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Abstract—Software-Defined Networking (SDN) is a promising
paradigm of computer networks, offering a programmable and
centralised network architecture. However, although such a
technology supports the ability to dynamically handle network
traffic based on real-time and flexible traffic control, SDN-based
networks can be vulnerable to dynamic change of flow control
rules, which causes transmission disruption and packet loss in
SDN hardware switches. This problem can be critical because the
interruption and packet loss in SDN switches can bring additional
performance degradation for SDN-controlled traffic flows in the
data plane. In this paper, we propose a novel robust flow control
mechanism referred to as Priority-based Flow Control (PFC)
for dynamic but disruption-free flow management when it is
necessary to change flow control rules on the fly. PFC minimizes
the complexity of flow modification process in SDN switches
by temporarily adapting the priority of flow rules in order to
substantially reduce the time spent on control-plane processing
during run-time. Measurement results show that PFC is able
to successfully prevent transmission disruption and packet loss
events caused by traffic path changes, thus offering dynamic and
lossless traffic control for SDN switches.

Index Terms—Software-Defined Networking, dynamic traffic
control, reliability.

I. INTRODUCTION

IMPROVING network utilisation is one of the most chal-
lenging issues in network management. The demand to

accommodate a diverse range of network services requires
significantly over-provisioned network capacity as today’s
common practice. Such a strategy brings a high deployment
cost, even though physical network capacity is still increasing
with the advancement of network devices. As a remedy, one
way to utilise network resources in a more cost-efficient
manner is the use of dynamic traffic management, as available
network resources and network conditions are typically highly
dynamic.

Software Defined Networking (SDN) [1,2] is a promising
network paradigm enabling programmable network platforms,
which circumvents the limitation of traditional networks with
rigidly coupled control/data planes. The programmability fea-
ture of SDN enables network operators to flexibly manage
their network resources by decoupling the control plane from
the underlying hardware (i.e. network devices such as routers
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and switches) and by instantly changing data plane traffic for-
warding rules. OpenFlow [3] currently is the de facto signaling
protocol between the control and data planes which is used to
program SDN switches. With OpenFlow, an SDN controller
can retrieve complete network view by using its inherent
monitoring mechanism. Equipped with the programmable and
(logically) centralised control plane offered by SDN, it is
easy to monitor network conditions and accordingly change
network resource allocation on the fly, which makes SDN one
of the key enabling technologies for the new generation of
networks.

One of the basic requirements for enabling dynamic recon-
figuration of traffic forwarding rules is to ensure disruption-
freedom of ongoing traffic flows. Ongoing flows should not
suffer from any disruption when a traffic forwarding rule
is changed via SDN control. Typical examples for changing
flow control rules during run-time can include: online traffic
load balancing, detouring from a specific route, and dynamic
service chaining into a live network. However, almost all IP
networks only support “best effort” services, and it is assumed
that network performance in IP networks is normally affected
by network congestions and anomalies. Consequently, most
transport protocols only consider network congestion as a
factor of traffic degradation, when adjusting end-to-end traffic
behaviour towards improving flow reliability. Thus, the effect
of dynamic traffic control operations should also be taken into
account in order to prevent disruptions in transport operations,
as well as network performance in general, when changes are
made to traffic forwarding rules in real time.

Unfortunately, we discovered that traffic loss can occur in
current SDN hardware switches when the forwarding rule
being applied to a currently active traffic flow is modified
during ongoing traffic transmission. This is attributed to the
processing latency, which is the time needed to modify the
forwarding rule in a hardware switch. This processing latency
can cause transmission disruption, which also leads to packet
loss for a transient period of time. This type of traffic loss
can bring considerable performance degradation in an SDN
network, because the incurred packet loss not only causes the
deterioration of the network performance but also triggers the
packet loss recovery procedure which in turn adversely im-
pacts the end-to-end transmission performance at the transport
layer or the application layer.

In this paper, a priority-based flow control (PFC) mechanism
is presented in order to address the traffic disruption problem
caused by dynamic changes in flow rules in SDN hardware
switches. In a situation where a flow rule needs to be changed
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during on-going traffic transmission, PFC minimises the flow
modification complexity by temporarily adapting the priorities
of flow rules before executing the actual change, which can
substantially reduce both transmission disruption time and
traffic loss volume in SDN hardware switches. Furthermore,
PFC can be applied without any hardware modification, as it is
deployed in SDN controllers as a software solution. According
to our SDN testbed experiments, any potential traffic loss
due to a run-time change in flow rules can be eliminated by
applying PFC. The main contributions of this paper are as
follows:
• This work identifies and reports on a new transmission

disruption risk in SDN networks. This problem can be
caused when a run-time flow rule change is executed by
SDN, and can also result in packet loss events during the
transition period until the new flow rule is activated. Such
run-time changes in flow rules in the middle of on-going
traffic sessions may take place for the purpose of load-
balancing or planned maintenance where one or multiple
active traffic flows may need to have their current rules
changed.

• A novel priority-based flow control mechanism is pro-
posed in order to prevent the transmission disruption by
minimising the adverse effects of the SDN flow modifi-
cation process in hardware switches. PFC is a controller-
based solution and hence can easily be applied to the cur-
rently deployed SDN switches without any modification
in SDN switches. Through extensive experiments based
on our SDN testbed platform, we show that the proposed
PFC scheme is able to completely avoid even transient
packet loss and performance deterioration at the transport-
layer. By this means, the proposed scheme practically
enables seamless run-time change of flow control rules
without any impact network performance during run-time.

The rest of the paper is organised as follows. Section II
briefly explains traffic flow operations in OpenFlow-based
SDN networks, and describes the newly observed transmission
disruption problem that is caused by processing delays in
hardware SDN switches. This is followed by the description
of the SDN-based PFC framework and its operation in Section
III. Section IV presents the overall performance evaluation of
PFC, according to the identified performance metrics including
packet loss statistics, traffic throughput and also the overhead
introduced by the PFC scheme. Finally, Section V concludes
the paper.

II. BACKGROUND AND MOTIVATION

In an OpenFlow-based SDN architecture, a flow is the basic
unit for network traffic which can be controlled by a flow rule.
A typical flow rule consists of: a set of flow match fields, a
flow priority, and a flow action set.
• Flow match fields are used to distinguish different flows,

and consist of identifiers for ingress port, metadata, and
packet header information (such as source IP, destination
IP, source port, destination port, protocol type, etc).

• Flow priority determines the order of execution of the
flow rules.
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Fig. 1. Transmission disruption problem in SDN.

• Flow action set is a set of actions, where an action is an
operation to either forward a flow to a port (or a set of
ports) or modify the packets of a flow. The flow action
set makes it possible to apply multiple flow action sets
to the same traffic flow.

A flow rule is also typically called a flow entry, as each
flow rule is simply an entry in a flow table of an SDN switch.
The overall flow handling process is as follows. When data
packets arrive at an SDN switch, a flow-match process is
firstly performed at the switch flow table, i.e. the SDN switch
searches a set of flow rules that match the incoming packets of
this traffic flow. If there are relevant flow rules, the rule with
the highest priority is selected, and then the corresponding
flow action set is enforced. If there is no matching flow rule,
a table miss operation is performed.

Besides flow-based traffic handling, one of the core features
of SDN is that the flow handling process in SDN switches
can be dynamically managed by the SDN controller. Flow
rules can be easily constructed in the controller, and are
dynamically manageable by adding, modifying, or deleting
commands through the controller. Consequently, traffic for-
warding behaviour can be dynamically changed by the SDN
controller depending on network conditions and policies, such
as load balancing, fast reroute and service chaining.

Although the OpenFlow SDN architecture supports dynamic
traffic management, a stability problem of transient deteriora-
tion of traffic performance (e.g. packet loss) can be caused
by the dynamic change of flow control rules in SDN. As
an example of such a problem, Fig. 1 illustrates the average
total disruption time caused by a number of path change
events performed by an SDN controller, which replaces the
flow rule for an ongoing traffic flow with another flow rule
during packet transmission. The measurement environment is
presented in Fig. 6, and the details are described in Section
IV.A. In the rest of the paper, a flow rule which has been
defined and deployed in SDN switches to match a specific
ongoing traffic flow is referred to as the current matching
flow rule, denoted by ( f lowcm). In this measurement, the
path change events are generated by deleting f lowcm during
packet forwarding. All the path change events are applied to
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the same traffic during packet transmission and the number
of path change events varies between 1 and 8. In case of
the multiple path change events, the traffic route periodically
fluctuates between path 1 and path 2 which are shown in Fig.
6. Performance results show that total traffic disruption time
grows with increases in the number of path change events.
This is a typical consequence of traffic disruption whenever the
current matching flow rule f lowcm is modified, and therefore
causing packet loss.

The transmission disruption in this example is due to the
following reason. When a delete command for f lowcm arrives
at an SDN switch, the SDN switch deletes f lowcm and applies
the next matching flow rule ( f lownm) to the current traffic.
A new matching flow rule ( f lownm) is to replace f lowcm

to serve the current traffic after f lowcm is deleted. However,
this operation requires some processing at the hardware switch
(i.e. TCAM reordering followed by the contention for the
limited bus bandwidth [4]) to enforce f lownm to the current
flow. This processing operation can also be aggravated by
any non-optimal implementation [4,5] or an inflexible switch
architecture [13]. When packets of the current traffic arrive
at the SDN switch during such processing operations, since
the previously matching flow rule ( f lowcm) has already been
deactivated, packet loss occurs due to the missing flow rule for
that transient time period [5]. This phenomenon can be critical
as this is a new type of traffic disruption caused by on-the-fly
flow rule change in SDN, which is not currently handled by
SDN switches.

Several research studies [4-12] have revealed that some
delay is caused by handling control messages or flow rules in
SDN hardware switches. The authors of [6] analyzed a flow-
setup latency as well as the latency incurred by gathering flow
statistics due to the size of the flow table. In [7], control plane
performance was examined with the focus on processing delay
in SDN switches, which is attributed to flow control operations
and gathering flow statistics. Another study [8] focused on the
query completion time in SDN and the processing time for
the first packet of a new flow rule and a flow modification
event. In [9], it was observed that control plane performance
can vary and might become unstable due to the control plane
processing time, and also the frequency of flow table updates
in hardware OpenFlow switches. Although these studies have
focused on quantifying the control plane performance in SDN
switches, the effect of the changes in packet forwarding rules
was not specifically quantified and studied. Although the effect
of control plane latency for packet forwarding was studied in
[4] and [5], they only focus on performance measurement,
without providing a solution to alleviate such an issue.

Several schemes have also been proposed for efficient
packet forwarding in SDN [10, 11], and reliability in the
SDN control plane [12]. The study in [10] focused on flow
table management and [11] proposed switch-based solutions
that require hardware modification in SDN switches. In [12],
the reliability issues in the SDN control plane were mainly
investigated as part of a management framework. Although
new SDN switch architectures such as RMT [13] and P4
[14] can address this problem by improving SDN switch
performances, they cannot be directly applied to off-the-shelf

SDN switches.
The goal of this study is therefore to propose a robust

flow control mechanism based on flow priority, in order to
ensure dynamic but disruption-free traffic control in SDN.
The proposed method is able to minimise the adverse effects
of the latency caused by processing operations when current
operational flow rules are modified. The proposed mechanism
substantially reduces the traffic loss caused by the delay
in transitioning from one flow rule to another. Since the
mechanism is fully software-based, and is applied at the SDN
controller, it can be easily applied without any hardware
modification in SDN switches.

III. PRIORITY-BASED FLOW CONTROL (PFC)

Unlike traditional packet forwarding methods, a flow rule
for packet forwarding in SDN is determined by not only the
flow match fields but also the flow priority field, which affects
packet forwarding performance. Using the flow priority field
makes it possible to easily locate the next matching flow rule
( f lownm) and select it as the prospective active flow rule
before actual modification of the current operational flow rule
( f lowcm). In doing so, the latency in locating f lownm can be
reduced by effective assignment of priority values to flow rules
and reducing this latency can also prevent the traffic disruption
while the flow modification process takes place. In light of this
observation, the main idea of PFC is to temporarily adapt the
priority of flow rules in order to minimise disruptions caused
by processing delay. PFC searches f lownm and temporarily
assigns a higher flow priority level to it in the flow table,
which can then quickly service a matching traffic, effectively
avoiding packet drops. PFC is performed as a flow control
functionality in the SDN controller. Next, the SDN architecture
with PFC is presented.

A. SDN Architecture and Framework with PFC

In SDN, the network infrastructure consists of a set of
programmable network devices that perform packet forward-
ing in the data plane, as shown in Fig. 2. These network
devices can communicate with an SDN controller on its
southbound API (generally OpenFlow implementation). The
SDN controller provides its northbound API to applications;
this API is based on Representational State Transfer (REST)
and Remote Procedure Call (RPC). The controller has a set
of core functions which can be classified into two types:
(i) a network abstraction function which provides global
information on the network, collected by modules that perform
monitoring of network conditions and network topology, and
(ii) an interpretation function which translates flow commands
submitted to the controller via its northbound API into cor-
responding southbound API (OpenFlow) commands. Thanks
to these capabilities provided by the SDN controller, various
network applications can be easily implemented on top of
the controller, without directly interacting with the physical
hardware.

In this study, PFC is proposed as a basic function in the SDN
controller, which acts as an interpretation function, as shown
in Fig. 2. Applications or other functions in the controller
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Fig. 2. SDN architecture and framework.

can still choose between PFC and the default interpretation
function of the controller (tagged as “normal” in the figure).
When the default interpretation function is in use, it simply
translates flow commands into the southbound API (i.e. flow
command translation). If applications (or other functions of the
SDN controller) select PFC instead, PFC then performs flow
command translation and additionally applies priority-based
flow control. Note that PFC is also applicable to advanced
SDN switch architectures, such as RMT [13], since it is a
controller-based solution, and can be operated regardless of
the particular SDN switch architecture. Furthermore, PFC may
have more flexibility in evolved control protocols, such as P4
[14]; this extension is out of scope in this paper, and needs
further study.

B. PFC Operation

Figure 3 shows the general operation of PFC. In this exam-
ple, a specific network traffic is served by its current matching
flow rule ( f lowcm). When a flow_delete (or flow_mod) com-
mand is submitted in order to delete (or to modify) f lowcm,
the following events take place: (1) PFC first searches the next
matching flow rule ( f lownm) in the flow tables. If there is
a f lownm, then (2) PFC temporarily assigns a higher flow
priority to f lownm before performing the flow_delete (or
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Fig. 3. General operation of PFC.

flow_mod) command. Note that this assigned priority value
should be higher than that of f lowcm. The flow rule which
has a temporary higher priority value assigned by PFC is called
the PFC flow rule, denoted by ( f lowp f c). After f lowp f c has
been generated, the network traffic is forwarded by f lowp f c .
This operation can reduce processing delay caused by the
modification of f lowcm because f lowp f c can now be easily
matched and applied owing to its higher flow priority. In
the meantime, (3) the flow_delete (or flow_mod) command is
applied but it does not affect the traffic forwarding behaviour
as the traffic forwarding is being handled by f lowp f c . Lastly,
(4) f lowp f c is set back to f lownm after the network traffic
has been processed. The details of PFC are as follows.

1) Flow Rule Classification to Search Next Matching Flow
Rule: When the SDN controller receives a flow command
(such as a flow_delete or a flow_mod command), the first
procedure of PFC is to classify flow rules in order to determine
f lownm to replace f lowcm. The flow rules which have a
lower priority than f lowcm are searched in descending order
of priority, and then PFC classifies the flow rules into five
types: compatible, superset, subset, overlapping, and disjoint.

• Compatible flow rules are the flow rules that have the
exact same match fields with f lowcm. This means that
compatible flow rules can be used as a substitute for
f lowcm because they can only handle the network traffic
matched by f lowcm.

• The match fields of superset flow rules are a superset of
the match fields of f lowcm. In other words, superset flow
rules can affect not only the network traffic matched by
f lowcm but also other network traffic, although a superset
flow rule can be just f lownm if there are no other flow
rules between f lowcm and the superset flow rule.

• In contrast to superset flow rules, the match fields of
subset flow rules are a subset of the match fields of
f lowcm, which means that subset flow rules may or may
not be f lownm depending on the network traffic matched
by f lowcm.

• In case of the overlapping flow rules, their match fields
can overlap the match fields of f lowcm and also have at
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least one unrelated match field that is not present among
the match fields of f lowcm. Therefore, overlapping flow
rules may or may not be f lownm.

• Finally, disjoint flow rules have match fields which have
no overlap with the match fields of f lowcm.

The case scenarios for these flow rules are as follows. If
a network operator modifies the traffic route of a traffic flow
by adding a new flow rule which has the same match fields
with the previous flow rule but a different flow action set,
the previous flow rule becomes a compatible flow rule. In the
superset case, a flow rule with a larger granularity-level than
f lowcm is a superset flow rule. On the contrary, subset flow
rules can be utilised when the network operator wants to split
a traffic flow into multiple flows with smaller sets of match
fields.

During the classification process, if flow rules are classified
to be in one of these categories, i.e. subset, overlapping, or
disjoint types, PFC then continues flow rule classification.
When PFC discovers a compatible flow rule or a superset flow
rule, it stops the flow rule classification process and proceeds
to its priority control mechanism using the flow rules that have
been classified up to that point. In this paper, these flow rules
are called the classified flow rules. The procedure of the flow
rule classification is presented in Alg. 1.

Algorithm 1 Flow Rule Classification
Term
* X_ f lows is X flow rules

1: f lows = Collect all flows in SDN switch
2: f lowcm = find a current matching flow rule ( f low_command, f lows)
3: f lows = Filter ( f lows, lower priority than f lowcm )
4: f lows = Sort ( f lows, descending order of priority)

5: for f low in f lows do
6: -Insert f low into classi f ied_ f lows
7: type = Compare ( f low, f lowcm)

8: if type == compatible then
9: -Insert f low into compatible_ f lows

10: -Break
11: else if type == superset then
12: -Insert f low into superset_ f lows
13: -Break
14: else if type == subset then
15: -Insert f low into subset_ f lows
16: else if type == overlapping then
17: -Insert f low into overlapping_ f lows
18: else if type == dis joint then
19: -Insert f low into dis joint_ f lows
20: end if
21: end for

22: Return [classi f ied_ f lows, compatible_ f low, superset_ f low,
subset_ f lows, overlapping_ f lows, dis joint_ f lows]

2) Modes of operation in PFC: After flow rule classifica-
tion, PFC performs its priority control with the classified flow
rules, in order to assign the current traffic to the next matching
flow rule ( f lownm). The priority control operation depends on
the composition of the classified flow rules, which fall into
four categories as defined in Sec. III.B.1, and as a result, one
of four modes of operation is activated: compatible, superset,
subset, and disjoint mode. These are described as follows.

a) Compatible mode: This mode is activated if the
classification operation is terminated by the discovery of a

compatible flow rule1. There are a few cases in this mode,
depending on the types of other flow rules in the set.

Case 1: There is a compatible flow rule and all other flow
rules are disjoint flow rules. PFC then assigns the highest flow
priority to the compatible flow rule. The priority values of the
disjoint flow rules are not altered.

Case 2: There is a compatible flow rule as well as subset
flow rules, but no overlapping flow rules. Higher priority
values are assigned to the subset flow rules than the priority
of f lowcm and that of the compatible flow. The compatible
flow rule also have a higher priority than that of f lowcm.

Case 3: If the set of the classified flow rules contains both a
compatible flow rule and a number of overlapping flow rules,
then PFC assigns a higher flow priority to all the classified flow
rules than the priority of f lowcm. In doing so, PFC should aim
to preserve the order of priority among all the classified flow
rules so as to prevent an unwanted flow match, because the
overlapping flow rules may not only be matched by the current
traffic but also affect other traffic flows.

b) Superset mode: This mode is activated if there is no
compatible flow rule, but a superset flow rule has been detected
during the flow rule classification procedure1. In this case, PFC
assigns a higher flow priority to all the classified flow rules
than the priority of f lowcm, regardless of the types of the
classified flow rules. In doing so, PFC should aim to preserve
the order of priority among all the classified flow rules so as
to prevent an unwanted flow match, because the superset flow
rule may not only be matched by the current traffic but also
affect other traffic flows.

c) Subset mode: The subset mode is activated if there
are only subset flow rules in the classified rules, or there
is a combination of subset and disjoint flow rules after the
classification operation has finished. In this case, PFC assigns
a higher flow priority to the subset flow rules than the priority
of f lowcm. The priority values of the disjoint flow rules are
not altered.

d) Disjoint mode: The disjoint mode is activated when
all the classified flow rules are of type disjoint, or a combina-
tion of disjoint and overlapping. In this case, priority control
is skipped and the flow command is directly translated into
the southbound API because there are no alternative flow
rules. When there are also overlapping flow rules besides
disjoint flow rules, the overlapping flow rules are regarded
as disjoint flow rules because their match fields do not exactly
match those of f lowcm, and hence may not be qualified to
become f lownm, and other traffic flows may be served by
these overlapping flow rules.

The priority control mechanism of PFC is outlined in Fig. 4
and Alg. 2.

1Note that once the flow rule classification procedure detects a compatible
flow rule or a superset flow rule, the flow rule classification is terminated.
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Fig. 4. Prioirty control of PFC.

Algorithm 2 Priority control mechanism of PFC (Modes of
operation in PFC)

Term
* X_ f lows is X flow rules
* N (X_ f lows) is the number of X_ f lows

1: if classi f ied_ f lows > tholdPFC then
* Restriction for a single flow command

2: -Terminate PFC and perform a normal flow
3: else
4: if compatible_ f low then
5: if overlapping_ f lows then
6: -Assign higher flow priority to classi f ied_ f lows
7: -Insert classi f ied_ f lows into PFC_ f lows
8: -Terminate PFC operation
9: else if subset_ f lows then

10: -Assign higher flow priority to subset_ f lows
and compatible_ f low

11: -Insert subset_ f lows and compatible_ f low into
PFC_ f lows

12: -Terminate PFC operation
13: else
14: -Assign the highest flow priority to

compatible_ f low
15: -Insert compatible_ f low into PFC_ f lows
16: -Terminate PFC operation
17: end if
18: else if superset_ f low then
19: -Assign higher flow priority to classi f ied_ f lows
20: -Insert classi f ied_ f lows into PFC_ f lows
21: -Terminate PFC operation
22: else if subset_ f lows and overlapping_ f lows == None

then
23: -Assign higher flow priority to subset_ f lows
24: -Insert subset_ f lows into PFC_ f lows
25: -Terminate PFC operation
26: else
27: -Terminate PFC and perform a normal flow

operation
28: end if
29: end if

3) Principles in priority assignment with PFC: There are
a few principles that PFC follows when assigning a higher
priority to the classified flow rules.

• In the case that PFC performs its priority control with a
compatible flow rule and (or) subset flow rules (Case 1
and 2 of Compatible Mode, and Subset Mode), PFC can
use priority values from the highest priority, but should
keep the flow priority order of the flow rules unchanged.

• When PFC assigns priority values to all classified flow
rules (Case 3 of Compatible Mode and Superset Mode),
PFC should keep the flow priority order unaltered. Also,
the assigned flow priorities by PFC should not exceed the
priority of existing flow rules which already have a higher
priority than f lowcm before performing PFC. This is to
preserve the same match order before PFC operation. In
the case that there is a small priority difference between
f lowcm and the existing flow rules, PFC temporarily
increases flow priority of the existing flow rules to expand
this priority difference.

4) Priority assignment methods: There are two priority
control methods to assign a high (or the highest) flow priority
to a classified flow rule.

• Modification Method (MM) directly modifies the flow
priority of a classified flow rule.

• Duplication Method (DM) installs a new flow rule which
has a set of flow match fields and a set of flow actions
which are identical to the corresponding sets of a clas-
sified flow rule. This new flow rule has a higher (the
highest) flow priority than the priority of f lowcm.

5) Restrictions of PFC operation: In order to avoid ex-
cessive processing overhead (delay) caused by PFC in both
an SDN controller and SDN switches, there are restrictions
applied to the PFC operation: the number of flow rules inserted
by PFC is limited.

a) Number of flow rules added by PFC for a single
flow command: The number of f lowsp f c generated by a
single flow command is restricted in PFC because numerous
flow rules could be generated inadvertently. The maximum
number of f lowsp f c generated by a single flow command is
determined by a threshold denoted by tholdPFC . This is a
predefined value which is used in the priority control proce-
dure (lines 1-2 of Alg. 2). When the priority control procedure
is performed, PFC firstly compares the number of classified
flow rules to tholdPFC . If the number of the classified flow
rules exceeds tholdPFC , then PFC operates as the normal
interpretation function of the SDN controller (i.e. the priority
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control procedure is skipped and the flow command is directly
translated to the southbound API). Otherwise, the priority
control operations as outlined in lines 4-28 of Alg. 2 are
followed.

b) Total number of flows added by PFC in an SDN
switch: The total number of flow rules in f lowsp f c in an SDN
switch is also restricted in order to prevent potential excessive
processing overhead (delay) caused by PFC. A considerable
number of flow rules could be generated by multiple PFC
operations in a short time frame, although the maximum
number of f lowsp f c generated by a single flow command
is already limited to the threshold (tholdPFC). Before PFC
performs its flow rule classification procedure, it first checks
the number of existing flow rules in f lowsp f c in the SDN
switch. If the number of existing rules in f lowsp f c exceeds
γ * tholdPFC , PFC is operated as the normal interpretation
function. Here, γ > 1 is a predefined value. This happens,
when multiple PFC operations are performed in a short time 2.

If PFC receives a flow command for a f lowp f c , PFC should
not be applied to f lowp f c , and hence such a command is
directly converted to the controller’s southbound API.

The algorithm of the restrictions is presented in lines 1-2
of Alg. 2 and Alg. 3.

Algorithm 3 Restrictions of PFC operation: total number of
flows added by PFC in an SDN switch and PFC flow rules

Term
* X_ f lows is X flow rules
* N (X_ f lows) is the number of X_ f lows

1: if f low_command 1 flow change commands or
N (PFC_ f lows) > γ * tholdPFC or
f low_command is for PFC_ f lows then

2: -Terminate PFC and perform the normal flow operation
3: end if

6) Performing a Flow Command and Restoring a Flow Pri-
ority: After priority assignment operation has been completed,
PFC waits for a certain amount of time, called the guard time,
and then starts to perform the flow command. This guard time
has the purpose of preventing traffic disruption due to the
processing delay caused by priority assignment in an SDN
switch. This is necessary, because although the flow command
is applied after the priority assignment takes place in the SDN
controller, the actual assignment of new priority values in the
SDN switch may be still in progress.

It is desirable that the guard time should be set to a value
which is as small as possible in order that the controller
can quickly perform the flow command. However, it should
also be large enough to apply the flow command after the
completion of the priority assignment in the SDN switch.
Thus, it is necessary to have a suitable guard time to prevent
the traffic disruption whilst ensuring that flow commands are
not postponed excessively 3.

In order to determine a suitable guard time, the controller
periodically monitors switch status and PFC estimates the

2The flow rules in f lowsp f c which are not matched by any ongoing
network traffic can be removed (or restored) shortly after PFC operation.

3The benefit of PFC is that since a new flow rule f lowp f c is set up, which
services the ongoing traffic, the modification of the f lowcm does not affect
performance.

processing time (denoted by Tp) in the SDN switch at each
instance. Tp is defined as:

Tp = Tc − RTTcs, (1)

where Tc refers to the control latency, which is the time
interval between sending a control message from the SDN
controller and receiving a response from the SDN switch. Tc

can be measured when the controller sends control messages.
RTTcs is the round trip time (RTT) between the SDN con-
troller and the SDN switch, and it is also periodically measured
by a monitoring function. Based on Tp , the guard time (Tg) is
defined by:

Tg = β ∗ Tp, (2)

where β is a predefined value for Tg, which can be set by the
network operator. In Section IV-D, the impact of β on network
performance is explicitly discussed.

After applying the flow command, the last PFC operation
is to delete f lowsp f c (or to restore f lowsp f c to f lownm)
in order to restore flow tables to the same state when the
flow command is performed without PFC. Because f lowsp f c
may serve the current network traffic, PFC should delete (or
restore) f lowsp f c after the network traffic has been handled
in the SDN switch. In the case that MM is applied as the
priority control method, PFC first checks whether the network
traffic served by f lowsp f c exists or not. PFC restores the flow
priority of f lowsp f c if there is no traffic served by f lowsp f c .
The served traffic can be detected by checking the statistics of
f lowsp f c . When DM is used as the priority control method,
the restoring process can be simplified by setting an idle
timeout value when f lowsp f c are inserted. This idle timeout
value is set to a predefined value (denoted by Ti). The traffic
flow rules ( f lowsp f c) can be removed when there are no
matching packets related to f lowsp f c for an uninterrupted
time period equal to the idle timeout value [15].

The algorithm for the performing a flow command and the
restoring a flow priority is presented in Alg. 4 and the flow
chart for the overall PFC operation is shown in Fig. 5.

Algorithm 4 Performing a flow command and restoring a flow
priority

Tc and RTTcs are measured by a monitoring function
1: Tp= Tc - RTTcs
2: Tg= β * Tp

3: Wait (Tg )
4: Perform ( f low_command)
5: if Modification Method is used then
6: while there is traffic served by PFC_ f low do
7: Wait (monitoring period)
8: end while
9: Restore PFC_ f low

10: end if

IV. MEASUREMENT RESULTS

A. Measurement Environment

In this section, we evaluate the performance of PFC using
measurement taken using our SDN testbed. We implement
PFC in Ryu which is a component-based SDN framework [16].
PFC is executed when the SDN controller receives flow change
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Receive a flow_command 
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Fig. 5. Overall operation of PFC.
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Fig. 6. Measurement Environment: testbed network topology.

commands (delete command or modification command). Du-
plication Method (DM) is applied for the priority control of
PFC. The idle timeout (Ti), PFC threshold (tholdPFC) and
γ are set to 10 sec, 10 and 10 respectively. Tc and RTTcs

are periodically measured by a monitoring function in the
SDN controller and the monitoring period is set to 3 sec.
In Section IV.B and Section IV.C, there are two cases of
PFC: PFC without guard time and PFC with guard time. The
PFC without guard time performs the flow change commands
without guard time. In case of PFC with guard time, β is set to
3. In Section IV.D, several guard methods are used to consider
the performance effect according to the guard time methods.
For comparison, the normal flow operation which translates
flow commands to OpenFlow commands in Ryu framework is
used. We constructed a network topology using hardware SDN
switches, an SDN controller, and end terminals. Two Cisco

switches (Nexus 3000 series) which support OpenFlow 1.3
are applied as SDN switches. The Cisco switches use double-
wide TCAM carving configuration for a 12-tuple match, which
supports a maximum of 700 flows for each switch. The SDN
controller and the end terminals are operated on PC (i5-2500U
@ 3.3GHz with 8GB of RAM) running 64-bit Ubuntu 14.04.
The network topology is shown in Fig. 6. The client and
server are connected through the two SDN switches, and
there are two links between the SDN switches. The SDN
switches are connected with the SDN controller through the
management network which is used for control messages. All
network interfaces in this topology have same bandwidth (1-
Gbps port). TCP and UDP are used as transport network
protocol and Cubic congestion control [17] is applied in TCP.
Measurements are repeated 10 times and all results in Section
IV.B and Section IV.C are averaged. The parameters for the
measurements are summarized in Table I.

B. Performance Evaluation in Priority-based Flow Control

First, we investigated the effect of path change events on
PFC and the normal flow operation during packet forwarding.
For the path change events, the traffic path for ongoing traffic
is changed to another path by deleting f lowcm during packet
forwarding and the number of path change events varies
between 1 and 8. In case of the multiple path change events,
the traffic route periodically fluctuates between path 1 and path
2 which are shown in Fig. 6. Transmission disruption time and
packet loss due to path change events are firstly evaluated and
then, the effect of path change events is considered on TCP
throughput performance.

Figure 7 shows the transmission disruption time of a current
traffic due to a path change event. The traffic passes through
path 1 and the traffic path is changed to the path 2 once
during packet forwarding. In this measurement, UDP is used
as transport layer protocol. The vertical line with an arrow
indicates the starting point of the path change event and
the vertical line with square represents the end point of the
transmission disruption time when the normal flow operation
is used for the path change. The vertical line with circle
presents the end point of the disruption time when PFC without
guard time is applied for the path change. The transmission
disruption time is measured by analyzing traffic interval at end
terminals. The results show that the transmission disruption

TABLE I
MEASUREMENT PARAMETERS

PFC parameter value
idle timeout (Ti ) 10
PFC threshold (tholdPFC ) 10
monitoring period 3 sec
β 1∼3
γ 10
topology parameter value
SDN switch model Cisco Nexus 3000 series
SDN controller Ryu
OpenFlow version 1.3
link bandwidth 1 Gbps
maximum segment size 1500 bytes
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Fig. 7. Transmission disruption time due to a path change event.
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Fig. 8. Average transmission disruption time versus the number of path change
events.

time occurs in both the normal flow operation and PFC without
guard time cases. In case of the normal operation, the path
change causes the disruption time for approximately 64ms.
When PFC without guard time is applied for the path change,
the disruption time is roughly 16ms. The disruption time of
the normal flow operation is related to the total processing
delay for the path change in SDN switch. In other words, this
disruption time is affected by both the processing delay to
search f lownm and the processing delay to apply the current
traffic to f lownm in SDN switch. In case of PFC without guard
time, the disruption time is associated with the processing
delay to apply the current traffic to f lownm in SDN switch
because PFC without guard time can eliminate the processing
delay to search f lownm in SDN switch. On the basis of both
the disruption times, the processing delay to search f lownm

can be calculated by subtracting the disruption time of PFC
without guard time from the disruption time of the normal
flow operation. In Fig. 7, there is no vertical line for PFC with
guard time because the current traffic does not experience the
traffic disruption when PFC with guard time is used for the
path change, which signifies that PFC with guard time can
prevent both the disruptions in SDN switch.

Figure 8 shows the average transmission disruption time
of a current traffic according to path change events. In this
measurement, UDP is also used as transport layer protocol.
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Fig. 9. Average number of packet loss versus the number of path change
events.

In Fig. 8, the black bar graph indicates the results of the
normal flow operation. The gray bar graph depicts the results
of PFC without guard time, and the white bar graph represents
the results of PFC with guard time. The results show that
the transmission disruption time in both the normal operation
and PFC without guard time linearly grows with an increase
in the number of path change events. This is because the
transmission disruption occurs whenever the ongoing traffic
path is modified, and the amount of the disruption time due
to a path change event is almost consistent: this amount of
the disruption time is almost the same as the results in Fig. 7.
However, PFC with guard time does not cause the disruption
time regardless of the number of path change events because it
eliminates all disruption factors caused by path change events.
In other words, a current traffic path can be changed without
the disruption time by using PFC with guard time.

Figure 9 shows the average number of packet loss of a cur-
rent traffic according to path change events. The measurement
scenario and the representation of the results are the same as
in Fig. 8. The results demonstrate that packet loss events occur
when the normal operation and PFC without guard time are
used to modify a traffic path of the current traffic. The results
also have a similar shape with Fig. 8, which indicates that the
packet loss events are proportional to the disruption time. This
is because the packet loss events in this scenario are caused by
the transmission disruption in SDN switch and UDP traffic is
directly affected by the disruption time. Moreover, this packet
loss is independent of network conditions. However, PFC with
guard time does not experience packet loss events regardless
of the number of path change events, which means PFC with
guard time support a lossless packet transmission. This is
because it eliminates the all disruption factors caused by a
path change event, which is also shown in Fig. 8.

In Fig. 10, the effect of path change events is considered on
TCP throughput performance. The representation of the results
is the same as in Fig. 8. In this scenario, an end terminal
generates TCP traffic during 20 sec and path change events
occur during the packet transmission. The results indicate that
the TCP throughput performance in both the normal operation
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Fig. 10. Average throughput versus the number of path change events.

and PFC without guard time decreases as the number of path
change events increases. This is a natural consequence of the
packet loss as shown in Fig. 9 because packet loss shrinks a
TCP congestion window, which diminishes TCP throughput.
However, the normal operation and PFC without guard time
have the similar throughput performance although the normal
operation loses more packets than PFC without guard time
in Fig. 9. This means that the amount of lost packets due to
path change events rarely influences TCP throughput perfor-
mance: when burst packet loss occurs, the number of packet
loss events mainly influences TCP performance. In case of
PFC with guard time, there is no performance degradation
according to path change events because PFC with guard time
can eliminate both the disruption time and the packet loss as
shown in Figs. 8 and 9.

C. Overhead of Priority-based Flow Control

In this chapter, we investigate the overhead of PFC accord-
ing to flow table occupancy and the number of PFC flow rules.
The effect of flow table occupancy on PFC is firstly considered
and then a processing delay and additional control packets
generated by PFC are examined according to the number of
PFC flow rules ( f lowsp f c).

Figure 11 shows the average time required for a path change
according to flow table occupancy in SDN switch. In this
measurement, the number of f lowsp f c is fixed to 10 but
the flow table occupancy varies between 10% and 80%. The
representation of the results is the same as in Fig. 8. In case
of the normal operation, the time required for a path change
is almost constant regardless of the flow table occupancy
because the normal operation is independent of the flow table
occupancy: it simply performs flow commands. In the cases of
PFC without guard time and PFC with guard time, the required
time for a path change grows with the increase in the flow
table occupancy. This is due to that PFC (with/without guard
time) firstly performs the flow rule classification for a path
change and the processing delay for the flow rule classification
increases with the growth of the number of flow rules in SDN
switch. The required time for a path change is similar in both
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Fig. 11. Average time required for a path change.
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Fig. 12. Average guard time versus flow table occupancy.

PFC without guard time and PFC with guard time because a
path change is conducted by the priority control of PFC in
both the cases, which means the guard time of PFC does not
affect the time required for a path change.

Figure 12 shows the average guard time of PFC according
to flow table occupancy in SDN switch. The measurement
scenario is the same as in Fig. 11. The results show that
the average guard time grows with increasing the flow table
occupancy. The reason for this is that Tc which is the main
factor to determine guard time increases in proportion to the
flow table occupancy. However, note that the guard time of
PFC only generates additional latency before performing a
flow command, which does not influence the time required
for a path change in PFC mechanism.

Figure 13 shows the average processing delay of PFC versus
the number of f lowsp f c . In this measurement, the number
of total flow rules in each SDN switch is fixed to 120 but
the number of f lowsp f c varies between 1 and 100. The
dotted lines represent the average processing delay in SDN
switches. The processing delay in SDN switches is measured
by Tcontrol - RTTcontrol . Tcontrol is the time interval between
sending flow commands with a control message from the
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Fig. 13. The average processing delay of PFC.

SDN controller and receiving the response of the control
message from SDN switch. In this measurement, the barrier
messages are used as the control message. RTTcontrol is the
RTT between SDN controller and SDN switch. The bar graph
indicates the processing delay of PFC in SDN controller. The
black bar represents the processing delay when PFC inserts
f lowsp f c into SDN switch 1 and the white bar shows the
processing delay when PFC inserts f lowsp f c into SDN switch
2. The lines represent the total processing delay which is the
sum of the processing delay in SDN controller and the process-
ing delay in SDN switch. Note that these processing delays
indicate the additional latency due to inserting f lowsp f c by
PFC before performing the flow command.

The results show that the all processing delays grow with
increasing the number of f lowsp f c . It is also shown that al-
though the processing delays in the SDN switches are slightly
different between the SDN switches, both SDN switches have
similar processing performance because they are the same
model. In this measurement, the processing delay in SDN
switch is a dominant factor of the total processing delay of
PFC when small f lowsp f c are controlled by PFC. In the case
that there are a few f lowsp f c (the case that the number of
f lowsp f c is under 10), the processing delay in SDN controller
is negligible in comparison with the processing delay in SDN
switch. However, in the case that the number of f lowsp f c
is greater than 20, the processing delay in SDN controller
exceeds the processing delay in SDN switch. These results
indicate that the processing performance of SDN controller
can be a dominant factor in the total processing delay of PFC
when PFC handles considerable f lowsp f c . This phenomenon
is because the increment of the processing delay according
to f lowsp f c is different between SDN controller and SDN
switch. As shown in Fig. 13, the amount of the increment
of the processing delay in SDN switch is less than that of
the processing delay in SDN controller although both the
processing delays linearly increase with the growth of the
number of f lowsp f c .

Table II shows the control messages of the normal flow
operation and PFC to perform a flow command. In this table,
only control messages which are related to performing a flow

command are considered. PFC with DM and PFC with MM
indicate the PFC using Duplication Method (DM) and the
PFC using Modification Method (MM), respectively. In case
of the normal flow operation, the smallest amount of the
control messages is required: one control message and one
TCP ACK packet are required to perform a flow command.
This is because the normal flow operation just sends a flow
control message and receives an ACK. The amount of control
messages sent by PFC are different depending on the priority
assignment methods (DM and MM) as well as the number of
f lowsp f c .

In case of PFC with DM, flow_add messages are firstly
required to add f lowsp f c . α indicates the number of flow_add
messages which is equal to the number of f lowsp f c . Each
flow_add message generates a TCP ACK packet for the
acknowledgment of the flow_add message. After flow_add
messages are handled, the control messages for a flow com-
mand are then used, which is the same as the normal flow
operation: one control message and one TCP ACK packet.
Thus, the total number of the control messages of PFC with
DM to perform a flow command is 2 ∗ (α + 1).

In case of PFC with MM, the required control messages
to perform a flow command is the same as that of PFC with
DM (2 ∗ (α + 1)) but additional control messages are required
to restore the priorities of f lowsp f c . Firstly, additional flow
status information may be required in PFC with MM because
PFC with MM needs to monitor a current traffic unlike PFC
with DM. τ indicates the number of additional monitoring
messages to check the flow status of the current traffic and
τ can be zero if PFC relies on a monitoring function to
monitor the flow status. If PFC with DM uses the additional
monitoring messages, TCP ACK packets are also generated for
the acknowledgment of the additional monitoring messages:
the required number of control messages for the monitoring
is (2 ∗ τ). After the current traffic is processed, PFC with MM
uses flow control messages (flow_mod) to restore f lowsp f c
to f lowsnm. These control messages also cause TCP ACK
packets: the required number of control messages for this
restoration equals twice the number of f lowsp f c (2∗α). Thus,
the total number of control messages of PFC with MM is
2 ∗ (2 ∗ α + τ + 1).

TABLE II
CONTROL MESSAGES FOR A FLOW COMMAND

Methods Control Messages The Number of Packets
flow delete 1

Normal TCP ACK 1
ALL 2
flow add α

PFC with DM flow delete 1
TCP ACK α+1
ALL 2*(α+1)
flow mod (add) 2*α
flow delete 1

PFC with MM flow stats request τ
flow stats reply τ
TCP ACK 2*α+1
ALL 2*(2*α+τ+1)
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Fig. 14. Transmission disruption time according to the guard time methods.

D. Effect of Guard Time in Priority-based Flow Control

In this chapter, we investigate the effect of guard time on
PFC. In order to evaluate the guard time effect, several guard
time methods are applied in PFC. Because the purpose of
guard time in PFC is to wait for the completion of the priority
control in an SDN switch, guard time is related to the traffic
disruption due to the processing delay in conveying a current
traffic to f lowsp f c in the SDN switch.

Figure 14 shows the transmission disruption time of PFC
according to guard time methods. The results are represented
by box-and-whisker plots and the measurement scenario is
the same as in Fig. 7. The current method uses purely Tp

for guard time and the average method utilizes the average
value of Tp . The beta methods use Tg with their beta values
and the maximum method utilizes the maximum value of
Tp during operation of PFC. In the results, the no guard
time method causes the longest transmission disruption time
among the guard time methods. This is because the processing
delay in conveying a current traffic to f lowsp f c in SDN
switch fully affects packet forwarding. In the current method,
the transmission disruption time is relatively variable than
the other methods, which means solely utilizing Tp is not
suitable for guard time. The average method also generates the
transmission disruption time although this disruption time is
less than that of the no guard time method. Thus, the average
method can only mitigate the transmission disruption time.
When PFC uses the beta methods, the disruption time can
be eliminated: only one experiment causes the transmission
disruption when the beta value is set to two. The maximum
method can also eliminate the transmission disruption time.
The elimination of the transmission disruption in the beta
methods and the maximum method is owing to the sufficient
guard time which is shown in Fig. 15.

Figure 15 shows the guard time of PFC according to the
guard time methods. The upper subgraph indicates the guard
time for SDN switch 1 and the lower subgraph represents the
guard time for SDN switch 2. Note that guard time is assigned
to each SDN switch based on its processing performance. The
representation of the results and the measurement scenario are
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Fig. 15. Guard time of PFC.

the same as in Fig. 14. The no guard time method naturally
does not use guard time, which means there is no additional
latency for guard time. However, this method makes PFC
vulnerable to the processing delay in conveying a current
traffic to f lowsp f c in the SDN switch. In case of the current
method, the guard time is relatively distributed to near 15ms
which is the average of the guard time in the current method.
Because the disruption time of the current method shown
in Fig. 14 also fluctuates, both the results signify that the
variation of the guard time cannot reflect the variation of
the processing delay in SDN switch, which also indicates
that the guard time cannot be optimized by using Tp directly.
The average method has on average slightly less guard time
(roughly 12ms) than the current method and this guard time
cannot fully eliminate the disruption time as shown in Fig.
14. The guard time in the beta methods grows with the
increase of the beta value and the maximum method utilizes
the longest guard time. However, as shown in Fig. 14, the beta
methods and the maximum method can eliminate transmission
disruption time in SDN switch.

To summarize the results of the effect of guard time, there is
a trade-off between guard time and the transmission disruption
time within a certain threshold. In cases of the current method
and the average method, the transmission disruption time
increases with the decrease of guard time. On the other hand,
if the guard time exceeds a certain threshold, the transmission
disruption can be prevented. In the cases of the beta methods
and the maximum method, the disruption time is almost
eliminated regardless of the guard time.

V. CONCLUSION

In this paper, we present a novel flow control mechanism
for SDN in order to prevent transmission disruption, which
is caused by the processing delay due to a flow modification
process in an SDN switch. PFC is a software-based solution in
SDN controller, which searches f lownm and shifts a current
traffic from f lowcm to f lownm by using priority control.
Through the measurement in our testbed, we determined that
PFC can dynamically change a traffic path without trans-
mission disruption although additional latency and control
messages can be generated to perform a flow command.
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Consequently, PFC can achieve higher TCP throughput than
the normal flow operation, which experiences a throughput
degradation due to transmission disruption. As part of our fu-
ture work, an evolved framework and mechanism for multiple
SDN controllers will be considered. Lastly, we believe that
PFC can contribute to dynamic traffic management in SDN.
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