

previously unseen ASAP workflow request can then be 455

assigned to its most similar group, and hence utilize the 456

already devised resource provisioning strategy for that 457

group. 458

• Online Clustering: extends the clustering module by mak- 459

ing it flexible and adaptive to effectively accommodate 460

changes in data distributions originating from time- 461

varying workflows. More specifically, since the resource 462

requirements of ASAP workflows may change over time, 463

the identified clusters have to change as well, as the clus- 464

ters generated from older data will have been invalidated. 465

Unlike conventional methods, where clustering is per- 466

formed as a single-shot process comprising two steps: (1) 467

cluster identification, and (2) cluster assignment; online 468

clustering methods continuously learn from the data, i.e., 469

the identified clusters are refined as and when newer 470

data-points are ingested by the system. Moreover, to 471

ensure consistency the identified clusters are updated 472

regularly in the knowledge base. 473

• Knowledge Base (KB): is one of the most important com- 474

ponents of the BRAHMA+ framework as it curates all 475

the information learned from the classifier and the cluster- 476

ing modules. More specifically, the KB stores an updated 477

copy of the classifier model and the set of identified 478

cluster centres. For each submitted ASAP workflow, the 479

resource provisioning algorithms probe the KB to iden- 480

tify the cluster closest (most similar) to this workflow, 481

thereby assigning it to an appropriately sized VM with 482

IEE
E P

ro
of

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Fig. 4. Overview of the BRAHMA+ Framework.

the aim to meet its deadline constraints. The KB thus483

serves as the decision making body for the entire frame-484

work, and hence, is kept up-to-date with all the changes485

resulting from the online learning process.486

• Workflow Monitoring: keeps track of the progress for487

each component Ckj of a workflow Wj . More specifi-488

cally, it continuously probes the VMs and the workflow489

components to monitor the number of components run-490

ning on a particular VM and the time remaining for the491

component to finish execution respectively. As will be492

explained later in Section V, the monitoring capability493

plays a central role in the design of the more involved494

pro-active and hybrid resource provisioning algorithms495

for streaming and ASAP workflows respectively.496

• VM Allocation: facilitates on-demand creation of new497

VM instances based on a specific VM template from the498

pool of VMs V . The core function of this module is to499

perform VM allocations based on the events triggered500

by the workflow monitoring module and the information501

retrieved from the KB. VM allocations broadly happen502

in two ways: (1) VMs are reserved in the beginning503

and remain fixed throughout; (2) VM reservations happen504

dynamically and their specifications are adapted based on505

the submitted workflow resource requirements.506

A. Learning Phase507

BRAHMA+ (Fig. 4), operates in two phases. Firstly, in the508

learning phase, BRAHMA+ takes as input workflow requests509

submitted to the cloud environment, which serves as its train-510

ing data. To facilitate robustness and generalizability of the511

learned models, BRAHMA+ keeps on updating its models512

incrementally to ensure modelling a proper mix of workflows513

with varying number of components, component types etc.514

Each workflow Wj , possesses resource usage statistics (in515

MI) for each of its constituent component ∀k ,Ckj , while also516

containing information about its deadline status (i.e., was the517

deadline violated or met).1 The first task of BRAHMA+’s518

learning phase is that of building a classifier. Here, we use519

the classification module (described earlier in this section) to520

analyse the generated training data and learn a classifier model521

CM , based on the resource requirements and request patterns,522

for answering the binary question: whether the deadline of an523

ASAP workflow is met or violated?524

1The workflow generation process is described in detail in Section VI.

Fig. 5. Sequence diagram portraying the execution flow of both Streaming
and ASAP workflows.

BRAHMA+ independently clusters similar workflows 525

(based on the resource requirements and request patterns of its 526

constituent components) from the training data to form seman- 527

tically meaningful groups or clusters. As explained above, the 528

(online) clustering module allows analysis of the workflow 529

behavior at a finer level of granularity, facilitating appropriate 530

resource provisioning decisions with the aim to avoid deadline 531

violations. Eventually both the classifier model CM and the 532

created set of clusters along with their cluster centers CC , are 533

curated in the Knowledge Base (KB). 534

The learning process described till now lacks the capability 535

to tackle time-varying workflows. Hence, to effectively solve 536

the AWS-tSA problem where workflow resource requirements 537

vary over time, BRAHMA+ employs the use of online learn- 538

ing strategies. As is clear from Fig. 4, the learning phase 539

does not represent a single-shot conventional machine learn- 540

ing pipeline, rather it is iterative and continuously refines the 541

learned classifier model CM and the identified cluster cen- 542

ters CC . More specifically, as and when BRAHMA+ receives 543

newer training data, it is ingested in the learning phase, the 544

models are updated, and eventually these updates are prop- 545

agated to the KB thereby facilitating the evaluation phase 546

to employ the most recently learned models for resource 547

provisioning. 548

B. Evaluation Phase 549

In the evaluation phase, new streaming requests along 550

with triggered ASAP requests are submitted to BRAHMA+
551

for inferring their execution behavior, resource requirements 552

and deadline status. As a first step, BRAHMA+ probes 553

the classifier model CM saved in the KB to predict the 554

DEADLINE status of the workflow under consideration, i.e., 555

whether its deadline would be met or not. If the dead- 556

line is going to be met, then there is no need to perform 557

any specialized resource scaling, as the already assigned 558

resources will be sufficient to meet the deadline-constraint 559

of the workflow. However, if a violation is predicted, we 560

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 7

Algorithm 1 Workflow Deployment Algorithm
Input: V , τ , windowSize, λ, N i

max | ∀Vi ∈ V , DCWj
| ∀Wj ∈ W , W ∼

D(t), provisionType, workflowType
Output: SLAstatus , DEADLINEstatus , η, AvgCost

1: numRunning ← 0
2: for each Vi ∈ V do
3: N i

running ← 0

4: for t = 0 to tmax do
5: W t ∼ D(t); numStreamDeploy ← |W t

s | − numRunning
6: KBt = {CM t ,CC t}←OnlineLearn(t,W t ∼D(t),windowSize, λ)
7: if numStreamDeploy ≥ 0 then
8: if workflowType = Streaming then
9: {SLAstatus ,AvgCosts} ← ProactiveDeploy(W t

s , V , τ)
10: else //workflowType = ASAP
11: numASAPDeploy ← |W t

a |
12: if numASAPDeploy ≥ 0 then
13: {DEADLINEstatus , η, AvgCosta} ← KBQuery(W t

a ,
CM t , CC t , V)

14: else //Terminate Streaming Workflows
15: for each Wj ∈ W t

s do
16: for each Ckj ∈Wj do
17: Cancel Ckj and free its resources on Vi

18: N i
running ← N i

running − 1

19: if N i
running ≤ N i

max then
20: SLAstatus ← false

21: numRunning ← numRunning + numStreamDeploy
22: AvgCost ← AvgCosts + AvgCosta

query the KB’s cluster centers CC to assign this workflow561

to the cluster closest/most-similar to it in terms of exhibited562

resource requirements, thereby guiding the resource provi-563

sioning algorithms. While the predictions from the classifier564

module facilitate the decision: whether to scale the resources565

provisioned to a workflow up or down, the cluster assignments566

from the clustering module (if the workflow was predicted to567

violate its deadline) provide information about the resource568

requirements of a workflow, thereby providing guidance on569

ways to scale the resources effectively. This information is fur-570

ther employed to predict the deadline status of newly incoming571

ASAP workflows.572

Having described the key components, two phases: learn-573

ing and evaluation, and the overall execution flow of the574

BRAHMA+ framework in detail, we present a sequence575

diagram of BRAHMA+ in Fig. 5. The sequence diagram576

explains the execution flow of streaming and ASAP work-577

flows, while also providing an in-depth explanation of the578

interaction between various components of the BRAHMA+
579

framework using the entities in context of CloudSim [12].580

V. RESOURCE PROVISIONING ALGORITHMS581

To effectively perform resource provisioning for both time-582

varying and static workflows, we present a generic workflow583

deployment algorithm with pseudo-code listed in Algorithm 1.584

The number of workflow requests submitted to BRAHMA+
585

follow a time-varying distribution D(t). To this end, we sam-586

ple requests at different discrete time-instants (line 5). If587

the workflow under consideration is a streaming workflow,588

we invoke the proactive algorithm (Section V-B) to scale its589

services, with the objective of completely mitigating SLA vio-590

lations and maintaining high cost-efficiency (lines 8 and 9). On591

the other hand, for ASAP workflows the resource provisioning592

is performed using the hybrid algorithm (Section V-C), which593

in turn probes the curated information from the KB to take594

appropriate decisions (lines 10–13). Note that as indicated in595

Algorithm 2 Online Learning Algorithm
Input: t, W t ∼ D(t), windowSize, λ
Output: KBt = {CM t , CC t}

1: procedure ONLINELEARN(t, W t ∼ D(t),windowSize, λ)
2: swend ← t − 1
3: swstart ← swend − windowSize
4: if swstart < 0 then
5: swstart ← 0

6: for t′ = swstart to swend do

7: α← λ(swend−t′)
8: W t′ ∼ D(t′)
9: CM ← Update the classifier model using α ∗W t′

10: CC ← Update the identified clusters using α ∗W t′

11: return KBt = {CM t , CC t}

Fig. 6 streaming and ASAP workflows are provisioned on sep- 596

arate resource pools and thus, the resource provisioning deci- 597

sions made for one will not interfere with that of the other and 598

vice-versa. Once workflows have been successfully executed, 599

the resources allocated to them are freed and corresponding 600

bookkeeping information is updated (lines 14–20). 601

As discussed previously, the resource requirements exhib- 602

ited by the submitted workflows may change over time. Since 603

the KB acts as an important decision making unit of the 604

workflow deployment algorithm, the information curated here 605

should be consistent and up-to-date with the latest monitored 606

workflow requirements and older (stale) information about 607

now-defunct workflow requirements should in time be phased 608

out. This is achieved using online learning (line 6), where 609

newly arriving workflows are used to update the classifier 610

model and identified clusters. Specifically, we incorporate the 611

use of a sliding window based approach, which is described 612

in the subsequent sub-section. 613

Note that the workflow deployment algorithm is capable 614

of handling both time-varying and static workflows. With the 615

value of windowSize = 0, there is no window constructed 616

and the algorithm works for static workflows, while on the 617

other hand, any non-zero value of the windowSize enables 618

the algorithm to work for time-varying workflows. 619

A. Online Learning Algorithm 620

Algorithm 2 presents the pseudo-code for the online learn- 621

ing algorithm. To keep the KB up-to-date with the changing 622

workflow resource requirement patterns, we need to update the 623

learned mathematical models – classification model CM and 624

identified cluster centers CC . Therefore, the models need to be 625

updated in an online manner. Since the changes in data can 626

be large, updating models for every new incoming request is 627

highly inefficient and impractical. To this end, we use a sliding 628

window based approach to handle all the updates. For every 629

newly arriving request at time t, a window sw [swstart , swend], 630

where swend = t − 1 and swstart = swend − windowSize, 631

is constructed (lines 2–5). The intuition is that the window 632

captures resource requirements exhibited by workflows that 633

are temporally close to the newly incoming workflow. Later, 634

the learned models CM and CC are updated using the work- 635

flows pertaining to the constructed sliding window sw and the 636

updates are translated to the KB (lines 6–11). 637

To effectively incorporate new workflow resource require- 638

ments and simultaneously phase out defunct requirements we 639

IEE
E P

ro
of

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Algorithm 3 Proactive Algorithm
Input: V , N i

max | ∀Vi ∈ V , W t
s ∼ Ds (t)

Output: SLAstatus , AvgCosts , AvgPenaltys , AvgSLABreakDuration
1: SLABreakDuration ← 0, AvgSLABreakDuration ← 0
2: procedure PROACTIVEDEPLOY(W t

s , V , τ)
3: for each Wj ∈ W t

s do
4: CostWj

← 0, PenaltyWj
← 0

5: for each Ckj ∈Wj do
6: N i

running ← N i
running + 1

7: if N i
running = 	τ.N i

max
+ 1 then

8: Identify VM Vl , with N l
running < N l

max

9: StartVMVl ← t
10: if N i

running > N i
max then

11: if t − StartVMVl < T
Vl
reserve + Tmigrate then

12: SLAstatus ← true

13: extraDelay ← T
Vl
reserve +Tmigrate − t + StartVMVl

14: SLABreakDuration ← SLABreakDuration+
extraDelay

15: PenaltyWj
← PenaltyWj

+ extraDelay

T
Vl
reserve+Tmigrate

(P
Vl
reserve + Pmigrate)

16: Deploy Ckj on VM Vl

17: N l
running ← N l

running + 1

18: N i
running ← N i

running − 1

19: CostWj
← CostWj

+ Ml + CPUl + Sl

20: else
21: CostWj

← CostWj
+ Mi + CPUi + Si

22: AvgCosts ← AvgCosts + CostWj
/|Wj |

23: AvgPenaltys ← AvgPenaltys + PenaltyWj
/|Wj |

24: AvgSLABreakDuration ← SLABreakDuration/|Wj |
25: AvgCosts ← AvgCosts/|W t

s |, AvgPenaltys ←
AvgPenaltys/|W t

s |
26: AvgSLABreakDuration ← AvgSLABreakDuration/|W t

s |

incorporate the use of information decay. Workflows that are640

temporally farther from the newly incoming workflows would641

have relatively less contribution towards learning their resource642

requirements when compared to the workflows that are tempo-643

rally closer [20]. To model this effect, we use λ (<= 1) as the644

rate of information decay over time. More specifically, given645

a sliding window sw, the contribution of workflows pertaining646

to a time-instant t′ is scaled using α = λ(swend−t ′) (line 7).647

Later α is used to weigh the relative importance of W t ′ for648

updates to CM and CC (lines 9–10).649

B. Proactive Algorithm650

Algorithm 3 describes the pseudo-code for the proactive651

algorithm. In this algorithm, the SLA monitoring module652

continuously monitors the number of service components653

N i
running and checks how far this is from the maximum per-654

missible limit N i
max , for each VM Vi ∈ V (lines 6–9).655

The proactive algorithm incorporates the use of a param-656

eter τ , which enables triggering of new VM reservations657

(line 8) for service components running on a VM Vi once658

N i
running = �τN i

max � + 1 (line 7). By using the parameter659

τ , a VM is proactively started, which when ready accepts the660

new requests for this session. More specifically, the parameter661

τ facilitates the reservation of a new VM Vl and the migra-662

tion of service components from Vi to Vl , while there is still663

room for more components to be executed on VM Vi without664

breaking the SLAs.665

Note that since we preach maximum resource utilization,666

although new VM reservations are triggered once the above667

Algorithm 4 Hybrid Algorithm
Input: V , DCWj

| ∀Wj ∈ W t , W t
a ∼ Da (t), CM t , CC t

Output: DEADLINEstatus , η, AvgCosta
1: procedure KBQUERY(W t

a , CM t , CC t , V)
2: AvgCosta ← 0; Penaltya ← 0; η ← 0
3: for each Wj ∈ W t

a do

4: MIWj
← 0; assignedMIPSWj

← 0; DEADLINE
Wj
status ←

true

5: DEADLINE
Wj
status ← CM t

predict ({C1j ,C2j , . . . ,Ckj } ∈Wj)

6: if DEADLINE
Wj
status = true then

7: Deploy Wj on a pre-reserved “medium” VM Vi
8: AvgCosta ← AvgCosta + (Mi + CPUi + Si)× |Wj |
9: else

10: Assign Wj to the closest cluster center cc ∈ CC t

11: for each Ckj ∈Wj do
12: MIWj

← MIWj
+ MICkj

13: Deploy Ckj on VM Vl with MIPSl ≥ MICkj
14: Monitor the progress of Ckj for every Δt ; tcur ← tcur + Δt

15: if tCkj
− tcur = T

Vl
reserve + T

Vl
migrate then

16: Initiate reservation for VM Vl

17: assignedMIPSWj
← assignedMIPSWj

+ MIPSl

18: AvgCosta ← AvgCosta + (Ml + CPUl + Sl)

19: if (MIWj
/assignedMIPSWj

) > DCWj
then

20: DEADLINE
Wj
status ← false; η ← η + 1

21: AvgCosta ← (AvgCosta + Penaltya)/|W t
a |; η ← η/|W t

a |
22: return DEADLINEstatus , η,AvgCosta

condition is met, the service components are migrated only 668

after the VMs currently running them are utilized to their max- 669

imum capacity, i.e., once for a VM Vi N i
running = N i

max . 670

Thus, once Vi is fully utilized (line 10), the workflow com- 671

ponents are migrated to the newly reserved VM Vl , and the 672

corresponding costs are updated accordingly (lines 16–19). 673

Next, we describe the effect of new VM reservations and 674

component migrations on workflow SLAs (lines 11–15). The 675

SLAs of all the components remain violated for the time 676

required to reserve new VMs and the time required to migrate 677

them from one VM to another, discounting the time dura- 678

tion corresponding to the start of the reservation process and 679

the time instant at which the SLA actually got violated. 680

Mathematically, SLABreakDurationCkj = extraDelay = 681

TVl
reserve + Tmigrate − t + StartVMVl (line 13); ∀Wj ∈ 682

W t
s , ∀Ckj ∈ Wj and ∀Vl ∈ V . Thus, with a careful selection 683

of τ , Treserve + Tmigrate would get subsumed by the dif- 684

ference in time at which the SLAs actually got violated and 685

the time at which the reservation process was triggered. This 686

will enable SLAs to be always met while the waiting time on 687

VMs that need to be started will also be 0. Additionally, a 688

penalty proportional to the duration for which the SLAs were 689

violated is added to the costs (line 15), on top of the usual 690

VM utilization costs. 691

The proactive algorithm prevents SLA violations by closely 692

monitoring the behavior of service components. If the param- 693

eter τ is too low, additional VMs will be reserved rapidly 694

which will in turn drive up the cost. Likewise, if τ is too 695

high, new deployments will be queued until a new VM is 696

instantiated. 697

C. Hybrid Algorithm 698

Algorithm 4 presents the pseudo-code for the hybrid algo- 699

rithm. It incorporates the use of the curated information 700

from the KB updated and constructed by the online learning 701

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 9

Fig. 6. Streaming workflows spawning ASAP workflows.

algorithm (Algorithm 2) of BRAHMA+. As a first step,702

the hybrid algorithm invokes the classification model CM t
703

stored in the KB, to predict the DEADLINE status of each704

ASAP workflow (line 5). The workflows with the predicted705

DEADLINE status = true do not need any specialized scal-706

ing and thus, they are assigned to a “medium” (detailed in707

Section VI) VM (lines 6–8). For workflows whose deadlines708

are predicted to be violated, we query the identified cluster709

centers CC t stored in the KB and try to identify the clus-710

ter, which possesses workflows with the most similar resource711

requirement patterns (line 10). Next, with this derived infor-712

mation, the workflow components are assigned appropriate713

resources accordingly (lines 11–22).714

Specifically, each service component Ckj ∈ Wj is assigned715

to a VM Vl that is large enough to honor the component716

resource requirements (line 13). A notable limitation of the717

hybrid algorithm is that, the resources are not pre-reserved,718

and hence, it is prone to suffer from various penalties incurred719

owing to new VM reservations and migration of workflow720

components from one VM to another. To mitigate or mini-721

mize these penalties, the hybrid algorithm incorporates the use722

of monitoring (similar to the proactive algorithm described in723

Section V-B) to continuously track the progress of an execut-724

ing component. More specifically, for every clock tick Δt ,725

a monitor event tracks the execution status of a currently726

running component Ckj (line 14), and as soon as the time727

left for its execution to complete, crosses the VM reserva-728

tion and migration time TVl
reserve + TVl

migrate (line 15), a new729

VM reservation is triggered. This enables timely reservation730

of new VMs and migration of components, thereby mitigating731

the incurred penalties completely (lines 14–16).732

VI. EXPERIMENTATION SETUP733

A. Media Workflows734

The media workflows (Fig. 6) used in this study are inspired735

by the EMD project2 and the online meeting room use-case736

2The EMD project is an imec funded project aimed at design and develop-
ment of an elastic platform for media distribution in the context of online col-
laborative services. The research done in this article is inspired by the diverse
workflow types observed in EMD, which in addition to presenting a real-world
scenario also possess high affinity to the use-case of online collaborative meet-
ing discussed in this article. Additional details about EMD are available at:
https://www.imec-int.com/en/what-we-offer/research-portfolio/emd.

Fig. 7. Variation in the (a) number of Streaming and ASAP worfklow requests
based on the time of day, and (b) change of workflow resource requirements
with day of the month.

discussed in Section I. Each user participating in the meet- 737

ing represents an instance of a streaming workflow, and can 738

additionally trigger multiple ASAP workflows. 739

Components corresponding to streaming workflows possess 740

an SLA, which, if not met, may cause unwanted side-effects. 741

Staying with the use case at hand this could cause A/V 742

synchronization issues, stuttering, etc. Each ASAP work- 743

flow possesses a deadline-constraint, which can be either met 744

or violated, and if violated causes simulation results to be 745

delayed, or high-quality graphics not to be rendered properly. 746

Additionally, the resource requirements exhibited by individ- 747

ual components of the submitted workflows vary over time. 748

Note that even though much more elaborate workflows exist, 749

these particular workflows have been chosen to showcase the 750

strength of BRAHMA+ and the presented algorithms in an 751

easy-to-grasp manner. Moreover, BRAHMA+ and its associ- 752

ated algorithms are able to work with generic workflows, and 753

are not constrained by the above assumptions. 754

B. Evaluation Scenario 755

As shown in Fig. 7a, 200 user requests for streaming work- 756

flows are generated following a normal distribution, with the 757

time 12 noon set as mean and 3.5 hours as standard deviation. 758

At every time instant, each user further possesses a 5% chance 759

of triggering an ASAP workflow. This graph portrays that the 760

number of requests for both streaming and ASAP workflows 761

will vary in between the start of the day up to the end of the 762

day: high load during office hours and negligible load during 763

evening and night time. 764

Each streaming workflow possesses 3 components, that 765

execute continuously during the course of the meeting. 766

ASAP workflows, on the other hand, can be of varying 767

characteristics: number of components, resource require- 768

ments etc. To this end, a request generator module gen- 769

erates a variety of 3, 4, and 5 component workflows 770

(obtained from our industrial partners in the EMD [4] 771

project.), where the resource requirements of each compo- 772

nent correspond to the templates as shown in Table II. For 773

example, the file-open→run-simulation→file-close workflow 774

corresponds to the <low→high/very-high→low> template. A 775

map-reduce job could correspond to the <low→high/very- 776

high→low→high/very-high→low> template. The deadline- 777

constraint of each ASAP workflow is estimated using the 778

expected resource requirement of a component. Specifically, 779

the deadline-constraint, represented in terms of MI require- 780

ments, of a workflow Wj possessing k components is calcu- 781

lated as k times the expected component resource requirement. 782

IEE
E P

ro
of

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE II
RESOURCE REQUIREMENT TEMPLATES

To better evaluate BRAHMA+ in real-world scenarios, in783

addition to workflows where resource requirements of compo-784

nents are assumed to be static, we also conduct experiments785

with time-varying workflows: where resource requirements of786

the constituent service components vary over time. We simu-787

late this temporal change using the hypothesis that the resource788

requirements of service components may undergo a change on789

a daily basis, with the change being small (of the order of 5%)790

during the weekdays and large (of the order of 25%) during791

the weekends. Fig. 7b portrays this behaviour. The days repre-792

sented as numbers start from Monday, thus, Day 1 represents793

Monday, Day 12 represents Friday, and so on. As can be seen,794

the highest change occurs on Friday, portraying transitioning795

of resource request patterns from weekdays to weekends, and796

on Sunday, which presents the reverse effect, i.e., the change797

from weekends to weekdays.798

For each user request a new instance of the workflow Wj799

is created and the constituent service components Ckj , ∀k |800

Ckj ∈ Wj are provisioned on different VMs Vi , available801

from the VM pool V (the choice of which VM and how802

this VM pool grows / shrinks is driven differently depending803

on the choice of algorithm). To deploy VMs in the resource804

pools, eight types of VM images were defined as detailed805

in Table III. The costs for the VM templates used were806

parametrized based on the Amazon EC2 image c3.8xlarge [1],807

with a monthly price of $1.680 to provide 32 vCPUs (17476808

MIPS [2]), 60 GB of RAM and 2*320 GB of storage. This809

cost was divided equally between secondary-storage, main-810

memory and CPU, and the converted unit prices (per MB/hour811

and MIPS/hour [3]) were used to calculate the costs for the812

VM templates used in this article. As mentioned in Section V,813

the time required to reserve new VMs differs significantly814

from the time required to migrate one component from an815

existing VM to another. To this end, we define two vari-816

ables, TVi
reserve and Tmigrate , that determine the duration for817

instantiating new VMs and the duration for migrating compo-818

nents from an existing VM instance to another respectively.819

For the simulations, the values of (TVi
reserve) and (Tmigrate)820

were defined as uniform distributions between [40s,55s] and821

[0.5s,2s] respectively using recommendations provided in [27]822

and [40]. Additionally, the specific values were extrapolated823

to correspond to the VM images used in this study. All the824

parameters mentioned above are not constrained to the stated825

fixed values, and can be tuned as needed.826

C. Evaluation Metrics827

• Efficacy: We adopt SLA status (Definition 5), average828

SLA violation duration (Definition 6), and deadline sta-829

tus (Definition 8) [8], [9] to evaluate the quality of the830

discussed methods.831

• Cost: We use the VM cost (Definition 9), and penalty832

(Definition 10) [8], [9] to measure the incurred cost.833

TABLE III
PARAMETERIZED VM TEMPLATES

D. Methods Benchmarked 834

We compare the cost and efficacy of the Proactive and 835

Hybrid algorithms, proposed under BRAHMA+, against a 836

number of carefully designed baselines and heuristics. 837

For streaming workflows, we employ the use of passive 838

and reactive algorithms [9] for comparison. Under the pas- 839

sive algorithm, all resources are reserved in the beginning 840

of the application session, and do not undergo any change 841

even if their capacity is reached. On the other hand, the reac- 842

tive algorithm allows new resources to be reserved once the 843

pre-reserved resources reach their capacity. 844

For ASAP workflows, we use the baseline and advanced 845

algorithms [8] as benchmarks. The baseline algorithm is 846

similar to the passive algorithm in design: it reserves all 847

the resources at the beginning of the application session. 848

Every incoming ASAP workflow is assigned to a pre-reserved 849

“medium” (Template04 in Table III) sized VM. An intuitive 850

approach to define the MIPS of a medium-sized VM is using 851

the expected MI requirement of a workflow component. The 852

reason being that in expectation, this VM would be able to 853

meet the deadline constraints of half of the ASAP work- 854

flows. The advanced algorithm on the other hand allows new 855

resources to be provisioned when the pre-reserved VM is not 856

sufficient. 857

Lastly, for time-varying workflows, we use the non time 858

window enabled versions of the proposed algorithms as bench- 859

marks. These algorithms ignore the capability of BRAHMA+
860

to adapt to the changing resource requirements of workflows. 861

More specifically, after the initial learned models are pop- 862

ulated in the KB, they are not updated as the workflow 863

requirements change over time, and the benchmarks work with 864

this non-updated copy of the KB instead. 865

VII. EVALUATION RESULTS 866

All simulations were performed using the CloudSim sim- 867

ulator [12] and its extensions3 proposed in this article, on 868

an Intel(R) Core i5 4-core machine with 1.7 GHz CPU and 869

8 GB RAM running Linux Ubuntu 16.04. We use the publicly 870

available implementations of the classification and clustering 871

models from the WEKA [18] data mining software. Results are 872

averaged over 10 simulation runs. Note that all the parameter 873

values/ranges recommended in the following section(s) are a 874

result of fine-tuning based on the workload and experimental 875

setup employed in this study. The recommended values/ranges 876

are thus, not generic, and subject to change on new workloads. 877

3The code (along with a description of the CloudSim extensions) will be
open sourced to the research community via GitHub.

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 11

Fig. 8. Variation in the (a) average SLA violation duration, (b) average penalty, and (c) average cost as a function of τ for the proactive algorithm.

Fig. 9. A comparison of the (a) average SLA violation duration, (b) total cost, and (c) average cost as a function of the time of day for the passive, reactive
and proactive algorithm. The reported costs are parametrized using VM templates stated in Table III.

A. Streaming Workflows878

The proactive algorithm possesses a parameter τ that con-879

trols triggering of new VM reservations. As mentioned in880

Sections V and VI, once N i
running > τN i

max , a new VM881

reservation is triggered by the resource provisioning modules.882

Note that as stated in Section V-B and [9], τ should neither be883

too high nor too low. The former will lead to large number of884

SLA violations as workflows would be queued waiting for a885

new VM to be instantiated, while the latter would lead to high886

cost, which might be prohibitive. Thus, as a general guideline887

τ should use a moderate value, viz. 0.25 ≤ τ ≤ 0.75, for opti-888

mizing the trade-off. Next, we analyze the impact of τ on the889

proactive algorithm in the context of our experimental setup.890

Fig. 8a shows that the SLAs of the components are met when891

τ ≤ 0.6, beyond which the average SLA violation duration892

starts increasing. 0 ≤ τ ≤ 0.6 serves as a good range with893

respect to minimizing the SLA violation duration.894

The average penalty incurred during the time when SLAs895

are violated is shown in Fig. 8b. Since the penalty is incurred896

due to SLA violations, it is not surprising that the slope of897

the curve in Fig. 8b is highly similar to that of Fig. 8a. Thus,898

even with respect to minimizing the average penalty, parameter899

values in the range 0≤ τ ≤ 0.6 are considered to be optimal.900

Fig. 8c presents the average cost incurred with varying τ .901

The average VM cost (Eq. 4) is almost constant with the vari-902

ation in τ . It is evident from Fig. 8c that the penalty incurred903

due to proactive reservations of VMs decreases linearly with904

the increase in parameter τ . More specifically, this penalty905

assumes its maximum value when τ = 0 and its mini-906

mum value when τ = 1. The total cost is the sum of the907

VM cost and the two penalties discussed above. It is evi-908

dent that the total cost first linearly decreases till τ = 0.6,909

becomes almost constant till τ = 0.75 and then starts to910

increase with increasing τ . Thus, with respect to minimizing 911

the total cost, 0.6 ≤ τ ≤ 0.75 serves as the optimal parameter 912

range. 913

In sum, the value τ = 0.6 serves as the best possible trade- 914

off for minimizing the costs while also keeping the SLAs of 915

the components in line. Note that the proactive algorithm will 916

use τ = 0.6 for all of the following analyses. 917

Fig. 9a shows a comparison of variation in the SLA vio- 918

lation duration depending on the time of day for the three 919

proposed algorithms. The SLA violation duration under the 920

proactive algorithm is always 0, as the SLAs are always met, 921

while for the reactive algorithm it is jittery characterized by 922

spikes where SLAs get violated. The SLA violation duration 923

under the passive algorithm increases suddenly to its maxi- 924

mum value and then linearly decreases till it becomes 0. The 925

reason for this phenomenon is as follows: the SLA first gets 926

violated at 7 in the morning and remains violated until 6 in 927

the evening. Thus, SLAs for the components arriving at 7 AM 928

remain violated for 11 hours, those arriving at 8 AM remain 929

violated for 10 hours and so on. 930

Fig. 9c presents a comparison of the variation in the aver- 931

age cost (per component) with the time of day for the three 932

proposed algorithms. It is evident that the average cost of 933

the algorithms are almost similar (except for reactive, which 934

is characterized by spikes at some instances) at majority of 935

the time instances. Note that the costs portrayed in Fig. 9c 936

also include the penalties (as explained in Section V) incurred 937

by the resource provisioning algorithms. Moreover, since no 938

penalties are incurred by the passive algorithm, the cost 939

reported equals the VM utilization cost. At certain instances, 940

the average cost of the reactive algorithm is the highest, which 941

is the result of the penalties incurred due to the VM reserva- 942

tion process starting only after the SLAs are violated. Since the 943

IEE
E P

ro
of

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Fig. 10. Evaluations for the learning phase of the BRAHMA+ framework.

proactive algorithm triggers the new VM reservation process944

prior to detecting violation in the SLAs, the penalties incurred945

for this algorithm are significantly lower when compared to946

that of the reactive algorithm. The only penalty incurred947

on the proactive algorithm is due to the pre-reservation948

of VMs, which is optimized for τ = 0.6 as discussed949

above.950

B. ASAP Workflows951

To simulate previously executed workflows and train the952

learning phase of BRAHMA+, we use a request genera-953

tor to generate 6000 ASAP workflow requests of varying954

(3, 4, and 5) lengths. Using the deadline estimation discussed955

in Section VI, each ASAP workflow is then assigned a class956

label, i.e., whether the deadline of this workflow was violated957

or met. If the total MI requirements of an ASAP workflow is958

greater than the estimated deadline-constraint (in MI), then its959

deadline is marked to be violated.960

We use the decision tree (J48 algorithm) [33], random for-961

est [11] and functional tree [15] classification methods. A962

grid-search is performed to choose the optimal set of internal963

classifier parameters. The confidence factor used for pruning964

the decision tree is set to 0.25, while the minimum number of965

instances per leaf node of the tree is set to 2. The random for-966

est classifier is built using 50 trees, and each tree is constructed967

using 3 random features from the data. Lastly for functional968

trees, the minimum number of instances in a node for it to969

be considered for splitting is set to 15, while the number of970

boosting iterations is set to 15. The reader is referred to [18],971

for an in-depth understanding of these parameter terminologies972

and their description.973

Fig. 10a portrays the classification accuracy using 10-fold974

cross validation, with functional tree possessing the highest975

accuracy (≈ 99%) while decision tree possesses the least976

(≈ 94%). Nevertheless, using any of the three classifiers,977

BRAHMA+ possesses a reasonably high classification accu-978

racy. Note that our contribution is not limited to the three979

classifiers used to portray these results, rather is based on the980

BRAHMA+ framework which suggests the use of classifica-981

tion as a method in general. We also construct the receiver982

operating characteristic (ROC) curve for the classifiers, that983

plots true positive rate (TPR) against the false positive rate984

(FPR). Classifiers whose ROC curves approach the top-left985

corner of the plot are considered to be good. The line y = x ,986

for a binary classification task, represents a random-classifier.987

Fig. 10b clearly shows that all three evaluated classifiers 988

are significantly better when compared to a random method, 989

and approach the top-left corner of the plot. Moreover, both 990

functional tree and random forest possess a very good area 991

under the ROC curve (AUROC ≈ 0.99). 992

We employ the use of the k-means clustering algorithm [19] 993

to cluster ASAP workflows into groups with similar resource 994

requirement patterns. Since k-means requires the number of 995

clusters to be identified as input, we employ the use of silhou- 996

ette coefficient [36]: a statistical metric for quantifying cluster 997

quality, to correctly identify the optimal number of clusters. 998

Fig. 10c plots the silhouette coefficient values for ASAP work- 999

flows of lengths 3, 4 and 5, with varying number of clusters 1000

ρ from 3 to 20. The silhouette coefficient gradually increases 1001

with the increase in ρ, stabilizes near a peak value, and then 1002

starts to decrease. The higher the silhouette value, the better 1003

the produced clustering, thus, we choose ρ as 9, 11 and 18 for 1004

the length 3, 4 and 5 workflows respectively. 1005

We evaluate (Fig. 11a) the fraction of ASAP workflows 1006

whose deadline gets violated with varying deadline thresholds 1007

for the baseline algorithm. A large number of workflows, of the 1008

order of 50–60%, with the worst-case being up to 78%, suffer 1009

deadline violations. Moreover, only after relaxing the dead- 1010

line threshold by 40%, each ASAP workflow is able to meet 1011

its deadline. This result portrays that naïvely assigning ASAP 1012

workflows to a “medium-sized” VM is not sufficient, and 1013

hence, motivates the need for a framework like BRAHMA+. 1014

Fig. 11b presents a comparison of the baseline, advanced 1015

and hybrid algorithms in terms of the percentage of ASAP 1016

workflows whose deadline gets violated with the time of day. 1017

Since the baseline algorithm does not perform any efforts 1018

to perform intelligent resource provisioning, it suffers from 1019

a large number (up to 45%) of deadline violations. On the 1020

other hand, the advanced and hybrid algorithms leverage the 1021

BRAHMA+ framework to perform informed resource provi- 1022

sioning, and do not suffer deadline violations for a majority of 1023

the time-instances. Even when the deadlines do get violated, 1024

the percentage of violations are as low as 3–5%. 1025

Lastly, we perform a comparison of the variation in average 1026

hourly VM costs for the proposed algorithms with the time of 1027

day. Note that this analysis includes the costs for both stream- 1028

ing and ASAP workflows as well as the penalties incurred, if 1029

any. The pro-active algorithm is used with τ = 0.6, since the 1030

SLAs are always met and there are no penalties incurred due 1031

to SLA violations. Fig. 11c shows that the baseline algorithm 1032

possesses the least cost. This is mainly due to pre-assignment 1033

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 13

Fig. 11. (a) Analysing ASAP workflow deadline violation percentage under the baseline algorithm with varying deadline thresholds. (b) A comparison of
the variation in the ASAP workflow deadline violation percentage and (c) the average total cost (combining costs for streaming and ASAP workflows) versus
the time of day for the baseline, advanced and hybrid algorithm.

Fig. 12. (a), (b) A comparison of the variation in the average deadline violation percentage versus the day of a month for varying window sizes 0, 1, 4, and
7. Rate of growth of (c) execution time and (d) memory consumption of the clustering algorithm with increase in window size from 1 to 30.

of resources and the lack of new VM reservations even if1034

∀Vi ∈ pre-reserved V , the MIPS i is insufficient to fulfil the1035

requirements of a workflow Wj , which results in deadline vio-1036

lations. On the other hand, the advanced algorithm possesses1037

the highest cost, owing to penalties incurred by workflows1038

waiting for new VM reservations and component migrations.1039

The hybrid algorithm mitigates these penalties by using a mon-1040

itoring capability similar to that of the pro-active algorithm,1041

thereby closely mirroring the cost of the baseline algorithm1042

and being as cost-effective.1043

C. Time-Varying Workflows1044

For time-varying workflows, we generate 30 different1045

batches of workflow requests, which are sampled daily for1046

a period of one month. We generate 6000 ASAP workflow1047

requests of varying lengths for each day in a month. As dis-1048

cussed previously, the resource requirements (in MI) of the1049

workflow components change over time (Fig. 7b).1050

Conventional clustering methods that assume the underly-1051

ing resource request patterns to be static, are not capable1052

of capturing the behaviour exhibited by time-varying work-1053

flows since their distribution of resource requirements1054

vary over time. As discussed in Section V, to enable1055

BRAHMA+ perform resource provisioning for time-varying1056

workflows (AWS-tSA), we employ the use of sliding win-1057

dows sw [swstart , swend] that provide an effective mechanism1058

for updating the learned mathematical models.1059

First, we analyse the effect of using a sliding window on1060

the average deadline violation percentage. Fig. 12a presents the1061

variation in average deadline violations for different window1062

sizes. All the evaluations use the hybrid resource provision-1063

ing algorithm of BRAHMA+, with the only change being1064

the way in which the classification and clustering modules of 1065

BRAHMA+ learn the workflow behaviour. We measure the 1066

violations in workflow deadlines by varying the sliding win- 1067

dow size, where ws0, ws1, ws4, and ws7 represent approaches 1068

with window sizes 0, 1, 4, and 7 respectively. The window 1069

size of 1 means that for requests generated on a day t, we 1070

will consider the day t − 1 for performing the cluster iden- 1071

tification step; a window size of 4 means that we use the 1072

days t − 1, t − 2, t − 3 and t − 4. The procedure for any 1073

other non-zero window size follows similarly. On the other 1074

hand, a window size of 0 represents the absence of sliding 1075

windows, i.e., the conventional clustering method [8] used for 1076

workflows with static resource requirements (Section VII-B). 1077

Since the deadline violations observed under ws0 can be 1078

as large as 70% (Fig. 12a), to better visually portray and 1079

analyse the variation of deadline violations under ws1, ws4, 1080

and ws7, we plot Fig. 12b, which is a zoomed-in version 1081

of Fig. 12a, by ignoring the deadline violations observed 1082

under ws0. 1083

It is evident from Fig. 12a that the performance of ws0 1084

degrades over time. This is because the resource require- 1085

ments of workflows change over time (Fig. 7b), however, 1086

ws0 does not perform any effort to adapt to the chang- 1087

ing resource requirements. Owing to the absence of slid- 1088

ing windows, the models are not updated and hence, the 1089

identified clusters perform worse over time, and no longer 1090

remain a representative of the resource requirements exhib- 1091

ited by the currently submitted workflows. Consequently, 1092

there is an increase in deadline violations. It is interesting 1093

to note that the same hybrid algorithm (with ws0) is near- 1094

optimal (Fig. 11b shows that most of the deadlines were 1095

met) when the resource requirements of workflows were 1096

static. 1097

IEE
E P

ro
of

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Figs. 12a and 12b show that the performance of the1098

approaches in terms of preserving the deadline constraints of1099

time-varying workflows follows the following order: ws4 ≈1100

ws1 > ws7 >> ws0. A careful analysis of Fig. 12b shows1101

that in the majority of the cases, ws7 is worse than ws11102

and ws4. A probable explanation of this is that ws7 cap-1103

tures too much historical information, i.e., it learns a lot of1104

noise as well owing to the large window size. Moreover,1105

on average ws4 provides smaller deadline violations when1106

compared to ws1. Thus, in terms of avoiding deadline viola-1107

tions, ws4 provides a good choice for the window size in our1108

scenarios.1109

Having analysed the effect of window size on deadline1110

violations, we also study its effect from a computational stand-1111

point. Figs. 12c-d present the impact of variation in window1112

size on execution time and memory consumption of the clus-1113

tering module respectively. It is evident that both execution1114

time and memory consumption increase with increase in the1115

window size. However, as can be seen from Fig. 12c, the rate1116

of growth of execution time is super-linear since the worst1117

case complexity of k-means is super-linear. On the other hand,1118

the rate of growth in memory-consumption is close to linear1119

(Fig. 12d).1120

We recommend 4 as the choice for window size as it min-1121

imizes deadline violations, while being only marginally more1122

expensive than ws1 on computational fronts. To summarize,1123

for the presented use-cases, BRAHMA+ with its associated1124

proactive algorithm using τ = 0.6, the hybrid algorithm, and1125

the sliding window approach with window size 4 serves as1126

the best possible trade-off for minimizing the costs while1127

also keeping the SLAs and the deadline-constraints of the1128

workflows in line for both static (AWS-SA) and time-varying1129

(AWS-tSA) workflows.1130

VIII. CONCLUSION AND FUTURE WORK1131

In this article, we addressed the problem of Automatic1132

Workflow resource Scaling under the combined presence of1133

Streaming and ASAP workflows, called AWS-SA, and its time-1134

varying variant called AWS-tSA. Consequently, we devised a1135

holistic solution for both the problems; by coming up with a1136

framework BRAHMA+ that curates a KB of learned workflow1137

behavior(s), the proactive algorithm for streaming workflows,1138

and the hybrid KB driven resource provisioning algorithm that1139

leverage BRAHMA+ for effective scaling of ASAP work-1140

flows. We also portrayed the capability of BRAHMA+ to1141

adaptively learn the workflow behavior of time-varying work-1142

flows, thereby facilitating online updates to the KB and1143

effective resource provisioning where resource requirements1144

change over time. Our empirical studies show that the pro-1145

posed algorithms are effective and provide good cost-efficacy1146

trade-offs. The proposed hybrid algorithm – combining learn-1147

ing and monitoring, is able to restrict deadline violations to a1148

very small fraction (3–5%), while only suffering a marginal1149

increase in average cost per service component of 1–2% over1150

the baseline algorithm, which, although possesses the least1151

cost, suffers from a large number (up to 45%) of deadline1152

violations. Additionally, for time-varying ASAP workflows,1153

the online clustering approach with a window size of 4 is able1154

to restrict average deadline violations (per day) to 5–8% in1155

comparison to that of (up to) 60% when the identified clusters 1156

were not updated over time. In the future, we will implement a 1157

BRAHMA+ prototype running on real-world cloud platforms 1158

and evaluate its runtime behavior while scaling an elastic A/V 1159

collaborative cloud-based service. 1160

REFERENCES 1161

[1] Amazon EC2 Images. Accessed: May 16, 2017. [Online]. Available: 1162

http://aws.amazon.com/ec2/instance-types/ 1163

[2] Amazon EC2 MIPS. Accessed: May 16, 2017. [Online]. Available: 1164

http://www.cmips.net/category/cup-results/ 1165

[3] Benchmarking the New Amazon C4 Instances. Accessed: May 16, 2017. 1166

[Online]. Available: http://www.cmips.net/tag/intel-xeon-e5-2666-v3-2- 1167

90ghz/ 1168

[4] The EMD Project. Accessed: May 16, 2017. [Online]. Available: 1169

https://www.imec-int.com/en/what-we-offer/research-portfolio/emd 1170

[5] Tupperware: Containerized Deployment at Facebook. Accessed: 1171

May 16, 2017. [Online]. Available: http://bit.ly/2sD46ng 1172

[6] S. Abrishami and M. Naghibzadeh, “Deadline-constrained workflow 1173

scheduling in software as a service cloud,” Scientia Iranica, vol. 19, 1174

no. 3, pp. 58–169, 2012. 1175

[7] A. F. Antonescu and T. Braun, “SLA-driven simulation of multi- 1176

tenant scalable cloud-distributed enterprise information system,” in Proc. 1177

ARMS-CC@PODC, 2014, pp. 91–102. 1178

[8] A. Atrey, H. Moens, G. V. Seghbroeck, B. Volckaert, and F. D. Turck, 1179

“BRAHMA: An intelligent framework for automated scaling of stream- 1180

ing and deadline-critical workflows,” in Proc. CNSM, Montreal, QC, 1181

Canada, 2016, pp. 216–222. 1182

[9] A. Atrey, H. Moens, G. V. Seghbroeck, B. Volckaert, and F. D. Turck, 1183

“Design and evaluation of automatic workflow scaling algorithms 1184

for multi-tenant SaaS,” in Proc. CLOSER, Rome, Italy, 2016, 1185

pp. 221–229. 1186

[10] E. Boutin et al., “Apollo: Scalable and coordinated scheduling for 1187

cloud-scale computing,” in Proc. OSDI, Broomfield, CO, USA, 2014, 1188

pp. 285–300. 1189

[11] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 1190

2001. 1191

[12] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and 1192

R. Buyya, “CloudSim: A toolkit for modeling and simulation of 1193

cloud computing environments and evaluation of resource provisioning 1194

algorithms,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011. 1195

[13] J. Espadasa et al., “A tenant-based resource allocation model for 1196

scaling software-as-a-service applications over cloud computing infras- 1197

tructures,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 273–286, 1198

2013. 1199

[14] G. Fan, H. Yu, and L. Chen, “A formal aspect-oriented method for 1200

modeling and analyzing adaptive resource scheduling in cloud comput- 1201

ing,” IEEE Trans. Netw. Service Manag., vol. 13, no. 2, pp. 281–294, 1202

Jun. 2016. 1203

[15] J. Gama, “Functional trees,” Mach. Learn., vol. 55, no. 3, pp. 219–250, 1204

2004. 1205

[16] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, “Workflow 1206

scheduling for SaaS / PaaS cloud providers considering two SLA levels,” 1207

in Proc. NOMS, 2012, pp. 906–912. 1208

[17] M. H. Ghahramani, M. Zhou, and C. T. Hon, “Toward cloud com- 1209

puting QoS architecture: Analysis of cloud systems and cloud ser- 1210

vices,” IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 6–18, 1211

Jan. 2017. 1212

[18] M. Hall et al., “The WEKA data mining software: An update,” SIGKDD 1213

Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009. 1214

[19] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-means 1215

clustering algorithm,” Appl. Stat., vol. 28, no. 1, pp. 100–108, 1979. 1216

[20] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and 1217

Practice. Melbourne, VIC, Australia: OTexts, 2013. [Online]. Available: 1218

https://www.otexts.org/fpp/ 1219

[21] M. Isard, “Autopilot: Automatic data center management,” SIGOPS 1220

Oper. Syst. Rev., vol. 41, no. 2, pp. 60–67, 2007. 1221

[22] B. Jennings and R. Stadler, “Resource management in clouds: Survey 1222

and research challenges,” J. Netw. Syst. Manag., vol. 23, no. 3, 1223

pp. 567–619, 2015. 1224

[23] H.-J. Jiang, K.-C. Huang, H.-Y. Chang, D.-S. Gu, and P.-J. Shih, 1225

“Scheduling concurrent workflows in HPC cloud through exploiting 1226

schedule gaps,” in Proc. ICA3PP, Melbourne, VIC, Australia, 2011, 1227

pp. 282–293. 1228

IEE
E P

ro
of

ATREY et al.: BRAHMA+: FRAMEWORK FOR RESOURCE SCALING OF STREAMING AND ASAP TIME-VARYING WORKFLOWS 15

[24] J. Li, T. Ma, M. Tang, W. Shen, and Y. Jin, “Improved FIFO scheduling1229

algorithm based on fuzzy clustering in cloud computing,” Information,1230

vol. 8, no. 1, p. 25, 2017.1231

[25] H. Lu, J. Cao, S. Lv, X. Wang, and J. Liu, “A comparative1232

study of DAG clustering,” in Proc. i-Soc., London, U.K., 2015,1233

pp. 84–89.1234

[26] H. Luo, C. Yan, and Z. Hu, “An enhanced workflow scheduling strategy1235

for deadline guarantee on hybrid grid/cloud infrastructure,” J. Appl. Sci.1236

Eng., vol. 18, no. 1, pp. 67–78, 2015.1237

[27] M. Mao and M. Humphrey, “A performance study on the VM startup1238

time in the cloud,” in Proc. IEEE CLOUD, Honolulu, HI, USA, 2012,1239

pp. 423–430.1240

[28] E. E. Mon, M. M. Thein, and M. T. Aung, “Clustering based on task1241

dependency for data-intensive workflow scheduling optimization,” in1242

Proc. MTAGS, Salt Lake City, UT, USA, 2016, pp. 20–25.1243

[29] H. Morshedlou and M. R. Meybodi, “Decreasing impact of SLA vio-1244

lations: A proactive resource allocation approach for cloud computing1245

environments,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 156–167,1246

Apr./Jun. 2014.1247

[30] G. Peng, H. Wang, J. Dong, and H. Zhang, “Knowledge-based resource1248

allocation for collaborative simulation development in a multi-tenant1249

cloud computing environment,” IEEE Trans. Services Comput., vol. 11,1250

no. 2, pp. 306–317, Mar./Apr. 2018.1251

[31] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao,1252

“Robust scheduling of scientific workflows with deadline and budget1253

constraints in clouds,” in Proc. IEEE-AINA, Victoria, BC, Canada, 2014,1254

pp. 858–865.1255

[32] D. Poola, K. Ramamohanarao, and R. Buyya, “Enhancing reliability of1256

workflow execution using task replication and spot instances,” Trans.1257

Auton. Adapt. Syst., vol. 10, no. 4, pp. 1–21, 2016.1258

[33] J. R. Quinlan, C4.5: Programs for Machine Learning. Burlington, MA,1259

USA: Morgan Kaufmann, 1993.1260

[34] M. A. Rodriguez and R. Buyya, “Deadline based resource provision-1261

ing and scheduling algorithm for scientific workflows on clouds,” IEEE1262

Trans. Cloud Comput., vol. 2, no. 4, pp. 222–235, Apr./Jun. 2014.1263

[35] M. A. Rodriguez and R. Buyya, “Scheduling dynamic workloads in1264

multi-tenant scientific workflow as a service platforms,” Future Gener.1265

Comput. Syst., vol. 79, pp. 739–750, Feb. 2017.1266

[36] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation1267

and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,1268

pp. 53–65, Nov. 1987.1269

[37] D. Serrano et al., “SLA guarantees for cloud services,” Future Gener.1270

Comput. Syst., vol. 54, pp. 233–246, Jan. 2016.1271

[38] J. Shi, J. Luo, F. Dong, J. Zhang, and J. Zhang, “Elastic resource provi-1272

sioning for scientific workflow scheduling in cloud under budget and1273

deadline constraints,” Cluster Comput., vol. 19, no. 1, pp. 167–182,1274

2016.1275

[39] S. Singh, I. Chana, and R. Buyya, “STAR: SLA-aware autonomic1276

management of cloud resources,” IEEE Trans. Cloud Comput., to be1277

published.1278

[40] S. Toyoshima, S. Yamaguchi, and M. Oguchi, “Storage access opti-1279

mization with virtual machine migration and basic performance anal-1280

ysis of Amazon EC2,” in Proc. WAINA, Perth, WA, Australia, 2010,1281

pp. 905–910.1282

[41] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive1283

resource management and control in software defined networks,” IEEE1284

Trans. Netw. Service Manag., vol. 12, no. 1, pp. 18–33, Mar. 2015.1285

[42] A. Verma et al., “Large-scale cluster management at Google with Borg,”1286

in Proc. EuroSys, Bordeaux, France, 2015, p. 18.1287

[43] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,”1288

J. Supercomput., vol. 71, no. 9, pp. 3373–3418, 2015.1289

[44] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “SLA-based resource1290

provisioning for hosted software-as-a-service applications in cloud com-1291

puting environments,” IEEE Trans. Services Comput., vol. 7, no. 3,1292

pp. 465–485, Jul./Sep. 2014.1293

[45] L. Wu, S. K. Garg, and R. Buyya, “SLA-based resource allocation for1294

software as a service provider (SaaS) in cloud computing environments,”1295

in Proc. CCGrid, Newport Beach, CA, USA, 2011, pp. 195–204.1296

[46] L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission control for1297

a software-as-a-service provider in cloud computing environments,” J.1298

Comput. Syst. Sci., vol. 78, no. 5, pp. 1280–1299, 2012.1299

[47] R. Zhang, K. Wu, and J. Wang, “Online resource scheduling under con-1300

cave pricing for cloud computing,” in Proc. IWQoS, Hong Kong, 2014,1301

pp. 51–60.1302

[48] Z. Zhang et al., “Fuxi: A fault-tolerant resource management and job1303

scheduling system at Internet scale,” Proc. VLDB Endowment, vol. 7,1304

no. 13, pp. 1393–1404, 2014.1305

Ankita Atrey received the master’s degree in 1306

computer science from the Vellore Institute of 1307

Technology, Vellore, India. She is currently pur- 1308

suing the Ph.D. degree with the Department of 1309

Information Technology (INTEC), Ghent University, 1310

Belgium, and imec. She has internship experience 1311

from CNRS, France, and the Indian Institute of 1312

Technology Kanpur, India. Her research interests 1313

include cloud computing, resource scheduling and 1314

provisioning, data-placement, service management, 1315

and service oriented architectures. She is working on 1316

research problems encircling intelligent resource provisioning in multi-tenant 1317

multi-component applications with INTEC. She has published her research in 1318

cloud and service management conferences like CNSM and CLOSER, while 1319

also serving as a reviewer for CLOSER, Journal of Network and Systems 1320

Management and the IEEE TRANSACTION ON NETWORK AND SERVICE 1321

MANAGEMENT. 1322

Gregory Van Seghbroeck received the gradua- 1323

tion degree from Ghent University in 2005 and the 1324

Ph.D. degree in computer science engineering in 1325

2011. After a brief time as an IT Consultant, he 1326

joined the Department of Information Technology 1327

(INTEC), Ghent University (currently IDLab). In 1328

2007, he received the Ph.D. grant from IWT, 1329

Institute for the Support of Innovation Through 1330

Science and Technology, to work on theoretical 1331

aspects of advanced validation mechanism for dis- 1332

tributed interaction protocols and service choreogra- 1333

phies. His main research interests focus on big data engineering and complex 1334

scalable cloud platforms. 1335

Bruno Volckaert received the Master of Computer 1336

Science degree and the Ph.D. degree in data inten- 1337

sive scheduling and service management for grid 1338

computing from Ghent University, in 2001 and 1339

2006, respectively. He is a Professor of advanced 1340

programming and software engineering with the 1341

Department of Information Technology (INTEC), 1342

Ghent University and a Senior Researcher with imec. 1343

His current research deals with reliable and high 1344

performance distributed software systems for City- 1345

of-Things (IoT for Smart Cities), distributed decision 1346

support systems for UAVs, intelligent railway transportation applications and 1347

autonomous optimization of cloud-based applications. He has worked on over 1348

35 national and international research projects and has authored or co-authored 1349

over 80 papers published in international journals and conference proceedings. 1350

Filip De Turck leads the Network and Service 1351

Management Research Group, Department of 1352

Information Technology, Ghent University, 1353

Belgium, and imec. He has (co-)authored over 1354

450 peer reviewed papers. His research interests 1355

include telecommunication network and service 1356

management, and design of efficient virtualized 1357

network and cloud systems. He is involved in 1358

several research projects with industry and 1359

academia in the above areas. He serves as the 1360

Chair of the IEEE Technical Committee on 1361

Network Operations and Management, and is on the TPC of many 1362

network and service management conferences and workshops. He serves 1363

as a Steering Committee Member of the IEEE Conference on Network 1364

Softwarization. 1365

