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Abstract—With the emergence of the Internet-of-Things (IoT)
and seamless Internet connectivity, the need to process streaming
data on real-time basis has become essential. However, the
existing data stream management systems are not efficient in
analyzing the network streams for real-time anomaly detection.
In this context, the existing anomaly detection approaches are
not efficient because they cannot be applied to networks, are
computationally complex, and suffer from high false positives.
Thus, in this paper a hybrid data processing model for network
anomaly detection is proposed that leverages Grey Wolf Op-
timization (GWO) and Convolutional Neural Network (CNN).
To enhance the capabilities of the proposed model, GWO and
CNN learning approaches were: (i) enhanced with improved ex-
ploration, exploitation and initial population generation abilities
and (ii) revamped dropout functionality. These extended variants
are referred to as Improved-GWO (ImGWO) and Improved-
CNN (ImCNN), respectively. The proposed model works in two
phases for efficient network anomaly detection. In the first phase,
ImGWO is used for feature selection in order to obtain an optimal
trade-off between two objectives, i.e., reduced error rate and
feature-set minimization. In the second phase, ImCNN is used
for network anomaly classification. The efficacy of the proposed
model is validated on benchmark (DARPA’98 and KDD’99) and
synthetic datasets. The results obtained demonstrate that the
proposed cloud-based anomaly detection model is superior in
comparison to the other state-of-the-art models (used for network
anomaly detection), in terms of accuracy, detection rate, false
positive rate and F-score. In average, the proposed model exhibits
an overall improvement of 8.25%, 4.08% and 3.62% in terms of
detection rate, false positives, and accuracy, respectively; relative
to standard GWO with CNN.

Index Terms—Anomaly detection, Convolutional Neural Net-
work, Cloud Computing, Feature selection, and Grey Wolf
Optimization.

I. INTRODUCTION

THE need for increased computational power and on-

demand services as per the user’s requirements has paved

the way to one of the most powerful technologies of the
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modern era, Cloud Computing (CC). According to Gartner,

CC has been growing at a rate of 40% and will continue

to rise at a rate of more than 25% per year [1]. However,

transition from traditional client-server architectures to CC is

not straightforward and there are a number of operational and

security challenges induced due to its underlying virtualized

environment. These risks further aggravate with the emergence

of the Internet of Things (IoT) in which smart devices com-

municate with each other using an open channel, Internet.

Moreover, these connected devices, deployed across different

enterprises, generate large volumes of streaming data, ranging

from micro-blog feeds and financial information to complex

network monitoring logs.

Recent studies have shown that intruders have successfully

launched several attacks, which have caused unprecedented

levels of disruption in various CC-hosted application services.

Recent insights on Cloud Adoption and Security by Forbes

says that 49% of businesses are delaying cloud deployment

due to cybersecurity issues [2]. According to existing propos-

als and reports, more than 20% of enterprises in the world wit-

nessed at least one form of Denial of Service (DoS) attack on

their infrastructures. For instance, DoS attack on the Amazon

cloud infrastructure caused the BitBucket site to be unavailable

for a substantial amount of time [3]. Likewise, Dropbox was

rendered un-operational for more than 15 hours [4]. Apart

from this, researchers from Symantec have discovered that

the growing dependence on Cloud services has opened doors

for more severe forms of intrusions. Thus, in order to remain

resilient, the cloud needs to possess the ability to react not only

to the known threats, but also to new emerging threats which

may target its underlying networking infrastructure. To combat

these challenges, researchers have extensively used Intrusion

Detection Systems (IDSs) as a defensive strategy for cloud

security. IDSs used in cloud environments include misuse

detection, anomaly detection, hypervisor introspection (HVI),

virtual machine introspection (VMI), and a combination of

these. Among all these techniques, anomaly detection with

respect to heterogeneous traffic flow data generated due to

diverse application types, is still in its infancy.

More recently, different variants of anomaly detection tech-

niques, amalgamated with IDSs, were proposed in the lit-

erature [5], [6]. For instance, Pandeeswari et al. [7] pro-

posed an IDS at the hypervisor layer to detect attacks in

cloud environments using Fuzzy C-Means clustering algorithm

along with Artificial Neural Network (FCM-ANN). Similarly,

Watson et al. [8] proposed an online cloud anomaly detec-

tion technique which uses one-class Support Vector Machine
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(SVM) algorithm to detect various types of malware and DoS

attacks in CC infrastructures. Further, Ye et al. [9] proposed

an anomaly detection framework based on Software-Defined

Networks (SDN) for cloud setups. Sha et al. [10] designed a

multi-order Markov chain based model for anomaly detection

using DARPA dataset. In [11], Tan et al. used Multivariate

Correlation Analysis (MCA) for accurate characterization of

known and unknown DoS attacks. Although competent in gen-

eral anomaly detection, most of these approaches suffer from

high false alarm rates and elevated computational complexity.

Hence, these schemes are not efficient particularly for network

anomaly detection in streaming data, which requires real-time

analysis [12].

Recently, another trend has grabbed the attention of

researchers for network anomaly detection, namely deep-

learning (DL). It is a widely-accepted machine learning ap-

proach that plays a significant role in detecting the most

relevant features from huge datasets using back propagation.

Ever since its inception, different architectures have been

proposed in the literature such as-Deep Neural Networks, Deep

Belief Networks, Recurrent Neural Networks and Convolu-

tional Neural Networks (CNN) [13]. Among these techniques,

CNNs are widely utilized for data classification due to their

inherent ability to be trained with minimum pre-processing

requirements; which makes them suitable for network anomaly

detection.

A. Motivation

It is evident from the above discussion that a number of

proposals have been suggested to detect anomalous behavior

in network traffic using a wide variety of techniques such as-

SVM, MCA, FCM-ANN, etc. However, these techniques are

inefficient because of their reduced accuracy and high false

positive alarms. Additionally, due to the heterogeneous and

diverse nature of cloud environments, existing techniques may

not be applicable to handle the challenges induced due to the

existence of virtualized environments and different types of

application workloads [14]. In order to tackle these exploding

security risks, an efficient anomaly detection technique for

streaming data needs to be designed. It should involve careful

examination of both historical and real-time data streams with

high accuracy and minimal computational complexity [15],

[16].

Hence, an anomaly detection model particularly for hetero-

geneous data in CC networking environments is designed in

this paper. Two important issues are explored in the proposed

hybrid model (see Fig. 1), i.e., relevant feature set selection

from the traffic stream repository and their classification into

benign and anomalous classes. In the proposed model, feature

extraction is achieved using Grey Wolf Optimization (GWO)

[17], a meta-heuristic approach based on evolutionary com-

putation which is widely accepted for its simplicity, flexibility

and ability to yield optimal results. On the other hand, anomaly

classification is done using CNN, a promising deep learning

approach. In addition to this, the proposed work also enhances

the capabilities of the proposed model with (i) improved explo-

ration, exploitation and initial population generation abilities

for GWO and (ii) revamped dropout functionality for CNN.

The improvised version of CNN with dropout functionality not

only helps avoid over-fitting but also increases the weights

of the most relevant features of the network. This in turn,

simultaneously enhances the accuracy of the architecture while

helping it converge faster.

GWO and CNN are powerful techniques that have been ex-

ploited by the research community in the networking domain

to address various problems. For instance, Yang and Zhou

[18] used GWO to design an effective IDS based on cloud

with improved exploration and exploitation capabilities. Mao

et al. [19] proposed the use of CNN for path prediction in

SDN by learning from the past experiences and pro-actively

updating the routing paths. Here, CNN was deployed at the

controller and was specifically used to overcome the issues

induced by fixed path routing decisions. In another work, Ji et
al. [20], [21] employed CNN for network fault prediction by

effectively analysing the log files. In this work, the log files

were treated as textual files for monitoring the realtime status

of the network and predicting any network faults using CNN.

Likewise, CNN has also been employed for network intrusion

detection in different forms.

B. Contributions

The major contributions of the proposed work are summa-

rized as follows:

• We design an efficient hybrid model using GWO and

CNN for efficient network anomaly detection in cloud

setups. GWO is used for multi-objective feature extrac-

tion, while CNN is used for anomaly classification.

• We propose an improvised version of GWO (ImGWO)

which enhances the exploration, exploitation, and initial

population generation abilities of the standard GWO on

streaming data.

• The capabilities of the standard CNN are improved by re-

vamping the functionality of dropout layer using uniform

distribution approach. The modified version of CNN is

referred as ImCNN.

• We provide qualitative and quantitative comparison of the

proposed hybrid model with the current state-of-the-art

models on benchmark and synthetic datasets for network

anomaly detection.

C. Organization

The rest of the paper is structured as follows. Section II

presents the system model followed by an illustrative descrip-

tion of ImGWO and ImCNN in Section III. The proposed

hybrid model for network anomaly detection is described in

Section IV. Simulation results are summarized in Section V

followed by conclusion and future directions in Section VI.

II. PROPOSED HYBRID MODEL

This section provides an overview of the proposed hybrid

model used for network anomaly detection in cloud setups

in the context of streaming network traffic data. The detailed

architectural diagram is depicted in Fig. 1. The individual
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Fig. 1: Proposed hybrid model using ImGWO and ImCNN for network anomaly detection in cloud setup.

data processing phases are namely-i) dataset selection, ii)

data preprocessing for ImGWO, iii) feature selection using

ImGWO followed by iv) output generation phase, v) data

preprocessing for ImCNN, vi) data splitting, and vii) anomaly

detection using ImCNN. Their detailed description is provided

below.

Dataset selection is the first phase of the proposed hybrid

model. In this paper, three different datasets were utilized

which belong to two categories, i.e., benchmark and synthetic.

From these datasets, the tcpdump logs are extracted as they

predominantly contain the traffic information pertaining to CC

infrastructure. These logs comprise of TCP and UDP packets

which constitute almost 90% of the datacenter traffic and thus,

are used to represent the network traffic flow data. For these

reasons, the considered log files have been considered to detect

anomalies over the Internet traffic. During the second phase,

the proposed model processes the input data for ImGWO.

The individual TCP and UDP packets are extracted from the

tcpdump logs and are given as input to the ImGWO. Followig

this, feature extraction phase is executed which is considered

as an important prerequisite in any classification problem

ranging from complex images and videos to textual and audio

contents. Hence, ImGWO is particularly used to extract the

relevant feature sets from the given input dataset such as-

source IP address and port number, destination IP address

and port number, etc. ImGWO is a multi-objective feature

extractor that helps to find the optimal number of features from

the available dataset with high classification performance. The

improvised packets with the relevant features are provided as

the output of this phase. Next, the output acquired from the

previous step is preprocessed and converted to RBG format

images (32× 32× 5). These images serve as the input to the

next phase. Finally, the dataset comprising of RBG images is

split in the ratio of 70:30; wherein 70% data is used during

the training phase, whereas the rest is utilized in the testing

phase of the ImCNN. In the former phase, the hybrid model

is trained to detect anomalous activities in the network traffic

data, while in the latter phase, it identifies the anomalous

activities by applying the underlying logic on the historical

data and current input data. Finally, during the anomaly

detection phase, ImCNN, a multi-class classifier is used to

classify the anomalies of the traffic streams. It is comprised

of 8 layers to achieve the desired level of classification. The

detailed description of the layers is provided in Section III-B.

III. EXTENSIONS TO GWO AND CNN

This section presents the detailed description of the im-

provements done to the standard GWO and CNN techniques

to accelerate convergence and maximize the accuracy. These

modifications are discussed as follows.

A. Improved-GWO Variant

The existing GWO suffers from several problems like

random initial population generation and limited exploration

and exploitation capabilities which hamper the local search

capability of the algorithm and affect the convergence. The

improvements corresponding to these shortcomings are dis-

cussed herewith:

1) Improved Initial Population Generation: In traditional

GWO, the initial population is generated randomly over the

search space which may lead to lack of diversity of the pack

of wolves in the considered search space. Numerous studies

have suggested that the initial population plays a significant

role in the global convergence speed and the optimality of the

obtained solution. Motivated by this fact, this work generates
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an appropriate initial population using uniform distribution,

wherein the positions the of wolves (xji ) are likely to be

equally distributed [22]. The computation of xji is achieved

as follows:

xji = xjmin + U(μ, σ)× (xjmax − xjmin) (1)

here, positions of wolves, xji are generated using the

uniform distribution with the mean and standard deviation of

population (μ and σ) respectively.

2) Improved Exploration and Exploitation Capability: The

existing coefficient vectors �A and �C in GWO are used for the

exploration and exploitation, respectively. Using �A in every

iteration, population of wolves are segregated, wherein half of

the iterations are devoted to exploration (when |A|>1), while

half is dedicated to exploitation (when |A|<1). However, this

division of population may lead to faster convergence with

false pareto front. In order to resolve these problems, adaptive

mutation is applied to extend the exploration ability of GWO.

To control the probability and range of mutation on each wolf,

a non-linear function (Pm) is incorporated which is given as:

Pm = 0.5e−10∗t/T + 0.01 (2)

where t is the present iteration and T denotes the maximum

number of iterations. It can be seen from Eq. (2) that increasing

iterations causes Pm to increase exponentially. If it exceeds

a random number in the range of [0,1], the mutation is

performed as shown in Eq. (3) below; where N elements from

the pack of wolves are picked to control the mutation range

within the search space.

N = max

{
1,

⌈
D −

(
t

T

)γ

× Pm

⌉}
(3)

Further, �C is not linearly related to �A. This component

provides random weights to prey in order to stochastically

emphasize (C>1) or de-emphasize (C<1). Hence, to further

increase the randomness of �C at all times, this paper suggests

the use of a statistical distribution as mentioned below [23]:

r2 = r
′
2 +

[
α×N(0, 1)3t

(rmax
2 − rmin

2 )

t

]
(4)

where, r2 is the random variable generated during the present

iteration and r
′
2 is the random number generated during the

previous iteration. The variables rmax
2 and rmin

2 are the upper

and lower bounds on r2 and the power of generating random

number using N(0, 1) is set to 3 based on extensive numerical

experimentation. This is helpful in avoiding the local optima

stagnation especially during the final iterations.

B. Improved-CNN Variant

CNNs are widely utilized in the domain of image classifica-

tion due to their limited pre-processing capability. This implies

that, in contrast to classical algorithms involving manual inter-

vention, a CNN evolves to learn the filters by itself analogous

to classical algorithms involving manual intervention. Hence,

this trait of CNN can be regarded as its major advantage

over the existing schemes in addition to its ability to provide

separation from the prior knowledge. However, the concept

of “Dropout” plays an essential role in deep CNN as well as

CNN in general. One of the serious issues with CNNs is over-

fitting, which is induced due to the large network logs (big

data). Such networks make it difficult for CNN deep learning

technique to learn the relevant features quickly. The main

ideology behind dropout is to randomly dropout a few units

and their respective connections from the network. This is

done during the training phase so that the units do not co-adapt

a lot. This is achieved by configuring the output of the hidden

layers (with probability=0.5) to zero. The dropped neurons are

thus eliminated from the process and do not contribute in back

propagation.

Mathematically, the conventional dropout scheme can be

understood using the below mentioned equations:

r(l) = Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)
z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

In the above equations, the indices l and i denote the hidden

layer and hidden units, respectively. Every layer l is associated

with a vector of inputs and outputs which are represented

using z
(l)
i and y

(l)
i , respectively. The symbols w

(l)
i and b

(l)
i

refer to the weights and biases associated with underlying

layer l. In the conventional dropout approach, a vector of

random numbers (r(l)) is initially generated using Bernoulli

distribution, which is then multiplied element-wise with y
(l)
i ,

to yield ỹ(l) (thinned outputs). The obtained value of ỹ(l) acts

as input to the next layer, and is used to compute the value

of z
(l+1)
i . This process is repeated for all the layers using the

activator function f .

Unlike the conventional dropout, the proposed dropout

approach is based on the uniform distribution. It can be

viewed as the extension of the conventional dropout scheme

which focuses on enhancing the weights of the relevant feature

maps. In other words, the proposed dropout scheme not only

abandons some of the units and connections from the network

like conventional dropout, but also alters the weights of some

of the units (which have respective weights below 0.5). This

task not only helps avoid the over-fitting but also increases

the weights of the most relevant features of the network.

This in turn, simultaneously enhances the accuracy of the

architecture while helping it converge faster. Mathematically,

the overall scheme is presented by Algorithm 1. Initially, list

L is initialized for all the hidden layers with weights less than

or equal to 0.5 (Line 1). Then, vector rl is initialized with

the random numbers using the uniform distribution (Line 2).

Following this, thinned outputs are computed using pair-wise

multiplication of rl and yl, followed by zl+1
i ’s computation

(Line 3-4). Finally, the outputs of the next layer, i.e., (l + 1)
are estimated and the process is repeated for all the layers in

L (Line 5).
1) Complexity Analysis: The overall complexity of the

algorithm is O(m); wherein m denotes the number of hidden

layers employed in dropout.
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Algorithm 1 Modified dropout in ImCNN

1: Initialize List L = {l1, ...., lm}; ∀y(l) <= 0.5
2: Compute r(l) ∈ [0, 1] using uniform distribution

3: Compute ỹ(l) = r(l) × y(l);∀li ∈ L
4: Compute z

(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i ;∀li ∈ L

5: Compute y
(l+1)
i = f(z

(l+1)
i );∀li ∈ L

IV. A ROBUST HYBRID MODEL FOR ANOMALY

DETECTION

The hybrid model for network-wide anomaly detection

works in two phases and the their detailed operation is

provided in what follows.

A. Feature Selection using ImGWO

Since the performance of the classifier highly depends on

the number of features (such as-source IP address and port

number, destination IP address and port number, etc.), the

problem consists of finding the most relevant features to

maximize its performance. Let, D = {x1, x2, · · · , xn} be

a given dataset with n objects and F = {f1, f2, · · · , fm}
be the feature set with m number of features. Now, the

feature selection process can be considered as a mapping

of S(D,F,Ade) → F
′
, where F (.) is the feature selection

algorithm, Ade is the decisive attribute that represents class

labels and F
′ ⊂ F , where |F ′ | = k (k<m) are the number

of selected features. The aim of the proposed feature selection

technique is to compute F
′

which are highly relevant to the

dataset D as well as less related to each other.

In the proposed model, ImGWO is used to formulate the

multi-objective feature selection problem; wherein the best

solution for each wolf is to be determined from a set of

potential non-dominated solutions. In this context, the fitness

function of the participating wolf swarm is mathematically

described below.

1) Fitness Function of Wolf Swarm: Feature selection in the

context of network anomaly detection typically suffers from

two major conflicting objectives: to minimize the number of

features and to reduce the error rate of classification. Due to

the presence of trade-offs between two or more conflicting

objectives, optimal decisions becomes difficult. Thus, a single

objective problem with several constraints may not be able to

adequately represent this problem. In this case, it is mandatory

to use multi-objective optimization which operates under a

certain set of constraints in order to minimize or maximize

the set of objective functions.

The proposed technique aims to compute a subset of fea-

tures that yields the lowest Error Rate (E) for the classifier.

Several methods have been adopted to determine the classifier

performance such as-Hamming loss, ranking loss, accuracy,

etc. In order to evaluate the classification error rate of a grey

wolf, this paper uses accuracy as an evaluation metric. The

fitness function to minimize (E) is given in Eq. (5). During

the evolutionary training process, this function tests each

possible subset of features to find the one which minimizes

the classification error involved in feature selection.

E = (FP + FN)/(TP + TN + FP + FN) (5)

where FP, FN, TP and TN denote the False Positive, False
Negative, True Positive and True Negative rates, respectively.

These are typically real valued numbers in the range of [0,

100].

This is the basic fitness function which only considers the

classification performance but does not take number of features

into consideration. Thus, a multi-objective fitness function

(F) is used; where the first objective function (F1) aims

to minimize the classification error rate, whereas the second

objective function (F2) tends to minimize the number of

features. This function is defined as [24]:

F =

⎧⎨
⎩

Error Rate(E) (F1)

γ × #F
′

#F + (1− γ)× EF
′

c

EF
c

(F2)
(6)

The above defined fitness function is expected to ensure the

minimization of the number of features while maintaining a

high classification performance. In the defined function, γ
is any constant value lying between [0,1], F

′
denotes the

number of selected features, F represents the total number of

available features, EF ′

c is the classification error rate involved

in selecting the feature-set and EFc represents the error rate

involved by using all the available features for classification.

The detailed operation of the ImGWO for feature selection

in the context of network anomaly detection is illustrated by

Algorithm 2. During Step 1, different parameters such as-

pop, T, F and pos are initialized (Lines 2-6). In Step 2, the

initial population is generated using uniform distribution as

discussed above. Along with this, the coefficient vectors ( �A
and �C) and the random vectors (�r1 and �r2) are initialized

(Lines 7-11). Following this, fitness functions are calculated

for all the wolves to determine the optimal solution for the

considered problem. Based on the obtained fitness values, the

participating wolves are categorized into α, β and δ. The rest

of the wolves are marked as ω which follow α, β and δ
(Lines 14-16). Finally, the process of improved exploration

and exploitation capability as discussed above is repeated, till

an optimal solution to the problem is reached (Lines 17-33).
2) Complexity Analysis: The overall complexity of the pro-

posed algorithm was found to be O(mnp); wherein variables m,

n and p refer to the number of iterations, population size and

number of features in the dataset, respectively. The complexity

of the proposed ImGWO is the same as the standard GWO but

can be improved by running ImGWO to reduce the running

time. However, the proposed ImGWO gives better convergence

with improved exploration, exploitation and initial population

generation abilities than its standard counterpart.

B. Anomaly Detection using ImCNN

The structure of the ImCNN used in the proposed model

for effective anomaly classification is described as under.

The logical structure of the proposed ImCNN is described

using Fig. 2. As shown in the figure, the ImCNN architecture
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Algorithm 2 ImGWO: Proposed Feature Selection Technique

Input: Dataset D.

Output: Optimal feature subset F
′
.

1: procedure FUNCTION(ImGWO)

2: Step 1: Initializing Parameters

3: pop: size of population

4: T: maximum number of iterations

5: F: total number of features

6: pos: position of grey wolf

7: Step 2: Initial Population
Generation

8: Generate the initial population using uniform distribu-

tion

9: Initialize �A
10: Compute r2 using Eq. (4)

11: Initialize �C using r2

12: Step 3: Fitness Function Calculation

13: Calculate the fitness function (F) of grey wolves using

Eq. (6)

14: Set α=the grey wolf with maximum fitness

15: Set β=the grey wolf with second maximum fitness

16: Set δ=the grey wolf with third maximum fitness

17: while t<T do
18: for i = 1 to pop do
19: Update the pos of the current grey wolf

20: end for
21: for i = 1 to pop do
22: for j = 1 to F do
23: Compute Pm using Eq. (2)

24: if Pm>r1 then
25: Calculate N using Eq. (3)

26: Set F
′
= {f1, f2, · · · , fN }

27: for k = 1 to N do
28: Re-initialize the kth feature of the

grey wolf

29: end for
30: end if
31: end for
32: end for
33: end while
34: end procedure

comprises of 8 layers, namely 4 convolutional layers (conv),

2 sub-sampling layers (samp), 1 dropout layer (drop) and 1

fully connected layer (conn). The sequence of the layers is

as under: conv1, conv2, samp1, conv3, conv4, samp2, drop1,

and conn1. The detailed operation of these layers is provided

in what follows.

The images acquired from streaming data traffic serve as

the input to the ImCNN with the size of 32× 32× 3; wherein

the spatial dimension are represented using 32×32 pixels and

the channel dimensions are fixed to 3. In the first layer, i.e.,
conv1 a 2D kernel of size 3×3 is applied to the input. Here, a

2D kernel is utilized to extract the relevant feature set. Since,

a single kernel is capable of extracting a single feature, thus a

total of 12 2D kernels are applied on the data set to generate a

holistic feature map of 12 size in the very first layer. Moreover,

a total of 6 2D kernel of dimensions 2× 2 are utilized as part

of the conv2 layer. Subsequently, with an aim to reduce the

spatial resolution, sub-sampling is carried out in the next layer,

i.e., samp1. This layer helps to enhance the robustness of even

the minute spatial distortions. Here, the sampling is performed

with the factor of 2 × 2 which doesn’t affect the size of the

feature map.

In order to generate a more optimized feature map, another

layer of convolution, i.e., conv3 is utilized with the 2D kernel

(3× 3). This layer in turns generates a set of 3 feature maps.

Finally, another convolution layer (conv4) for deep feature

identification is employed next. Like the previous layer, the

same kernel is used in this layer producing a total of 3

feature maps. Subsequently, sub-sampling is performed on

the data as part of samp2 layer; without affecting the size

of the feature map. Finally, the modified dropout approach

as discussed in Section III-B is carried out as part of drop1
layer; wherein the ImCNN tends to learn the robust features

of the underlying network. In the next layer, the proposed

ImCNN tends to learn high-level features of the input datasets

using convolution in conn1. It is a fully-connected layer which

utilizes 3D kernel (size = 5 × 5 × 3), reducing the feature

map to 1 × 1 × 5 size. The number of outputs of this layer

is 5 which corresponds to different classes of normal and

anomalous traffic streams namely-normal, DoS, U2R, R2L

and Probe. This output classifies the traffic stream into the

above classes with a definite probability which is chosen in

accordance with the benchmark datasets [25], [26].

V. NUMERICAL SIMULATION RESULTS

This section demonstrates the performance of the proposed

model compared to the current state-of-the-art schemes for

network anomaly identification. It is implemented using i3-

6100U CPU @ 2.30 GHz with 4 GB of RAM on MATLAB

R2016a. For the extensive evaluation of the proposed model,

three sets of case studies have been considered which measure

the performance of the proposed model on different datasets,

i.e., benchmark and synthetic datasets.

A. Evaluation metrics

In order to evaluate the performance of the proposed model,

the following parameters are used: Detection Rate (DR) or

recall, False Positive Rate (FPR), precision, accuracy and F-

score [5], [22]. The mathematical derivation of these parame-

ters is illustrated using the below equations.

DR (Recall) =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F-score = 2× Precision× Recall

Precision + Recall
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Fig. 2: The architecture of the ImCNN used for network anomaly detection for streaming data in cloud setup.

In the above equations, the parameters TP, TN, FP and FN

refer to True Positive, True Negative, False Positive and

False Negative, respectively. TP refers to the case when the

considered class (network traffic in our case) is actually normal

and is classified as normal. On the similar lines, an anomalous

class classified as normal is referred to as FP. On the contrary,

a normal class may be classified as anomalous, while an

anomalous class may be predicted anomalous. These cases

are respectively ascribed as TN and FN.

TABLE I: Illustration of confusion matrix
�������������Actual class

Predicated class
Anomaly class Normal class

Anomaly class TN FP
Normal class FN TP

B. Datasets Used

1) Benchmark dataset-DARPA’98: The benchmark dataset

used for evaluation purpose is acquired from Defense Ad-

vanced Research Projects Agency (DARPA) comprising of

58 features [25]. This benchmark dataset is widely accepted

and is used for network anomaly detection. It comprises of 4

set of files namely-tcpdump files, tcpdump list files, Solaris

BSM audit data files, and ps monitoring data files. These

files contain the network traffic log information, however,

amongst these files only the tcpdump files contain the traffic

log information pertaining to cloud environment. Hence, the

tcpdump files are used for evaluating the performance of the

proposed hybrid model. Moreover, this raw data (in the form

of bytes/packets from tcp dump file) is converted into images

for evaluation purposes during the preprocessing phase as

explained in Section IV.

2) Benchmark dataset-KDD’99: KDD Cup 1990 is a

benchmark data that is acquired from UCI machine learning

repository for Case study-II [26]. It comprises of nearly 5

million records and a total of 41 features. Like DARPA’98

dataset, the traffic in this dataset can also be classified into 5

classes namely-normal, DoS, U2R, R2L and Probe.

3) Synthetic dataset: In oder to perform a more compre-

hensive evaluation of the proposed model, a simulated envi-

ronment has been set up to generate synthetic network traffic

streams. For this purpose, two machines were setup, wherein

the first machine was a typical Windows PC, while the other

was a dummy server. On the former machine, different kinds

of malicious files were executed to generate the anomalous

traffic, while on the later machine INetSim2 was used to set an

imitation of Internet. The main advantage of using INetSim2 is

that it can be used to generate common Internet services data

(HTTP, SMTP, DNS, FTP, etc.). Subsequently, the generated

data from the Windows PC is sent to the server, to which

the server responds back with the appropriate queries. The

communication between the two machines carries both the

anomalous and benign traffic and the same has been employed

for the performance evaluation of the proposed model. The

anomalous traffic was injected into the traffic stream for

following attack vectors: DoS, Generic, Shell code and CLET

[27]. Hence, the generated synthetic traffic streams can be

classified into 2 classes, i.e., normal and anomalous.

C. Results & Comparisons

For the extensive evaluation of the proposed model, three

case studies were taken into account. These case studies

evaluate the performance of the model on different datasets,

i.e., Case study-I on DARPA’98 dataset, Case study-II on

KDD’99 dataset and Case study-III on synthetic dataset. The

results obtained are highlighted in Figs. 3 and 4 respectively.

For the sake of clarity, the obtained results are illustrated in

two parts namely-for ImGWO and for proposed hybrid model
(ImGWO+ImCNN). The relative comparison of the former was

carried out against the standard GWO; while the latter was

compared with the hybrid combination of GWO and CNN

(GWO+CNN). Their detailed description is as follows.
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1) For ImGWO: ImGWO was used for the optimal feature

set selection from dataset. In the considered case studies,

ImGWO was able to attain optimal results as shown in Fig. 3.

The trade-off between the competing functions, i.e., number

of features and error rate is depicted in the figure. It is

evident from the figure that ImGWO leads to optimal feature

set selection while minimizing the error rate relative to the

standard GWO. A total of 37, 34 and 21 features were selected

out of 58, 41 and 35 in Case study-I, II and III, respectively, by

ImGWO. For instance, important features like the duration of

the connection, the number of bytes transferred from sources

to destination, the number of bytes transferred from destination

to sources, the number of failed logins, protocol type, the

status of connection, the number of failed login attempts,

the number of compromised conditions, etc. were selected by

ImGWO.
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GWO
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(a) Pareto front for the feature selection phase

Fig. 3: Performance evaluation of the proposed ImGWO on

benchmark & synthetic datasets.

2) For proposed hybrid model (ImGWO+ImCNN): The

performance evaluation of the proposed hybrid model for

network anomaly detection across the considered case studies

is discussed as under. In total, 6 parameters have been used for

the evaluation purpose of the ImCNN architecture for anomaly

detection.

The obtained results in terms of Case study-I are detailed as

under. Fig. 4a depicts the high DR achieved by the proposed

hybrid model corresponding to normal and anomalous classes

(DoS, U2R, R2L and Probe attacks) on DARPA’98 benchmark

dataset. The FPR corresponding to the considered set of

classes is depicted in Fig. 4b. It is evident from the figure

that the proposed model yields FPR values as low as 4.167,

3.448, 3.846, 3.846, 2.703 with respect to different classes.

Fig. 4c indicates the proposed model’s precision in achieving

the desired results. It achieves high precision in detecting both

normal (99.98) and anomalous classes (99.98, 99.93, 99.93,

99.98). Similarly, evaluation results with respect to accuracy,

F-score and ROC curves are shown in Figs. 4d, 4e and 4f,

respectively. The results clearly indicate good performance of

the proposed model across all the parameters relative to its

existing counterpart, i.e., GWO+CNN.

Next, we illustrate the performance of the ImCNN architec-

ture on KDD’99 dataset for Case study-II. The obtained results

are also depicted in Fig. 4. The proposed model is found to be

effective enough to achieve higher DR, precision and accuracy

in comparison with Case study I and the same is evident

from the results depicted in Figs. 4a, 4c and 4d respectively.

Moreover, the proposed model achieves FPR values as low

as 2.70, 2.20, 2.10, 1.80 and 2.30 in detecting normal, DoS,

U2R, R2L and probe attack classes. Figs. 4e and 4f depict the

F-score and ROC curves which clearly indicate the capability

of the model of achieving satisfactory performance. Overall,

the proposed model is found to perform better on KDD’99

dataset relative to the DARPA’98 dataset. Further, during this

case study as well, the proposed scheme performs better than

the combination of GWO+CNN as indicative from the results

(shown in Fig. 4).

The evaluation results for Case study-III are depicted in

Figs. 4g and 4h. The results clearly indicate that the proposed

scheme achieves quality results even in case of the synthetic

dataset. High DR, precision, accuracy and F-score with low

FPR are an indicative of the performance of the proposed

scheme on synthetic dataset. The related results are highlighted

in Fig. 4g. The corresponding ROC evaluation for this case

study are summarized in Fig. 4h. The obtained results imply

that the proposed model is efficient enough to be implemented

in real-time.

In addition to this, the execution time of the proposed

scheme across all the datasets is depicted in Fig. 4i. The

obtained results indicate that the proposed model executes

in a reasonable amount of time across all the case studies

considered. On average, the proposed model exhibits an overall

improvement of 8.25%, 4.08% and 3.62% in terms of DR,

FPR, and accuracy, respectively.

3) Comparison with the existing schemes: The detailed

comparison of the proposed model with the current state-of-

the-art techniques [28], [29] is depicted in Table-II. As evident

from the table, the results obtained by the proposed model

show an indicative improvement over the existing schemes.

For instance, the proposed model performs far better than

the existing schemes in terms of FPR, accuracy, and F-score

for DARPA’98 dataset, and in terms of DR and F-score for

KDD’99 dataset.

TABLE II: Performance comparison of the proposed model

with the state-of-the-art techniques.

DARPA’98 Dataset
Technique DR(%) FPR(%) Accuracy(%) F-score(%)
Elfeshawy et al. [28] 98.43 4.6 95.39 –
Ahmed et al. [29] 99.23 – 92.82 96
Proposed Model 98.62 3.60 97.92 98.92

KDD’99 Dataset
Technique DR(%) FPR(%) Accuracy(%) F-score(%)
Sharma et al. [30] 93.41 0.275 99.05 93
Pandeeshwari et al. [7] 98 3.05 – 83.20
Proposed Model 98.72 2.22 98.42 99.07

VI. CONCLUSION

This work presents a robust hybrid model for network

anomaly detection in cloud environments, particularly for

streaming data. The model leverages the advantages of

multi-objective optimization and deep learning, particularly
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Fig. 4: Performance evaluation of the proposed hybrid model on benchmark & synthetic datasets.

for feature extraction and anomaly detection on real-time

network traffic streams. For this purpose, two computationally

efficient techniques were employed namely-GWO and CNN.

The amalgamation of these techniques is further improved

by revamping their respective standard strategies. For

instance, GWO is improvised with respect to enhance initial

population, exploration and exploitation capabilities, while

CNN is modified in terms of dropout layer functionality.

Additionally, the proposed hybrid model was extensively

evaluated on benchmark and synthetic datasets. The results

obtained clearly indicate the supremacy of the proposed

model relative to the existing models.

In the future, we will extend the present work for malware

detection, particularly for cloud environments. The inherent

complexity in the cloud environment is induced due to the het-

erogeneity of incoming traffic and underlying hardware; which

makes the task of anomaly detection more cumbersome.
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