
HAL Id: hal-02190125
https://hal.science/hal-02190125

Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Location Management Protocol for Object Stores
in a Fog Computing Infrastructure
Bastien Confais, Benoît Parrein, Adrien Lebre

To cite this version:
Bastien Confais, Benoît Parrein, Adrien Lebre. Data Location Management Protocol for Object Stores
in a Fog Computing Infrastructure. IEEE Transactions on Network and Service Management, 2019,
pp.1-14. �10.1109/TNSM.2019.2929823�. �hal-02190125�

https://hal.science/hal-02190125
https://hal.archives-ouvertes.fr

1

Data Location Management Protocol for Object
Stores in a Fog Computing Infrastructure

Bastien Confais∗, Benoît Parrein† and Adrien Lebre‡
∗ CNRS, LS2N, Polytech Nantes, rue Christian Pauc, 44306 Nantes, France

† Université de Nantes, LS2N, Polytech Nantes, rue Christian Pauc, 44306 Nantes, France
‡ Institut Mines Telecom Atlantique, LS2N, 4 Rue Alfred Kastler, 44300 Nantes, France

Abstract—Fog Computing infrastructures have been proposed
as an alternative to Cloud Computing to provide low latency
computing for the Internet of Things (IoT). But no storage solu-
tions have been proposed to work specifically in this environment.
Existing solutions, relying on a distributed hash table to locate
the data, are not efficient because location record may be placed
far away from the object replicas. In this paper, we propose to
use a tree-based approach to locate the data, inspired by the
Domain Name System (DNS) protocol. In our protocol, servers
look for the location of an object by requesting successively their
ancestors in a tree built with a modified version of the Dijkstra’s
algorithm applied to the physical topology. Location records are
replicated close to the object replicas to limit the network traffic
when requesting an object. We evaluate our approach on the
Grid’5000 testbed using micro experiments with simple network
topologies and a macro experiment using the topology of the
French National Research and Education Network (RENATER).
In this macro benchmark, we show that the time to locate an
object in our approach is less than 15 ms on average which is
around 20% shorter than using a traditional Distributed Hash
Table (DHT).

Keywords—Fog Computing, Data Location Management, Tree
Overlay, Dijkstra’s algorithm, DHT, IPFS, Grid’5000.

I. INTRODUCTION

While largely adopted, Cloud Computing relies on few
physical datacenters located far from the users. This model
cannot satisfy the new constraints of the Internet of Things
(IoT), especially in terms of latency and reactivity. The Fog
Computing approach proposed by Cisco in 2012 [1] consists
in deploying from micro to femto datacenters, geographically
distributed at the edge of the network. Figure 1 illustrates
a Fog infrastructure where the small datacenters are called
“Fog sites”. This approach avoids congestions by containing
the network traffic but most importantly, the proximity to the
users, enables the Fog infrastructure to provide low latency
computing. Clients are potentially mobile and are always
connected to the closest site in terms of network latency.

In this context, our ultimate goal is to develop a seamless
storage solution where the clients can always access their data,
regardless of the site they are connected to. In this work, we
focus on the access pattern write-once, multiple-reads. This
covers many use cases like symmetric CDN (Content Delivery
Network) for consumer market where immutable content is
shared from the edge of the network or providing a storage
backend for Network Virtualization Functions (NFV) where
immutable virtual machine images are relocated to follow
users in their mobility [2].

Extreme Edge

Frontier Frontier

Frontier

Domestic network

Enterprise network

Wired link
Wireless link

Cloud Computing

Cloud Latency

ge to Fog latency
[10-100ms]

Mo

Fig. 1: Overview of a Cloud, Fog and Edge infrastructure.
Each site can be composed of several “Fog nodes”.

Object-stores writing data locally provide both locality and
scalability, two useful properties for Fog Computing infras-
tructures [3]. Nevertheless, the records containing the location
of all objects replicas are often stored without the locality
constraint. At best, a Distributed Hash Table (DHT) is used.
DHT have valuable properties e.g., the position of location
records is determined by a hash function which enables
scalability and load balancing but the geographical dimension
is not considered.

In a DHT-based solution, when an object is requested, a
first site is reached to determine its location and then, the
object is retrieved from a second site. Finally, a local replica
is created to improve the performance for future accesses and
the location record in the DHT is updated to reflect this new
location. Objects are replicated where they are accessed but
the location record is not relocated. We assume that reaching
the site storing the location record may be longer than actually
accessing the site storing the object replica.

In this paper, we propose a metadata management approach
designed up to now for immutable objects. This approach in
which the records storing the location of objects are replicated
on the fly is inspired by the Domain Name System (DNS) [4]
and by several implementations of Content Delivery Network
(CDN) [5] protocols. Its main characteristic is to take into
account the physical network topology in order to relocate the
object’s location records close along the routing path to the
object’s replicas. In this way, the servers are able to locate

2

Fig. 2: Example of DHT routing to access the key with a
hash equal to 42.

objects with a low latency and without sending requests far
away in the network. We also present a method to generate a
tree from a network topology by using the Dijkstra’s algorithm
and by modifying its cost function to adapt it to our iterative
protocol.

In Section II, we describe why existing protocols and more
precisely why DHTs are not adapted to Fog infrastructures.
We provide some technical background to understand our
protocol, and we list the assumptions we made in our work.
In Section III, we describe our protocol and present different
methods that can be used to build the tree. Then, in Section IV,
we evaluate our approach on the Grid’5000 testbed both with
micro and macro benchmarks. Finally, we discuss the overhead
cost of our approach in terms of messages and how the
dynamicity of Fog Sites can be handled in Section V. Some
related works are presented in Section VI before concluding
in Section VII.

II. TECHNICAL BACKGROUND

In this section, we first explain why the traditional ap-
proaches to store the location and to locate objects are not
adapted to Fog infrastructures. Then we present how an
approach designed from the Domain Name System (DNS)
protocol can benefit from the Fog particularities. Finally, we
list the assumptions we made in this work.

A. Expected properties for a localisation protocol

A good property for an object store working in a Fog
infrastructure is to write objects locally [6]. Objects are stored
on a node of the site the user writes and a mechanism such
as a Distributed Hash Table (DHT), a gossip protocol or a
hashing function is used to store the relation between each
object’s name and the location of its replicas [7]–[10].

In order to locate the objects and to store their location
efficiently, we expect the location records to be found close
to the site accessing the object and to benefit from data
movements between the sites to improve the locality. When
a site accesses an object and relocates it, other sites should be
able to locate this new replica by reaching a closer site than
the original one.

These expectations can be extended to 5 other properties: (i)
the impact of the approach on the access times. It is evaluated
according to the number of requests needed when an object is

Rennes Paris
4.5 ms

Lyon

10.0 ms

Bordeaux

5.0 ms 4.0 ms

NiceMarseille
5.0 ms

9.0 ms4.0 ms

Toulouse
2.5 ms

Strasbourg
4.0 ms

7.0 ms5.0 ms

5.0 ms

3.0 ms

Fig. 3: Part of the French National Research and Education
Network physical topology.

accessed or written. (ii) The second property is the amount of
network traffic generated by the churn, when a site is added or
removed. This property also depends on the number of location
records that must be moved. (iii) The amount of network traffic
exchanged to locate an object is another property we evaluate.
(iv) The fourth property is the amount of knowledge about the
topology that each node has. In some approaches, each node
only knows its close neighbourhood while in others, each node
has to know all the nodes that are part of the network. (v)
Finally, the last property is the minimal number of location
records that need to be stored for each object. In other words,
some approaches require to store the location of every object
on all the nodes in the network, while in others, the location
of each object can be stored on only one node.

In a previous work, we focused on the object store
called InterPlanetary FileSystem (IPFS) [10], that relies on
a BitTorrent-like protocol to exchange objects between nodes
and a DHT to store their location.

Distributed Hash Tables propose a trade-off between the
amount of network traffic generated to locate an object and the
knowledge of the topology by each node. Each key is stored
on the node with the identifier immediately following the value
of the hash computed from the key. Routing tables are also
computed so that each node knows a logarithmic number of
neighbours and can reach any key with a logarithmic number
of hops. Figure 2 shows an example of a Chord DHT [11]
where the hash function computes the value 42 for the key
key. Therefore, the value associated to the key will be stored
on the node with the identifier 45 reached in 3 hops from the
node 0. According to the Chord routing protocol, each node
forwards the request to the node of its routing table which has
the closest identifier to the hash of the key looked for without
exceeding its value. Each entry of the routing table is pointing
to the node with the identifier immediately greater than p+2i

where p is the identifier of the current node and i is varying
from 0 to the log of the keyspace size. Based on these simple
rules, the node 0 uses the route 0 + 25 = 32 pointing to the
node 38 because the next route 0+26 = 64 is greater than the
key with the hash 42 we are looking for. Similarly, the node
38, uses the route 38 + 21 = 40 pointing to the node 40, and
finally, the node 40 uses the route 40 + 21 = 42 pointing to
the node with the identifier 45.

In a previous work, we proposed to couple object stores like
IPFS [10], to a Scale-Out NAS (Network Attached Storage)
deployed independently on each site in order to prevent the

3

nodes from using the DHT when a client requests an object
stored at its geographical location (in the site it is connected
to) [12]. We showed this approach improves the performance
particularly for small objects, for which the location time may
be longer than the time to retrieve them. This approach also
limits the amount of network traffic sent between the sites,
and enables the clients to access data locally stored in case
of network partitioning. Nevertheless, we still face this issue
related to metadata management while accessing objects that
are not locally stored. Because latency is the key element of
Fog infrastructures, addressing it is essential.

Accessing the DHT to find the location of an object has
many drawbacks. Soliciting a remote site to get the location
of an object impacts the reading performance because the
network latency to reach the site storing the location record
may be high. The performance of the remote sites is also
impacted because answering external queries increases the
load of the servers. Finally, it prevents the system from
working in case of network partitioning: if a site is isolated
from the others, nodes cannot locate the objects stored on it.

We illustrate this with the Figure 3 that shows different
points of presence of the French National Research and Edu-
cation Network (RENATER) topology1 but also their physical
connections and their network link latencies2. We consider an
object written in Paris and its location stored in Strasbourg
(east of France). When the object is first read from Nice
(south-east of France), the location of the object is found
by accessing Strasbourg and the object is downloaded from
Paris. But, when the object is then read from another city
like Toulouse (south-west of France), we want the object to
be located and downloaded from Nice. We do not want to
reach either Paris or Strasbourg and want to benefit from data
movements read after read.

Therefore, the DHT is not adapted for managing metadata
in Fog infrastructures. If an object is stored in Paris, it may
be possible for the location record to be stored on any site.

1https://www.renater.fr/
2https://pasillo.renater.fr/test/get_qosmetrics_resultsMULTICASTv4.php

Nice Paris Strasbourg

Object lookup
phase

Object relocation
phase

where is
object?

in “Paris”

get
object1

object

get
object

object1

store object

update metadata

Client Storage +
DHT Peer

Storage +
DHT Peer

Storage +
DHT Peer

Fig. 4: Sequence diagram of network traffic when accessing
an object remotely stored and when the location of the

objects is stored in a DHT.

Fig. 5: Example of a flooding approach when the TTL
specified is too low to reach the needed object.

Thus, in Figure 4, if a node located in Nice wants to access the
object, it may have to reach a site like Strasbourg to locate it.
Contacting an extra site to determine the location of an object
can be a major issue when this site is reachable with a higher
latency than the site that actually stores a replica of the object.

B. Qualitative analysis of existing approaches

Figure 7 presents a qualitative analysis of the existing
solutions as discussed in the following.

1) Centralised metadata server: the use of a centralised
metadata server does not scale and the need to reach a remote
site to locate an object hugely impacts the access times. The
main advantage of this approach is that all nodes only have to
know the address of the metadata server to be able to locate
objects and not the full network topology;

2) Flooding: this approach does not require to store the
location of the objects. Each node forwards the requests to
its neighbours until the request reaches the node storing the
requested object. To avoid loops, requests are associated to
Time to Live (TTL). The main drawback of this approach is
the huge amount of time needed to reach a requested object
and the large overhead cost of network traffic generated. Many
nodes receive request for objects they do not store. There is
also no guarantee to succeed in locating an existing object, as
shown in Figure 5;

3) Gossip: this approach leads to store the location of
every object on every node. Each time an object is written,
its location is propagated in the neighbourhood until every
node knows it. Once the location is propagated to all nodes,
the main advantage of this approach is to be able to locate any
object without sending anything on the network but the main
drawback is that the location of each object is stored on all
the nodes. Figure 6 shows an example of how location records
are propagated throughout the network.

4) Hash function: applying a hash function on the name of
the object is another approach. In this way, any object can be
located without storing the location and requesting the network
for it. But each node has to know the entire topology of the
network to be able to associate the node address from the value
computed with the hash function.

5) One-Hop Distributed Hash Table: a one-hop DHT is a
mix between a hashing function and a gossip approach. Instead

https://www.renater.fr/
https://pasillo.renater.fr/test/get_qosmetrics_resultsMULTICASTv4.php

4

Fig. 6: Example of gossip propagation when the green object
is located on node “n1” and orange object on node “n4”.
Nodes can receive several times the location record for a

given replica (i.e., “n9”).

of sending the location of each object with a gossip protocol,
the topology of the network is propagated to all the nodes
by a gossip protocol. Each node sends to its neighbours the
range of keys it is responsible for and builds a table containing
these values for all the nodes of the network. Then, to locate
an object, the hash of its name is computed and then the node
responsible for the range of keys containing the hash value is
directly reached. Once the network topology is gossiped to all
nodes, the location process is similar to the use of a hashing
function, that is why Figure 7(d) is similar to Figure 7(f).

For us, the best solution to store the location records does
not impact the access times and it exchanges a small amount
of network traffic when an object is located and when a site is
added or removed from the network. For scalability reasons,
it is also a solution that does not require each node to store
the location of each object and to know the entire topology.
In other words, it is a solution with the lowest values for the
five properties.

C. The DNS protocol, an inspiration for our approach

Because neither the DHT nor any other traditional approach
is able to provide physical locality and to relocate the records
storing the location of object replicas close to where they are
needed, we propose a protocol inspired by the Domain Name
System (DNS). In the DNS protocol, a resolver who wants to
perform a query, first requests a root node and if the root node
cannot answer the query directly, it indicates to the resolver
which server is the ablest to answer. This mechanism is similar
to the hops performed in a DHT but with a major difference:
it is possible to choose the node storing the location of object
replicas instead of using a hash function. It is also possible
to control the servers that a node needs to reach to perform a
query which is a very interesting property in a Fog context.
Also, reusing the cache mechanisms of the DNS to reduce the
access times is something we want to take advantage of.

D. Assumptions

In our work, we make several assumptions. First, we work
in a context where objects are immutable and therefore all
replicas have the same content and are consistent. Second, the

requests are sent in an iterative way i.e.,, the node that looks
for an object sends the queries successively to the different
nodes. Although the recursive approach is more performant,
most DHT work in an iterative manner [13] for security
reasons. It prevents the clients and nodes from waiting for
a reply to a message that has been lost in the network. It also
limits the impact on the load of the sites which are not the
source of the request. We kept this approach in our protocol
essentially for this last reason. Third, in this present work, we
do not consider the dynamicity of Fog Sites. Nonetheless, this
question will be discussed in Section V-B. Finally, we note
that while performing a request, a Fog node does not discover
the location of all the object replicas but only the closest one.
In this way, the object is downloaded from a replica close to
the site where the location record is found, providing locality
in data accesses.

III. A TREE BASED APPROACH FOR OBJECT LOCATION

This section first describes how our protocol works, then
proposes an algorithm to generate the tree we rely on and
discusses the overhead cost of our approach.

A. Protocol description

We propose to distribute the records storing the location
of object replicas inside a tree. Like in the DNS protocol,
the different names are spread over different servers organised
in a hierarchical way. The tree is composed of the different
sites of Fog and is browsed from the current site to the root.
If the location of an object’s replica is not found at a given
level, the parent node is requested. Contrary to the DNS where
a resolver first requests the root node, our protocol uses a
bottom-up approach. We consider that the tree is organised
according to the physical topology including the links latencies
in order to minimize the time needed to find the node storing a
replica of the object. In other words, the parent of each node is
close physically and looking for the location of the object by
requesting it is faster than requesting the parent of the parent.
Besides, it limits the network traffic to a small part of the
topology.

Figure 8 shows the tree we computed from the network
topology presented in Figure 3. How this tree was computed is
explained later in the document but it will be used for sequence
diagrams of Figure 9. Figure 8 also shows the metadata organ-
isation. The edges between the nodes correspond to physical
network links. Each node is able to answer all the requests
for objects stored in their subtree, and more specifically, the
root node located in Lyon is able to provide an answer for
all the requests. The root node was chosen because of its
central position in terms of latency and in the geographical
topology (central east of France). As explained by Dabek et al.,
network latency is dominated by the geographic distance [14].
We consider each site is composed of a “storage backend”
and a “location server”. The “storage backend” is in charge
of storing the objects but also of retrieving them from other
sites when they are not stored locally. The “location server”
is responsible for storing the association between an object’s
name and the sites in its subtree, on which a replica is stored.

5

(a) – Centralised approach (b) – Flooding (c) – Gossip / Blockchain

(d) – Hash function (e) – Distributed Hash Table (f) – One hop Distributed Hash Table

Fig. 7: Star diagrams summarizing the properties for several approaches that can be used to locate data in a distributed
system. The lower a value is, the more the property is compatible with a Fog Computing infrastructure.

Strasbourg (Site 1)
*.strasbourg�at "strasbourg"

Nice (Site 2)
*.nice�at "nice"

Marseille (Site 5)
*.marseille�at "marseille

*.nice�at "nice

*.toulouse�at "toulouse"

Toulouse (Site 7)
*.toulouse�at "toulouse"

Paris (Site 3)
*.paris�at "paris

*.rennes�at "rennes"

Rennes (Site 4)
*.rennes�at "rennes"

Lyon (Site 6)
*.strasbourg�at "strasbourg

*.nice�at "nice
*.paris�at "paris

*.rennes�at "rennes
*.marseille�at "marseille

*.lyon�at "lyon
*.toulouse�at "toulouse

*.bordeaux�at "bordeaux"

Bordeaux (Site 8)
*.bordeaux�at "bordeaux"

Fig. 8: Tree computed with our algorithm showing the initial
content of the “location servers”. Each site also has storage

nodes and clients that are not represented.

Concretely, they store location records composed of an object’s
name and the address of a storage node storing a replica for
this object. For a given object, a server stores at most one
record per replica. Figure 8 also shows the initial content
of the location servers. For instance, the *.paris record
defines the default location of all the objects suffixed with
.paris. The advantage of this special location record will
be explained in the next paragraph. In the following sections,
we use Figure 9 to explain how object replicas are created,
accessed and deleted through this overlay tree. This figure
shows the network messages exchanged by these nodes but
also the physical path taken for routing them.

1) Object creation: Figure 9(a) shows that when a client
writes an object, a suffix corresponding to the site where the
object was created is added to the object’s name. This leads to

not update the location server as we see on the figure. With the
wildcard delegation (e.g., *.paris), location records are not
updated when the object is created but only when additional
replicas are added. In our Fog Computing vision, we assume
that objects are mostly read from the site where they were
created. This strongly reduces the amount of location records
stored. Nevertheless, relying only on the suffix of an object to
determine its location is not sufficient. A storage node in Paris
should not be directly contacted when a user wants to access
objectX.paris. Although we know a replica of the object
is available in Paris, we must be sure there does not exist a
closer replica in the network. Suffixes are only used here to
limit the amount of update messages when new object replicas
are created.

2) Accessing an object from a remote site for the first time:
Figure 9(b) shows the reading process to obtain an object
created in Paris from Nice. The client begins to request the
local storage node and then, if the requested object is not
stored locally, this node looks for the location of the object.
The first location server requested is the local one, which is
the closest. Then, in case of non-existent location, the storage
node requests the parent of the location server (i.e., Marseille)
and so on, until one metadata server answers with the location.
In the worst case, the location is found on the root metadata
server (i.e., Lyon). Once the optimal location found, the object
stored in Paris is relocated locally, and because a new replica
is created, the location record is updated asynchronously. The
storage node sends an update to the location servers from the
closest one to the one on which the location was found. Thus,

6

sites that are in the subtree of the updated “location servers”
will be able to find this new replica in future reads. We note
that, it could be possible to not use “location records” but to
store directly object replicas within the tree, avoiding to first
determine the location of an object before actually retrieving
a replica. However, this strategy cannot be envisioned due to
the storage space it would require.

3) Accessing the object when several replicas are available:
Figure 9(c) shows that when Toulouse requests the object
created in Paris and previously relocated in Nice, the reading
process is the same as previously described but the replica
in Nice is accessed thanks to the location record found in
Marseille. The root metadata server in Lyon is neither reached
nor updated. We note that, despite a replica of the object was
previously added in Nice, the object’s name is not modified.
Toulouse still looks for the object suffixed with .paris but
now, thanks to the location record stored in the tree, it is able
to access a closer replica stored in Nice. Therefore, suffix in
object names does not have a meaning in the read process.
Readers only need to know the site where the object was first
written on, and not all the locations of the replicas.

This approach has several advantages. First, no network
traffic is generated for objects that are written but never
accessed. Secondly, the more sites access an object, the more
replicas of data and location records there are. Also, in our

approach, the object replica is always found in the subtree of
the node where we found its location. Therefore, the closer
the location, the closer the data. In other words, our approach
enables the nodes to retrieve the closest replica (from the tree
point of view).

4) Deleting a single replica or removing an object entirely:
To delete a single replica, the strategy we propose is to browse
the tree from the site storing the replica to the first site that
does not store any location record pointing to it. For instance
to delete the replica located in Toulouse, the location record
objectX.paris→in “Toulouse” is removed from the
location servers of Toulouse and Marseille. The location
records for this object that are stored in Lyon points to Nice
and Paris and therefore, there cannot be a server higher in
the hierarchy storing a replica pointing to Toulouse. In the
case of removing the “master copy” of an object, we can
browse the tree from the current node to the root node and
to copy on each server of the path any location record stored
in the root node that is not a wildcard for this object. For
instance, deleting the replica stored in Paris leads to insert a
record objectX.paris→in “Nice” in Paris. To delete
an object entirely which consists in removing all its replicas,
we propose to browse the tree from the root node and to
follow and delete all the location records found for this object.
Nevertheless, wildcard records can be followed but cannot be

Paris

No location updated.
The stored record

*.paris→in “paris”
matches the object’s name.

put
objectX.paris

done

Client Storage
backend

Location
server

(a) – Write an object on a local site (Paris).

Nice Marseille Lyon Paris

Object lookup phase

Object relocation phase

where is
objectX.paris?

not found

where is
objectX.paris?

not found

where is
objectX.paris?

in “Paris”

get
objectX.paris

object

get
objectX.paris

object

store
objectX.paris

add
objectX.paris→in “Nice”

add objectX.paris→in “Nice”

add objectX.paris→in “Nice”

Client Storage
backend

Location
server

Location
server

Location
server

Storage
backend

(b) – Read the object stored in Paris from Nice.

Toulouse Marseille Lyon Nice

Object lookup phase

Object relocation phase

where is
objectX.paris?

not found

where is
objectX.paris?

in “Nice”

get objectX.paris
object

get
objectX.paris

object

store
objectX.paris

add
objectX.paris→in “Toulouse”

add objectX.paris→in “Toulouse”

Client Storage
backend

Location
server

Location
server

Location
server

Storage
backend

(c) – Read from Toulouse the object previously read from Nice.

Fig. 9: Sequence diagrams of network traffic when a client writes an object in Paris and reads it first from Nice and secondly
from Toulouse.

7

Fig. 10: Star diagram summarising the characteristics of our
proposed approach.

deleted because they are also used for other objects.
To conclude this section, we have shown that our protocol is

more adapted for Fog infrastructures than the DHT because the
location is found along the physical path from the current node
to the root node. Finally, in addition to reducing the lookup
latency, the creation of location records enables the sites to
locate reachable object replicas in case of network partitioning,
increasing Fog sites autonomy. The properties of the proposed
protocol are summarised in Figure 10. Our protocol limits the
network traffic exchanged while locating an object and thus
the impact on the access times. A second advantage is that
it also limits the minimal number of replicas needed and the
knowledge of the topology by the nodes. More precisely, in our
protocol, location records are created only for objects accessed
remotely and each site knows only its parent. We note that the
amount of data to move the objects when a site is added or
removed will be discussed in Section V.

B. Tree computation

As shown in Section III-A, the maximum latency to locate a
replica (i.e., the total latency to reach the root node) increases
with the depth of the tree. For example in Figure 8, when
a node in Nice finds the location of objects in Lyon, the
total latency is the latency between Nice and Marseille to
first request Marseille added to the latency between Nice and
Lyon to reach the location record stored in Lyon (the link
between Nice and Marseille is used twice, due to our iterative
approach). Therefore, the tree used to find the location must
be chosen with care in order to minimize the time to locate
the objects.

The classical algorithm to compute the shortest paths from
a source node to all the other nodes is the Dijkstra’s algo-
rithm [15]. This list of the shortest paths from a source node
to any other node can be seen as a tree with the source node
as root. We propose to reuse this algorithm to generate our
tree but one of the drawbacks of the Dijkstra’s algorithm is
that the root node needs to be specified. In order to choose
the “best” root node, we successively compute the tree with
each node as source and select the one with the lowest
weight. For instance, in Figure 11(a), the tree has a weight of
9.0 + 7.0 + 4.0 + 5.0 + 5.0 + (2.5 + 4.0) + (4.5 + 5.0) = 46.

However, the cost function does not reflect the iterative way
the servers are requested in our approach. For instance, in

Figure 11(a), the weight of the Rennes site has a weight of
9.5 (i.e., 4.5 + 5.0). In our approach, the weight of this node
should be equal to 14, that is 4.5+(4.5 + 5.0) because nodes
located in Rennes first request nodes located in Paris reachable
in 4.5 ms and then, if the location is not found, request nodes
located in Lyon and reachable in 4.5 + 5.0 = 9.5ms. Instead
of using the original evaluation function of the Dijkstra’s
algorithm, we propose to evaluate the cost function shown
in Equation 1 that considers the depth of the nodes.

fc =

parent(node)∑
i=root

d (i, parent (i))× depth (i)

+

d (parent (node) , node)× depth (node)

(1)

The result of this modification is seen in Figure 11(b).
Although this tree optimizes the total latency, it is very flat
and most nodes directly access the root without benefiting
from any relocation. In order to generate a deeper tree, we
introduce a similar mechanism as proposed by Alpert et al.
in the AHHK’s algorithm [16] to relax the constraint. We
connect a node through a specific link in the tree when the
evaluated position of the node is deeper than its current one
and when the total latency (as measured in Equation 1) is better
or degraded by a factor smaller than c. Even if the latency to
reach all ancestor nodes until the root is slightly increased, a
deeper node has more ancestors and a greater chance to find
a location record among them. Figure 11(c) shows the tree
computed using this algorithm when c = 1.2 and used in the
final macro benchmark.

Although in the worst case, reaching the root node is longer
than using the optimal tree (in Figure 11(b)), this relaxed tree
provides a better average latency to locate any object. The
average latency can be computed using Equation 2, showing
how link latencies are weighted by the probability p(j) to find
the location record on the node j.

wtree =
∑

i∈nodes
∑root

j=node d(i, j)× p(j) (2)

To compute the value p(j), we consider a uniform workload
among all the sites, i.e., a given object has an equal probability
to be accessed from any Fog site. For instance, with the
tree shown in Figure 11(b), locating an object from Marseille
requires on average 0× 1

7+4.0× 6
7 ≈ 3.43ms. We assume the

object replica is not located locally in Marseille but on any of
the 7 other sites because there is no need to use the location
process to access a local replica. If an object replica exists in
Toulouse (1 site among the 7), then Marseille already stores a
location record and can locate the object in 0 ms. Otherwise,
if the object replica is located on any of the 6 other sites, Lyon
has to be reached with a latency of 4.0 ms. Equation 3 details
the whole computation when we apply Equation 2 on the tree
of Figure 11(b). It shows an average of 45.4 ms are required
to locate an object.

w =
(
9.0× 7

7

)
+
(
7.0× 7

7

)
+
(
10.0× 7

7

)
+
(
4.0× 6

7

)
+(

5.0× 7
7

)
+
(
5.0× 7

7

)
+
(
2.5× 1

7

)
+
(
(2.5 + 4.0)× 6

7

)
w ≈ 45.4

(3)

Equation 4 shows the same computation performed on the
tree of Figure 11c. It enables us to conclude that the average

8

Nice (S2) Strasbourg (S1)

Rennes (S4)

Marseille (S5)

Toulouse (S7)

2.5 ms

Lyon (S6)

9.0 ms 7.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

4.5 ms

(a) – Dijkstra with the traditional cost function

Nice (S2) Strasbourg (S1) Rennes (S4) Marseille (S5)

Toulouse (S7)

2.5 ms

Lyon (S6)

9.0 ms 7.0 ms 10.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

(b) – Dijkstra with our cost function

Nice (S2)

Strasbourg (S1)

Rennes (S4)

Marseille (S5)

5.0 ms

Toulouse (S7)

2.5 ms

Lyon (S6)

7.0 ms 4.0 ms

Paris (S3)

5.0 ms

Bordeaux (S8)

5.0 ms

4.5 ms

(c) – Dijkstra with our relaxed cost function

Fig. 11: Trees generated from the French NREN physical
topology using different cost functions.

latency to locate an object is lower with our tree (41.1 ms)
built by relaxing the constraints than with the original one
(45.4 ms).

w =
(
7.0× 7

7

)
+
(
4.0× 5

7

)
+
(
5.0× 6

7

)
+
(
5.0× 7

7

)
+(

5.0× 2
7

)
+
(
(5.0 + 4.0)× 5

7

)
+
(
2.5× 2

7

)
+(

(2.5 + 4.0)× 5
7

)
+
(
4.5× 1

7

)
+
(
(4.5 + 5.0)× 6

7

)
w ≈ 41.1

(4)

IV. EXPERIMENTAL EVALUATION

In this section, we compare experimentally our approach
to a Kademlia DHT [17] used in the native version of the
IPFS [10]. We first evaluate it with three different trees: (i) a
balanced tree, (ii) a flat tree and (iii) a deep one. These three
micro benchmarks enable us to fully understand how the time
to get a location is impacted by the network topology. Then, in
Section IV-C, we perform a macro benchmark on the topology
of the French NREN (RENATER) to evaluate our proposal on
a real network.

A. Material and Method

We performed our experiments using the InterPlanetary
FileSystem (IPFS) object store [10] as a “storage backend”.
IPFS relies on a BitTorrent like protocol to exchange the
objects between the nodes and on a Kademlia DHT to store
the location of these objects. Each site of Fog is emulated
by only one node collocating IPFS and the “location server”.
In order to mitigate our development efforts, we implemented
“location servers” by using DNS servers. More specifically,
we use BIND servers, configured as authoritative servers to

store the records in flat text files (BIND default backend). In a
experiment, we observed that the response time increased only
after approximately 30 000 records were stored on a single
server. Because we store fewer records, we consider that this
backend does not impact our results.

The DNS servers provide the wildcard mechanism as well as
a get/put protocol to request and to update the location records
they store. We modified the routing mechanism used in IPFS
to request these servers in a bottom-up manner rather than
using the DHT, and to update the location records by sending
Dynamic DNS (DDNS) messages. Because we do not rely on
the original DNS lookup protocol, all servers are independent,
enabling us to store several location records for a given object.

For a fair comparison, we removed the content based hash
used in IPFS both in our version3 and in the standard one that
uses a DHT4.

We use the topologies shown in Figure 12 and Figure 11(c)
for the micro and macro benchmarks respectively. For each of
the four topologies, objects are written on the first site (Site 1)
and then they are accessed in parallel from other sites. In
each read, each object is accessed from one and only one site
that did not access it previously. In this way, we never read
objects locally stored for which determining their location is
not needed.

We measure the time to access a location record for each
object, but we also measure the number of network links
crossed to reach it (we call this metric the number of “hops”).

We enabled IPFS to send several DHT requests in parallel.
Different replication levels in the DHT are evaluated in order
to be fair with our approach which creates new location
records on the fly. We call “DHT k1”. “DHT k2” and “DHT
k3” a DHT with 1, 2 and 3 replicas respectively. We consider
up to 6 replicas in our macro benchmark. The object repository
of IPFS and the zone file of the DNS servers in our approach,
are stored in a tmpfs in order to prevent any impact from
the underlying filesystem.

Tests are performed on the Grid’5000 testbed. Network
latencies are emulated using the Linux Traffic Control Utility
(tc). Network bandwidth between the sites is set to 1 Gbps.
We use 1000 objects with a size of 4 KB each. We note that
the size of objects has no impact on our results since we only
measure the time to locate them.

Results are presented with a precision of 1 ms because it
takes up to several seconds to locate some objects and only few
milliseconds to locate others. All experiments were performed
10 times. For a better readability, standard deviations are not
represented but are around 0.01 s.

B. Micro benchmarks

In this section, we perform micro benchmarks using topol-
ogy in Figure 12 to validate our experimental plan and to
determine how our protocol behaves on simple topologies.
These topologies are manually built from 5 sites of the
Wondernetwork matrix of latencies 5.

3https://github.com/bconfais/go-ipfs/tree/dns
4https://github.com/bconfais/go-ipfs/tree/dht_name_based
5https://wondernetwork.com/pings

https://github.com/bconfais/go-ipfs/tree/dns
https://github.com/bconfais/go-ipfs/tree/dht_name_based
https://wondernetwork.com/pings

9

Site 1

Site 3

13 ms

Site 2

Site 4

114 ms

Site 5

144 ms

35 ms

(a) – Balanced tree
topology.

Site 1 Site 2 Site 3

Site 4

114 ms 35 ms 13 ms

Site 5

144 ms

(b) – Flat tree topology.

35 ms

13 ms

144 ms

114 ms

Site 1

Site 2

Site 3

Site 4

Site 5

(c) – Deep tree topology.

Fig. 12: Micro benchmark topologies.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

0 250 500 750 1000

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

100 250 0 200

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Site 2

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 3

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 4

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 5

(b) – Per site

Fig. 13: Times to find the location of objects in the first read
for all sites (a) and for each site (b). Objects are created on
Site 1 and are sorted by the time to determine their location.

1) First topology, a balanced tree: we first evaluate our
approach by performing the scenario with the tree given in
Figure 12(a).

The time to locate objects is shown in Figure 13(a), both for
the DHT and our approach when object are accessed for the
first time. Objects are sorted from the time to locate them. It
appears that locating an object with our protocol takes 1.982 s
in the worst case which is faster than a DHT with only one
replica (about 4.794 s) but longer than a DHT with 3 replicas
(about 1.740 s). We nevertheless note that in the first read,
our approach stores less than three replicas and it is logical
to get higher access times than the DHT with 3 replicas. The
comparison with “DHT k3” is not so really fair in a first read.
Because objects are accessed in parallel, the time to locate the
last object is also the time to locate all the 1000 objects. So,
we can compute an average throughput of 504 objects located
per second in our approach (vs 256 objects per second in the
DHT with 2 replicas).

Vertical black lines of Figure 13(a) and following show the
theoretical values delimiting groups of objects for which the

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – Second read

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(b) – Third read

Fig. 14: Times to find the location of objects in the second
read for all sites (a) and for the third read (b).

location record is reached with the same network latency.
In the first read, because each site locates objects with a
different latency, we observe 4 different periods (one every
250 objects) separated by 3 different theoretical thresholds. For
instance, before the first threshold we mostly observe objects
read from Site 4 for which the location of object replicas is
stored locally. The second group is almost composed of objects
read from Site 3 for which the location of objects is found on
Site 1, reachable in 13 ms (network latency between Site 1 and
Site 3). From objects 500 to 750, we observe objects read from
Site 5. Finally, after the last threshold, we observe the objects
read from Site 2 which need to reach Site 5 and Site 4 to
locate them. The non-linearity close to those lines means the
observed result is what we expect. Because objects are sorted,
theoretical thresholds do not exactly delimit what is happening
site by site. To fully understand their individual behaviors, we
split Figure 13(a) according to the site requesting each object.
Figure 13(b) shows the time to locate an object is not the
same for each site because the network latency to connect
them is different. For instance, in the DHT, Site 4 cannot reach
another node in less than 114 ms because it does not have a
closer neighbor, whereas Site 3 can reach Site 1 in 13 ms.
We do not observe non-linearity in our approach for a given

10

 0

 1

 2

 3

 4

 5

0 250 500 750 1000

N
u

m
b

e
r

o
f

p
h

y
s
ic

a
l
h

o
p

s
to

 l
o

c
a

te
 t

h
e

 o
b

je
c
t

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

100 250 0 200

N
u

m
b

e
r

o
f

p
h

y
s
ic

a
l
h

o
p

s
to

 l
o

c
a

te
 t

h
e

 o
b

je
c
t

Site 2

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 3

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 4

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 5

(b) – Per site

Fig. 15: Number of physical hops to reach the location
record in the first read. Objects are sorted by the number of

hops to determine their location.

site (Figure 13(b)) because each of them finds all the location
records from the same location. We note that in Figure 13(a)
the tail from objects 920 to 1000 is due to a bad parallelism of
IPFS that we checked with sequential accesses (not presented
here due to space constraints). This is also the reason why in
our approach the times we measure are higher than the times
we compute from the tree. In the tree, the worst access time is
from Site 2 which reaches the root in 35× 2+ 144 = 214ms
and thus can locate them in 428 ms (RTT latency to consider
the time to send the request and to receive the reply) but it
appears Site 2 can take up to 1.982 s to access the location
record of an object. To remove this flaw, we next evaluate the
performance in terms of hops rather than in absolute time.

Figure 14 shows that in further reads, the time to locate
the objects does not vary with the DHT but decreases in our
approach that creates new location records when objects are
accessed. For the third read, our approach becomes better than
the approach using 3 replicas in the DHT: location records
are close to the sites which need them instead of being spread
uniformly. We need 1.417 s to locate the 1000 objects whereas
the DHT needs 2.206 s in this case.

Because new location records are created according to
object’s access, these theoretical thresholds vary with the
different reads. Therefore, for the second read, in Figure 14(a),
location is found locally for 333 objects because Site 5 now
stores the location for objects that were read from Site 2 in the
first read. A similar observation is made on Site 2 for which
objects are located from Site 5 instead of Site 4.

Figure 15(a) shows the number of physical hops to reach a
location record for each object. Because of the iterative way
the requests are sent, the number of hops in our approach

 0

 1

 2

 3

 4

0 250 400 600 800 1000

N
u

m
b

e
r

o
f

p
h

y
s
ic

a
l
h

o
p

s
to

 l
o

c
a

te
 t

h
e

 o
b

je
c
t

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – First read

 0

 1

 2

 3

 4

0 250 400 600 800 1000

N
u

m
b

e
r

o
f

p
h

y
s
ic

a
l
h

o
p

s
to

 l
o

c
a

te
 t

h
e

 o
b

je
c
t

Object

DHT k1
DHT k2
DHT k3

Our approach

(b) – Fourth read

Fig. 16: Number of physical hops to locate the objects in the
first read (a) and fourth read (b) for the flat tree topology.

Objects are sorted.

 0

 1

 2

 3

 4

100 250 0 200

N
u

m
b

e
r

o
f

p
h

y
s
ic

a
l
h

o
p

s
to

 l
o

c
a

te
 t

h
e

 o
b

je
c
t

Site 2

 0

 1

 2

 3

 4

100 250 0 200

Site 3

 0

 1

 2

 3

 4

100 250 0 200

Site 4

 0

 1

 2

 3

 4

100 250 0 200

Site 5

Fig. 17: Number of physical hops for each site to locate the
objects in the first read for the flat tree topology. Objects are

sorted.

can only be 0, 1 or 3 (a first request sent from Site 2 to
Site 5 and another request sent from Site 2 to Site 4 that
crosses two physical links). The result is similar to what we
observed in Figure 13(a) but contrary to this figure, the number
of physical hops is not impacted by the network latencies.
Therefore, implementation biases that could speed up or slow
down location times do not impact this result.

The conclusion of this experiment is that by requesting close
nodes first and by creating new location records read after read,
our approach provides better performance than the DHT.

2) Flat tree topology: the second topology we evaluate is
shown in Figure 12(b). In this topology, our approach cannot
benefit from the creation of new location records. When the
location is not found locally, the root node is reached directly.
Nevertheless, we show that even in this scenario, our approach
outperforms the DHT. We focus on the number of hops in
order to not consider the different possible latencies when a
leaf node reaches another leaf node in the DHT.

Figure 16 shows the number of hops does not decrease
between the first and the fourth read both in our approach and
with the DHT. In our approach, object’s location is always

11

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

0 250 500 750 1000

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

100 250 0 200

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Site 2

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 3

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 4

 0

 1

 2

 3

 4

 5

100 250 0 200

Site 5

(b) – Per site

Fig. 18: Times to find the location of objects in the first read
for all sites (a) and for each site (b) for the deep tree

topology. Objects are sorted by the time to locate them.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Site 2

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 3

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 4

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 5

Fig. 19: Time to find the location of objects in the fourth
read for each site in the deep tree topology.

determined by reaching Site 4. The theoretical threshold
delimits the objects that are read from Site 4 for which location
records are stored locally and the objects read from the other
sites for which location is determined after one hop. If we
look at the number of hops in Figure 17, we observe that
our approach makes fewer hops than the DHT because in our
approach, Site 4 knows where all the object replicas are and
other sites request Site 4.

The conclusion of this experiment is that even when our
approach does not benefit from the creation of new location
records, it is still better than the DHT because objects are
located with fewer hops. We however note a more important
number of objects or peers may overload the root node. This
highlights the importance of having a well-balanced tree.

3) Deep tree topology: the last topology we evaluate is
the other extreme case in which all the sites are organised
in a vertical tree as shown in Figure 12(c). We show that
having a high-latency link close to a leaf node of the tree

impacts negatively our approach, especially in the case where
a lot of hops are needed to locate the objects. We observe
in Figure 18(a) that reading the 1000 objects in 4.5 s in our
approach makes it worse than the DHT which only needs 1.7 s.
Figure 18(b) shows this result is due to Site 5, connected to
the other sites with a high latency link (about 144 ms). In the
DHT, this site finds the object location in one logical hops
and thus, this network link is used only one time. In our
approach, the link is used in the first hop to request Site 3,
then in the second hop to request Site 2 and finally in the third
hop to request Site 1. Because the high latency link is more
solicited to retrieve the location, times are higher. This leads
us to think to generate a tree in which deeper links, which are
more solicited, have a lower latency. Figure 19 shows times
are reduced in the last read because Site 5 locates all objects
from Site 3, reachable in one hop.

The conclusion of this experiment is that the high latency
links close to a leaf node leads to degrade significantly the
performance of some objects (objects 750 to 1000). Neverthe-
less, such a drawback can be mitigated when location records
are added.

C. Macro benchmark

After performing micro benchmarks to understand how our
protocol behaves, we perform a macro benchmark to see if
our protocol can be used in real networks.

We consider the graph of a part of the French NREN shown
in Figure 3. For our evaluation, we use the tree in Figure 11(c)
that was computed as presented in Section III-B. For the DHT-
based approach, we compute the shortest path (using the Di-
jkstra’s algorithm) between each couple of nodes, so that each
node can locate the objects with the best latency as possible.
The consequence is the DHT benefits from optimal routing
paths. We perform the same experiment as in the previous
section. 1000 objects are written on Site 1 (Strasbourg) and
are read successively from other sites.

Figure 20 shows the times to access the location records
in the first, the third and the seventh read. Because of the
high number of sites, we performed the experiment with the
DHT using 6 replicas for a fair comparison. We observe that
for all reads, we have a better performance than the DHT,
especially because in our approach, the closest nodes are
requested first. In Figure 20(a), the gap we observe around 600
objects corresponds to the objects from which location record
is accessed in 1 hop (accesses from Sites 5, 3 and 8) and
objects that are located with 3 physical hops (Sites 2, 4 and 7
that have to reach their parent in 1 hop, and then, the root node
in 2 extra hops). In the third read, shown in Figure 20(b), our
approach becomes better than the DHT with 3 replicas thanks
to the relocation, even if 5% of the objects (the last 50 objects)
are read with a longer access time because they did not benefit
from the relocation. For instance an object read in Lyon, then
in Marseille benefits only from 2 replicas when the third read
is performed. Contrary to this, an object read from Nice and
then from Rennes benefits from five sites storing at least one
location record in the third read. Finally, Figure 20(c) shows
better performance in our approach because when location is
not stored locally, it is requested on a close node.

12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k1
Our approach

(a) – First read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k3
Our approach

(b) – Third read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000T
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Object

DHT k6
Our approach

(c) – Sixth read

Fig. 20: Times to locate objects in the first, the third and the
sixth read.

Figure 21 shows the total amount of time to locate the
objects and to download them on the site where they are
requested. It shows that better access times are achieved with
our approach, not only because of our way of locating an
object but also because sites always access the closest object
replica. We also observe that the number of replicas in the
DHT does not have a high impact on the total access times
and thus, we represented the curve for 3 replicas only.

These experiments show that by limiting the amount of
hops and by containing and reducing the network traffic sent
between the sites, our approach enables the nodes to access the
closest location record and reduces the time to access it. We
also showed that our approach deployed with a real network
topology still benefits from these characteristics.

V. PROTOCOL LIMITATIONS

In this section, we discuss some difficulties our protocol
may face. We first evaluate its overhead costs in terms of
the total number of messages exchanged while objects are
accessed, and then we study how it may be possible to
support the addition or the removal of a Fog site within the
network without recomputing the whole tree, which is a costly
operation.
A. Overhead costs evaluation

A drawback of our approach compared to a DHT is related
to the number of messages sent to locate an object and to
update the location servers. In this paragraph, we evaluate this
message complexity as well as the complexity to compute the

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

T
o

ta
l
ti
m

e
 t

o
 a

c
c
e

s
s

 t
h

e
 o

b
je

c
t

(s
)

Object

DHT (3 replicas)
Our approach

Fig. 21: Time to locate and to retrieve the objects in the
sixth read.

tree. In our comparison, we do not consider the updates to the
local “location server“ because it is reachable with a very low
latency and thus neither generates inter-sites network traffic
nor impacts the overall performance.

From Figures 9(b) and 9(c), all location servers contacted
when looking for the location of an object are updated. In
the worst case, up to depth(tree) update messages are sent,
when the leaf of a degenerated tree accesses an object. In
other words, the update complexity is O(n − 1) with n, the
number of sites. With the DHT, the number of update messages
is equal to the number of times the location of an object
is stored (generally 3 for fault-tolerance), that is a constant
(O(1)). Therefore, our approach is often more costly.

Because the number of update messages in our approach
varies according to data movements, we need to consider the
total number of update messages when an object is relocated
on all the sites. The total number of update messages sent
between the sites is equal to the number of edges in the tree
(i.e., the number of sites minus one). In the DHT with no
replication, an update message is sent through the network
for each site accessing the object except for the site that
also stores the location of the object. Therefore, when objects
are relocated on all the sites the number of update messages
is equivalent both in our approach and in the DHT. We
note that our protocol becomes less costly when we consider
using replication within the DHT. Finally, the number of
sites reached when a single replica is deleted is bounded by
O(depth(tree)) because, in the worst case, the root node has
to be reached, as explained in Section III-A4.

The complexity to build the tree is the same as the Dijkstra’s
algorithm which is O(n2) with n the number of sites. Yet, as
we compute a tree with each node as root, the total complexity
to build our tree is O(n3). In the following section, we discuss
and propose some strategies to deal with such a complexity
in the case of a dynamic topology, where the tree cannot be
computed once and for all.

B. Handling Churn

Contrary to a DHT, our approach is not able to manage
churn efficiently. In our approach the basic process when a
new site joins or leaves the network consists in:
• Recomputing the whole tree using the algorithm previ-

ously presented to take into account this new node;
• Determining for each node the path from it to the root;
• Recreating wildcard delegations node;
• Moving location records to reflect the new tree topology.

13

This very costly strategy, cannot be used in practice and op-
timizations are welcomed. We note that, these actions should
not be performed when a node is in a temporary failure but
only when a site is created, closed, or when network latencies
are changing.

Let us recall that some works have already discussed
the dynamic shortest path tree problem which consists in
rebuilding a tree without executing the Dijkstra’s algorithm
from scratch [18], [19] when the link latencies change. Unfor-
tunately, a possible change in the root node of the tree have
not been considered.

To add or remove a site efficiently, another strategy is to not
modify the tree each time a site is added so that all the existing
locations records are not moved. We only look for a parent
for the new site by computing the average latency to locate
any object for each possible position (shown in Equation 2).
This reduces the complexity: only n different trees (where n
is the number of nodes in the tree) are evaluated. This method
has the advantage to enable a node to join the network with
a linear complexity O(n). A variant may consist in adding
new sites only at the leaves of the existing tree in order to
limit the number of trees evaluated. This approach also has
the advantage of not recomputing all the wildcard delegations
and all the location records as well: only adding the wildcard
delegations for the new site is required.

Finally, a specific case can be considered for Fog sites that
are mobile like public transportation. Because, their neighbor-
ing changes very often, it seems a good idea to consider these
sites to be a leaf in the tree so that the tree is not to rebuilt
entirely when their positions move in the topology.

VI. RELATED WORKS

Many works propose to add locality in Distributed Hash
Table (DHT) [20]–[23] but most articles only consider “routing
locality”. That is, only nodes with an identifier comprised
between the identifier of the source node and that of the
destination node can be reached during a lookup. This strategy
enables nodes to access the closest replica. This strategy is
proposed by many DHT using a Plaxton routing [24] to
access the closest replica without requesting a node that is
further. For instance, Zhao et al. proposed Tapestry [22], a
DHT in which the time to reach a key is proportional to
the distance to reach the node storing the key. The same
idea was used by Wu et al. [25], Rowstron et al. [20] or by
Locher et al. [23]. Yalagandula et al. [21] point out that routing
locality is not sufficient, and they propose a DHT providing
path convergence. The advantage is to enable administrative
isolation between some sets of nodes, enabling sites to work
in case of network partitioning, just like in our Fog Computing
approach. As summarised by Castro et al. [26], the main
drawback of those approaches is that the distance is computed
in the node’s identifier space that does not reflect the physical
topology. To solve this problem, it is possible either to select
the nodes identifiers or to change the DHT routing tables
according to the network topology but these are difficult to
implement.

Some approaches do not use a DHT. For instance, Ko-
ponen et al. [27] proposed DONA (Data Oriented Network

Architecture), a distributed storage system able to locate the
closest replica using an implicit tree. DONA uses the concept
of Information Centric Network (ICN) so that no metadata
lookup is performed: requests are routed thanks to the network
layer. Using an ICN approach leads to several differences with
our work. First, sites are at the edge of the network and thus,
only at the leaves of the tree. Intermediate nodes are routers
playing the role of metadata server and forwarding requests.
This approach that does not require to first locate data before
accessing it may be very useful in a Fog context. Nevertheless,
ICN still faces many challenges such as dealing with topology
changes or scalability issues. [28].

Let us also mention that comparing a DHT-based approach
with the DNS has already been done several times [29], [30].
Pappas et al. [30] already showed the DNS approach has
a better availability due to the hierarchical caches and also
because the average path length to reach the record is shorter.
But their experimentation is not strictly fair because they did
not use the same number of nodes in the DHT and in the DNS
approach. Moreover, this study does not consider locality and
is not proposed in a Fog Context.

Finally, Content Delivery Networks (CDN) sometimes rely
on a tree [31]. Contrary to our approach, data are always
written at the root, simplifying the tree generation. Tree
computation may also consider the allocation of each client to
a specific site. Therefore, clients do not always request their
closest site, leading to a better load balancing at the price of
performance.

VII. CONCLUSION AND FUTURE WORK

In this article, we first described why locality in the location
process is important. We showed that most existing protocols
are not suited for a Fog environment, before introducing a
new protocol relying on a tree and inspired by the DNS
approach to store the location of objects. We also proposed to
generate the tree overlay using a modified Dijkstra’s algorithm
adapted to the specificities of our protocol, before discussing
the overhead cost of our approach and the challenges to
make our protocol usable in a dynamic environment. Finally,
we evaluated our approach on the Grid’5000 testbed. We
showed with a micro and a macro benchmark that requesting
close nodes first leads to better performance than the DHT,
and we showed that creating new location records along the
physical path improves further reading. Our protocol may
benefit many write-once, read-many applications like Content
Delivery Networks (CDN) or Network Virtualization Function
(NFV). These use cases are particularly interesting because the
location records are contained in the subpart of the network
where the access are performed.

These scenarios imply to improve experimental evaluations
by taking into account the workload of each site and by
considering how our protocol behaves in case of network
congestion and network partitioning. The power consumption
of this proposal also need to be evaluated.

Many theoretical aspects should also be improved in future
works such as supporting the mutability of the objects, main-
taining the consistency among the replicas or dealing with

14

the dynamicity of the network topology. This last dimension
is an obstacle for many approaches (like ICN) and relying
on dynamic routing protocols or routing protocols for adhoc
networks is something we may investigate.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12, 2012.

[2] R. Bruschi, F. Davoli, P. Lago, A. Lombardo, C. Lombardo, C. Rametta,
and G. Schembra, “An sdn/nfv platform for personal cloud services,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1143–1156, Dec 2017.

[3] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on Mobile
Big Data, ser. Mobidata. New York, NY, USA: ACM, 2015.

[4] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034,
Network Working Group, Nov. 1987.

[5] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–663.

[6] B. Confais, A. Lebre, and B. Parrein, “Performance analysis of object
store systems in a Fog/Edge Computing Infrastructures,” in IEEE
International Conference on Cloud Computing Technology and Science,
Luxembourg, 2016.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, Oct. 2007.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proc. VLDB Endow., vol. 1,
no. 2, pp. 1277–1288, Aug. 2008.

[9] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[10] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
Protocol Labs, Inc., Tech. Rep., 2014.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, Aug.
2001.

[12] B. Confais, A. Lebre, and B. Parrein, “An object store service for a
Fog/Edge Computing infrastructure based on ipfs and a scale-out NAS,”
in 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), Madrid, Spain, May 2017, pp. 41–50.

[13] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in Proceedings
of the 1st Conference on Symposium on Networked Systems Design and
Implementation - Volume 1. Berkeley, CA, USA: USENIX Association,
2004, pp. 7–7.

[14] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentral-
ized network coordinate system,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 15–26, Aug. 2004.

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[16] C. J. Alpert, T. C. Hu, J. H. Huang, and A. B. Kahng, “A direct combi-
nation of the Prim and Dijkstra constructions for improved performance-
driven global routing,” in 1993 IEEE International Symposium on
Circuits and Systems, May 1993, pp. 1869–1872 vol.3.

[17] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer informa-
tion system based on the XOR metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[18] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New dynamic spt algorithm
based on a ball-and-string model,” IEEE/ACM Trans. Netw., vol. 9, no. 6,
pp. 706–718, Dec. 2001.

[19] H. Chen and P. Tseng, “A low complexity shortest path tree restoration
scheme for ip networks,” IEEE Communications Letters, vol. 14, no. 6,
pp. 566–568, June 2010.

[20] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, ser. Middleware ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 329–350.

[21] P. Yalagandula and M. Dahlin, “A scalable distributed information
management system,” SIGCOMM Computing Comm. Rev., 2004.

[22] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J.Sel. A. Commun., vol. 22, pp. 41–53, Sep. 2006.

[23] T. Locher, S. Schmid, and R. Wattenhofer, “equus: A provably robust
and locality-aware peer-to-peer system,” in Sixth IEEE International
Conference on Peer-to-Peer Computing (P2P’06), Sept 2006, pp. 3–11.

[24] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” Theory of Computing
Systems, vol. 32, no. 3, pp. 241–280, Jun 1999.

[25] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, and X. Li,
“LDHT: Locality-aware Distributed Hash Tables,” in 2008 International
Conference on Information Networking, Jan 2008, pp. 1–5.

[26] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, Topology-Aware
Routing in Structured Peer-to-Peer Overlay Networks. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 103–107.

[27] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, 2007.

[28] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. C. Schmidt, and M. Wählisch, “Information-Centric Networking
(ICN) Research Challenges,” RFC 7927, IETF, Tech. Rep., Jul. 2016.

[29] R. Cox, A. Muthitacharoen, and R. T. Morris, Serving DNS Using a
Peer-to-Peer Lookup Service. Berlin, Heidelberg: Springer, 2002, pp.
155–165.

[30] V. Pappas, D. Massey, A. Terzis, and L. Zhang, “A comparative study
of the dns design with dht-based alternatives,” in Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–13.

[31] A. Benoit, H. Larchevêque, and P. Renaud-Goud, “Optimal algorithms
and approximation algorithms for replica placement with distance con-
straints in tree networks,” INRIA, Research Report RR-7750, Sep. 2011.

Bastien Confais received his Master’s degree in
Computer Science in 2015 and his Ph.D. from the
University of Nantes (France) last July. Thanks to
his background in networking and in distributed
systems, he is currently working on Fog Computing
and more particularly on how to store data efficiently
in such distributed environments. Over the last few
years, he developed some skills to run experiments
on testbed platforms such as Grid’5000 or FIT/IoT-
lab.

Benoît Parrein (Member, IEEE) received the Ph.D.
degree in Computer Science from the University of
Nantes, France in 2001. He is currently Associate
Professor at the University of Nantes (Computer Sci-
ence department of Polytech school). He is member
of LS2N laboratory (UMR CNRS 6004) dedicated
to digital sciences. He is head of RIO research team
dedicated to networks for the Internet of Things
(IoT). His research interests are Fog and Edge com-
puting, mobile ad hoc networks, robot networks and
Intelligent Defined Networks (IDN). He co-authored

more than 50 peer-refereed publications, contributed to 5 chapters in collective
book and is coinventor of 3 patents.

Adrien Lebre is a full professor at IMT Atlantique,
Nantes (France) and head of the STACK research
group. He holds a Ph.D. from Grenoble Institute of
Technologies and a habilitation from University of
Nantes. His activities focus on large-scale distributed
systems, their design, compositional properties and
efficient implementation. Since 2015, his activities
have been mainly focusing on the Edge Computing
paradigm, in particular in the OpenStack ecosystem.

	Introduction
	Technical background
	Expected properties for a localisation protocol
	Qualitative analysis of existing approaches
	Centralised metadata server
	Flooding
	Gossip
	Hash function
	One-Hop Distributed Hash Table

	The DNS protocol, an inspiration for our approach
	Assumptions

	A tree based approach for object location
	Protocol description
	Object creation
	Accessing an object from a remote site for the first time
	Accessing the object when several replicas are available
	Deleting a single replica or removing an object entirely

	Tree computation

	Experimental evaluation
	Material and Method
	Micro benchmarks
	First topology, a balanced tree
	Flat tree topology
	Deep tree topology

	Macro benchmark

	Protocol limitations
	Overhead costs evaluation
	Handling Churn

	Related works
	Conclusion and Future work
	References
	Biographies
	Bastien Confais
	Benoît Parrein
	Adrien Lebre

